
ar
X

iv
:2

50
6.

13
24

6v
1

 [
cs

.C
R

]
 1

6
Ju

n
20

25

On Immutable Memory Systems for
Artificial Agents:

A Blockchain-Indexed
Automata-Theoretic Framework Using

ECDH-Keyed Merkle Chains

Dr Craig S. Wright

University of Exeter Business School

Exeter, United Kingdom

cw881@exeter.ac.uk

June 16, 2025

Abstract

This paper presents a formalised architecture for synthetic agents designed to retain

immutable memory, verifiable reasoning, and constrained epistemic growth. Traditional

AI systems rely on mutable, opaque statistical models prone to epistemic drift and his-

torical revisionism. In contrast, we introduce the concept of the Merkle Automaton—a

cryptographically anchored, deterministic computational framework that integrates formal

automata theory with blockchain-based commitments. Each agent transition, memory frag-

ment, and reasoning step is committed within a Merkle structure rooted on-chain, rendering

it non-repudiable and auditably permanent.

To ensure selective access and confidentiality, we derive symmetric encryption keys

from ECDH exchanges contextualised by hierarchical privilege lattices. This enforces

cryptographic access control over append-only DAG-structured knowledge graphs. Rea-

soning is constrained by formal logic systems and verified through deterministic traversal

of policy-encoded structures. Updates are non-destructive and historied, preserving epis-

temic lineage without catastrophic forgetting. Zero-knowledge proofs facilitate verifiable,

privacy-preserving inclusion attestations. Collectively, this architecture reframes memory

1

https://arxiv.org/abs/2506.13246v1

not as a cache but as a ledger—one whose contents are enforced by protocol, bound by

cryptography, and constrained by formal logic.

The result is not an intelligent agent that mimics thought, but an epistemic entity whose

outputs are provably derived, temporally anchored, and impervious to post hoc revision.

This design lays foundational groundwork for legal, economic, and high-assurance com-

putational systems that require provable memory, unforgeable provenance, and structural

truth.

Keywords: immutable memory, artificial intelligence, epistemic integrity, automata theory,
cryptographic commitment, ECDH, Merkle tree, blockchain, access control, DAG learning.

2

1 Introduction

In modern computing, the integrity of stateful agents depends not solely upon performance met-
rics or heuristic accuracy but upon their capacity to persist and justify memory over time. The
architectural challenge lies in preventing epistemic drift—wherein synthetic agents subtly mu-
tate their stored beliefs through stochastic updates, model degradation, or retraining processes
that fail to preserve past commitments. While traditional neural systems capture statistical
approximations of reality, they are unable to preserve the chain of reasoning that led to any par-
ticular output. Consequently, trust becomes probabilistic, grounded in correlations rather than
in proof. Such architectures render agents opaque, unverifiable, and fundamentally unreliable
in contexts requiring accountability.

This paper introduces a mathematically rigorous, cryptographically anchored agent design
based on finite-state machines extended with memory permanence, zero-knowledge auditabil-
ity, and formal policy derivation. We propose a novel formalism—termed the Merkle Automa-
ton—that extends classical automata theory with blockchain-based commitment schemes, en-
abling each transition, belief, and output to be irreversibly recorded, cryptographically sealed,
and externally verified. In this paradigm, memory is not ephemeral nor mutable but instead
becomes a substrate of law, governed by access privileges, formal ontologies, and deductive
constraints.

Rooted in formal language theory and inspired by secure ledger structures, our framework
incorporates ECDH-based symmetric encryption for controlled access, layered DAG topologies
for epistemic evolution, and zero-knowledge proofs for selective disclosure. We argue that the
combination of deterministic automata and cryptographic anchoring allows agents to serve as
verifiable epistemic actors whose outputs can be traced, justified, and audited. Furthermore, we
show how reasoning becomes an act of DAG traversal, constrained by append-only knowledge
commitments and subjected to formal verification rules.

This architecture yields not intelligence in the anthropomorphic sense, but structural truth:
agents that cannot hallucinate, cannot fabricate, and cannot revise history. Instead, they operate
under deductive legality. Their memory is not merely accessed but proven. This, we contend,
is the foundational precondition for artificial agents operating in regulated, adversarial, or high-
assurance domains.

3

2 The Problem of Epistemic Drift in Synthetic Agents

Synthetic agents that rely on stochastic embedding-based systems exhibit epistemic drift—defined
as the progressive, untraceable deviation between output assertions and any fixed epistemic
foundation. This arises due to the mutable nature of model weights, the continuous updat-
ing of high-dimensional vector spaces, and the lack of cryptographically verifiable memory.
Such systems generate outputs based on probabilistic proximity in latent space rather than on
reproducible state-based reasoning.

Let fθ : X →Y denote a neural approximation function parameterised by θ ∈ Rn. For any in-
put x ∈X , the output y = fθ (x) is a function of the current state of the weights θ , which evolve
during training according to gradient descent or other heuristic algorithms. However, θ lacks
historical grounding. Once updated, the previous epistemic trajectory becomes irrecoverable
unless manually versioned, which is not enforced by any formal constraint in the architecture.

This leads to the phenomenon of epistemic non-repeatability:

fθt (x) ̸= fθt+∆t (x) even when x is held constant,

where θt and θt+∆t are successive model states. This violates the basic condition of epistemic
traceability, wherein identical queries should yield consistent justifications traceable to past
states.

From a formal logic standpoint, traditional epistemic logic (cf. Hintikka, 1962) assumes modal
operators Kiϕ , read as "agent i knows ϕ ," to be closed under logical consequence. However,
in neural agents, no such closure is guaranteed. Further, due to lack of memory anchoring, no
Kripke-style accessibility relation R ⊆ W ×W (where W is the set of possible worlds) can be
meaningfully constructed, as the agent’s world model is mutable and opaque.

In contrast, the mathematical theory of information proposed by Shannon enforces structural
invariance through entropy-preserving channels [1]. For agents to maintain epistemic con-
sistency, they must operate as structured information systems where knowledge is derivable,
reproducible, and commit-referenced. Drift represents a violation of these conditions.

Moreover, dynamic embeddings induce topological instability. Consider a high-dimensional
manifold M ⊆ Rn encoding concept representations. Continuous training shifts M , thereby
re-mapping the geodesics between concepts. Let dt(p,q) denote the geodesic distance between
concepts p and q at time t. Then:

dt(p,q) ̸= dt+∆t(p,q),

4

implying that semantic relationships are not conserved. This leads to epistemological incoher-
ence: the agent reinterprets prior inputs using altered topologies without version control.

Philosophically, this contravenes Popperian falsifiability. A falsifiable system must retain the
epistemic structures against which hypotheses are tested. Agents suffering from epistemic
drift effectively erase or morph these structures during training. Hence, they cannot engage in
genuine hypothesis testing because the referential substrate shifts over time.

Recent empirical evaluations demonstrate this directly. Large-scale language models fail to
maintain fact consistency even under minimal perturbation. In zero-shot settings, factual recall
degrades over successive iterations—demonstrating epistemic instability not attributable to ad-
versarial noise, but to the architecture’s incapacity for immutable knowledge anchoring [2].

A proper formal agent must instead preserve a fixed mapping:

Input → Transition → Justified Output,

where each transition is bound to a cryptographic proof. Epistemic drift is mathematically
eliminated when transitions are recorded immutably, such that the entire reasoning path is re-
coverable and verifiable.

Thus, any architecture aspiring toward cognitive reliability must reject gradient-trained stochas-
tic embeddings as the core epistemic mechanism. Instead, systems must be designed atop de-
terministic automata, ledger-anchored transitions, and cryptographically enforced referential
permanence.

3 Foundations in Automata and Language Recognition

To construct epistemically constrained artificial agents, one must begin not with data but with
the axiomatic formulation of computation itself. The automaton, a mathematical abstraction
first formalised in the mid-20th century, offers the only viable scaffold for grounding state
transitions in logic rather than in statistical hallucination.

Formally, a deterministic finite automaton (DFA) is a quintuple:

A = (Q,Σ,δ ,q0,F),

where:

• Q is a finite set of states,

5

• Σ is a finite input alphabet,

• δ : Q×Σ → Q is the deterministic transition function,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accepting states.

The extended transition function δ ∗ over strings is defined recursively by:

δ
∗(q,ε) = q, δ

∗(q,xa) = δ (δ ∗(q,x),a) for x ∈ Σ
∗,a ∈ Σ.

The language recognised by A is:

L(A) = {w ∈ Σ
∗ | δ

∗(q0,w) ∈ F}.

However, such machines are inadequate for epistemic traceability. A DFA forgets its past by
construction. Its states do not encode history. They merely collapse all computational an-
tecedents into a single node. No mechanism exists to retrieve the input sequence that produced
the current state.

Hence, we propose an augmentation:

A′ = (Q,Σ,δ ,q0,F,T),

where T ⊆ Q×Σ×Q×T×H is a transition ledger with time-indexed, hashed transitions. Each
tuple (qi,σ ,q j, ti,hi) ∈ T encodes the transition qi

σ−→ q j at time ti with hash hi = H(qi ∥ σ ∥
q j ∥ ti).

This modification induces a non-forgetful automaton. The state of the machine is no longer
atomic; it is the end of a chain. Let γn = (q0,σ1,q1, . . . ,σn,qn) be the trace of execution. Then:

∀i ∈ {1, . . . ,n},∃ti,hi such that H(qi−1 ∥ σi ∥ qi ∥ ti) = hi,

and (qi−1,σi,qi, ti,hi) ∈ T .

