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Abstract

Accurate prediction of crop yield is critical for supporting food security, agricul-

tural planning, and economic decision-making. However, yield forecasting remains a

significant challenge due to the complex and nonlinear relationships between weather

variables and crop production, as well as spatial heterogeneity across agricultural re-

gions. We propose DSNet, a deep neural network architecture that integrates functional

and scalar predictors with spatially varying coefficients and spatial random effects. The

method is designed to flexibly model spatially indexed functional data, such as daily

temperature curves, and their relationship to variability in the response, while ac-

counting for spatial correlation. DSNet mitigates the curse of dimensionality through

a low-rank structure inspired by the spatially varying functional index model (SV-

FIM). Through comprehensive simulations, we demonstrate that DSNet outperforms

state-of-the-art functional regression models for spatial data, when the functional pre-

dictors exhibit complex structure and their relationship with the response varies spa-

tially in a potentially nonstationary manner. Application to corn yield data from the

U.S. Midwest demonstrates that DSNet achieves superior predictive accuracy com-

pared to both leading machine learning approaches and parametric statistical models.

These results highlight the model’s robustness and its potential applicability to other

weather-sensitive crops.

1 Introduction

Corn is one of the most widely cultivated and consumed cereal crops worldwide, and it

serves as a major agricultural commodity that underpins the livelihoods of farmers, drives
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agribusiness, and supports global markets. The United States, as the world’s leading pro-

ducer and exporter of corn, depends heavily on the Midwest—often referred to as the U.S.

Corn Belt—which accounts for the majority of national corn production. Accurate yield

predictions are essential for balancing supply and demand, enabling farmers, investors, and

policymakers to make informed decisions. Moreover, reliable forecasts play a key role in

addressing global food security, given corn’s dual role as a dietary staple and a primary

component of livestock feed.

Corn yield is highly sensitive to climate variability, as factors such as temperature and

precipitation directly affect plant growth and productivity (Hatfield et al., 2011; Lobell et al.,

2011; Huang et al., 2015). Ray et al. (2015) estimated that climate variability explains

approximately 60% of corn yield variation in the American Midwest. Consequently, yield

prediction often hinges on understanding the relationship between climate and crop growth

(Wong et al., 2019; Liu et al., 2022; Park et al., 2023). However, this relationship is inherently

complex and possibly heterogeneous across large geographic regions, making large-scale yield

prediction a persistent challenge.

Motivated by studying corn yield prediction, we collect county-level annual corn yield

data (measured in bushels per acre) from 1999 to 2020 in the five Midwest states of Illinois,

Indiana, Iowa, Kansas, and Missouri, through the National Agricultural Statistics Service

(NASS) (https://quickstats.nass.usda.gov/). Due to a substantial number of missing values

in the corn yield data after 2020 —likely resulting from disruptions caused by the COVID-19

pandemic — we exclude data beyond 2020 from our analysis. Agricultural data are often

unavailable in counties that are predominantly urban. Among the 102, 92, 99, 105, and 114

counties in these five states, we identify 403 counties with at least five years of recorded corn

yield data during this period, including 79 in Illinois, 66 in Indiana, 93 in Iowa, 92 in Kansas,

and 73 in Missouri. We further obtain meteorological measurements between 1999 and 2020

for each county, including daily precipitation and daily maximum and minimum tempera-

tures, from the National Climatic Data Center (NCDC) (https://www.ncdc.noaa.gov). More

details on the data can be found in Park et al. (2023). Figure 1 provides a graphical illus-

tration of crop yield data across counties in the five Midwestern states. Additionally, we

present sample trajectories of daily maximum and minimum temperatures from three ran-

domly selected counties.

Since meteorological variables, such as maximum and minimum temperatures, influence

crop growth on a daily basis, incorporating their yearly trajectories as functional predictors

(Ramsay and Silverman, 2005) in crop yield prediction models can provide a more compre-

hensive representation of their impact. For an overview of recent developments in functional

data analysis (FDA), readers are referred to several review papers (Morris, 2015; Wang et al.,

2016; Li et al., 2022). For a theoretical foundation of FDA from the perspective of operator
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Figure 1: County level annual corn yield (measured in bushels per acre) in the Midwest region in
2010 and temperature trajectories in selected counties, where red and blue trajectories represent
daily maximum and minimum temperatures (measured in ◦C), respectively. Counties shown in
white indicate missing crop yield data.

theory, we recommend Hsing and Eubank (2015). In the context of crop yield prediction,

recent advances have employed both linear and nonlinear regression models that incorporate

temperature curves as functional predictors (Wong et al., 2019; Liu et al., 2022). These

models typically assume a homogeneous relationship between crop yield and temperature

trajectories across all spatial locations. However, this assumption may be unrealistic for

large geographical areas, as the effect of temperature on crop yield may vary regionally due

to differences in local environmental conditions, such as soil moisture, soil pH, solar radi-

ation, and wind velocity. Since continuous monitoring of all potential confounding factors

across a large spatial region is impractical, it is essential to account for spatial heterogeneity

when using meteorological variables to predict crop yield.

More recently, Park et al. (2023) proposed a spatially varying functional regression model

(SVFM) that explicitly captures the spatially heterogeneous relationship between crop yield

and weather data, demonstrating improved predictive performance. However, their method

is fundamentally a parametric linear model, assuming that crop yield depends linearly on

a few principal components of functional and multivariate predictors—albeit allowing the

linear relationship to vary spatially as a stationary random process. Yet, several modeling

assumptions may limit its predictive accuracy: whether the functional predictors can indeed

be represented in a low-dimensional space, whether the linearity assumption is overly restric-

tive, and whether the assumption of stationarity appropriately captures the spatial structure.
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These limitations motivate us to develop a more robust while still powerful approach, par-

ticularly in light of growing evidence of nonlinear weather effects on crop yield (Schlenker

and Roberts, 2006, 2009; Burke et al., 2015). In this context, deep neural networks (DNNs)

have emerged as a promising tool for making robust crop yield prediction (Kamilaris and

Prenafeta-Boldú, 2018; Jabed and Azmi Murad, 2024).

Recent theoretical work (Bauer and Kohler, 2019; Schmidt-Hieber, 2020) has signifi-

cantly advanced our understanding of DNNs as a nonparametric regression technique. For

instance, Bauer and Kohler (2019) demonstrated that DNNs can circumvent the ”curse of

dimensionality” if the true underlying regression function has a low-rank structure, such as

the generalized hierarchical interaction model. Furthermore, advances in customizing DNN

architectures to improve model performance have been explored in various statistical appli-

cations (Sun et al., 2023; Zhang et al., 2023). DNNs with functional inputs have also been

investigated by Thind et al. (2023); Rao and Reimherr (2023); Wang et al. (2024). How-

ever, none of these deep learning models explicitly account for spatial heterogeneity, a key

challenge in large-scale crop yield prediction.

In this paper, we propose a Deep Spatial Neural Network (DSNet) for predicting crop

yield using both scalar and functional predictors (e.g., temperature trajectories). The pro-

posed method leverages the power of deep neural networks to accommodate high-dimensional

functional inputs, capture complex nonlinear relationships, and model flexible spatial depen-

dency structures and heterogeneity. To construct our method, we first extend the SVFM of

Park et al. (2023) to a class of Spatially-Varying Functional Interaction Models (SVFIM),

which offer greater flexibility than traditional functional regression models commonly used

in crop yield prediction. We then generalize SVFIM within the framework of generalized hi-

erarchical interaction models, as studied in Bauer and Kohler (2019). Drawing on techniques

from Thind et al. (2023) to incorporate functional predictors, we show that the proposed

DSNet architecture adheres to the low-rank structure of SVFIM, thereby circumventing the

curse of dimensionality and yielding strong predictive performance. Following the idea of

DeepKriging (Chen et al., 2024), DSNet incorporates spatial random effects by embedding

spatial basis functions as features within the neural network. Furthermore, by including

interaction terms between spatial basis functions and both functional and scalar predictors,

DSNet enables spatially varying relationships between crop yield and the covariates.

