
ar
X

iv
:2

50
6.

12
99

5v
1

 [
cs

.C
R

]
 1

5
Ju

n
20

25

Open Source, Open Threats? Investigating Security Challenges in
Open-Source Software

Seyed Ali Akhavani*
Northeastern University

Boston, MA, USA
sadatakhavani.s@northeastern.edu

Behzad Ousat*
Florida International University

Miami, FL, USA
bousat@fiu.edu

Amin Kharraz
Florida International University

Miami, FL, USA
ak@cs.fiu.edu

*Authors contributed equally to this work.

Abstract—Open-source software (OSS) has become in-
creasingly more popular across different domains. How-
ever, this rapid development and widespread adoption
come with a security cost. The growing complexity and
openness of OSS ecosystems have led to increased exposure
to vulnerabilities and attack surfaces. This paper investi-
gates the trends and patterns of reported vulnerabilities
within OSS platforms, focusing on the implications of these
findings for security practices. To understand the dynam-
ics of OSS vulnerabilities, we analyze a comprehensive
dataset comprising 31,267 unique vulnerability reports
from GitHub’s advisory database and Snyk.io, belonging
to 14,675 packages across 10 programming languages.

Our analysis reveals a significant surge in reported
vulnerabilities, increasing at an annual rate of 98%—far
outpacing the 25% average annual growth in the number
of open-source software (OSS) packages. Additionally, we
observe an 85% increase in the average lifespan of vul-
nerabilities across ecosystems during the studied period,
indicating a potential decline in security. We identify the
most prevalent Common Weakness Enumerations (CWEs)
across programming languages and find that, on average,
just seven CWEs are responsible for over 50% of all
reported vulnerabilities. We further examine these com-
monly observed CWEs and highlight ecosystem-specific
trends. Notably, we find that vulnerabilities associated
with intentionally malicious packages comprise 49% of
reports in the NPM ecosystem and 14% in PyPI—an
alarming indication of targeted attacks within package
repositories. We conclude with an in-depth discussion of
the characteristics and attack vectors associated with these
malicious packages.

Index Terms—Supply Chain Security, Open-Source Secu-
rity

1. Introduction
The open-source software (OSS) landscape has seen

exponential growth over the past decade, becoming
a backbone for a wide range of industries, including
aerospace [1], energy systems[2], [3], finance [4], [5],

healthcare [6], and government projects. As the adop-
tion of OSS starts to dominate across different sectors,
its inherent benefits—such as transparency, collabora-
tion, and rapid innovation—are accompanied by im-
portant challenges. The open and decentralized nature
of OSS, while promoting collaboration and innova-
tion, also creates opportunities for adversaries to ex-
ploit vulnerabilities [7], compromise supply chains [8],
[9], and introduce malicious code into widely-used li-
braries [10], [11], [12].

Government entities, policymakers, and regulators
recognize the need for stronger security measures in
the open-source environment. The recent United States
Securing Open Source Software Act represents a sig-
nificant step toward mandating security improvements
and creating frameworks for the protection of open-
source libraries and dependencies [13], [14]. Similarly,
United States’ Cybersecurity and Infrastructure Security
Agency (CISA) has published the Open Source Soft-
ware Security Roadmap, outlining its strategy to ensure
a secure open-source ecosystem [15]. These initiatives
reflect growing concerns over the reliance on OSS
in critical infrastructure, highlighting challenges like
dependency visibility, large-scale vulnerability manage-
ment, and human errors in maintaining packages.

Our work is guided by three primary research ques-
tions. 1) How have vulnerabilities evolved in different
ecosystems?, 2) How long do vulnerabilities persist
and spread across packages?, 3) What are the unique
vulnerability patterns in different ecosystems? To an-
swer these questions, we generated a dataset of vul-
nerability reports from 2017 to January 2025. The data
consists of over 31,267 reported vulnerabilities from
two advisory databases–GitHub Advisory Database and
Snyk.io– that cover 14,675 open-source repositories
publicly available on GitHub. We also have reports
of 4,456 malicious packages whose source code is
no longer available since they have been permanently
removed. We examine vulnerabilities across 10 pro-
gramming languages–C, C++, PHP, Rust, JavaScript
(Node.JS), Go, Java, .Net, Python, Ruby–, and eight

1

https://arxiv.org/abs/2506.12995v1

distinct package managers–PyPi, NPM, Composer,
Crates, Go, Maven, NuGet, and RubyGems– which are
foundational to software and web development [16],
[17], [18], [19]. This longitudinal analysis allows us
to track the growth and distribution of vulnerabilities
across programming languages.

In the following, we highlight some of the major
findings of this paper.

The rapid adoption of open-source platforms
is being overshadowed by a faster rise in re-
ported vulnerabilities. The analysis reveals a substan-
tial increase in the number of packages across open-
source platforms, with an average annual growth rate
of 25.16%. However, this growth is accompanied by an
alarming rise in reported vulnerable packages, which
have increased at a much faster rate—98% annually.
This suggests that as package managers rapidly expand
their number of packages, the security risks associated
with them are growing disproportionately. For example,
in 2022, there were 2,490 vulnerabilities reported for
Maven and 1,593 for Composer. The sharp increase
in vulnerabilities, particularly in high-growth platforms,
highlights a critical security gap, as the rate of vulner-
abilities is outpacing the platform’s expansion, making
open-source software an increasingly attractive target
for attackers.