Define the Merkle path Pn over {h1, . . . ,hn} and let Rn = Root(Pn). When Rn is anchored in
an externally verifiable blockchain block Bn, then the execution trace becomes immutable and
externally attestable.

Thus, the language accepted by this system becomes not merely the set of strings accepted
by a transition path to an accepting state, but the set of all verifiable, time-anchored transition

6

sequences leading to such states. We define the verifiable language:

Lver(A′) = {w ∈ Σ
∗ | ∃γn,Pn s.t. δ

∗(q0,w) ∈ F ∧MerkleVerify(γn,Pn) = true} .

This transformation shifts the automaton from a black-box recogniser to a white-box ledger of
epistemic transitions. It encodes not just acceptance but justification—transforming language
recognition from mere pattern matching to logically and cryptographically certified cognition.

4 The Merkle Automaton: Structural Anchoring of State

The deterministic automaton, traditionally framed as a quintuple (Q,Σ,δ ,q0,F), where Q is
the set of states, Σ the input alphabet, δ : Q×Σ → Q the transition function, q0 the start state,
and F ⊆ Q the accepting states, offers a formal foundation for computation. However, the limi-
tations of this construct become apparent when provenance and tamper-evidence are necessary
properties for transition validation. In this section, we formalise the Merkle Automaton, an au-
tomaton whose transition structure is rooted not merely in computation, but in verifiable state
commitment.

Let each transition δ (qi,σ j)= qk emit an output on. The tuple (qi,σ j,qk,on) defines a transition-
event. We construct a Merkle tree Mn at each n-th transition point, where the leaves are all valid
output events at that point in time. The root hash Root(Mn) is inserted into a public blockchain
transaction, denoted Bn, such that:

Bn = TXn(Root(Mn))

This commitment enables the derivation of a proof-of-inclusion path π(on) for any given out-
put, permitting post hoc validation of the automaton’s behaviour. The automaton thus transi-
tions from an abstract state machine to a cryptographically verifiable execution trace machine.

Define the extended Merkle Automaton as the septuple:

AM = (Q,Σ,δ ,q0,F,O,M)

where:

• Q: Finite set of states

• Σ: Input alphabet

7

• δ : Transition function with output

• q0: Initial state

• F : Accepting states

• O: Output set where on ∈ O

• M : Sequence (M1,M2, . . . ,Mn) of Merkle trees rooted on a blockchain ledger

Each Mn is constructed as:

Mn = MerkleTree({H(on
1),H(on

2), . . . ,H(on
k)})

with H being a collision-resistant cryptographic hash function, e.g., SHA-256. The Merkle
root Rn = Root(Mn) is committed in a blockchain transaction Bn, rendering the automaton’s
outputs non-repudiable.

A formal output trace τ = (o1,o2, . . . ,on) is considered valid if and only if:

∀oi ∈ τ, ∃ π(oi) : Verify(π(oi),Ri) = True

where π(oi) is the Merkle inclusion proof for oi in Mi, and Verify is the standard Merkle proof
verification function.

This construction aligns computational output with formal properties of distributed integrity. It
prevents speculative hallucination by requiring that any generated token or output be backed by
a verifiable execution trace. If an agent produces a token t such that:

¬∃ π(t) : Verify(π(t),Rt) = True

then t is by construction unverifiable, and may be discarded under a policy of epistemic mini-
malism.

Let us define the language recognised by the Merkle Automaton as:

LM = {w ∈ Σ
∗ | ∃ q f ∈ F, δ

∗(q0,w) = q f ∧ ∀oi ∈ τ(w), Verify(π(oi),Ri) = True}

where δ ∗ is the extended transition function, and τ(w) the output trace generated by w.

8

In effect, LM is not merely a recognisable language in the classical Chomskyan hierarchy,
but a verifiable language — every accepted string is backed by cryptographic evidence of its
generative path.

This approach renders the automaton’s operational semantics cryptographically accountable.
Transitions become historically fixed, and outputs immutable unless forked at the blockchain
layer, which introduces a measurable cost and systemic resistance.

The Merkle Automaton therefore transcends the classical model by incorporating principles of
cryptographic commitment and distributed consensus, providing a foundation for agent-based
reasoning systems that do not merely compute, but attest.

5 The Information Substrate—Blockchain as Oracle of Record

Traditional memory models in machine intelligence rely upon mutable internal representa-
tions—vectors in high-dimensional space adjusted by backpropagation. Such structures, while
enabling generalisation, lack any form of epistemic accountability. In contrast, we define a for-
mal substrate where each knowledge fragment is encoded, committed, and verifiable, with its
existence and origin independently attestable. The blockchain here is not merely a distributed
ledger—it is a cryptographic oracle of record, binding assertion to history.

Let each knowledge unit be a tuple:

Ki = (di, pi,H(di ∥ pi),Eki(di))

where:

• di is the data payload (a sentence, symbol, or propositional fragment),

• pi is its provenance (source identifier, timestamp, originator signature),

• H(di ∥ pi) is a cryptographic hash computed over the concatenation of data and prove-
nance,

• Eki(di) is the encrypted form of di under key ki, derived via elliptic curve cryptographic
protocols (cf. ECDH, see §5).

Each H(di ∥ pi) is committed into a Merkle tree Mn, where n indexes the moment of commit-
ment. The Merkle root Root(Mn) is embedded within a transaction Tn in a blockchain block
Bn. Hence, the ledgered inclusion:

9

Bn ⊃ Tn(Root(Mn)) ∋ H(di ∥ pi)

binds the knowledge fragment to a cryptographically sealed historical record. The proof-of-
inclusion π(H(di ∥ pi)) provides verifiability of both existence and order in the temporal struc-
ture of the ledger.

From this, we define a function:

VerifyFragment(Ki,Bn)⇒

True if π(H(di ∥ pi))⊂ MerklePath(Mn)∧Root(Mn) ∈ Tn ∈ Bn

False otherwise

Such a framework transforms memory from an epistemically soft function to a formal process
of archival commitment. The concept of forgetting becomes computable: only by invalidating
blockchain consensus or removing a committed transaction—both infeasible under adversarial
assumptions—can knowledge be erased.

Moreover, the data provenance pi must itself be structured. Let us define pi = (si, ti,σi), where:

• si is the source document identifier (e.g., DOI, URL hash),

• ti is the timestamp of observation or recording,

• σi is the digital signature of the originator (human or agent).

The combination di ∥ pi is not merely a payload—it is a claim. The hash H(di ∥ pi) then acts
as a commitment to that claim, with verifiable provenance and fixed temporal index.

This system allows the model to query its own record as an oracle. A query q becomes a
Merkle-inclusion test, and a response is constrained by verifiable antecedents. No fragment
may be hallucinated. The model must derive all inferences from provably committed facts. Let
Rq be the response to query q. Then:

∀φ ∈ Rq, ∃ Ki : VerifyFragment(Ki,Bn) = True∧φ |= di

This enforces that every statement φ output in response to a query must be derivable from
committed fragments di, with valid Merkle inclusion in the ledger. Memory becomes not a
mutable function of training, but a verifiable corpus of ledgered claims.

10

In doing so, we instantiate a model where the blockchain is not a side-channel of account-
ability—it is the very substrate of memory. The language of the system is bounded by what
can be proven to exist, by what has been sealed in time. The ledger is not metadata; it is the
epistemological ground truth.

6 Symmetric Cryptography from ECDH-Derived Shared Se-
crets

Within any epistemically rigid system, data confidentiality must coexist with verifiability. While
Merkle inclusion ensures the integrity and anchoring of knowledge fragments, the actual con-
tents may remain confidential to authorised actors. This necessitates a dual system: public
auditability and private access. We achieve this through the application of symmetric cryp-
tography, with keys derived from elliptic curve Diffie–Hellman (ECDH) exchanges between
long-term asymmetric keypairs.

Let each entity U (user) and A (agent) possess a static elliptic curve keypair:

(skU , pkU), (skA, pkA)

The shared secret KU,A is derived via:

KU,A = ECDH(skU , pkA) = ECDH(skA, pkU)

Under the hardness of the Elliptic Curve Diffie–Hellman problem over a secure curve (e.g.,
Curve25519), this ensures that no third party can derive KU,A without knowledge of one party’s
private key.

To avoid direct usage of the raw shared secret, we derive symmetric keys using a context-
specific key derivation function (HKDF):

Kl
sym,i = HKDF(KU,A ∥ contexti ∥ l)

where:

• contexti includes fragment-specific metadata such as timestamp, Merkle root reference,
or query origin,

11

• l ∈ L denotes the access level within a total access lattice L = {l1, l2, . . . , ln} such that
li ≤ li+1,

• ∥ denotes concatenation in the derivation domain.

The key Kl
sym,i is used to encrypt the knowledge fragment di via a symmetric cipher E , typically

AES-256 in Galois/Counter Mode (GCM) to ensure both confidentiality and integrity:

ci = EKl
sym,i

(di)

Each encrypted fragment is committed alongside its integrity hash and Merkle proof:

fi = {ci,H(di),ProofMn(H(di))}

The security of this schema ensures:

1. Only authorised keyholders can decrypt the data.

2. Every ciphertext is uniquely bound to its generation context.

3. Access is privilege-tiered, preventing cross-tier key application or privilege escalation.

Additionally, the construction admits fine-grained, fragment-level access control. That is, for
every fi, there exists a unique Kl

sym,i, disallowing any bulk key compromise from cascading
across unrelated records. Moreover, no global decryption key exists—each fragment is inde-
pendently sealed within its cryptographic domain.