The remainder of the paper is organized as follows. Section 2 introduces the Deep Spatial

Neural Network (DSNet), which incorporates spatial basis functions to capture heterogeneous

associations between inputs and responses, and accounts for spatial correlation via a spatial

random effect. Section 3 presents extensive simulation studies to evaluate the predictive per-

formance of DSNet in comparison with a functional regression model and an alternative deep

learning approach. In Section 4, we apply DSNet to a comprehensive corn yield prediction
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study, benchmark it against various methods, and discuss insights gained from the prediction

results. Finally, Section 5 offers concluding remarks and directions for future research.

2 Methodology

To motivate the proposed DSNet architecture, we first discuss existing spatially-varying

functional regression models and their potential nonlinear extensions to a class of Spatially-

Varying Functional Interaction Models (SVFIM). We then discuss how to handle spatial

random effects and functional inputs in a deep neural network framework. Owing to the

recent development of DNN theory, we demonstrate that the proposed DSNet can accom-

modate spatially varying and nonlinear relationships between the crop yield response and

the climatic functional inputs, while avoiding the curse of dimensionality when a low-rank

structure, such as the SVFIM, is present.

2.1 Spatially-Varying Functional Interaction Model

For ease of exposition, we present the model based on data from a single year. Our anal-

ysis treats crop data from multiple years as conditionally independent replicates given the

observed covariates, with rationals detailed in Section 4. Let Y (sss) be the scalar response

at location sss ∈ D for a spatial region D ⊂ R2, XXX(sss; t) = {X1(sss; t), . . . , XK(sss; t)}⊤ defined

for t ∈ T denote K functional predictors, and ZZZ(sss) = {Z1(sss), . . . , ZJ(sss)}⊤ denote J scalar

predictors associated with Y (sss). In our data, Y (sss) is the average corn yield per acre for

the county located at sss, D is the spatial region of the five Midwestern states, and the time

domain T is a year. To predict Y (sss), Park et al. (2023) proposed the following Spatially

Varying Functional Regression Model (SVFM),

Y (sss) =
J∑

j=1

Zj(sss)ωj(sss) +
K∑
k=1

∫
T
Xk(sss; t)βk(sss; t)dt+ η(sss) + ϵ(sss), (2.1)

where ωωω(sss) = {ω1(sss), . . . ωJ(sss)}T is a vector of spatially varying coefficients for the scalar

predictors, βββ(sss; t) = {β1(sss; t), . . . , βK(sss; t)}T is a vector of spatially-varying functional co-

efficients, η(sss) represents spatial random effect, and ϵ(sss) is white noise measurement error.

When βββ(sss; t) ≡ βββ(t), ωωω(sss) ≡ ωωω, and η(sss) ≡ 0, model (2.1) reduces to the most common

functional linear model, which has been intensively studied in the literature (Müller and

Stadtmüller, 2005; Yao et al., 2005; Li and Hsing, 2007; Goldsmith et al., 2013; Reiss et al.,

2017).

By adopting the notion of hierarchical interaction model (Bauer and Kohler, 2019), we

first extend Model (2.1) to a Spatially-Varying Functional Interaction Model (SVFIM) of
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order d∗ as

E{Y (sss)|XXX(sss; ·),ZZZ(sss)} = g{v1(sss), . . . , vd∗(sss)}, (2.2)

where vℓ(sss) =
∫
T XXX

⊤(sss; t)βββℓ(sss; t)dt+ZZZ
⊤(sss)ωωωℓ(sss) + ηℓ(sss), ℓ = 1, . . . , d∗, and g is an unknown

smooth nonparametric link function. In a non-spatial setting with βββℓ(sss; t) ≡ βββℓ(t), ωωωℓ(sss) ≡ ωωωℓ

and ηℓ(sss) ≡ 0, Model (2.2) becomes the functional multiple-index model (Li and Hsing, 2010;

Chen et al., 2011; Radchenko et al., 2015).

We then extend Model (2.2) into a more general SVFIM of order d∗ and level L that is

defined recursively as

E{Y (sss)|XXX(sss; ·),ZZZ(sss)} =
R∑

r=1

gr{v[L−1]
1 (sss), . . . , v

[L−1]
d∗ (sss)}, (2.3)

where v
[L−1]
j (sss), j = 1, . . . , d∗, follow SVFIM of order d∗ and level L− 1, and gr : Rd∗ → R,

(r = 1, . . . , R). Model (2.2) is the special case of (2.3) with order d∗, and L = 0.

2.2 Deep Neural Network

The generalization of Model (2.1) to the SVFIM framework naturally arises from recent ad-

vancements in deep neural network (DNN) algorithms, which facilitate the approximation

of recursively defined structures involving complex nonlinear dependencies and high-order

feature interactions. A Multilayer Perceptron (MLP), or fully connected feedforward neural

network, is a class of artificial neural networks known for its ability to serve as a universal

approximator of high-dimensional functions. The MLP can circumvent challenges in tradi-

tional nonparametric regression, such as the curse of dimensionality. For an MLP consisting

of multiple layers of neurons, let nl, l = 1, . . . , L be the number of neurons in the lth hidden

layer. Putting SVFIM in the framework of DNN, v
[L−1]
ℓ (sss) in (2.3) can be defined recursively

as,

vvv[l] = σl(WWW lvvv
[l−1] + bbbl), l = 1, . . . , L, (2.4)

where vvv[0] is a vector consisting of elements
∫
T XXX

⊤(sss; t)βββℓ(sss; t)dt+ZZZ⊤(sss)ωωωℓ(sss) + ηℓ(sss), with

its dimensionality determined by the order of SVFIM, WWW ℓ ∈ Rnℓ×nℓ−1 is the weight matrix,

bbbℓ ∈ Rnℓ is the bias vector, and σℓ(·) is a component-wise activation function (e.g., ReLU,

sigmoid, or tanh). The MLP ends with an output layer

yyy =WWWL+1vvv
[L] + bbbL+1. (2.5)
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The training of an MLP involves minimizing a loss function with respect to network param-

eters {Wl,bl}L+1
l=1 . This optimization is typically performed using gradient-based methods,

such as stochastic gradient descent (SGD) or its variants, combined with backpropagation

to compute the gradients efficiently.

As shown by Bauer and Kohler (2019), the effectiveness of MLPs in high-dimensional

settings relies on the network’s ability to exploit structural properties of the target func-

tion, such as the hierarchical interaction structures described in Section 2.1. Under such

a structure, deep neural networks can achieve convergence rates that circumvent the curse

of dimensionality, making them particularly suited for nonparametric regression tasks in

high-dimensional spaces. However, in practice, the success of MLPs also depends on careful

regularization and architectural choices to prevent overfitting and ensure generalization.

2.3 Spatial Random Effect

It is common for spatial prediction models such as (2.1) to include a spatial random effect

η(sss) to account for unknown spatial variations in the response process, including those

caused by unobserved confounders. In classic spatial statistics, η(sss) is typically modeled as a

stationary, zero-mean Gaussian process with a parametric covariance structure (Stein, 1999).

To accommodate large spatial datasets with complicated covariance structures, Nychka et al.

(2015) proposed a multiresolution Gaussian process model based on which the spatial random

effect can be modeled as η(sss) =
∑L

l=1 δl(sss), where δl(sss), l = 1, . . . L, denote L independent

spatial Gaussian processes. Each component is further modeled as δl(sss) =
∑Hl

h=1 ω
l
hϕl,h(sss),

where ϕl,h(sss) are spatial basis functions and ω
l
h the corresponding coefficients. Similar ideas

were also used in the fixed-rank kriging proposed by Cressie and Johannesson (2008). Chen

et al. (2024) incorporated these ideas into a deep kriging method to accommodate nonlinear

prediction for nonstationary and non-Gaussian spatial data, where they fed spatial basis

functions, ϕϕϕ(sss) = (ϕ1, . . . , ϕH)
⊤(sss) as inputs in an embedding layer of deep neural network.

To illustrate how the input of basis function represents spatial random effect in deep kriging,

we can write η(sss) under a single hidden layer (L = 1) with n1 neurons as,

η(sss) =

n1∑
i=1

σ

( H∑
h=1

ωihϕh(sss)

)
, (2.6)

which becomes a multiresolution Gaussian process model if the activation function σ is linear.