The expanding scale of open-source ecosystems
does not necessarily translate into improved secu-
rity. We analyze vulnerabilities at the package level
and find that the time a vulnerability remains in the
ecosystem before being fixed has increased by 95%
from 2017 to 2024. Additionally, we examine vulnera-
bility concentration patterns to assess whether security
issues stem from a small number of packages or are
dispersed across the ecosystem. Our analysis reveals
distinct trends—some platforms exhibit a high concen-
tration of vulnerabilities in key packages, while others
show a broader, more distributed spread. For instance,
Composer (4.92 vulnerabilities per vulnerable package)
and C/C++ (3.96) have vulnerabilities concentrated in
a few critical packages. In contrast, ecosystems such as
NPM (1.75 vulnerabilities per package) and Go (1.70)
show a more even distribution of vulnerabilities.

The evaluation of CWEs across ecosystems re-
veals distinct vulnerability patterns shaped by both
common threats and language-specific character-
istics. Our results reveal key trends in vulnerability
distribution, highlighting the prevalence of certain vul-
nerabilities and the impact of language-specific char-
acteristics. Our data demonstrates that, on average of
the investigated platforms, only seven CWEs were re-
sponsible for over 50% of the vulnerability reports.
Notably, CWE-79 (Cross-Site Scripting) and CWE-
22 (Path Traversal) pose a major threat in ecosys-
tems like Composer, NPM, PyPI, and Maven, reflecting
widespread security challenges in web applications. On
the other hand, some CWEs are deeply tied to lan-
guage characteristics, such as CWE-122 (Heap-based

Buffer Overflow) in C/C++ or CWE-1321 (Prototype
Pollution) in JavaScript. We specifically focus on CWE-
506 (Embedded Malicious Code) that has emerged as a
significant issue in platforms like NPM and PyPI, where
48.58% and 13.92% of all vulnerabilities, represent
intentional attacks underscoring the growing concern
over supply chain attacks.

We hope this work to raise awareness about the
increasing need for systematic approaches to enhance
visibility in open-source software. We also hope that
the insights provided in this paper will inspire new
directions in developing automated tools that can ef-
fectively model vulnerabilities and augment developers’
experience to build more robust code and test cases. We
summarize our contributions as follows:
• We present a longitudinal study that explores open-

source software package across 10 programming
languages and eight distinct package managers from
2017 to 2025, measuring the growth rate of packages
and vulnerabilities.

• We investigate the lifespan of vulnerabilities over
the last years across the ecosystems and discuss the
uneven distribution of vulnerabilities across pack-
ages, identifying ecosystems with concentrated or
widespread risks.

• We discuss the vulnerability types that are common
across multiple platforms and others that are specif-
ically reported for an ecosystem, requiring specific
mitigation strategies for each case.

• We provide a detail analysis of intentionally mali-
cious packages observed mostly in NPM and PyPI
ecosystems, showcasing their characteristics and at-
tack vectors.

Availability. We provide the research artifacts, includ-
ing datasets and analysis scripts for further research 1.
This dataset serves as a valuable resource for future
research in the field, as no publicly available dataset
includes such valuable information in a unified format.

2. Background and Related Work
In this section, we provide a background on the

vulnerability disclosure process and describe three main
aspects of the security and trustworthiness of OSS
projects. In particular, we discuss dependency networks,
dependency network vulnerabilities, and package-level
vulnerabilities. We then discuss our work, focusing on
the longitudinal data about reported vulnerabilities and
emerging trends in OSS over the past years. Table 1
presents the focus of related studies compared to our
work. In the following, we describe different categories
and briefly discuss the contributions of each study.

2.1. Vulnerability Disclosure Process
The vulnerability reporting process is vital for se-

curity management, involving key systems to identify

1. https://github.com/sa-akhavani/oss-security

2

https://github.com/sa-akhavani/oss-security

TABLE 1. OVERVIEW OF RESEARCH PAPER DETAILS ON PACKAGE VULNERABILITY AND DEPENDENCY NETWORK ANALYSIS.

Category Reference Total
Vulnerabilities

Total
Packages

Evaluation
Period

Package Managers
PyPi NPM RubyGems Maven Cargo Packagist NuGet Go CPAN CRAN

Package
Vulnerability

[20] 1,396 2,224 2006-20 ✓

[21] 609 - 2011-18 ✓

[22] 339 1M n/a ✓ ✓ ✓

[23] 5,916 958,547 NA-2022 ✓ ✓

Dependency
Network

[24] 0 449,518 2011-16 ✓ ✓ ✓

[25] 0 830,000 2012-17 ✓ ✓ ✓ ✓ ✓ ✓ ✓

[26] 0 253,896 2005-16 ✓ ✓ ✓

Dependency
Vulnerability

[27] 400 610,000 2012-17 ✓

[28] 2,874 867,290 2011-20 ✓ ✓

[29] n/a 200 n/a ✓

Package
Vulnerability Our Study 31,267 14,675 2017-25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and classify issues. Common Vulnerabilities and Ex-
posures (CVE) [30], managed by MITRE [31], is a
reference list of publicly known vulnerabilities, each as-
signed a unique identifier. Complementing CVE, Com-
mon Weakness Enumeration (CWE) [32] serves as a
community-developed taxonomy for identifying soft-
ware weaknesses. Each weakness in the CWE list is as-
signed a unique identifier, simplifying the tracking and
addressing of these issues across platforms. Lastly, the
National Vulnerability Database (NVD) [33] enhances
CVE data with additional information, improving the
context and understanding of vulnerabilities.

2.2. Dependency Network and Vulnerability
Analysis

Numerous studies explore the structure and evolu-
tion of dependency networks in open-source projects.
Building on this, other research investigates vulnera-
bilities within these dependency chains. We categorize
these studies into two groups: Dependency Network and
Dependency Vulnerability analyses. In the following, we
will describe each category in more detail.
Dependency Network Studies Decan et al. [24], com-
pare the dependency graphs across NPM, CRAN, and
RubyGems, analyzing 449,518 packages from 2011 to
2016. They identify structural issues related to transitive
dependencies and compare how these issues evolve
over time across different ecosystems. Decan et al. [25]
further explore this and examine the evolution of de-
pendency networks in Cargo, CPAN, CRAN, NPM,
NuGet, Packagist, and RubyGems between 2012 and
2017, analyzing approximately 830,000 packages. The
authors investigate how the structure and complexity
of these networks change over time, providing insights
into the growth and maintenance challenges of dif-
ferent ecosystems. Kikas et al. [26], study the NPM,
RubyGems, and Crates ecosystems from 2005 to 2016,
analyzing 253,896 packages. They explore the structural
properties and evolution of package dependency net-
works, highlighting differences and similarities among
ecosystems and discussing implications for dependency
management tools.