Let D be the decryption function. Then:

DKl
sym,i

(ci) = di iff Kl
sym,i = HKDF(KU,A ∥ contexti ∥ l)

The correctness condition is strictly enforced, such that decryption fails deterministically with
any mismatched or insufficient privilege key.

Finally, all fragments are verified prior to decryption:

VerifyFragment(H(di),ProofMn) = True⇒ Proceed to DKl
sym,i

(ci)

No knowledge is accessed or reconstructed unless its historical existence and inclusion in a
cryptographically committed ledger are first proven.

12

Hence, in this schema, symmetric encryption becomes not a layer atop memory but a structural
component of it. Epistemic access is not merely authorised—it is derived. Decryption is con-
ditional not on intent but on cryptographic merit. And so the agent does not retrieve facts. It
earns them.

7 Multi-Level Access and Ontological Privilege

In epistemically secure systems, access is not an afterthought—it is ontologically encoded.
Memory, when treated as law, must not merely resist tampering; it must actively enforce hi-
erarchical privilege through mathematical invariants. We formalise this principle through a
security lattice structure and derive access-specific decryption keys from cryptographic primi-
tives tied to identity and context.

Let L = {l1, l2, . . . , ln} be a totally ordered access lattice, where each level li corresponds to a
privilege stratum such that li ≤ li+1. Each entity U possesses a long-term elliptic curve keypair
(skU , pkU), and the agent A similarly holds (skA, pkA).

A shared secret is established as:

KU,A = ECDH(skU , pkA) = ECDH(skA, pkU)

We define a context-specific symmetric key for fragment i, at privilege level l, using HKDF:

Kl
sym,i = HKDF(KU,A ∥ contexti ∥ l)

The derived key Kl
sym,i is used to decrypt only if the holder’s clearance lU satisfies:

lU ≥ l

In effect, key derivation becomes non-functional unless the privilege level is properly included
in the derivation transcript. The privilege tag l acts as a namespace separator in the entropy
space, preventing key reuse across classes.

Let the encrypted fragment be defined as:

fi = {ci,H(di),ProofMn(H(di))}

13

where:

• ci = EKl
sym,i

(di)

• H(di) is the hash of the original data payload

• ProofMn is a Merkle inclusion proof from memory block Mn

This construction yields three critical invariants:

1. Strict Compartmentalisation: Each privilege level defines a disjoint keyspace. No key
at level l j can derive knowledge from lk for j ̸= k.

2. Ontological Enforcement: Decryption keys are not centrally stored but derived per in-
teraction. Access is not queried—it is proven.

3. Forward and Backward Isolation: Breach at one level does not propagate. An attacker
with access at lk learns nothing about lk−1 or lk+1.

To prevent elevation by substitution, context-specific salting is mandatory. Let contexti include:

• Timestamp ti

• Query fingerprint ψi

• Merkle root reference ρi

• Policy contract ID πi

Thus:

Kl
sym,i = HKDF(KU,A ∥ ti ∥ ψi ∥ ρi ∥ πi ∥ l)

This prevents identical key reuse across contexts or data fragments. The entropy space becomes
as fragmented as the data it guards.

In addition, each ontological claim is contextually bound:

Ti = (si, pi,oi,Hi), Hi = H(si ∥ pi ∥ oi ∥ l)

14

where l is encoded directly into the hash. This produces privilege-scoped semantic graphs,
such that ontologies themselves are non-global—an agent sees a view of reality commensurate
with its clearance.

Finally, agents are embedded with privilege-level seeds SA ⊆ L. Access is computed, not as-
sumed:

Access(fi) =

Permit if ∃l ∈ SA s.t. DKl
sym,i

(ci) = di

Deny otherwise

Through this construction, knowledge is stratified, not stored in the flat vector space of universal
embeddings. Access is not a permission check but a cryptographic function evaluation. In
this way, epistemic structures mirror the formal semantics of law: tiered, derivational, and
irrevocably contextual.

8 Immutable Learning—Preventing Catastrophic Forgetting

Conventional machine learning paradigms are epistemologically fragile. The act of learning is
tightly coupled with the act of overwriting. In such architectures, knowledge is merely the tran-
sient configuration of weights in a model—volatile, mutable, and pathologically prone to catas-
trophic forgetting. This phenomenon, in which previously acquired capabilities are lost during
the integration of new knowledge, arises from the absence of structural memory guarantees.
Our alternative is an immutable learning paradigm grounded in append-only, cryptographically
verifiable graph structures.

We define a directed acyclic graph G = (V,E), where:

V = {K1,K2, . . . ,Kn}, E = {(Ki,K j) | K j refines or extends Ki}

Each node Ki ∈V represents a committed fragment of knowledge, structured as:

Ki = {di, pi,H(di ∥ pi),Eki(di),ProofMi(H(di))}

Here:

• di is the data content,

• pi denotes provenance metadata (e.g., timestamp, author, context),

15

• H is a collision-resistant hash function (e.g., SHA-256),

• Eki(di) denotes encryption under a symmetric key derived from an ECDH-HKDF pipeline,

• ProofMi is a Merkle inclusion proof for auditability.

Knowledge fragments are never deleted. Updates manifest as new nodes K j with explicit re-
finement edges (Ki,K j). The refinement relation induces a topological constraint that enforces
semantic continuity: no knowledge claim stands unreferenced or contextless.

Delta Encoding of Knowledge Transitions

Updates are encoded as deltas. Let ∆(Ki,K j) denote the semantic difference between two frag-
ments. The system records only ∆, and K j inherits Ki’s reference path. This compression
ensures efficient storage while maintaining traceability. Formally:

K j = Apply(Ki,∆(Ki,K j))

∆(Ki,K j) = Diff(Ki,K j)

Since Apply and Diff are invertible and deterministic, the full knowledge lineage is recoverable.

Topological Constraints and Acyclicity

The graph G must remain acyclic. Formally:

∀Ki,K j ∈V, (K j,Ki) /∈ E if (Ki,K j) ∈ E

Cycles are epistemologically invalid—no fragment may depend on its refinement. This restric-
tion preserves historical integrity and guards against retroactive alteration.

Knowledge Lineage Proofs

Given the root node K0, the full ancestry of any node Kn is verifiable via a path:

P = {K0,K1, . . . ,Kn} such that (Ki−1,Ki) ∈ E

16

Let ρ = MerkleRoot({H(Ki)}). The lineage is verifiable using the inclusion proof from ρ ,
independent of trusting any particular agent. Thus:

Verify(Kn,ρ,ProofP) = True

Only fragments with complete and valid chains are admissible in inference.

Training as Graph Extension

Training does not mutate parameters; it produces graph extensions. A knowledge acquisition
step maps:

Learn : Ki 7→ K j with (Ki,K j) ∈ E

The model is constrained to reason over the closure cl(K j), defined as the set of all fragments
reachable from K j via backward traversal. This closure forms the model’s epistemic context.
Thus, epistemic drift is structurally impossible.

Immutable Evaluation Contexts

Evaluation is scoped to explicit subgraphs. Let Σ ⊆ V be a subset of knowledge nodes. Infer-
ence proceeds over Σ only if:

∀Ki ∈ Σ, ∃ProofMi(H(Ki))

This cryptographic gate ensures that only valid, committed fragments participate in reasoning.
Spurious or ephemeral data is categorically excluded.

Agent Behaviour Constrained by Provenance

The system enforces:

OutputA(t) = f ⇒∃Ki ∈V such that f ∈ Closure(Ki)

In other words, an agent may only emit outputs that are provably grounded in the knowledge

17

graph. This eliminates hallucination by fiat.

Implications for Model Design

This framework obliterates the notion of model versioning as a sequence of overwritten states.
Instead, each model state is a snapshot of a verifiable subgraph. Model evaluation becomes a
function:

M : Input×GraphSnapshot → Output

Consequently, the same model binary may produce different outputs when paired with different
epistemic contexts—without violating determinism or auditability.

Summary

Catastrophic forgetting is a symptom of mutable epistemologies. The resolution is not continual
fine-tuning but architectural reformation. Immutable learning reifies knowledge as committed,
referentially complete, and historically situated. By encoding knowledge transitions as acyclic,
cryptographically linked deltas, the system elevates inference from an exercise in approxima-
tion to a constrained traversal of verifiable history. In this, the machine ceases to learn as we
do—not by amnesia—but by memory that cannot forget.

9 Memory as "Law"—Cryptographic Truth and Legislative
Ontologies

Artificial agents built on mutable memory risk devolving into instruments of persuasion rather
than structures of truth. In such agents, knowledge becomes fungible; assertions are updated
without lineage, and justification is reduced to statistical correlation. This is not epistemol-
ogy—it is rhetorical modelling. We reject this paradigm in favour of a formal system where
knowledge is stored and reasoned over as law: immutable, referential, and structured by leg-
islative logic.

To formalise this, memory must obey three constraints:

1. Provenance: every fact must be sourced, timestamped, and anchored.

2. Immutability: past facts cannot be erased or rewritten.

18

3. Lineage: every inference must trace to axiomatic foundations.

We define the fragment structure Ti as:

Ti = (si, pi,oi,Hi), where Hi = H(si ∥ pi ∥ oi)

Each triple (si, pi,oi) is a Resource Description Framework (RDF) statement representing sub-
ject, predicate, and object. The cryptographic hash Hi anchors the triple into a Merkle tree Mn,
which is itself committed to a blockchain ledger via:

Root(Mn) ↪→ Tx(Bn)

Thus, the ontology becomes historically sealed. No claim can be made unless its triple exists
and is verifiably on-chain.