Compared with Nychka et al. (2015), the deep kriging model (2.6) can be considered as using

the same set of basis functions for all latent Gaussian processes. Chen et al. (2024) shows

that, by including flexible spatial basis functions and multiple layers, the deepkriging model

provides very flexible modeling of a nonstationary spatial process η(sss).
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Following the same rationale, we introduce the spatial random effect η(sss) to the proposed

DSNet architecture by including a set of spatial basis functions ϕϕϕ(sss) as inputs in our neural

network. Although there are many possible choices for ϕϕϕ(sss), we adopt the multi-resolution

thin plate spline (MRTS) basis functions advocated by Tzeng and Huang (2018) for their

ease of implementation. MRTS alleviates the challenges associated with basis function allo-

cation, particularly when the data locations are irregular. Since MRTS basis functions are

arranged in order of decreasing smoothness, from capturing global to local-scale features,

they share similarities with Fourier basis functions and can effectively represent a smooth

spatial function up to a specified resolution. Lin et al. (2023) empirically demonstrated

that replacing Wendland functions (Wendland, 1995) with MRTS basis functions enhances

the spatial prediction performance of DeepKriging (Chen et al., 2024). Figure S2 in the

supplementary material illustrates the first 10 MRTS basis functions, which capture global

variations, alongside the 41st to 50th MRTS basis functions, which capture local variations,

based on 40 equally spaced inner knots selected from the spatial domain in the real data

application.

2.4 Deep Spatial Neural Net with Functional Input

Inspired by recent work on functional deep learning (Thind et al., 2023) and deep kriging

(Chen et al., 2024), we propose a Deep Spatial Neural Network (DSNet), which takes func-

tional inputs and can be applied to estimate all functional regression models discussed in

Section 2.1. For a neural network with L hidden layers and nl neurons at each level, given in-

puts located at sss including functional covariates, X1(sss; t), . . . , XK(sss; t), for t ∈ T and scalar

covariates, Z1(sss), . . . , ZJ(sss), neurons in the first layer of the proposed DSNet are

v
[1]
i (sss) = σ

(
K∑
k=1

∫
T
βik(sss; t)Xk(sss; t)dt+

J∑
j=1

ωij(sss)Zj(sss) + ηi(sss) + bi

)
, (2.7)

for i = 1, . . . , n1. Here, βik(sss; t) and ωij(sss) are interpreted as location-specific weights for the

functional and scalar predictors, respectively, ηi(sss) is the spatial random effect, and bi is the

intercept or bias term. The remaining L− 1 hidden layers and the output layer are defined

in the conventional way as in (2.4) and (2.5). The architecture of the proposed DSNN is

illustrated in Figure 2.

In the first hidden layer v
[1]
i (sss), we approximate the unknown functions in the right hand

side of (2.7) using basis functions, similar to Thind et al. (2023). Specifically, we write the
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Figure 2: Structure of DSNet with functional inputs, Xk(sss; t), scalar inputs, Zj(sss), and layers
characterizing spatial coordinates, ϕh(sss). The location-specific weights for X1(sss; t) and Z1(sss) are
highlighted in red and blue, respectively, with thick edges for the illustration. The green highlighted
weights and thick edges illustrate spatial invariant weights on ϕH(sss).

location-specific coefficient function βik(sss; t) as

βik(sss; t) =

Mk∑
m=1

cikm(sss)fkm(t), (2.8)

where {fkm(t)}Mk
m=1 is a set of basis functions to represent the k-th functional weight. These

basis functions can be fixed basis functions such as splines, Fourier basis functions, or wavelets

(Ramsay and Silverman, 2005; Thind et al., 2023) or data-driven bases such as the empir-

ical principal components of XXX (Liu et al., 2022; Park et al., 2023). We further assume

that location-specific loadings {cikm(sss)} are smooth functions of sss which can be written as

cikm(sss) =
∑P

p=1 κikmpψp(sss), where ψψψ(sss) = (ψ1, . . . , ψP )
⊤(sss) is a set of spatial basis functions

defined over sss ∈ D. With this representation, (2.8) can be written as

βik(sss; t) =

Mk∑
m=1

P∑
p=1

κikmpψp(sss)fkm(t). (2.9)

Similarly, we express the spatially-varying weight function ωij(sss) using the same set of basis
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functions

ωij(sss) =
P∑

p=1

ϑijpψp(sss). (2.10)

Note that ψψψ(sss) is used to model spatially-varying effects of the scalar and functional

predictors and can be different from the basis function ϕϕϕ(sss) used for spatial random effects.

Both P and H, dimensionalities of ψψψ(sss) and ϕϕϕ(sss), respectively, are determined through the

hyperparameter selection strategies detailed in Section 2.5. Our empirical studies show that

the prediction performance of the proposed DSNet is not sensitive to the choice of spatial

basis functions as long as the resolution numbers P and H are sufficient to capture the

spatially-varying effects.

Despite the high dimensionality inherent in DSNet, we show that the curse of dimension-

ality can be alleviated when a low-rank structure, such as that in the SVFIM, is present.

Further elaboration is provided in Section S1 of the supplementary material.

2.5 Model Specification and Parameter Tuning

Together, the form of the i-th neuron in the first hidden layer of Figure 2 is written as

v
[1]
i (sss) = σ

(
K∑
k=1

Mk∑
m=1

P∑
p=1

κikmpψp(sss)

∫
T
fkm(t)Xk(sss; t)dt

+
J∑

j=1

P∑
p=1

ϑijpψp(sss)Zj(sss) +
H∑

h=1

γihϕh(sss) + bi

)
, (2.11)

where the integral in (2.11) can be approximated with a numerical integration method for

each of the K functional inputs. We note that evaluation of neurons in (2.11) results in

scalar values, thus the rest of the L − 1 hidden layers of the network follow the form of

the conventional neural network model. To fit this network, we employ a backpropagation

algorithm using the Adam Optimizer (Kingma and Ba, 2014) for the implementation. Section

2.2 of Thind et al. (2023) provides a sketch of a general optimization scheme for stochastic

gradient descent on the model with functional input. As pointed out by Thind et al. (2023),

representing functional weights by basis functions not only respects the continuity of the

functional covariates but also increases model efficiency compared to models using discrete

observations on the functional covariates as multivariate inputs.

Hyperparameter tuning is critical for optimizing neural network performance, encom-

passing standard parameters such as the number of layers, neurons per layer, activation

functions, learning rate, decay rate, validation split, epochs, batch size, and early stopping

criteria. In our DSNet, we further introduce architecture-specific hyperparameters including:
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the choice of basis functions (e.g., Fourier or Splines) defined over t; the expansion size M

for functional weights (assumed consistent across all K functional inputs); and the dimen-

sionalities P and H of spatial MRTS basis functions, where P controls spatial variability

in functional and scalar weights at the first hidden layer while H determines spatial ran-

dom process approximation. For parameter optimization, we employ C-fold cross-validation,

where we iteratively train on C − 1 folds and evaluate on the remaining fold to compute

the mean square prediction error (MSPE). This process repeats C times to ensure robust

performance assessment across all data partitions.

3 Simulation studies

We conduct simulation experiments under various scenarios to evaluate the predictive perfor-

mance of our method in comparison to other cutting-edge functional regression and functional

deep learning methods.

3.1 Data Generation

We adopt the 403 counties across five states from our real dataset as the spatial domain in

the simulation and generate data using the following model:

Yk(sssl) = g
{
Zk(sssl)α(sssl) +

∫
T
Xk(sssl; t)β(sssl; t)dt+ η(sssl)

}
+ ek(sssl), (3.1)

where l = 1, . . . , nk are indices of counties and k = 1, . . . , 5 are replicate years. The spatial

random effect η(sss) represents county-to-county variations that do not change over the years.

When g(·) is the identity function, model (3.1) reduces exactly to the data generation model

used in Park et al. (2023). Moreover, model (3.1) is a special case of SVFIM in (2.3). Below,

we provide details on the data generation process for each component of (3.1).

- Xk, β, Zk and α: We consider two scenarios for the functional and scalar covariates.