Dependency Vulnerability Studies Decan et al. [27],
present an empirical study of nearly 400 security reports
over a six-year period in the NPM ecosystem, which
includes over 610,000 JavaScript packages. The authors
analyze how and when vulnerabilities are discovered
and fixed, and the extent to which they affect other
packages within the ecosystem, considering the sever-
ity of vulnerabilities and the presence of dependency
constraints. Zerouali et al. [28] conduct an empirical
analysis of vulnerabilities reported in the NPM and
RubyGems ecosystems between 2011 and 2020, cov-
ering 2,874 vulnerabilities in 867,290 packages. They
examine how vulnerabilities propagate through depen-
dency networks and assess the impact on both direct
and transitive dependents, providing insights into the
security risks associated with package dependencies.
The Pashchenko et al. [29] study focuses on the Maven
ecosystem, analyzing the risks associated with vulnera-
ble dependencies. The authors propose methods to as-
sess the actual impact of vulnerabilities by considering
factors such as usage popularity and the presence of
alternative safe versions, aiming to provide actionable
information for software development companies re-
garding their library dependencies.

Our study does not focus on the dependency net-
works of vulnerable packages, as prior research has
extensively covered this area. Instead, we focus on
the vulnerabilities and CWEs across ecosystems, which
aligns with the scope of our work. Dependency chain
analysis, while valuable, requires an in-depth investiga-
tion beyond our current objectives.

2.3. Package Vulnerability Analysis
Several studies have examined vulnerabilities’ na-

ture, frequency, and impact in different ecosystems.
This subsection highlights notable research efforts in-
vestigating the identification, evaluation, and trends of
security vulnerabilities in popular ecosystems.

Alfadel et al. [20] conducted an empirical study of
1,396 vulnerability reports affecting 698 Python pack-
ages in the PyPi ecosystem, covering the period from
2006 to 2020. Their analysis revealed that the discovery

3

and remediation times for vulnerabilities vary signifi-
cantly, with some vulnerabilities remaining unaddressed
for extended periods. The study also highlighted that a
substantial number of vulnerabilities are introduced in
early versions of packages and persist across releases.

Zimmermann et al. [21] examined the NPM ecosys-
tem, focusing on its dependency network and associated
security risks. Analyzing 609 publicly known security
issues from 2011 to 2018, they found that the connected
nature of NPM introduces several weak spots. Specifi-
cally, installing an NPM package introduces an implicit
trust in numerous third-party packages and maintainers,
creating a surprisingly large attack surface. The findings
suggest that the interconnectedness of the NPM ecosys-
tem can lead to widespread security vulnerabilities.

Zahan et al. [23] investigated the correlation be-
tween software security practices and the prevalence of
vulnerabilities in open-source packages across the PyPi
and NPM ecosystems. Analyzing 5,916 vulnerabilities
affecting 958,547 packages up to 2022, they assessed
various security measures, such as the use of automated
tools, adherence to security guidelines, and commu-
nity engagement. Their study concluded that packages
following robust security practices tend to have fewer
reported vulnerabilities, highlighting the effectiveness
of proactive security measures in reducing risks. Zahan
et al. [34] continue the analysis of metadata of 1.63
million NPM packages and proposed signals of security
weaknesses.

Our study provides a comprehensive view of vul-
nerabilities, investigating ten programming languages,
a scope unmatched by any prior work, which have
typically focused on analyzing a smaller number of
ecosystems. Notably, none of the previous studies have
included an analysis of C and C++ package vulnerabili-
ties, a gap that our research addresses. Additionally, the
vulnerability report datasets analyzed in earlier works
are significantly smaller. We analyze 31,267 vulnerabil-
ity reports from 14,675 packages, making our vulnera-
bility report dataset five times larger than the existing
vulnerability analysis in prior studies. We have listed the
prior work in Table 1 to demonstrate what has been the
focus of open-source ecosystem study in the past and
what differentiates our work from previous studies.

3. Research Questions
We focus on vulnerabilities reported until 2025, in-

cluding recent data points for open-source security due
to significant shifts and increasing reported CVEs. Most
prior studies focus on data from 2018 or earlier. How-
ever, we have seen substantial changes in vulnerability
patterns in 2022, alongside a significant increase in the
number of published packages and reported vulnera-
bilities. Our analysis addresses these gaps, providing
a timely and necessary exploration of new trends and
concerns. We address three main research questions that
drive our study, designed to uncover key insights into

open-source security and provide actionable findings for
developers and security practitioners.
RQ1: How have vulnerabilities evolved over time
in different ecosystems? Identifying emerging flaws
and vulnerabilities is critical to the development and
testing of modern defense solutions such as fuzzing
tools, vulnerability scanners, and program analysis tech-
niques. This question focuses mainly on trends in open-
source software packages and vulnerabilities in pub-
lished packages across different ecosystems. We in-
vestigate how the introduction of new packages across
different environments has contributed to the emergence
of specific forms of vulnerability. We examine how the
introduction of new packages and the overall growth
in ecosystems (e.g., NPM, PyPI, Maven) contribute to
the emergence of vulnerabilities. We look at Common
Vulnerabilities and Exposures (CVEs) compared to the
overall growth in the number of packages.