Legislative Semantics via Description Logics

We model ontologies using DL-Lite and OWL 2, which support tractable reasoning while main-
taining logical expressivity. Each class assertion, property assertion, and constraint is recorded
as an anchored fragment. For example:

ClassAssertion(Pro f essor,CraigWright) 7→ Ti

SubClassOf(Cryptographer,Scientist) 7→ Tj

Every axiom is encoded as an immutable triple and anchored. Logical inference is now con-
strained by on-chain ontological entailments. That is, the AI may only conclude C ⊑ D if a
provable chain of subclass relations exists, each committed on-chain.

Epistemic Reasoning as Jurisprudential Traversal

Let the knowledge base be K = {T1, . . . ,Tn}. We define a reasoning query q as admissible iff:

∃π = {Ti1,Ti2 , . . . ,Tik} ⊆ K such that π |= q

19

Where π |= q is provable under a description logic reasoner that only operates on fragments
with valid inclusion proofs. If VerifyProofM j

(H(Til)) = True for all l ∈ [1,k], the result is
sanctioned. Otherwise, it is void ab initio.

Regulatory Codes as Root Ontologies

We further classify certain ontologies as regulatory codes. These include ethics guidelines,
contractual obligations, and legal statutes. Each code is stored as a named graph Gr ⊂K with:

Gr = {Ti | jurisdiction(Ti) = r}

The agent’s admissible actions are now subject to:

∀a ∈ Actions, Permissible(a) ⇐⇒ Gr |= Permitted(a)

This enforces behavioural constraints as legal entailments. AI actions are no longer probabilis-
tic outcomes but legislative consequences.

Immutable Legal Precedent

We define legal precedent not as analogical similarity but as committed entailment chains. Let
P = {Ta,Tb,Tc} be a precedent sequence. Then:

NewAction(A) is valid ⇐⇒ P |= Permitted(A)

Agents do not speculate—they appeal to immutable fragments with verifiable provenance. This
transforms the act of inference into jurisprudential citation.

Final Implications

In this architecture, the knowledge base of an agent functions not as a fluid vector space but as
a legislative corpus. Ontological terms are interpreted within anchored vocabularies; reasoning
is constrained by logic; and actions are judged not by consequence, but by legality.

Truth, in this regime, is not a belief state.

20

It is a provable, cryptographically grounded claim.

10 Epilogue—To Build Memory Without Mind

The prevailing trajectory of artificial intelligence research has been largely defined by attempts
to emulate human cognition. Whether through neural approximations or probabilistic genera-
tive models, the ambition to recreate a facsimile of consciousness remains dominant. However,
such efforts conflate epistemic reliability with cognitive simulation. The human mind—rife
with bias, error, and inconsistent recall—is not a suitable archetype for systems intended to
serve as objective computational agents. Emulating the mind is not only unnecessary, but epis-
temologically unsound when the goal is verifiable, immutable knowledge representation.

This work proposes an alternative paradigm: the construction of an epistemic substrate in which
memory is not merely functional but jurisprudential. Here, memory is conceived not as an act of
retrieval, but as an artefact of commitment—an immutable, cryptographically sealed ledger of
transitions, assertions, and derivations. Each knowledge fragment is not merely a parameter or
vector, but a historically anchored datum whose origin, integrity, and access are mathematically
constrained. The system does not rely on recall from learned weights but performs traversal
over a Merkle-anchored state space.

In this construction, cognition is operationalised as execution through a verified state transition
system, constrained by formal ontologies and subject to access policies defined cryptograph-
ically. Each assertion is validated through Merkle inclusion proofs, each inference formed
through DAG-consistent lineage, and each behavioural output regulated through precommitted
epistemic contracts. In doing so, the architecture resists the principal failure mode of current
generative systems: hallucination.

Furthermore, the system decouples belief from truth. It is agnostic to perception and affect; it
neither speculates nor imagines. Rather, it operates within a formal system wherein each output
is logically and cryptographically deducible from prior commitments. Provenance is enforced
through digital signatures and block-level timestamping; revisionism is rendered computation-
ally infeasible. Knowledge cannot be altered ex post without cryptographic contradiction.

This framework advances the thesis that epistemic reliability in artificial agents is achievable
not through greater intelligence but through more rigorous constraint. The value of such a
system lies not in its capacity to mimic human faculties but in its incapacity to violate its
own formal foundations. Trust emerges not from persuasion or affective resonance but from
structural guarantees, cryptographic enforcement, and logical closure.

In conclusion, the future of artificial agency does not require consciousness, affect, or the il-

21

lusions of sentience. It requires systems that can commit, systems that cannot forget, and
systems that cannot fabricate. The architecture described herein establishes the foundation for
such agents—synthetic witnesses whose utility derives from their fidelity to constraint, not their
resemblance to biological minds.

Thus, we argue that artificial memory should be constructed not as a metaphorical mirror of
human thought, but as a formal, verifiable institution of computational truth. In rejecting the
psychological model of cognition, we embrace a more principled framework—one in which
epistemology becomes executable and truth becomes a function of structure, not belief.

11 Additional Structures: Append-Only Reasoning Graphs

While the preceding sections outline a foundation for immutable memory through cryptograph-
ically committed automata and ontological constraint, the expansion of agentic reasoning re-
quires a structural formalism that permits evolution without revision. To that end, we define
the Append-Only Reasoning Graph (AORG), a directed acyclic graph (DAG) of logical in-
ference nodes where each node corresponds to a committed knowledge claim, derivation, or
computation, and each edge represents a cryptographically verifiable dependency.

Let G = (V,E) denote the AORG, where V = {v1,v2, . . . ,vn} are vertices representing discrete
reasoning events, and E ⊆V ×V are directed edges such that if (vi,v j) ∈ E, then v j is a logical
or inferential refinement of vi. Each vertex is formally defined as:

vi = (φi,σi,hi, ti)

where:

• φi is the formal expression or proposition at node i,

• σi is the signature (digital, multi-party, or threshold) verifying the author or authority of
the inference,

• hi = H(φi ∥ σi ∥ ti) is the cryptographic hash of the node content, and

• ti is the monotonic timestamp committed at a block height or ledger position.

Edges (vi,v j) in this structure must be justified by formal inference rules, such that the propo-
sition φ j is either a direct logical consequence of φi under a known system (e.g., natural deduc-
tion, sequent calculus), or a refinement under ontological constraint. No edge may be cyclically
introduced; that is, G must preserve acyclicity to maintain directional epistemic growth.

22

Each new addition to the graph is subjected to a set of verifiability constraints:

1. Consistency: φ j must not contradict any ancestor node φk in its transitive closure.

2. Justifiability: Each edge must correspond to an application of a rule in the formal rea-
soning system R.

3. Finality: Once committed and anchored, no vertex may be deleted or edited; knowledge
growth is strictly append-only.

4. Traceability: Any φ j must be reducible via its path to initial axiomatic or empirical root
nodes.

The AORG constitutes a memory and inference substrate simultaneously. Unlike static knowl-
edge graphs, it includes not only declarative facts but inferential steps, epistemic obligations,
and revision-resistant justifications. This makes it possible to construct verifiable proofs-of-
thought, where the derivation of an output or belief is not reconstructed heuristically, but fol-
lowed as a certified computational trace.

Critically, the append-only nature of the structure prevents retrospective manipulation or dele-
tion of epistemic commitments. This eliminates re-training biases, temporal inconsistencies,
and the "forgetting" of past states. Each claim once added to the graph is a matter of permanent
record and any contradiction must be issued as a refinement node, forming a fork with higher
evidential or inferential authority.

Finally, reasoning graphs can be versioned and scoped. Let Gk
i denote a subgraph rooted in vi

with a derivational depth of k. This allows for modular provenance, memory partitioning, and
domain-specific inferential agents operating over bounded reasoning windows.

In sum, the AORG furnishes the agent with a memory model that is also a formal logic engine,
binding cognitive growth to mathematical and cryptographic invariants. Such agents do not
merely store facts—they prove them, trace them, and are bound by their own reasoning history.
The agent becomes not a stochastic regurgitator of patterns but a witness whose statements are
theorems in a committed, verifiable epistemic calculus.

12 Clock Anchoring and Consensus-Time Inference

In decentralised epistemic architectures, the passage of time must not rely on local system
clocks susceptible to drift, rollback, or manipulation. Instead, we define consensus-time as an
externally verifiable, cryptographically enforced ordering mechanism anchored in blockchain

23

data structures. The objective is to enable synthetic agents to reason about time with the same
formality and auditability applied to logic and memory.

Let T = {t1, t2, . . . , tn} denote a discrete set of temporal anchors, where each ti corresponds to
a blockchain block header timestamp τi, committed in the Merkle root of block Bi. While τi is
not itself trustworthy, its position in the chain enforces partial ordering: Bi < Bi+1 ⇒ τi ≤ τi+1.
We define consensus time TC as the monotonic function:

TC : N → R, TC(i) = τi

Where the index i corresponds to the blockchain height and τi is the timestamp associated with
block i, adjusted by protocol rules to constrain forward skew and manipulation (e.g., median-
of-past-N rules in Nakamoto consensus systems).

Each memory fragment or reasoning node vk in the agent’s append-only reasoning graph (AORG)
is annotated with a consensus timestamp:

vk = (φk,σk,hk,TC(ik))

This ensures that epistemic commitments are ordered not by system time but by canonical block
height and timestamp pairs. Let ∆(v j,vk) = TC(i j)−TC(ik). This difference is verifiable and
non-subjective, anchoring relative inference intervals in ledger-based truth rather than mutable
internal clocks.