• Scenario 1 (Low-rank feature on functional covariates with stationary spatial depen-

dence). The first scenario generates spatially dependent functional covariates under a

low-dimensional representation, Xk(sssl; t) =
∑4

r=1 ξkr(sssl)fr(t), t ∈ T = [0, 1], using four

basis functions fr(t) and their corresponding loadings ξkr(sssl). The spatially varying co-

efficient is further generated from β(sss; t) =
∑4

r=1 ϑr(sssl)fr(t) using the same fr(t). This

reduces the integral part in (3.1) into a low dimensional structure:
∑4

r=1 ξkr(sssl)ϑr(sssl).

This structure aligns with the underlying model assumptions for SVFM in Park et al.

(2023).
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The basis functions are set as f1(t) =
√
2sin(2πt), f2(t) =

√
2cos(2πt), f3(t) =√

2sin(4πt), and f4(t) =
√
2cos(4πt). We choose to have nk ≡ n = 403 for all k, and

generate the spatially correlated loadings ξkr(sssl) from Gaussian processes such that

ξkr = {ξkr(sss1), . . . , ξkr(sssn)}T ∼ N(0n, λrΣ(ζr)}, r = 1, . . . , 4, where (λ1, . . . , λ4) =

(4, 2, 1, 0.5). Here, Σ(ζr) are correlation matrices governed by Matérn correlation

functions ρr(h) = {Γ(τ)2τ−1}−1(h/ζr)
τKτ (h/ζr), where h is the distance between two

counties, τ is the smoothness parameter, ζr is the range parameter, and Kτ (·) is the

modified Bessel function of the second kind (Stein, 1999). Specifically, we set τ = 1,

ζ1 = 400, ζ2 = 300, ζ3 = 200, and ζ4 = 100. Given that distances between Mid-

west counties range from 16 to 1530 km with an average of 516 km, the values of our

range parameters represent relatively moderate correlation structures, matching the

parameters estimated by Park et al. (2023).

To generate β(sssl; t), we simulate its coefficients as Gaussian processes such that ϑ1 ∼
N{2·1n,Σ(ζ1)}, ϑ2 ∼ N{−2·1n,Σ(ζ2)}, ϑ3 ∼ N{1n,Σ(ζ3)}, and ϑ4 ∼ N{−1n,Σ(ζ4)},
where ϑr = {ϑr(sss1), . . . , ϑr(sssn)}T . For the scalar covariate, we generate Zk(sssl)

iid∼
unif(0, 2) and the coefficient α(sssl) by a Gaussian process α = {α(sss1), . . . , α(sssl)}T

∼ N{1n,Σ(ζ1)}.

• Scenario 2 (Real data covariates). The second scenario considers a more realistic

setting by directly borrowing maximum temperature trajectories from our real data

for Xk(sssl; t), so that its underlying structure may not be represented by just a few

basis functions, and possibly exhibits a more complicated spatial dependency among

trajectories. Specifically, we use the data from 2005 to 2009, which has relatively low

proportions of missing counties. While Scenario 1 considers the same number of spatial

locations at each k, this scenario has varying nk ranging from 315 to 345, and a total

of 380 locations are used in modeling. We set the scalar covariate Zk(sssl) as the annual

precipitation from the real data. The functional and scalar coefficients, β(sssl; t) and

α(sssl), are generated using the same procedure described in Scenario 1.

- η(·): We generate spatial random effects via η(sss) =
∑10

h=1 υhϕh(sss), where ϕh(sss) are or-

thonormal multi-resolution thin plate spline (MRTS) basis functions, and υh ∼ N(0, 1).

This setting ensures that the contribution of η(sss) to the variability of response is compara-

ble to that of scalar and functional covariates, so that no single component dominates the

variability of responses. Figure S2 in the supplementary material illustrates 10 MRTS basis

functions used in the experiment.

- g(·): We consider the following four link functions in our simulation study.

1. Linear function: g(x) = x.
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2. Double exponential function: g(x) = cd exp(−|x|/2).

3. Sine function: g(x) = cs sin(x).

4. Piecewise linear function:

g(x) =


cp1{1 + (x+ cp2)/cp3}, if x < −cp2 ;

cp1 , if |x| ≤ cp2 ;

cp1{1− (x− cp2)/cp3}, if x > cp2 .

Among the four choices, the sine function exhibits the most striking nonlinear behavior.

The piecewise linear function is perhaps the most realistic for crop yield prediction, as it can

capture saturation effects. For instance, precipitation generally benefits crop growth, but

excessive rainfall can lead to flooding, which may damage or destroy crops. The constants

cd, cs, cp1 , cp2 , and cp3 are set to ensure sufficient nonlinearity for the given x values as well as

similar variation of g(·) for each scenario. Under Scenario 1, we set cd = 10, cs = 3, cp1 = 6,

cp2 = 2, and cp3 = 3. For Scenario 2, we set cd = 9, cs = 3, cp1 = 7, cp2 = 1, and cp3 = 5.

These choices yield a variance of approximately 5 for g(·), under each scenario.

- ek: The random errors are generated by ek(sssl)
iid∼ N(0, σ2

e) with σ
2
e set either at 3.33 or 2 to

approximate the signal-to-noise ratio (SNR) at 1.5 and 2.5, respectively. SNR is defined as

the ratio between the variance of E(Y |X,Z, η), around 5 in our experiment, and σ2
e . These

choices roughly align with the early findings that 60% of the variability in corn yield in the

American Midwest can be explained by climate variability (Ray et al., 2015).

3.2 Implementation and Evaluation Metrics

The simulation is repeated 100 times at each combination of model scenario and choice of

g(·), under two levels of SNR. In each run, 20% of the observations are randomly selected

as test data, with the remaining 80% used for training. We choose Fourier basis functions

for fkm(t) in (2.11). Hyperparameters of our DSNet model include the number of basis

functions for each expansion, the dimensionalities of MRTS basis functions used to capture

spatial variation in weight parameters and to model spatial random effects, the number of

hidden layers, and the number of neurons per hidden layer. Since our simulated data mimics

the real data, we adopt the same hyperparameter selection procedure for the real data, which

will be described in detail in Section 4.1.

We compare the predictive performance of our DSNet to two cutting-edge methods, the

spatially varying functional regression model (SVFM) (Park et al., 2023) and the functional

neural network (FNN) method (Thind et al., 2023). SVFM has demonstrated superior
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Table 1: The averages of mean squared prediction errors (MSPE) with standard errors in parenthe-
ses, computed over 100 replications. Boldface indicates the best performance (the lowest MSPE)
for each combination of model scenario, choice of g(·), and signal-to-noise ratio (SNR) level.

DSNet (proposed) SVFM FNN

g(·) SNR=1.5 SNR=2.5 SNR=1.5 SNR=2.5 SNR=1.5 SNR=2.5

Scenario 1

Linear 4.76 (0.08) 3.23 (0.07) 3.15 (0.05) 3.14 (0.05) 6.39 (0.10) 4.92(0.11)

Piecewise linear 5.03 (0.10) 4.32 (0.09) 3.57 (0.12) 3.43 (0.09) 7.12 (0.17) 6.59 (0.16)

Double exponential 5.40 (0.07) 3.93 (0.05) 3.68 (0.07) 3.57 (0.06) 7.04 (0.10) 5.62 (0.09)

Sine 5.93 (0.06) 4.21 (0.05) 3.90 (0.06) 3.70 (0.06) 7.59 (0.06) 6.21 (0.05)

Scenario 2

Linear 4.72 (0.05) 3.01 (0.03) 5.37 (0.07) 3.88 (0.06) 6.39 (0.15) 4.98 (0.14)

Piecewise linear 4.72 (0.06) 3.02 (0.04) 5.52 (0.10) 3.94 (0.09) 6.28 (0.18) 5.88 (0.19)

Double exponential 5.02 (0.09) 3.57 (0.08) 6.19 (0.13) 4.56 (0.11) 7.48 (0.17) 6.06 (0.16)

Sine 5.98 (0.08) 4.55 (0.06) 7.01 (0.09) 5.40 (0.08) 7.19 (0.07) 5.80 (0.06)

performance in predicting corn yield compared to other functional regression models by

incorporating spatially varying functional and scalar coefficients. The implementation of

SVFM requires selecting the dimension parameter p, the number of functional principal

components (FPCs) to be included in the model. In Scenario 1, we use the true dimension

p = 4, which reflects prediction under the known true dimensionality and represents the

optimal performance achievable by SVFM. For Scenario 2, we set p = 5, following the optimal

dimensionality identified by Park et al. (2023) using the same dataset. The FNN is a state-

of-the-art neural network approach designed to incorporate functional inputs, although it

does not account for spatial dependencies. To train FNN, we use a hyperparameter selection

strategy similar to that of DSNet to determine the optimal configuration at each simulation

iteration.