Key Finding: Our analysis reveals that the growth
rate of vulnerabilities significantly outpaces package
growth across ecosystems, with an average annual in-
crease of 98% in vulnerable packages compared to
25% growth in total packages, indicating a deteriorating
security posture in open-source ecosystems.
RQ2: How do vulnerabilities persist and concentrate
across different ecosystems? Understanding the distri-
bution of vulnerabilities provides useful insights into
ecosystem security dynamics. This research question
examines two critical aspects: How long vulnerabilities
persist in packages before being addressed (vulnerabil-
ity lifespan), and how vulnerabilities are concentrated
within ecosystems. We analyze vulnerability lifespan
trends to understand whether improved community en-
gagement is the reason behind the growth in the number
of reported vulnerabilities or not. Additionally, we in-
vestigate vulnerability concentration patterns to deter-
mine whether security issues are seen in a few criti-
cal packages or distributed broadly across ecosystems.
This analysis helps identify whether certain packages
become repeated targets and informs risk assessment
strategies for dependency management.

Key Finding: Despite the increasing number of vul-
nerability reports over time, our study reveals a criti-
cal trend: vulnerability lifespans are increasing across
all platforms, with an average of 85% increase for
the duration of the study across different ecosystems.
This indicates that while more vulnerabilities are being
discovered, they persist longer in the software supply
chain. Furthermore, we observe significant variations in
vulnerability concentration, with ecosystems like Com-
poser showing high concentration (4.92 vulnerabilities
per vulnerable package) versus NPM showing broader
distribution (1.75 vulnerabilities per package).
RQ3: What are the distinct vulnerability patterns
and attack vectors across ecosystems, particularly
regarding malicious packages? Different ecosystems
exhibit unique vulnerability characteristics shaped by
their design principles and developer practices. This

4

TABLE 2. OVERVIEW OF THE COLLECTED VULNERABILITY
REPORTS FROM GITHUB ADVISORY AND SNYK DATABASE PER

ECOSYSTEM.

Platform Snyk GitHub
Advisory

Unique
Reports

Affected
Packages

C/C++ 1719 - 1,719 383
Composer (PHP) 1,203 4,698 4,450 788
Crates (Rust) 695 1,015 1,435 575
Go 1,363 2,533 1,657
Maven (Java) 1,280 6,036 5,847 2,455
NPM (Node.JS) 4,740 4,248 8,237 6,245
NuGet (.Net) 947 663 1,312 581
PyPI (Python) 1,265 3,902 3,907 1,614
RubyGems (Ruby) 407 944 1,191 377
Total 13,828 20,968 31,267 14,675

research question explores CWE distribution patterns
to identify both common threats and ecosystem-specific
vulnerabilities. We analyze the prevalence and trends of
different CWEs across major ecosystems from 2017 to
2025, investigating which vulnerabilities are observed in
multiple languages and which are specific to individual
ones. Additionally, we examine the emerging threat
of intentionally malicious packages (CWE-506), which
represents a fundamental shift from accidental vulnera-
bilities to deliberate attacks. We investigate the distribu-
tion, attack vectors, and evolution of malicious packages
to understand this growing supply chain threat.

Key Finding: Our analysis reveals that while certain
vulnerabilities like Cross-Site Scripting (CWE-79) and
Path Traversal (CWE-22) are observed across different
ecosystems, some are deeply tied to language charac-
teristics, such as memory management issues in C/C++
or prototype pollution in JavaScript. Most significantly,
we identify an alarming concentration of malicious
packages (CWE-506) in NPM and PyPI, where 48.58%
and 13.92% of all vulnerabilities represent intentional
attacks rather than accidental flaws.

4. Data Collection
The pipeline integrates two primary data sources

of reported vulnerabilities. GitHub Advisory Database
[35], and Snyk.io [36]. These databases are particularly
relevant to the research questions due to their structured
and detailed categorization of vulnerabilities. Addition-
ally, we use Libraries.io [37] and GitHub.com [38] to
collect metadata from the source code and retrieve the
information for each repository. Below, we describe
each data source, then we demonstrate how we inte-
grated all the gathered information into a comprehen-
sive queryable data source for our research evaluation.
4.1. Vulnerability Reports
GitHub Advisory Database. The GitHub Advisory
Database [35] is a publicly accessible repository that
provides security advisories for open-source software
projects. This advisory uses the Open Source Vulner-
ability format (OSV) [39] to generate its vulnerability
reports. This format includes information such as the

package name, ecosystem, severity, affected versions,
and remediation steps, as well as references to CVE
and CWE identifiers. The Advisory Database offers two
distinct datasets for security incidents, covering data
from 2017 to the present. GitHub-reviewed advisories,
which at the time of this study, include over 21,000
reports. And Unreviewed advisories, containing more
than 242,000 reports. The GitHub-reviewed advisories
are security vulnerabilities that have been mapped to
packages in the supported languages. GitHub reviews
each advisory in this dataset for validity and ensures that
they have a full description, and contain both ecosys-
tem and package information. This comprehensive data
might not be available for the unreviewed reports. In
this study, we only collected the data on the reviewed
advisories to ensure that we work on reliable data.
The full advisory dataset is provided by GitHub in a
public repository [35]. We extracted a total of 17,356
records from the advisory database from eight different
ecosystems for our studied programming languages.
Snyk.io Snyk Vulnerability Database [36] is another
well-supported repository of security vulnerabilities for
open-source projects. Snyk database aggregates data
from its own disclosed vulnerabilities, in addition to
other public sources such as the National Vulnerabil-
ity Database (NVD), community contributions, and its
proprietary research team. Snyk specializes in identify-
ing vulnerabilities across a wide range of ecosystems,
including all the ones in our study, providing detailed
information such as vulnerability descriptions, ecosys-
tems, affected versions, and severity ratings. Prior work
has utilized Snyk database for code analysis[40], [41],
Docker vulnerability analysis [42], and development of
vulnerability mitigation tools [43]. In total, we collected
13,828 reports from the Snyk database. Detailed in-
formation about each platform’s data from both data
sources is presented in Table 2.