In cases where multiple blockchains are consulted (e.g., inter-chain anchoring or cross-ledger
commitment), the agent employs a consensus-time aggregation function:

T∗
C(i) = f (TC1(i1), . . . ,TCm(im))

Where f is an aggregation operator such as weighted median or cryptographic quorum times-
tamping across chains C1 . . .Cm. This permits agents to resolve disputed clocks through exter-
nalised consensus rather than internal arbitration.

To enable temporal logic, the reasoning system is extended with operators over consensus-time:

• □tφ : it is always the case that φ holds at or before consensus-time t,

• ♢(t1,t2)φ : φ holds at some time between t1 and t2,

• φ →t ψ: if φ holds at t, then ψ must follow within ∆t.

24

These temporal modalities enable the construction of time-aware proofs, schedules, SLAs, and
legal obligations, transforming the agent into a chronologically accountable witness.

Furthermore, temporal forks or contradictory sequences are resolved by dominance in the
longest chain or pre-specified trust anchors. No reasoning path may cite events after their
committed consensus-time, enforcing causal closure.

In conclusion, clock anchoring provides more than time ordering. It yields a foundation for
accountability, causality, and audit across all inferential acts. Through cryptographic enforce-
ment of monotonic temporal evolution, agents no longer rely on fragile clock signals or system
heuristics. They reason in time the way they reason in logic: by proof, by constraint, and by
unambiguous, externalised order.

13 Zero-Knowledge Inclusion Proofs for Memory Access

In epistemically constrained systems, access to memory must be provable without disclosure.
This creates a fundamental tension: the agent must reveal neither its internal state nor the data
requested, while simultaneously proving possession and proper derivation. We resolve this via
the integration of zero-knowledge proofs (ZKPs), specifically structured for Merkle-inclusion
verification.

Let the agent’s memory be committed in a Merkle tree Mn, rooted in Rn, with leaves L =

{h1,h2, . . . ,hk}, where each hi = H(di) is the cryptographic hash of memory fragment di. Sup-
pose an external verifier V challenges the agent A to prove access to d j without revealing d j

itself.

Define:

π j = ZKMerkleProve(h j,Rn,P j)

Where P j is the authentication path from h j to Rn, and π j is a zero-knowledge proof of
inclusion. The protocol ensures that:

1. π j is succinct and non-interactive (via Fiat–Shamir heuristic),

2. V can verify h j ∈ Mn without learning d j,

3. A cannot fabricate membership of a non-existent h j due to collision-resistance of H.

For secure multi-party access, the proof is extended with access control tags. Let each fragment

25

d j be encrypted as f j = {EncKsym, j(d j),H(d j)}, with the derived key Ksym, j tied to a privilege
level ℓ j. The agent provides:

Π j =
(
π j,ZKAccess(ℓq ≥ ℓ j)

)
Where ZKAccess proves that the querying entity’s access level ℓq satisfies ℓq ≥ ℓ j without
revealing either party’s full credentials. This creates a dual commitment: one to the existence
of the data and one to the legitimacy of the access request.

In dynamic environments, where memory is updated incrementally, a forward-secure proof
chain is established. Every new Merkle root Rn+1 commits to the prior root:

Rn+1 = H(Rn ∥ ∆Mn+1)

Thus, ZK-inclusion proofs for any fragment d j ∈ Mt can be extended to Mn, n ≥ t, by recur-
sive anchoring. Proofs remain valid across agent evolution, enabling immutable and portable
attestations.

For broader interoperability, we define a formal language LZKMem in which inclusion proofs
are encoded as elements of a decidable grammar:

LZKMem = {Π j | Π j ⊢ (h j ∈ Mn)∧ (ℓq ≥ ℓ j)}

This allows agents to exchange memory access proofs across domains and validate access his-
tories using standard ZKP verifiers. No central authority is required—only a consensus ledger
and public parameters for H, ZKProve, and ZKAccess.

In conclusion, zero-knowledge inclusion proofs enable epistemic integrity without informa-
tional leakage. Memory becomes a sealed cryptographic artefact—provable, referential, and
privately accessible. The agent becomes not a vault of secrets but a structure of proofs: nothing
is seen, but everything is verified.

14 Policy Derivation as Deductive Graph Traversal

In computational systems tasked with regulatory compliance or legal reasoning, policy adher-
ence must be verifiable, auditable, and non-heuristic. Traditional approaches embed policy
within code logic—opaque, brittle, and semantically shallow. We assert instead that policies
must be encoded as formal deductive structures: graphs composed of verifiable premises and

26

consequence rules, embedded within an immutable substrate. This reifies policy not as a docu-
ment but as a directed acyclic graph (DAG) of derivable constraints.

Let the policy ontology be defined as a graph G = (V,E), where each node vi ∈ V is a for-
mally grounded axiom, rule, or decision clause, and each directed edge (vi,v j) ∈ E represents
a deductive dependency: that is, vi → v j if v j is logically derivable from vi. Let Lpol be the
formal language governing the syntax of permissible statements. All vertices must be well-
formed formulae (WFFs) in Lpol, and edges must conform to a verified rule schema, denoted
⊢R , where:

(vi,v j) ∈ E ⇐⇒ vi ⊢R v j

To anchor such graphs, each node vi is cryptographically committed via:

hi = H(serialise(vi))

and each edge is committed as a tuple:

ei j = (hi,h j,τi j,H(hi ∥ h j ∥ τi j))

where τi j encodes the specific rule applied in the deduction (e.g., Modus Ponens, Universal
Instantiation). These are included in a Merkle-anchored DAG structure, such that the policy
graph root commits to the entire reasoning structure.

Policy queries are resolved by path discovery: given a terminal conclusion vk, the agent must
construct a valid derivation path πk = {v0,v1, . . . ,vk} such that each transition satisfies ⊢R , and
the entire path is anchored and cryptographically verifiable. Inclusion proofs are provided using
Merkle paths over the DAG, along with zero-knowledge derivation attestations where required.

In systems with stratified policy domains (e.g., finance, data protection, civil rights), we define
a layered structure of graphs {G1,G2, . . . ,Gn}, with formal mappings:

Φi→ j : Vi →Vj

to support inheritance and contextual overrides. For example, national data privacy policies
(e.g., GDPR) may instantiate core principles from supranational human rights frameworks via
such morphisms.

This layered DAG structure allows for efficient contradiction detection. Suppose vi ∈ Gx and

27

v j ∈ Gy with vi →¬v j, and a path π exists such that both vi and v j are derivable. Then:

Conflict(π) = ∃(vi,v j) such that π ⊢ vi ∧π ⊢ v j ∧ vi →¬v j

This enables agents to not only reason within a policy system but to identify and localise vio-
lations, inconsistencies, or overrides.

Finally, to ensure updatability without erasure, policy graphs evolve via append-only revisions.
Each new graph version G(t+1) includes cryptographic linkage to G(t), and any overridden
nodes carry a reference to their superseded version. This temporal graph chain enforces histor-
ical integrity while allowing legal evolution:

G(t+1) = G(t)∪∆G(t+1), with ∀v′ ∈ ∆G(t+1),∃v ∈ G(t) : v′ ≻ v

Where ≻ denotes policy succession, provable through formal diff and proof annotation. The
result is a system in which policy is neither a document nor code, but an epistemic graph:
self-referential, rule-governed, and cryptographically immutable.

In such a framework, synthetic agents do not apply policy heuristically—they deduce permitted
actions via traversal. They are not interpreters of law; they are traversers of law’s proof graph.
In every decision, the trace of logic is preserved, sealed, and referentially intact.

15 Failure Modes: Inconsistency, Contradiction, and Revi-
sion

Even within cryptographically grounded epistemic structures, failure remains possible—and
in a system of immutable commitments, failure bears permanence. This section characterises
epistemological failure modes within append-only knowledge architectures, each tied not to
stochastic behaviour, but to logical defect and procedural omission.

Let the reasoning substrate be formalised as a directed acyclic graph G = (V,E), where each
vertex φi ∈V is a committed knowledge fragment (either axiomatic or derived), and each edge
ei, j ∈ E represents a deductive inference from φi to φ j. The integrity of the structure depends
upon both local and global coherence.

28

Types of Failure

1. Inconsistency: A fragment φ j is inconsistent if there exists a pair (φk,φm)∈ anc(φ j) such
that φk ⊢ ψ and φm ⊢ ¬ψ for some proposition ψ . Even if each inference step is locally
valid, contradiction at the transitive level poisons epistemic certainty.

2. Contradiction: When ∃φi,φ j ∈ V such that φi = ¬φ j, and both are reachable from a
shared root φ0, the DAG commits a contradiction. This cannot be resolved by erasure.
As the structure is append-only, contradiction implies the epistemic root is corrupted or
the inference path is ill-formed.

3. Invalid Justification: An edge ei, j is illegitimate if the transition from φi to φ j cannot
be reconstructed under the formal system R. That is, ∄r ∈ R such that φi

r
=⇒ φ j. These

correspond to hallucinations—not in the statistical sense, but in violation of deductive
closure.

4. Revision via Accretion: An agent may attempt to overwrite φ j by adding a successor φ j′

with a contradictory statement, simulating revision. However, because all paths remain
committed, this introduces bifurcation rather than correction. A consistent DAG cannot
accommodate both φ j and φ j′ = ¬φ j unless explicit modality is used.