We evaluate the prediction performance using the Mean Squared Prediction Error (MSPE),

calculated as ∑
(k,l)∈Atest

{Yk(sssl)− Ŷk(sssl)}2/ |Atest|,

where Atest = {(k, l) : Yk(sssl) belongs to the test set}, and |Atest| is its cardinality. By

comparing the predictive performance of SVFM and the proposed DSNet across various

settings, we gain insight into the conditions under which deep learning models outperform

flexible parametric methods. Furthermore, the comparison between DSNet and FNN enables

us to empirically assess the advantages of incorporating spatial information into deep learning

algorithms.
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3.3 Simulation Results

Table 1 displays the average MSPE together with its standard error over 100 simulation runs,

evaluated on the test set. To illustrates the recovery of the function g(·) by each method,

Figure 3 uses the sine function as an example to compare the performance of each method

under the two scenarios. The upper panel plots Zk(sssl)α(sssl) +
∫
T Xk(sssl; t)β(sssl; t)dt+ η(sssl)

on the x-axis and Ŷk(sssl) on the y-axis, based on a subset of the test set from a randomly

selected run. The bottom panel displays the corresponding residuals. To better visualize

the differences among the three methods, we first applied local regression to the points

for each method and then superimposed the estimated regression means along with their

corresponding standard errors on each plot. The results for double exponential and piecewise

linear are deferred to Figure S1 of the supplementary material.

Under Scenario 1, SVFM consistently outperforms the other two models, regardless of

the nonlinearity in g(·) or the level of SNR. This result is somewhat surprising, as we ini-

tially expected that SVFM, being a linear model, would struggle to capture the nonlinear

relationships introduced by a nonlinear g(·). However, upon closer reflection, this outcome

can be explained by the flexibility of SVFM’s spatially varying coefficients, which allow it to

effectively capture both linear and nonlinear patterns — provided that the variability occurs

across spatial locations. However, if the nonlinearity is localized within individual locations

rather than varying spatially, SVFM will not be able to model such relationships. This

experiment reveals that when the response is related to the functional covariates through a

low-dimensional feature and the spatial correlation in the data is stationary, as assumed in

SVFM, a flexible parametric model like SVFM can be highly effective.

The left column of Figure 3 confirms that SVFM predictions align closely with the true

g(·). The DSNet predictions also follow the trend of g(·) well, though with slightly reduced

accuracy near the right end. Additionally, the residuals from DSNet appear to exhibit slightly

greater variance compared to those from SVFM. Nevertheless, we note that our experimental

setup places the SVFM model in a favorable position, as the model fitting directly uses the

true value p = 4. As such, the performance of SVFM may be somewhat overly optimistic.

More importantly, the overly simplified structure assumed in Scenario 1 is unlikely to

hold in most real-world applications. Under Scenario 2, where the functional covariates are

drawn directly from real observations that likely cannot be adequately represented using

only a few basis functions and may exhibit more complex spatial dependency structures,

the predictive accuracy of DSNet uniformly surpasses that of SVFM. This suggests that

DSNet is better equipped to extract meaningful information from functional covariates with

complex structures than the parametric SVFM. The right column of Figure 3 shows that

DSNet captures the trend of g(·) better than SVFM. The residuals from DSNet are more

centered around zero and exhibit slightly less variability compared to those from SVFM.
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Figure 3: Top panel: Estimated g function from DSNet (blue), SVFM (purple), and FNN (yellow)
under Scenarios 1 and 2, based on a randomly selected simulation run under SNR = 2.5. To
aid visualization, 100 data points from the test set are randomly selected for display. The x-axis
represents Zk(sssl)α(sssl) +

∫
T Xk(sssl; t)β(sssl; t)dt+ η(sssl) from (3.1), and the y-axis represents Ŷk(sssl).

For clarity, the data points are centered and scaled, and local regression curves (long dashed lines)
with corresponding standard error bands are superimposed. The solid red line indicates the true
sine function for g(·), and the black ”+” symbols denote the true values of Yk(sssl). Bottom panel:
Corresponding residual plots for the top panel, also superimposed with local regression curves. The
solid black line represents the zero line on the y-axis.

The FNN, which does not account for spatial correlation or spatial variability, consistently

underperforms compared to both DSNet and SVFM. As shown in Figure 3, predictions from

FNN tend to cluster around the mean of the responses, regardless of the form of the g(·)
function. This behavior arises because FNN, by not considering spatial characteristics of

data, tends to average information across all locations, resulting in fitted values that gravitate

toward the global mean.

In terms of computation, the average time to train the proposed DSNet model and make

predictions under its optimally selected configuration is approximately 1.15 minutes per

simulation run for Scenario 2, while SVFM is fitted through Bayesian hierarchical modeling

and requires an average of 81.31 minutes to generate 500 MCMC samples. This represents

a substantial difference in computational burden.

In sum, the flexible SVFM can capture nonlinear relationships between inputs and re-

sponses when the nonlinearity can be absorbed into the spatial variability of those relation-

ships. SVFM performs well under correct model specification, that is, when the functional
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predictors can be represented in a low-dimensional space and their relationship with the

response varies spatially according to a stationary process. In such settings, DSNet may un-

derperform relative to SVFM, potentially due to overfitting caused by overparameterization.

However, real-world data rarely conform to such simplified structures. For more complex

and realistic datasets, DSNet clearly outperforms SVFM in predictive accuracy and offers a

substantial advantage in computational efficiency compared to the Bayesian implementation

of SVFM. While FNN handles functional data effectively, it lacks the capacity to model

spatial correlation and heterogeneity, limiting its performance for spatially structured data.

4 Midwest crop yield prediction

We apply the proposed DSNet to model and predict county-level average corn yield (in

bushels per acre) across five Midwestern states - Illinois, Indiana, Iowa, Kansas, and Mis-

souri - during the period 1999–2020. In practice, year-to-year variability in crop yields is

largely influenced by a combination of factors, including seed genetics, biotechnology, and

management decisions. Additionally, agricultural practices such as land fallowing and crop

rotation further contribute to annual variation. To account for these effects, we first remove

the year-specific component from the corn yield by subtracting the annual average, resulting

in yield anomalies. We then model these annual anomalies as conditionally independent

(in time) random processes given the meteorological covariates. This approach is consistent

with the practice in Park et al. (2023), which empirically demonstrated a lack of temporal

correlation in demeaned yield data across years.

In our modeling framework, we use county-level daily maximum and minimum temper-

atures as functional covariates and monthly averages of precipitation as scalar covariates.

Although raw daily precipitation records were available, we explored several strategies for

incorporating this data, including annual, quarterly, and monthly averages, as well as treat-

ing it as a functional covariate. Among these options, using monthly average precipitation

yielded the best predictive performance across both our model and the comparison models.

We attribute this to the inherent characteristics of daily precipitation data, which is often

zero-inflated with occasional sharp spikes, unlike typical functional data that exhibit smooth

and continuous patterns. Moreover, using monthly averages is a practical choice, as crop

yield is more strongly influenced by the cumulative effect of water availability over time than

by short-term fluctuations.
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4.1 DSNet Model Training

We first apply standard preprocessing to the maximum and minimum temperature curves

by registering them on B Fourier basis functions, with the goals of maintaining as many

functional features as possible while denoising (Ramsay and Silverman, 2005). We represent

the location-specific functional weights βik(sss; t) in (2.9) using Fourier basis functions fkm(t).