4.2. Package and Repository Information
Longitudinal Data from Package Managers. A key
aspect of our study is the availability of historical
data for all package managers. Libraries.io [37] is a
free platform that aggregates publicly available open-
source package information from package manager
mirrors and registries on the internet. For all major
platforms, including those analyzed in our study, Li-
braries.io provides dedicated profile pages that display
the total number of packages available in each ecosys-
tem’s registry. However, Libraries.io does not offer
historical data, it only provides the current number
of packages. To address this limitation, we used the
Wayback Machine [44] to retrieve archived snapshots
of Libraries.io’s website. From these archives, we col-
lected historical data on the total number of packages
for each package manager from 2017 to the present. We
gathered two data points per year—one in January and
one in July—enabling us to track the growth of each
ecosystem over time.

5

Metadata on Published Packages. We collected the
complete list of available versions for any of the re-
ported packages from Libraries.io’s website. The data
includes the version number and publication date of
11,316 unique packages. We will utilize this data to
analyze the vulnerability lifespan based on the first
vulnerable version and the first patched one.

4.3. Integrated Dataset Generation
Unified Vulnerability Reports. Although the OSV
format has been introduced to streamline advisory
databases, adoption remains inconsistent. Even among
databases that use OSV, multiple formats exist. For
example, affected versions of a CVE are sometimes pre-
sented as events.introduced, events.fixed,
events.last_affected, and in other cases with
arrays of versions. To address this, we adopted a uni-
fied format for affected versions, using brackets ([])
and parentheses (()). We established a unified data
format to integrate the datasets from GitHub Advi-
sory and Snyk. Each vulnerability report was standard-
ized to include the following fields: ADVISORY_ID,
SOURCE, PUBLISH_DATE, CWES, CVES, ECOSYSTEM,
PACKAGE_NAME, VERSION_RANGE, REFERENCES.
Removing Duplicate Reports Detecting duplicates be-
tween advisories posed challenges due to inconsis-
tent formatting, particularly for vulnerabilities with-
out CVEs. We found 155 duplicate reports without a
CVE with similar CWE, Package, Ecosystem, and
Affected Versions. We did a manual verification
on them to identify 7 duplicates. Overall, we removed
6,391 duplicate reports, ensuring a cleaner and more
reliable dataset. Additionally, publish dates often dif-
fered as reports were published on different platforms
at different times. When duplicates were identified, we
prioritized Snyk reports over GitHub advisories because
they typically contained more detailed information.
Filtering Allowed CWEs. We removed the reported
vulnerabilities with CWEs that are discouraged or pro-
hibited by MITRE. MITRE has flagged these CWEs as
too broad or vague for actionable mitigation, discour-
aged from use. We found 6,770 vulnerability reports
associated with these CWEs and removed them from
our dataset to get a more accurate insights. Examples
of such cases are CWE-400 (Uncontrolled Resource
Consumption) and CWE-200 (Exposure of Sensitive
Information to an Unauthorized Actor). The list of
discouraged and prohibited CWEs is provided in Ap-
pendix C.

4.4. Generated Dataset
The generated dataset includes three distinct and

useful features:
• Information on total packages within each package

manager and ecosystem.
• Unified vulnerability reports with a standardized

format, excluding duplicates and including corrected
affected versions.

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

Co
un

t o
f V

ul
ne

ra
bi

lit
ie

s

Platform
NPM
RubyGems
NuGet
Maven
Go
PyPI
Composer
Crates
C/C++

Figure 1. Number of vulnerabilities reported across ecosystems
through the years. Reported vulnerabilities increase in every program-
ming language, with an average of over 90 new vulnerabilities in each
ecosystem per year.

• Package metadata including their vulnerability re-
ports, affected versions, CVEs, and CWEs.
We generated a total of 31,267 vulnerability reports,

444 distinct CWEs, and 14,675 unique affected pack-
ages from 2017 to 2025. A summary of the collected
data is presented in Table 2. We believe this dataset will
significantly aid future researchers in studying open-
source vulnerabilities and package-related information.
We plan to keep the dataset updated with new vulnera-
bility reports and package manager updates, providing
the community with a unified and well-documented
resource to support ongoing research.

5. Large-Scale Security Analysis in OSS
In this section, we aim to answer the research

questions raised in Section 3. We analyze data from
10 programming languages: Node.js, PHP (Composer),
Python, Java, Ruby, Go, Rust, .NET (C#), C, and
C++. Eight corresponding package managers are also
included in this evaluation: NPM, Packagist, PyPI,
Maven, RubyGems, Go, Cargo, and NuGet.

5.1. Comparing Vulnerability vs Package
Growth

Increase in Total Vulnerabilities Across Languages.
Alongside the growing number of packages, we observe
a significant rise in the total number of reported vulner-
abilities across all platforms. As illustrated in Figure 1,
the number of vulnerabilities has significantly increased
in every programming language from 2017 to this date.
We observe an average of over 90 new vulnerabilities
reported in different ecosystems each year. This trend is
particularly more significant in fast-growing platforms
like NPM, Maven, and Composer, where the surge
in both package creation and vulnerabilities has been
substantial. In 2022, the number of reported vulnerabil-
ities across different platforms significantly increased,
with Maven and Composer reporting 2,497 and 1,592
vulnerabilities, respectively. We do not have sufficient
data nor investigated deeply to make a scientific claim