5. Contextual Drift: Fragments whose interpretation depends on temporal, legal, or onto-
logical context may be misaligned as upstream referents change. Let φ j = “Act A is legal under Reg X”.
If Reg X is revised, the truth-value of φ j is historically correct but presently misleading.
Without contextual anchoring (e.g., timestamps, source hashes), reasoning inherits silent
anachronism.

Mitigations

To defend against these failure modes, the following structural safeguards are imposed:

1. Consistency Constraints: DAG construction enforces that any new φ j must not contra-
dict any ancestor node φk in its transitive closure. That is, before committing φ j, verify
that ∀φk ∈ anc(φ j),¬(φk ⊢ ¬φ j).

2. Justification Verification: Each edge must correspond to a rule in R, and must include
a cryptographically committed proof sketch πi, j of the deduction φi ⊢R φ j. This enables
on-chain audit of logical provenance.

3. Finality Guarantees: Once committed and anchored, no vertex may be deleted or edited;
knowledge growth is strictly append-only. Corrections must be issued as new nodes with
explicit references and contextual disclaimers.

29

4. Traceability Enforcement: Any φ j must be reducible via its path to initial axiomatic or
empirical root nodes. If not, the node is rejected as unverifiable.

5. Modality Encoding: To handle contradictions arising from legal or temporal change,
fragments include modal qualifiers—deontic, epistemic, or temporal—that are them-
selves ontologically committed. E.g., “as of Block 105432, Reg X includes Clause Y.”

Failure in such a system is not erased—it is merely contextualised. Truth is not updated; it is
extended. That which was wrong remains visible, and that which is corrected is anchored as a
response—not a replacement. In this sense, epistemic failure becomes part of the archive, not
the erasure of it.

16 Audit Trails and Agent Liability in Causal Chains

In systems where artificial agents act as autonomous decision-makers, accountability hinges not
on subjective intent but on reconstructible causal chains. This section defines the formal struc-
ture of audit trails in cryptographically committed automata and establishes liability through
deterministic traceability.

Let an agent A be modelled as a state-transition system with ledger-bound memory, executing a
sequence of decisions D = {d1,d2, . . . ,dn}, where each decision di results from a computation
over inputs Ii, internal state si, and a committed knowledge graph Gi. Formally:

di = F (si,Ii,Gi), with F deterministic and reproducible

Each decision is committed as a tuple:

Ti = (di,H(si),H(Ii),H(Gi),τi)

where H(·) denotes a collision-resistant hash function, and τi is the timestamp of the decision’s
commitment. These tuples are sequentially anchored into a Merkle chain, such that:

Rootn = Merkle(T1,T2, . . . ,Tn)

Liability is thus defined not through legal personhood, but through reconstructible inference. If
harm H arises from dk, one queries the chain of Ti up to Tk, verifying that:

30

1. The state sk is reachable via the transition function from s0 and all preceding di, i.e.,
sk = δ (s0,d1, . . . ,dk−1)

2. The knowledge graph Gk reflects only fragments to which the agent had verifiable access,
i.e., Gk ⊆ {φi | ∃πi : φi ∈ ProofMn(H(φi))}

3. The decision function F conforms to its formal specification and is provably determin-
istic

If any of these conditions fail, agent behaviour becomes non-compliant, and liability transfers
to the operating entity. Importantly, when the agent is cryptographically sealed, audit trails
become immune to post hoc manipulation. Thus, we redefine culpability as a function of
verifiable procedure, not interpretive motive.

We now formalise the causality trail C (dk) as:

C (dk) = {(Tj,r j) | j ≤ k, r j encodes the inferential or causal role of Tj in producing dk}

Each r j is a logical or functional descriptor (e.g., “premise,” “inference step,” “conditional
branch,” etc.). Together, C (dk) provides a minimal reconstructive certificate of the decision’s
epistemic provenance.

Finally, agent liability must account for delegation. Let A receive sub-decisions from A′. Then
Ti includes a delegation map:

∆i = {(A′,d′
j,σ j)}

where σ j is a signature from A′ asserting authorship over d′
j. This ensures that multi-agent

systems retain explicit, signed provenance for every causal link, enabling attribution across
organisational boundaries.

In such architectures, audit becomes forensic mathematics. Liability becomes a deductive func-
tion. Accountability no longer depends on human memory or testimony, but on cryptographic
evidence chains embedded into the system’s temporal substrate.

31

17 Modular DAG Instancing for Partial Context Awareness

In complex artificial reasoning systems, full context loading is computationally prohibitive and
epistemically unnecessary. Instead, agents may instantiate partial subgraphs of a committed
global DAG (Directed Acyclic Graph) representing all known knowledge. This section defines
the principles and formal conditions under which such partial instances maintain consistency,
determinism, and bounded rationality.

Let the global knowledge structure be a DAG G = (V,E), where each node vi ∈V corresponds
to a knowledge fragment Ki and each directed edge ei j = (vi,v j)∈E denotes that K j is derivable
from Ki. The entire structure is cryptographically anchored such that:

RootG = Merkle({H(Ki) | vi ∈V})

A reasoning agent does not operate on G in full. Rather, it instantiates a modular subgraph G′ =

(V ′,E ′)⊂ G such that V ′ ⊆V , E ′ ⊆ E ∩ (V ′×V ′), and G′ satisfies closure under derivability:

∀v j ∈V ′, if (vi,v j) ∈ E, then vi ∈V ′

This guarantees that no inferred statement appears without its prerequisite axioms or proposi-
tions. The subgraph is thus deductively coherent even in isolation.

Let Γ ⊆ V ′ be the active working set for a query q. The reasoning engine defines a partial
entailment structure:

Γ ⊢q φ iff φ ∈ Closure(Γ,Rq)

where Rq is the rule subset relevant to the scope of q. This restricts inferential breadth to only
those rules compatible with the instantiated fragment.

To prevent contextual contradictions, subgraphs are required to satisfy Merkle consistency
proofs. That is, for any vi ∈V ′, the agent provides ProofMG(H(Ki)), a Merkle path demonstrat-
ing that the fragment is indeed part of the canonical DAG. This removes the risk of adversarial
insertion or hallucination of knowledge.

Furthermore, let Ci = {c1,c2, . . .} be a context vector attached to each node vi. These context
vectors are used for query-relevant instancing:

32

G′ = Instance(G,Ψ) =
(
V ′,E ′) where V ′ = {vi ∈V | Ψ∩Ci ̸= /0}

Here, Ψ is the predicate context—e.g., legal domain, temporal constraints, or geographical
applicability. This ensures that even partial context loads remain structurally and semantically
scoped.

In multi-agent settings, modular DAGs enable scoped delegation. Let A be the querying agent
and A′ the delegating entity. Then, a delegated graph instance G′

A′ comes with signature σA′

attesting to the validity of the instantiation function and content set:

σA′ = SignskA′
(H(G′

A′∥Ψ∥τ))

where τ is a timestamp sealing the instance. Verification includes both content and scope,
binding responsibility for inference to the delegator.

Thus, modular DAG instancing allows scalable, efficient, and legally bounded reasoning. It
introduces a principled mechanism to traverse only what is required—no more, no less—while
guaranteeing the integrity and legitimacy of the agent’s contextual awareness.

18 Formal Verification of DAG Constraints in Agent Out-
puts

In architectures anchored to immutable knowledge graphs, formal verification of agent out-
puts becomes a foundational necessity. Given a committed DAG G = (V,E), where nodes
represent propositional fragments and edges encode derivational relationships, the outputs
Φ = {φ1,φ2, . . . ,φn} of any reasoning agent must satisfy structural, logical, and cryptographic
constraints derivable from G. This section outlines a formal model to verify such constraints.

Let each output φi ∈ Φ be associated with a derivation trace Ti = (vi1,vi2, . . . ,vik), where vik ∈V

and vi j → vi j+1 ∈ E for all j < k, culminating in φi. Then, the following properties must hold:

1. Closure Under Inference: For each Ti, the inference φi must be valid under the deductive
system R, i.e.,

φi ∈ Closure({K(vi1), . . . ,K(vik−1)},R)

where K(v j) denotes the knowledge fragment committed at node v j.

2. Lineage Integrity: For each v j ∈ Ti, a Merkle inclusion proof ProofMG(H(K(v j))) must

33

exist, ensuring its anchoring in the canonical DAG. Formally:

∀v j ∈ Ti, ∃ π j : VerifyMerkle(π j,H(K(v j)),RootG) = true

3. Cycle Prohibition: Since G is a DAG, Ti must not revisit any v j. The verifier must
check:

∀v j,vk ∈ Ti, j ̸= k ⇒ v j ̸= vk

4. Soundness of Edge Application: Each edge e = (v j,v j+1) ∈ Ti must correspond to a
valid rule instance r ∈ R such that:

r(K(v j)) ⊢ K(v j+1)

Verifiability implies that the agent produces or references an explicit proof certificate
Π j→ j+1 justifying the inference step.

5. Terminal Commitment: The output φi must be cryptographically committed and signed.
If the agent holds private key skA, then:

σi = SignskA
(H(φi∥Ti∥τi))

with timestamp τi and derivation trace Ti embedded in the signature context. Any verify-
ing entity uses:

VerifypkA
(σi,H(φi∥Ti∥τi)) = true

Collectively, these constraints define a formally verifiable output channel for reasoning agents.
The enforcement mechanism assumes a verifier with access to the canonical Merkle root RootG,
the set of inference rules R, and the agent’s public key pkA. The entire validation protocol is
executable on-chain if necessary, or via zero-knowledge circuits for privacy-preserving attesta-
tion.