In this study, we adopt a shared set of Fourier basis functions across k, i.e., fkm(·) = fm(·).
Then, MRTS basis functions are employed for ψp(sss) in (2.9) and (2.10) to model spatially

varying coefficients for both functional and scalar weights, respectively. Additionally, MRTS

basis functions are also used for ϕ(sss) in (2.11) to model spatial random effects. All dimensions

of basis functions are treated as hyperparameters.

Standard deep learning hyperparameters, such as learning rate, decay rate, number of

epochs, and validation split, have been found to exert minimal influence on prediction per-

formance when set within reasonable ranges. Consequently, we fix these at standard values,

and also adopt the popular sigmoid activation function, in line with (Thind et al., 2023). We

identified several key hyperparameters that significantly affect prediction accuracy. These

include: the number of Fourier basis functions (M) used to capture temporal variability in

βik(sss, t) within the first hidden layer; the number of MRTS basis functions (P ) for modeling

spatial variability in βik(sss, t); the number of basis functions (H) for approximating the spa-

tial random effect process ηi(sss); the number of hidden layers (L); and the number of neurons

per layer (N). We determine the optimal configuration of these hyperparameters through

cross-validation.

To illustrate the sensitivity of prediction accuracy to the number of basis functions, B,

M , P , and H, we conducted experiments to examine how the corresponding 5-fold cross-

validation (CV) errors vary with each of these parameters. Although the number of Fourier

basis functions B is not a hyperparameter of the DSNet model, it can still affect prediction

accuracy and is therefore included in this analysis. To isolate the effect of each parameter, we

fix all other hyperparameters at reasonable values and vary only the parameter of interest.

The results are presented in Figure 4. For B, M , and P , the range from 3 to 51 sufficiently

captures the trend in CV errors as the parameter increases. In contrast, for H, we use a

wider range (35 to 250) since the CV errors decrease more gradually with increasing H.

Figure 4(a) shows that the effect of B, the number of Fourier basis functions used to

expand Xk(sss, t), on prediction accuracy stabilizes after an elbow point at approximately

B = 15. This suggests that, once B is large enough to capture the dynamics of the functional

predictor, the model’s performance becomes relatively insensitive to its precise value. Based

on these exploratory results, we fix B = 21 for registering the functional inputs in model

training and no longer treat it as a hyperparameter. In Figures 4(b) and (c), the CV error

initially decreases with increasing M or P and then rises after reaching a minimum. This
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Figure 4: Sensitivity analysis of key hyperparameters based on 5-fold cross-validation (CV) errors
for (a) number of Fourier basis functions B to represent the functional input; (b) number of Fourier
basis functions M for modeling temporal variation in the functional weights; (c) number of MRTS
basis functions P for modeling spatial variation in the functional weights; and (d) number of MRTS
basis functions H for modeling the spatial random effect process. Each panel is overlaid with a
local regression curve, with shaded regions indicating the associated standard errors.

indicates that using too many basis functions in the functional weights, whether for temporal

variability using Fourier basis (M) or for spatial variability using MRTS (P ), can lead to

overfitting and degrade predictive performance. These observations highlight the importance

of tuningM and P during model training. Figure 4(d) shows that CV error remains relatively

stable once a sufficiently large value of H is reached, although a slight increase in error is

observed for very large values of H, suggesting possibly mild overfitting.

Figure 4 not only demonstrates the individual effects of each of the four hyperparam-

eters but also helps identify reasonable ranges for M , P , and H to guide parameter opti-

mization. In the subsequent analysis, we determine the optimal combination of hyperpa-

rameters each time DSNet is trained by performing a grid search within narrowed ranges

informed by Figure 4, thereby reducing computational cost. Specifically, the grid search

is conducted over the following sets: M ∈ {5, 7, 9, 11, 13}, P ∈ {5, 7, 10, 12, 15, 20}, H ∈
{100, 130, 150, 180, 200, 250}, L ∈ {4, 5, 6, 7, 8}, and N ∈ {16, 32, 64}.

4.2 Models for Comparison

To comprehensively evaluate the proposed DSNet method and gain deeper insight into its

strengths, we also apply four additional approaches to the data: the Functional Neural

Network (FNN) and Spatially Varying Functional Regression Model (SVFM) discussed in

Section 3, along with two widely used machine learning techniques, Neural Network (NN)
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(LeCun et al., 2015) and eXtreme Gradient Boosting (XGB) (Chen and Guestrin, 2016).

FNN serves as a submodel of DSNet that excludes spatial variability and spatial corre-

lation. To isolate the contributions of these spatial components, we also examine two inter-

mediate submodels of DSNet: (i) FNN with spatially varying parameters and (ii) FNN with

spatial random effects. Combining (i) and (ii) yields the full DSNet model. By comparing

these submodels to both FNN and DSNet, we aim to quantify the individual contributions

of spatially varying parameters and spatial random effects to the model’s ability to capture

variability in the data.

Neither NN nor XGB was originally designed to incorporate functional inputs or account

for spatial structure in the data. To adapt these models to functional covariates, we begin by

representing the raw temperature curves as multivariate inputs, specifically, 730-dimensional

vectors corresponding to daily maximum and minimum temperatures over a year. To make

these methods more comparable to DSNet, we progressively enhance their baseline formula-

tions through three tiers of modification. (i) Functional dimension reduction: Rather than

using raw multivariate inputs, we first reduce the dimensionality of the functional covariates

via functional principal component (FPC) scores. We retain 21 FPC scores that explain

over 98% of the total variability in the temperature trajectories. This results in a special

case of the FNN model, where both the functional inputs and their associated weights are

represented using the same set of FPC basis functions. In contrast, our DSNet model pro-

vides greater flexibility by allowing distinct and more general basis functions for representing

the inputs and the weights. (ii) Spatially varying parameters: We enhance the input layer

by introducing interaction terms between the FPC scores and the MRTS basis functions,

thereby enabling NN and XGB to model spatially varying parameters. (iii) Spatial ran-

dom effects: Finally, we add spatial random effects by including the spatial basis functions

ϕ1(sss), . . . , ϕH(sss) in the input layer. The NN model enhanced through all three tiers, i.e.,

NN(iii), can be viewed as a special case of DSNet, where both the functional inputs and func-

tional weights are represented using FPC basis functions. By comparing this enhanced NN

to DSNet, we can evaluate the additional benefits of allowing for more general and flexible

choices of basis functions in modeling functional data and their associated weights.

For a fair comparison, we use the same set of MRTS basis functions of dimension (P ) and

the same number of spatial basis functions (H) as in DSNet for all enhancements applied

to FNN, NN, and XGB. For completeness, we also include SVFM as a representative of

parametric statistical model, given its strong predictive performance in Section 3, especially

when the underlying data structure lies in a low-dimensional space. Note that we run

the SVFM with maximum and minimum functional temperature covariates and an annual

average of precipitation as the scalar covariates, rather than the monthly average, due to

extreme computation time with the increase in model dimensionality.
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Table 2: MSPE and weighted MSPE from 10-fold cross-validation using DSNet, variations of the
Functional Neural Network (FNN), Neural Network (NN), eXtreme Gradient Boosting (XGB),
and the Spatially Varying Functional Regression Model (SVFM). A “✓” indicates inclusion of the
corresponding component in the model, while an “x” denotes its absence. The labels (i), (ii), and
(iii) denote the types of enhancements applied to each model.

Temperature covariates Spatial terms

Learning
Model

Function Multi-
variate

FPC
score

Spatially
varying
weights

Spatial
random
effects

MSPE
Weighted
MSPE

DSNet
(Proposed)

✓ x x ✓ ✓ 186.4 133.4

FNN
FNN(i)
FNN(ii)

✓ x x x x 484.6 367.3
✓ x x ✓ x 291.5 192.5
✓ x x x ✓ 283.8 192.3

NN
NN(i)
NN(ii)
NN(iii)

x ✓ x x x 455.5 335.9
x x ✓ x x 539.2 415.4
x x ✓ ✓ x 286.4 197.9
x x ✓ ✓ ✓ 258.2 189.5

XGB
XGB(i)
XGB(ii)
XGB(iii)

x ✓ x x x 409.8 306.8
x x ✓ x x 479.8 369.3
x x ✓ ✓ x 253.9 184.5
x x ✓ ✓ ✓ 202.4 157.0

SVFM ✓ x x ✓ ✓ 425.5 355.7
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Figure 5: (a) The county-level crop yield (bushels per acre) collected in 2018 and predicted corn
yields using 1999-2017 data from (b) the proposed DSNet method and (c) FNN, respectively, where
the blank represents counties with missing data; (d) A scatter plot between true and predicted corn
yields from each method.