6

2017 2018 2019 2020 2021 2022 2023 2024 20250

1M

2M

3M

4M

5M
To

ta
l P

ac
ka

ge
s

NPM
Maven
PyPI
NuGet
Go
Composer
RubyGems
Cargo

Figure 2. Overview of total packages existing in each package man-
ager. Extracted from libraries.io.

about this surge. This increase can be attributed to
several factors, including heightened government and
regulatory awareness regarding cybersecurity [13] and
high-impact supply chain attacks (such as Log4Shell
[45], MoveIt [46], [47], and Solarwinds [48] Vulnera-
bilities)
Increase in Total Number of Packages Across
Ecosystems. Across all studied platforms, we observe
an average of 26.77% annual increase in the total num-
ber of packages. Figure 2 represents the total number
of packages in each package manager from 2017 until
January 2025. We observe the growing popularity and
widespread adoption of open-source software, specifi-
cally with ecosystems such as NPM, PyPI, and Maven,
since they have been experiencing exponential growth
over time. There are exceptions where certain platforms
show a temporary decline in package count during spe-
cific years, which are probably caused by the removal of
outdated and unsupported packages from their registry.
For instance, Golang experienced a notable package
drop in 2021 following the release of Golang 1.16,
which introduced major changes to its module count
and dependency management system [49], [50], [51].
In particular, before Go Modules, Go used a global
workspace, defined by the GOPATH environment vari-
able, to manage dependencies where all projects shared
the same workspace, making it difficult to manage
multiple versions of the same dependency. This led to
version conflicts, dependency issues, and challenges in
ensuring consistent builds across projects.
Comparing Growth Rates: Reported Vulnerabilities
vs. Total Packages. We compare the evolution of vul-
nerabilities with the growth of package managers over
time to examine whether open-source communities have
become more secure by analyzing two key factors: the
total number of reported vulnerabilities and the total
number of packages. We measure and compare the
growth rates of these two variables to determine whether
security practices have caused the open-source software
supply chain to become more secure or whether the
popularity and expansion are making them a better
target for attackers. We define the growth rate of vulner-
abilities and packages as the year-over-year percentage

Com
po

ser
Crat

es Go
Mav

en NPM
NuG

et PyP
I

Ru
by

Gem
s

0

50

100

150

200

250

Av
er

ag
e

An
nu

al
 G

ro
wt

h
Ra

te Vulnerable Packages Count
Total Packages Count

Figure 3. Average annual growth rate of vulnerable packages and total
packages by platform. Vulnerabilities have grown at a much faster rate
than total packages in nearly all ecosystems.

change in their respective counts. Figure 3 illustrates the
comparative growth rates of vulnerabilities and pack-
ages across all measured ecosystems over the years.

Our analysis reveals that the growth rate of vulner-
abilities has outpaced the growth rate of total packages
across almost all ecosystems. We observe an average
of 91% growth in the number of vulnerable packages
compared to 25% growth in the total number of pack-
ages each year. This suggests that while the open-
source software community continues to expand, the
rate at which vulnerabilities are discovered is growing
even faster, raising a major security concern. This can
potentially be because of the higher community efforts
in finding and reporting vulnerabilities. To investigate
this further, later in Section 5.2, we analyze the decline
in security trends from another point of view (i.e.,
vulnerability lifespan).

5.2. Vulnerability Lifespan and Concentration
We examine whether the growing popularity and

community size of open-source software improve se-
curity or introduce new challenges. Additionally, we
investigate whether vulnerabilities are concentrated in
a few packages or spread across ecosystems. These are
important questions to answer because one goal of this
study is to compare trends across different ecosystems.
Vulnerability Lifespan Across Ecosystems. An im-
portant aspect of vulnerability analysis is to find out
the time that has taken the package maintainers to
resolve a reported vulnerability. We define time-to-fix
as the duration between the disclosure of a vulnerability
and the release date of a patched version. However,
addressing this question is non-trivial, particularly due
to inconsistencies in public data on different reposito-
ries as well as the lack of exact disclosure dates for
many reported vulnerabilities. Moreover, in cases with
a disclosure date, we found that the patched version was
published before the listed date, making it difficult to
provide an accurate analysis of the time-to-fix metric.

7

Composer Crates Go Maven NPM NuGet PyPI RubyGems

0

500

1000

1500

2000

2500

3000

3500

4000

Vu
ln

er
ab

ilit
y

Lif
es

pa
n

(D
ay

s)

1329.83

847.03
1114.47

1398.26 1323.45

869.96

1309.81
1473.63

Average Vulnerability Lifespan (Days)

Figure 4. Vulnerability lifespans across ecosystems. Average vulnera-
bility lifespan in different ecosystems varies from 847 to 1,473 days.

In our analysis, we focus on the vulnerability lifes-
pan. We define the lifespan of a vulnerability as the
time between the release date of the first vulnerable
version of the related package and the release date of the
first version in which the vulnerability is resolved. Fig-
ure 4 illustrates the output of lifespan analysis among
different ecosystems. We do not present any results
for C/C++ in this experiment because there are no
unified package managers, which makes it impossible to
specifically analyze the packages. We observed that the
average vulnerability lifespan across different ecosys-
tems varies from 847 days for Crates to 1,473 days for
RubyGems. Comparing these numbers with the version
update frequency of each ecosystem, we found out
that the frequency of version updates of the vulnerable
packages does not correlate with the previous insight.
The data suggests that RubyGems and NPM have the
highest number of published versions of different pack-
ages per day, with an average of 0.06 versions while
we saw that it has the largest vulnerability lifespan. The
definitions of time-to-fix and lifespan of vulnerabilities
are presented in Section A of the Appendix.
Vulnerability Lifespan Trends. In Section 5.1, we
examined the growth in the number of reported vul-
nerabilities across various ecosystems over the years.
One possible explanation for this trend is the increased
community efforts involved in vulnerability reporting.
To investigate this, we conducted an experiment to
assess whether the rise in contributor participation cor-
relates with a reduction in the lifespan of vulnerabilities.
However, our analysis reveals that greater contributor
involvement does not necessarily lead to shorter lifes-
pans. On the contrary, we observe that in most ecosys-
tems, the average vulnerability lifespan has increased in
recent years. As shown in Figure 5, the average lifespan
of vulnerabilities across all platforms has grown from
1,056 days to 1,956 days—an increase of approximately
85%. This finding suggests that despite potentially
higher levels of community engagement, vulnerabilities
are persisting longer in the software supply chain.