Moreover, a failure in any verification step renders the output epistemically invalid—such out-
puts are considered hallucinations and must be disregarded in downstream reasoning. Thus, the
DAG becomes not just a memory structure but a theorem-proving boundary for any acceptable
cognitive operation in synthetic agents.

34

19 Unforgeable Provenance Chains and Key Rotation Proto-
cols

To establish enduring trust in memory assertions and agent behaviour, each fragment of knowl-
edge must be anchored in a verifiable provenance chain. In distributed epistemic systems,
where actors evolve cryptographic identities over time, maintaining unforgeable provenance
under dynamic key material necessitates formalised key rotation protocols with provable link-
age.

Let each agent or user U be initially identified by a long-term public key pk(0)U . As key pairs
are rotated, we define a sequence of public keys {pk(0)U , pk(1)U , . . . , pk(n)U }, where each transition
is cryptographically chained to its predecessor. Let the rotation certificate at epoch i be:

C(i)
U = Sign

sk(i)U
(H(pk(i−1)

U ∥ pk(i)U ∥ ti))

where ti is a timestamp, and the hash binds the transition. The chain of such certificates
{C(1)

U , . . . ,C(n)
U } allows any verifier to recursively validate the evolution of the identity key.

Verification is achieved by:

∀i ∈ [1,n], Verify
pk(i)U

(C(i)
U ,H(pk(i−1)

U ∥ pk(i)U ∥ ti)) = true

This yields an unbroken, signed trail from pk(0)U to pk(n)U , preserving the continuity of epistemic
authorship.

For each knowledge fragment Ki contributed by agent U , the commitment includes the signing
key epoch ei and digital signature:

Ki = {di, pi,σi,ei}, σi = Sign
sk(ei)

U
(H(di ∥ pi))

To validate the provenance of Ki, the verifier checks:

1. The signature σi against pk(ei)
U

2. The key rotation path from pk(0)U to pk(ei)
U

3. The Merkle inclusion proof of H(di ∥ pi) in the anchored ledger

Thus, even after many rotations, the root of authorship is traceable to an initial cryptographic

35

identity.

Forward-Secure Rotation and Revocation

To prevent misuse of compromised keys, each epoch i includes metadata defining its depre-
cation horizon δi, a temporal or transaction-based bound beyond which the key is no longer
trusted. Formally:

Valid(pk(i)U) ⇐⇒ tuse ∈ [ti, ti +δi]

Expired keys are pruned from verification contexts unless historical validation is required. Ad-
ditionally, revocation lists or on-chain CRLs (Certificate Revocation Ledgers) provide tamper-
evident publication of key withdrawal.

Merkle-Chained Rotation Ledger

All rotation certificates C(i)
U are committed in a Merkle tree MU , with root RU embedded in a

public blockchain transaction. Verification of any key transition requires:

• Inclusion proof πi for C(i)
U in MU

• Verification that RU is anchored in a known block B

This architecture guarantees that key rotation cannot be forged or omitted, as absence invali-
dates the provenance path.

Immutability under Rotation

Critically, the rotation of keys does not alter prior signed knowledge. Each fragment Ki remains
permanently bound to the epoch key pk(ei)

U , ensuring that agents cannot repudiate or retroac-
tively alter past contributions even under new key pairs. The total structure thus achieves:

1. Immutable authorship of memory fragments

2. Forward security through key rotation

3. Auditability via anchored Merkle proofs

36

4. Revocability under formal expiration or compromise

Such provenance chains, backed by cryptographic commitments and verifiable transition records,
enable distributed agents to maintain continuity of trust without centralised authority, securing
epistemic lineage even under adversarial threat conditions.

20 Conclusion

The architecture presented throughout this paper establishes a rigorous foundation for design-
ing synthetic agents that are incapable of epistemic drift, hallucination, or unauthorised re-
vision. By grounding memory and reasoning within cryptographic structures—specifically
Merkle-rooted automata, authenticated knowledge graphs, and DAG-constrained traversal logic—agents
transition from statistical artefacts to verifiable epistemic machines. Each assertion, memory
fragment, and policy application is bound to an immutable historical context, externally au-
ditable and cryptographically enforced.

Symmetric encryption derived from ECDH key exchanges ensures that access to information is
not only authenticated but bound to hierarchical privilege structures. Append-only data seman-
tics enforced through blockchain anchoring eliminates the possibility of destructive updates,
and zero-knowledge proof systems allow selective, privacy-preserving audit of memory con-
tents without data exposure. The enforcement of formal reasoning systems over a committed
substrate guarantees that no output can be fabricated or detached from its logical derivation.

This reimagining of artificial cognition discards the legacy of probabilistic inference models
that conflate approximation with understanding. Instead, it offers a cryptographically secure
and ontologically grounded framework for agents whose knowledge is constrained by lawlike
structures. Such agents do not think in the traditional sense; they reason under constraint. They
cannot lie, cannot forget, and cannot feign belief. In this lies not mimicry of intelligence, but the
foundation for institutional trust in synthetic cognition—an epistemology enforced by protocol
rather than perception.

37

References

[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Jour-

nal, vol. 27, no. 3, pp. 379–423, 1948.

[2] X. Li, E. Wallace, I. Gao, K. Keutzer, and D. Klein, “Ephemeral Truths: Unstable Fac-
tual Knowledge in LLMs,” in Findings of the Association for Computational Linguistics:

EMNLP 2023, pp. 5787–5803, 2023.

[3] J. Hintikka, Knowledge and Belief: An Introduction to the Logic of the Two Notions,
Cornell University Press, 1962.

38

A Key Derivation Functions: Formal Definitions

A Key Derivation Function (KDF) is a deterministic algorithm that derives one or more secret
keys from a source of initial keying material. In cryptographic systems designed for epis-
temic traceability and hierarchical access, KDFs serve as the mechanism by which contex-
tual, privilege-bound, and time-anchored keys are generated. These derived keys ensure that
memory fragments, agent assertions, and access controls remain cryptographically isolated and
bound to their operational parameters.

Formally, a KDF is a function

KDF : {0,1}∗×{0,1}∗ →{0,1}k

mapping a pair of bitstrings—initial key material (IKM) and context string (CTX)—to an out-
put of fixed length k. A cryptographically secure KDF must exhibit pseudo-randomness, key
separation, and domain separation, such that knowledge of one output does not yield informa-
tion about any other.

We define the KDF function K(l)
sym,i used in our framework as:

K(l)
sym,i = HKDF(KU,A ∥ contexti ∥ l)

where:

• KU,A is the shared secret derived via ECDH between the agent and a user,

• contexti encodes the semantic and temporal domain of the memory fragment,

• l is the privilege level from the access lattice L = {l1, ..., ln},

• HKDF is the HMAC-based KDF defined in RFC 5869.

HKDF operates as:
HKDF(IKM,salt, info) = OKM

where:

1. The extraction phase:
PRK = HMAC(salt, IKM)

2. The expansion phase:
OKM = Concat(T1,T2, . . . ,TN)

39

with

T1 = HMAC(PRK, info ∥ 0x01), T2 = HMAC(PRK,T1 ∥ info ∥ 0x02), . . .

The context string ensures derivational independence between key invocations. Even with a
fixed ECDH shared secret, the output keys differ if their respective contexts differ, enforcing
functional and ontological separation.

Moreover, by encoding time, role, and privilege directly within contexti, the system guarantees
that:

• Temporal integrity is achieved: keys can be invalidated or scoped to specific time win-
dows.

• Role-based separation ensures that distinct agents cannot share decryption ability even
with the same shared secret.

• Contextual immutability binds the key to the semantic identity of the fragment—altering
the context nullifies access.

In advanced implementations, HKDF may be replaced by quantum-resilient alternatives (e.g.,
SPHINCS+-based derivation mechanisms), with identical structure but post-quantum secure
primitives. Nevertheless, the model of derivational unforgeability and semantic isolation re-
mains invariant.

Thus, the KDF functions employed are not merely supportive cryptographic utilities; they are
foundational mechanisms for epistemic confinement, access control, and identity differentia-
tion within a provable cognitive substrate.

B ECDH Exchange Details

Elliptic Curve Diffie-Hellman (ECDH) key exchange is the foundational mechanism through
which agents and users establish a shared symmetric secret without direct transmission of the
secret itself. The strength of ECDH lies in the computational hardness of the Elliptic Curve
Discrete Logarithm Problem (ECDLP), which ensures that, even with full knowledge of the
public keys, an adversary cannot feasibly derive the shared secret.

Let G be a cyclic subgroup of an elliptic curve E over a finite field Fq, with generator point
G ∈ E(Fq) of prime order n. Every participant possesses a private scalar and a corresponding
public point.

40

Let:

• User U have private key skU ∈ Zn, and public key pkU = skU ·G,

• Agent A have private key skA ∈ Zn, and public key pkA = skA ·G.

The shared secret is computed as:

KU,A = skU · pkA = skU · (skA ·G) = skA · pkU

This point KU,A ∈ E(Fq) lies on the curve and serves as a high-entropy input to a key derivation
function (KDF), such as HKDF, which extracts a fixed-length symmetric key:

Kshared = HKDF(x(KU,A) ∥ context)

where x(KU,A) denotes the x-coordinate of the elliptic curve point, and context incorporates
protocol metadata (timestamps, privilege levels, Merkle roots).

This procedure ensures:

• Forward Secrecy: Key material cannot be retroactively recovered if a long-term key is
compromised.

• Asymmetric Symmetry: Both parties independently compute the same secret without
sharing private keys.

• Domain Separation: The inclusion of context prevents key reuse across semantic do-
mains.