4.3 Prediction Assessment and Implication

We evaluate the predictive performance of the proposed and competing models using 10-fold

cross-validation, in which all year–county combinations are randomly divided into 10 equal

subsets. Each fold takes turn to serves as the test set once, while the remaining nine folds are

used for training. For each test set, we train the models on the corresponding training data

and compute the prediction errors on the test data. For DSNet, the optimal combination

of hyperparameters is selected via grid search over the candidate sets specified in Section

4.1. Two types of MSPE are calculated for model comparison: (i) Regular MSPE as defined

in the simulation study, and (ii) Weighted MSPE using the size of the harvest land as the

weight, calculated by averaging∑
(k,l)∈Ac

πk(sssl){Yk(sssl)− Ŷk(sssl)}2/
∑

(k,l)∈Ac

πk(sl),

over c = 1, . . . , 10, where Ac = {(k, l); Yk(sssl) belongs to the cth test set} and πk(sssl) denotes

the size of harvested land (acre) in year k and county l. The harvest land size information

is also obtained from the National Agricultural Statistics Agency. We consider weighted

MSPE as it may reflect the practical importance of accurate predictions in counties with
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larger agricultural output. Table 2 reports both regular and weighted MSPEs for all models

under comparison.

The proposed DSNet significantly outperforms all competing methods, achieving the low-

est MSPE and weighted MSPE. The basic FNN model, which lacks any spatial adaptation,

yields the highest errors in both metrics. However, its two enhanced variants - FNN(i),

incorporating spatially varying weights, and FNN(ii), incorporating spatial random effects

- show substantial improvements in predictive accuracy. These results highlight that each

spatial component independently contributes substantially to explaining variability in corn

yield. As expected, combining both components, as in the full DSNet model, yields even

greater predictive performance than including either one alone.

The other machine learning methods, NN, XGB, and their variants, exhibit a similar

pattern: prediction accuracy improves when spatially varying weights are assigned to the

FPC scores, and further improves when spatial random effects are incorporated. However,

neither NN(iii) nor XGB(iii), the versions that include both spatial components, outperform

the proposed DSNet. This comparison highlights the advantage of DSNet’s flexible functional

data modeling, which does not rely on FPC functions and allows the use of distinct basis

functions for representing functional inputs and their associated weights. Interestingly, in the

absence of spatial modeling, both NN and XGB achieve lower cross-validation (CV) errors

when using raw daily maximum and minimum temperature curves as multivariate inputs,

compared to using multivariate FPC scores. While incorporating FPC scores into DNNs

has proven effective for some applications (Wang et al., 2023), this approach does not yield

comparable benefits for our data. We conjecture that for our data, the FPC scores derived

solely based on the variance structure of the functional covariates without considering their

relationship to the response variable, may not be able to adequately capture the variation

in the response (Jolliffe, 1982).

Finally, the SVFM shows notably inferior predictive performance compared to the deep

learning approaches that incorporate spatial structure, exhibiting substantially higher MSPEs

and considerably longer computation times. Relative to its performance in the simulation

study, even under Scenario 2, the SVFM performs markedly worse on real data. We think

this is likely because the true structure of spatially indexed temperature trajectories and

the relationship between both functional and scalar covariates and corn yield is likely more

complex than what a parametric model, even a flexible one like SVFM, can capture. Even

when real covariates are used in Scenario 2, the simulation model for the response may still

be overly simplistic and biased in favor of SVFM. For instance, the weights on the functional

and scalar covariates in the real setting may not follow a stationary Gaussian process. These

findings highlight the importance of leveraging the flexibility and robustness of deep learn-

ing methods when dealing with complex, high-dimensional climate-agriculture data. While
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using monthly average precipitation as scalar covariates, rather than annual precipitation as

in the current model, might improve predictive performance, we do not anticipate it would

reduce the MSPE by half. Rather, it would significantly increase the computational burden.

To visually illustrate the difference in predictive performance, we use data from 1999

to 2017 to predict crop production in 2018. Although data are available through 2020, we

choose 2018 for prediction to facilitate clearer visualization, as the years 2019 and 2020

contain a relatively high proportion of missing yield data. We first show the difference

between the proposed DSNet and the basic FNN (without spatial enhancements) in Figure

5. DSNet predictions in panel (b) clearly capture the spatial structure observed in the true

responses shown in panel (a). While the basic FNN recovers some spatial patterns, its

predictions in panel (c) perform poorly for both high and low yield regions. The scatter

plots in panel (d) further highlight the advantage of DSNet: its predictions align closely

with the true observations, achieving a correlation coefficient of 0.79. In contrast, the FNN

model exhibits substantial deviation from the observed values, with a much lower correlation

coefficient of 0.45. The scatter plot also reveals that FNN predictions tend to cluster around

the mean of the observations. This phenomena arises from FNN’s inability to account for

spatial heterogeneity, resulting in a fitted model that tend to average the covariate-response

relationship across all counties, rather than capturing localized behaviors.

We then compare DSNet with the best-performing machine learning model, XGB(iii),

as identified in Table 2. Overall, the MSPEs for DSNet and XGB(iii) are 337.9 and 388.1,

respectively, and their weighted MSPEs are 286.7 and 291.1. Among the five states, DSNet

outperforms XGB(iii) in Illinois (IL), Kansas (KS), and Missouri (MO), yields comparable

results in Indiana (IN), and only underperforms in Iowa (IA). Detailed results are provided in

Table S1 of the supplementary material. To clearly illustrate the differences in county-level

predictions, we plot the predictions from both models versus true values across the five states

in our analysis. Figure 6 presents results for Kansas (KS) and Iowa (IA), each representing a

state where one of the two models performs better. Results for the remaining three states are

deferred to Figure S3 in the supplementary material. These two figures seem to suggest that

DSNet is more effective in settings where corn yield exhibits high spatial variability across

counties, as seen in KS, while XGB(iii) performs better when yield variation across counties

is more modest, as in IA. However, since DSNet and XGB(iii) differ mainly in the basis

functions used to represent functional covariates and their associated weights, we suspect

that XGB(iii)’s superior performance in IA likely stem from the fact that the FPC scores of

temperature in that state happen to capture the yield-relevant variation particularly well.

Lastly, Figure S4 in the supplementary material displays the county-specific functional

weights β1(sss, t) for maximum temperature trajectories from the first six neurons. The cor-

responding weights β2(sss, t) for minimum temperature trajectories exhibit similar patterns
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Figure 6: True corn yields (black) across counties in Kansas and Iowa in 2018 and predicted yields
from the proposed DSNet (blue) and the XGB(iii) method, enhanced with spatially varying weights
on FPC scores and spatial random effects (red).

and are therefore omitted. These results underscore the spatial and temporal variability

in functional weights. In general, counties within the same state show consistent temporal

patterns with small variations. However, several counties in KS exhibit markedly distinct

functional weights with large amplitudes, and we find they correspond to counties with low

peak yields in Figure 6. This pattern may suggest that the relationship between temperature

and corn yield in Kansas is more volatile, and thus the greater flexibility of DSNet enables

it to capture these localized variations more effectively in this state.

5 Concluding remarks

We propose DSNet, a deep neural network designed for spatial prediction with functional

and scalar covariates. Its architecture incorporates spatial basis functions to model spa-

tially varying functional and scalar network parameters, as well as spatial random effects.

Although DSNet appears to be high-dimensional, we show that the curse of dimensionality

is mitigated when the underlying structure conforms to a low-rank SVFIM representation.

Beyond theoretical justification, DSNet achieves substantial improvements in prediction ac-

curacy for large-scale corn yield forecasting across the U.S. Midwest. It outperforms the

state-of-the-art parametric functional regression model with spatially varying coefficients

by (Park et al., 2023), as well as other deep neural networks, including those augmented

to capture spatial structure and accommodate functional covariates. While developed for

corn yield prediction, DSNet is broadly applicable to other crops whose growth is strongly

influenced by weather patterns, such as soybeans (Schwalbert et al., 2020).