Overall Average

Figure 5. Vulnerability lifespans trend across platforms. While the
community efforts have increased, we observe that the average lifes-
pan has increased by 85% in the past years.

Vulnerability Concentration Across Ecosystems. We
performed an analysis of the concentration of vulner-
abilities in packages across ecosystems. Vulnerability
concentration is calculated as the total number of re-
ported vulnerabilities divided by the total number of
vulnerable packages. A higher ratio of vulnerabilities
per package indicates a focus on a smaller set of critical
or frequently exploited packages, while a ratio closer
to one implies a wider spread of vulnerabilities across
many packages.

For example, in Composer, there are an average of
4.92 vulnerabilities per vulnerable package, signaling
that certain packages are repeatedly targeted. Similar
patterns are observed in C/C++ (3.96) and RubyGems
(2.92). On the other hand, platforms like NPM, with an
average of 1.75 vulnerabilities per package, demonstrate
a broader distribution of vulnerabilities. Similarly, Go,
Maven and PyPI show smaller ratios, suggesting a more
even spread of vulnerabilities across packages. These
findings, detailed in Figure 6, highlight the diversity of
security challenges that ecosystems face. The presented
results do not include intentionally malicious packages
(Discussed in Section 5.4) since these packages are
reported as a single vulnerability.

We also measured vulnerability concentration
among all existing packages in an ecosystem, not only
the vulnerable packages. We did not observe any no-
ticeable changes in the ecosystem rankings based on
vulnerability concentration compared to the previous
measurement. Composer is still ranked with the highest
overall ratio of 0.86 vulnerabilities per package, while
NPM has the lowest at 0.15. Notably, NuGet and NPM
both have fewer than 0.25 vulnerabilities per package,
indicating significantly low concentration.

5.3. Vulnerability Distribution and Patterns
Across Ecosystems.

In this section, we evaluate CWE trends across the
studied platforms by analyzing the presence of reported

8

C/C++ Composer Crates Go Maven NPM NuGet PyPI RubyGems
1

5

10

50

100

500600
Vu

ln
er

ab
ilit

y
Co

un
t p

er
 P

ac
ak

ge
 (L

og
 S

ca
le

d)

3.96 4.92

2.13
1.70

2.16 1.75 1.91
2.76 2.92

Average Number of Vulnerabilites per Package

Figure 6. Vulnerability concentration in vulnerable packages across
ecosystems. A higher concentration indicates a focus on a smaller set
of critical or frequently exploited packages.

Figure 7. Cumulative graph of vulnerabilities based on top CWEs. A
small proportion of CWEs lead to a large number of vulnerabilities.
Seven CWEs account for over 50% of the vulnerabilities across the
target platforms.

vulnerabilities in different ecosystems. As mentioned in
Section 3, we aim to identify trends in vulnerability
distribution for common CWEs and CWEs specific to
ecosystems.
Significance of Top CWEs. We performed an analysis
on vulnerability patterns across different ecosystems by
investigating the most prevalent vulnerability categories.
To this end, we generated a cumulative graph that
relates the number of vulnerabilities to the number
of top CWEs. This visualization helps assess whether
vulnerabilities in a given platform are concentrated in
a small set of CWE types or spread across a broader
range. Figure 7 presents the cumulative percentage of
vulnerabilities accounted for by the top 50 CWEs in
each ecosystem. The results reveal a skewed distribu-
tion: in ecosystems such as NPM and Composer, a small
number of CWE types contribute to a large proportion
of vulnerabilities. In contrast, platforms like Go and
Crates exhibit flatter curves, indicating a wider distri-
bution of vulnerability types with less concentration in

C/C++

Com
po

ser
Crat

es Go
Mav

en NPM
NuG

et PyP
I

Ru
by

Gem
s

CWE-506
CWE-79
CWE-22
CWE-94

CWE-352
CWE-1321

CWE-502
CWE-89
CWE-78

CWE-611
CWE-601

CWE-77
CWE-1333

CWE-918
CWE-862
CWE-416
CWE-863
CWE-770
CWE-125
CWE-434
CWE-362
CWE-787
CWE-122
CWE-295
CWE-532
CWE-522
CWE-120
CWE-347
CWE-835
CWE-476

0 0 11 0 1 3893 29 518 4
18 1208 20 141 728 589 97 344 214
15 130 34 175 259 571 39 187 45
39 168 4 27 133 151 181 114 50
3 203 0 32 318 42 8 59 39
0 7 0 0 40 561 5 3 0
0 90 9 2 258 12 24 93 23
2 237 2 62 68 44 8 60 27

13 31 2 38 38 226 0 51 22
1 52 1 0 268 3 18 32 5
2 78 4 52 64 32 13 83 13
4 28 17 28 26 166 4 43 18
2 7 8 3 43 139 6 51 55
4 56 0 46 75 54 11 53 10
0 29 0 30 225 6 2 14 2

135 0 78 3 9 14 42 10 8
1 54 7 72 103 7 11 37 1
9 17 27 71 69 5 14 46 7

126 1 36 16 13 22 1 36 4
1 139 0 9 30 23 9 24 3

21 4 67 33 16 4 18 57 8
96 0 37 10 25 2 17 22 4

135 0 12 0 3 1 47 9 4
9 8 5 29 83 8 10 35 21
2 11 6 54 40 13 7 34 2
0 3 2 22 110 5 2 14 0