Security assumptions rest on the infeasibility of solving:

Given G, A = a ·G, B = b ·G, find ab ·G.

Without access to skU or skA, the attacker faces the computational ECDLP, for which no
polynomial-time classical algorithm exists.

The protocol is further hardened against man-in-the-middle attacks by cryptographically bind-
ing pkU and pkA to on-chain identities or digital signatures, optionally integrating zero-knowledge
proofs to establish liveness and authorship without compromising secrecy.

In our framework, each fragment fi is encrypted using a symmetric key derived from this shared
secret:

fi = {EncKsym,i(di),H(di),ProofMn(H(di))}

41

where Ksym,i = HKDF(KU,A ∥ contexti). Thus, ECDH ensures that only participants with valid
elliptic curve credentials and aligned contextual privileges can decrypt or verify the fragment.

This exchange, paired with Merkle-rooted commitments, ensures data privacy, integrity, and
provenance under cryptographic assumptions consistent with modern post-quantum migration
pathways.

C Merkle Tree Inclusion Proofs

Merkle trees provide an efficient and cryptographically secure method to verify the inclusion of
a data element within a committed dataset, without revealing or transmitting the entire dataset.
Let Mn denote the Merkle tree rooted in a known digest Rn ∈ {0,1}λ , where λ is the output
length of the underlying cryptographic hash function H. The tree is a full binary tree over
a sequence of leaf values {d1,d2, . . . ,d2k}, each hashed as hi = H(di), with internal nodes
recursively defined as H(hL ∥ hR) for children hL, hR.

Given a leaf di, an inclusion proof πi is defined as a sequence of sibling hashes on the path from
hi to the root:

πi =
[
h(0)s(1),h

(1)
s(2), . . . ,h

(k−1)
s(k)

]
where s(j) ∈ {left, right} specifies the sibling direction at level j, and each h(j) corresponds to
a hash value at that level.

Verification is achieved via iterative reconstruction:

h(0) = H(di), h(j+1) =

H(h(j) ∥ h(j)
s(j+1)) if s(j+1) = right

H(h(j)
s(j+1) ∥ h(j)) if s(j+1) = left

until the final hash h(k) is compared against Rn. Inclusion is proven if and only if:

h(k) = Rn

This mechanism provides:

• Logarithmic Efficiency: Proofs are O(logn) in size and computational cost.

• Non-Interactive Verifiability: The proof and the root are sufficient; the tree itself is not
required.

• Collision Resistance: Security reduces to the preimage and collision resistance of H,
e.g., SHA-256.

42

In the proposed framework, each memory fragment fi includes its own inclusion proof:

fi =
{

EncKsym,i(di),H(di),πi
}

which can be verified against the blockchain-anchored root Rn = Root(Mn) embedded in trans-
action Tn within block Bn.

Thus, Merkle inclusion proofs enable decentralised agents and third parties to:

1. Validate fragment membership in a committed knowledge set.

2. Ensure immutability of agent memory without total disclosure.

3. Support zero-knowledge protocols where the proof of inclusion suffices without reveal-
ing the fragment content.

The epistemic implication is critical: no datum may be invoked, referenced, or reasoned upon
unless its inclusion within a certified state is demonstrable. This prohibits hallucinations, en-
forces historical fidelity, and renders every memory access cryptographically traceable.

D Sample Blockchain Anchoring Schemas

To ensure immutability and verifiability of agent memory, each critical state component—such
as memory fragments, policy documents, or learned representations—is cryptographically com-
mitted to a blockchain ledger. The anchoring schema defines how these commitments are
constructed, encoded, and published within blockchain transactions. The schema must ensure
minimal bandwidth consumption, deterministic reconstruction, and robust tamper-evidence.

Let Mn denote a Merkle tree constructed at epoch n, rooted in digest Rn = Root(Mn) ∈ {0,1}λ ,
where λ is the hash output length. The commitment schema An for this epoch is embedded in
a blockchain transaction Tn, with the following data fields:

• Commitment Tag: A structured identifier, e.g., 0xA1A1, marking the transaction as a
memory anchor.

• Epoch ID: A timestamp or logical sequence number tn ∈ N, representing the anchoring
round.

• Merkle Root: Rn ∈ {0,1}λ , committed as a fixed-length field in the transaction output.

• Signature: σn = SignskA
(Rn ∥ tn), signed by the agent’s private key skA for integrity and

non-repudiation.

43

• Optional Metadata: Includes compression schemes, DAG indices, or access tags, op-
tionally encrypted.

Thus, the full anchoring schema An is:

An = (tag, tn,Rn,σn,µn)

where µn denotes optional metadata and auxiliary data.

Encoding in Blockchain Transactions

For blockchains such as Bitcoin (BSV), the schema may be embedded in the OP_RETURN field
as:

OP_RETURN tag ∥ tn ∥ Rn ∥ σn ∥ µn

This creates a publicly queryable and immutable commitment to Mn while preserving consen-
sus validity.

Verification Protocol

To validate the anchor, a verifier retrieves Tn from block Bn, extracts An, and performs:

1. Verify σn using agent’s public key pkA.

2. Recompute Merkle root R̂n from fragment proofs πi.

3. Compare R̂n = Rn.

If all steps succeed, inclusion and integrity are confirmed.

Schema Variants

Anchoring schemas may vary based on operational constraints:

• Minimal Anchor: Only the Merkle root Rn and epoch ID tn are committed.

44

• Signed Anchor: Adds a digital signature σn for accountability.

• Encrypted Anchor: Metadata µn is encrypted for access-tier encoding.

• Batch Anchors: Multiple roots {R1
n,R

2
n, . . .} included in a super-Merkle structure.

Each schema balances performance, legal verifiability, and cryptographic assurance. Anchor-
ing transforms memory from mutable storage to a cryptographically witnessed journal of epis-
temic state.

E Access-Level Policy Graphs and Enforcement Maps

In order to enforce structured access over fragmentary memory in synthetic agents, a formal
system of access-level policy graphs is required. These graphs define which user identities,
roles, or cryptographic keypairs may retrieve, decrypt, or traverse specific knowledge elements
within the agent’s memory graph. This design mandates a tiered enforcement mechanism
grounded in lattice-based access control and mapped to cryptographic constructs.

Access Lattice Definition

Let L = {ℓ0, ℓ1, . . . , ℓm} be a finite, totally ordered access lattice, such that:

ℓ0 < ℓ1 < .. . < ℓm

Each memory fragment fi is associated with an access level level(fi)∈L . Similarly, each user
U j possesses a clearance level clearance(U j) ∈ L .

Policy Graph Structure

Define the policy graph as a directed labelled graph:

P = (N,E)

where:

• N = {ni} is the set of memory fragments or logic nodes, each tagged with level(ni) ∈L .

45

• E = {(ni,n j,ρk)} is a set of edges labelled by access predicates ρk, representing traversal
or transformation rights.

Traversal across edges is permitted only if the accessing user satisfies:

clearance(U j)≥ max(level(ni), level(n j))

This ensures no path may be navigated that violates the lattice ordering.

Enforcement Maps

Enforcement is achieved via encryption-based segmentation of the graph. For each node ni,
derive a symmetric key:

K(ℓ)
i = HKDF(KU,A ∥ contexti ∥ ℓ)

Only users with clearance ℓ′ ≥ ℓ and the appropriate shared key material KU,A can derive K(ℓ)
i

and decrypt the fragment fi. The node payload is:

fi =
{

Enc
K(ℓ)

i
(di),H(di),πi

}
where πi is the Merkle inclusion proof within block Bn.

Graph Traversal and Inference Constraints

Logical inference operations in the agent are constrained by clearance propagation. That is, if
an agent’s internal reasoning seeks to traverse a path (na,nb,nc), then:

clearanceA ≥ max(level(na), level(nb), level(nc))

Agents lacking such clearance are unable to execute or even symbolically model these infer-
ences.

46

Security Properties

This scheme yields several strong guarantees:

• Confidentiality: Fragments are encrypted under level-specific keys.

• Non-bypassability: Graph traversal and output generation are bound by enforcement
maps.

• Auditability: Each decryption and traversal is logged with cryptographic timestamping.

Access-level policy graphs enable robust, cryptographically enforced compartmentalisation of
memory, allowing agents to process information selectively, in accordance with formal onto-
logical privilege structures.

47

	Introduction
	The Problem of Epistemic Drift in Synthetic Agents
	Foundations in Automata and Language Recognition
	The Merkle Automaton: Structural Anchoring of State
	The Information Substrate—Blockchain as Oracle of Record
	Symmetric Cryptography from ECDH-Derived Shared Secrets
	Multi-Level Access and Ontological Privilege
	Immutable Learning—Preventing Catastrophic Forgetting
	Memory as "Law"—Cryptographic Truth and Legislative Ontologies
	Epilogue—To Build Memory Without Mind
	Additional Structures: Append-Only Reasoning Graphs
	Clock Anchoring and Consensus-Time Inference
	Zero-Knowledge Inclusion Proofs for Memory Access
	Policy Derivation as Deductive Graph Traversal
	Failure Modes: Inconsistency, Contradiction, and Revision
	Audit Trails and Agent Liability in Causal Chains
	Modular DAG Instancing for Partial Context Awareness
	Formal Verification of DAG Constraints in Agent Outputs
	Unforgeable Provenance Chains and Key Rotation Protocols
	Conclusion
	Key Derivation Functions: Formal Definitions
	ECDH Exchange Details
	Merkle Tree Inclusion Proofs
	Sample Blockchain Anchoring Schemas
	Access-Level Policy Graphs and Enforcement Maps