Our extensive simulation results also offer valuable insights into the relative strengths
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of parametric statistical models and deep learning approaches. While DSNet performs ex-

ceptionally well with spatially indexed functional covariates characterized by complex struc-

tures and spatial dependencies, the SVFM proves effective when the data reside in a low-

dimensional space with stationary spatial structure. The spatially varying coefficients in

SVFM allow it to capture nonlinear relationships between the response and covariates, pro-

vided that the nonlinearity manifests across spatial locations. These findings underscore

the complementary strengths of statistical and deep learning models, and they highlight the

need for more comprehensive studies comparing various approaches to spatial prediction with

functional covariates, akin to the benchmarking efforts undertaken for time series forecasting

(Makridakis et al., 2018).
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Supplement to “Deep Spatial Neural Net Models with
Functional Predictors: Application in Large-Scale

Crop Yield Prediction”

This supplement contains theoretical justification for the architecture of a Deep Spatial

Neural Net (DSNet) and additional results from simulation studies and data application.

S1 Theoretical Justification of the Proposed Architec-

ture

We first introduce some concepts and notation. A function f : Rd → R is called (℘,C)-

smooth for ℘ = k + β with k ∈ N+ and β ∈ (0, 1] if for every ααα = (α1, . . . , αd)
⊤ with

|α| =
∑d

i=1 αi ≤ k, the partial derivative Dαααf exists and satisfies the Hölder condition with

exponent β and constant C:

|Dαααf(xxx)−Dαααf(yyy)| ≤ C∥xxx− yyy∥β ∀xxx,yyy ∈ Rd.

Under the basis function representation described in Sections 2.3 and 2.4, the SVFIM

of order d∗ and level 0 described in (2.2) can be rewritten as E{Y (sss)|XXX(sss; ·),ZZZ(sss)} =

g{v1(sss), . . . , vd∗(sss)} where

vℓ(sss) =
K∑
k=1

Mk∑
m=1

P∑
p=1

κℓkmpψp(sss)

∫
T
fkm(t)Xk(sss; t)dt

+
J∑

j=1

P∑
p=1

ϑℓjpψp(sss)Zj(sss) +
H∑

h=1

γℓhϕh(sss), (S1.1)

ℓ = 1, . . . , d∗. With the basis function representation, the general SVFIM defined in (2.3)

can be written as E{Y (sss)|XXX(sss; ·),ZZZ(sss)} = M{X (sss)}, where X (sss) = (X1,X2,X3)
⊤(sss), with

X1(sss) = {ψp(sss)
∫
T fkm(t)Xk(sss; t)dt, p ∈ [P ], m ∈ [Mk], k ∈ [K]}⊤, X2(sss) = {ψp(sss)Zj(sss), j ∈

[J ], p ∈ [P ]}⊤ and X3(sss) = {ϕh(sss), h ∈ [H]}⊤, and M(·) belongs to the class of generalized

hierarchical interaction models considered by Bauer and Kohler (2019).

Let D be the dimension of X , and define a class of two-layer neural networks FM∗,d∗,D,τ

which is the set of all functions f : RD → R of the form

f(xxx) =
M∗∑
i=1

w
[2]
i σ

( 4d∗∑
j=1

w
[1]
ij σ

( D∑
v=1

w
[0]
ijvxv + b

[0]
ij

)
+ b

[1]
i

)
+ b[2],

with maxi,j,v{|w[0]
ijv|, |w

[1]
ij |, |w

[2]
i |, |b[0]ij |, |b

[1]
i |, |b[2]|} < τ . Let M̂(X ) ∈ FM∗,d∗,D,τ be the neural
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network estimator of M(X ) that minimizes the least square loss in a training set of sample

size n. Set M∗ ≍ n
d∗

2℘+d∗ and τ ≍ nc for some constant c > 0. Suppose {X (sss)} is a

stationary random field and M(X ) is a (℘,C)-smooth hierarchical interaction model, then

following Bauer and Kohler (2019)

E[M̂{X (sss)} −M{X (sss)}]2 ≤ C log(n)3n
d∗

2℘+d∗ . (S1.2)

This result implies that when a low-rank structure such as the FVIM holds, the proposed

DSNet does not suffer from the curse of dimensionality in the sense that the convergence

rate depends on order d∗, which is much lower than the dimension of the input D.

S2 Additional Figures from Simulation Experiments

Figures S1 illustrate the recovery of the double exponential and piecewise linear functions

g(·), respectively, by each method under Scenarios 1 and 2. Consistent with the results

shown in Figure 3 in Section 3.3, both SVFM and DSNet successfully recover the nonlinear

function g(·). Under Scenario 1, the residuals from DSNet exhibit slightly greater variance

compared to those from SVFM. However, under Scenario 2, the residuals from DSNet are

more centered around zero and display slightly lower variability than those from SVFM.

S3 Additional Figures from the Crop Yield Prediction

Application

Figure S2 illustrates the first 10 MRTS basis functions, which capture global variations,

alongside the 41st to 50th MRTS basis functions, which capture local variations, based on

40 equally spaced inner knots selected from the spatial domain in the real data application.

Table S1 reports the statewise MSPE and weighted MSPE for DSNet and XGB predictions

of 2018 corn yield, based on training data from 1999 to 2017 across five Midwestern states.

Figure S3 illustrates the prediction accuracy of the proposed DSNet and the XGB model

across three states, Missouri, Illinois, and Indiana, using data from 1999 to 2017 to predict

crop production in 2018. As described in Section 4.3, XGB model performs comparably

to DSNet in those three states where Intra-state yield variability is relatively low. Lastly,

Figure S4 illustrates functional weights for maximum temperature trajectories from the first

six neurons, estimated from a model with four hidden layers with 32 neurons for each under

the ‘sigmoid’ activation function. These weights highlight the degree of spatial variability in

the model parameters.
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Table S1: MSPE and Weighted MSPE for DSNet and XGB predictions for 2018 corn yield across
five Midwest states.

State
MSPE Weighted MSPE

DSNet XGB DSNet XGB

Illinois(IL) 306.4 360.2 283.9 350.0
Kansas(KS) 686.1 1153.6 636.8 991.0
Missouri(MO) 255.7 336.2 211.3 314.9
Iowa(IA) 260.9 107.4 242.0 105.9
Indiana(IN) 257.6 256.0 232.8 231.5
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Figure S1: For each choice of g(·), top panel: Estimated g function from DSNet (blue), SVFM
(purple), and FNN (yellow) under Scenarios 1 and 2, based on a randomly selected simulation run
with SNR = 2.5. To aid visualization, 100 data points from the test set are randomly selected
for display. The x-axis represents Zk(sssl)α(sssl) +

∫
T Xk(sssl; t)β(sssl; t)dt+ η(sssl) from (3.1), and the

y-axis represents Ŷk(sssl). For clarity, the data points are centered and scaled, and local regression
curves (long dashed lines) with corresponding standard error bands are superimposed. The solid
red line indicates the true sine function for g(·), and the black ”+” symbols denote the true values
of Yk(sssl). Bottom panel: Corresponding residual plots for the top panel, also superimposed with
local regression curves. The solid black line represents the zero line on the y-axis.
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Figure S2: Illustration of the first 10 MRTS basis functions, labeled as MRTS 1 to 10, displaying
global spatial structure, and 41st to 50th MRST basis functions, labeled as MRTS 41 to 50. Eval-
uated values are normalized, with dark red indicating larger positive values, dark blue indicating
smaller negative values, and white representing zero.
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Figure S3: True corn yields (black) over counties in Missouri, Illinois, and Indiana in 2018 and
predicted yields under the proposed DSNet (blue) and the comparison XGB(iii) method, enhanced
with spatially varying weights on FPC scores and spatial random effects (red).
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Figure S4: Illustration of functional neural network weights for maximum temperature trajectories
from the first six neurons in the first hidden layers. Functional weights for counties in Illinois,
Indiana, Iowa, Kansas, and Missouri are highlighted in black, red, green, blue, and turquoise,
respectively.
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