66 0 35 8 6 6 0 30 3
6 11 19 24 28 29 3 25 7

10 7 9 28 40 6 4 30 5
53 0 26 21 3 2 3 16 5

Figure 8. Heatmap of the number of vulnerabilities from top 30
CWEs across different platforms. This suggests that a set of CWEs
are common among different programming languages, while others
are mainly observed in specific ecosystems.

specific CWEs. These findings highlight the need for
ecosystem-specific mitigation strategies. For platforms
where vulnerabilities are dominated by a few CWE
types, targeted defenses focusing on those CWEs can
be particularly effective. On the other hand, ecosystems
with a more even distribution of CWEs may require
broader, more comprehensive security measures. In the
following, we analyze the most frequently observed
CWEs and explore their characteristics to gain deeper
insights into the nature of vulnerabilities.
Popular CWE Types in Different Ecosystems. We
analyze the distribution of vulnerabilities across pro-
gramming languages by identifying both common and
ecosystem-specific CWEs. Figure 7 suggests that, on
average, only seven CWEs in different ecosystems ac-
count for over 50% of the vulnerabilities. After merging
the top CWEs from different platforms, we created a
list of the top 28 different CWEs. Figure 8 illustrates a
heatmap based on the number of vulnerabilities from a
certain CWE in different platforms. This allows us to
investigate security trends while highlighting the unique
characteristics of certain ecosystems. In the following,
we discuss the insights captured from this analysis.

General Vulnerability Patterns. We observe that
multiple CWEs, including CWE-79 (Cross-Site Script-
ing), CWE-22 (Path Traversal), and CWE-94 (Code In-
jection) are common in several languages over the years
and keep growing at a high rate. These common vulner-
abilities emphasize fundamental challenges, specifically
in web application security and data handling. Most
web development environments face similar challenges,

9

including user-generated content, improper sanitization,
and incorrect output encoding. Table 5 in Appendix
provides more information for these common CWEs.

Ecosystem-Specific Vulnerability Patterns. Our anal-
ysis highlights a set of CWEs that are present in specific
ecosystems. For instance, we observe that CWE-1321
(Prototype Pollution) is seen in 560 reports in NPM.
This is caused by JavaScript’s prototype inheritance
model, where objects can inherit properties from other
objects (prototypes). Other examples include CWE-416
(Use After Free) and CWE-362 (Race Condition) which
are mainly observed in C/C++ and Crates ecosystems
due to their memory handling complexities. Table 5 in
the Appendix provides examples of specific CWEs in
different ecosystems and a brief description for each.

Overall, we observe that specific vulnerability pat-
terns, such as XSS, Path Traversal, and Code Injection
are present in multiple ecosystems. However, other
classes of vulnerabilities, such as Prototype Pollution
or Buffer Overflows, are deeply tied to language char-
acteristics. Each of these vulnerability types poten-
tially requires a different mitigation approach to defend
against. Ecosystem-specific trends emphasize the need
for custom analysis rules, threat modeling, and educa-
tion tailored to the unique risks of each development
environment. Figure 9 in the Appendix provides the
trend of top CWEs in each ecosystem.

5.4. Analysis of Packages with Malicious Intent
(CWE-506)

CWE-506 (Embedded Malicious Code) represents
an escalating threat in open-source ecosystems. Unlike
other vulnerabilities, which often stem from negligence
or poor design, these incidents are rooted in intentional
abuse. That is, these vulnerabilities emerge from pack-
ages deliberately crafted to be exploited. The analysis
of the dataset from 2017 to 2025 shows 4,456 reports
classified under CWE-506. Notably, these incidents
surged from just 38 reports in 2018 to a staggering
2,168 in 2024. This section explores the distribution of
these malicious packages, their targeting strategies, and
evolving attack vectors. Given their deliberate nature
and operational difference, we treat CWE-506 incidents
as a separate category, distinct from the other vulnera-
bility trends discussed in Section 5.2.
Distribution and Prevalence Across Ecosystems. Ta-
ble 3 presents the distribution of CWE-506 vulnerabili-
ties across different ecosystems. It highlights the abso-
lute count of malicious package reports, each ecosys-
tem’s share of the total, and the proportion of its vul-
nerabilities stemming from intentional attacks.

Our analysis reveals a high concentration of mali-
cious packages within the NPM and PyPI ecosystems,
which together account for 99% of all CWE-506 re-
ports. The situation is especially concerning in NPM,
where nearly half (48.58%) of all reported vulnerabili-
ties stem from packages designed to inflict harm rather
than from unintentional bugs.

TABLE 3. DISTRIBUTION OF CWE-506 VULNERABILITIES
ACROSS ECOSYSTEMS. EMBEDDED MALICIOUS CODE IS MAINLY
REPORTED IN NPM AND PYPI, WITH MUCH FEWER INSTANCES IN

OTHER ECOSYSTEMS.

Ecosystem CWE-506
Count

% of All
CWE-506

% of Ecosystem’s
CWEs

NPM 3,893 87.37% 48.58%
PyPI 518 11.62% 13.92%
NuGet 29 0.65% 2.33%
Crates 11 0.25% 0.86%
RubyGems 4 0.09% 0.36%
Maven 1 0.02% 0.02%
Others 0 0.00% 0.00%
Total 4,456 100.00% -

Several ecosystem-specific factors contribute to this
trend. As noted in prior research [21], NPM’s low
publication barriers, automatic dependency installation,
and vast package ecosystem make it particularly at-
tractive for attackers. PyPI also suffers from structural
weaknesses that facilitate large-scale abuse. Bagmar et
al. [52] describe how PyPI’s packaging model allows
malicious packages to propagate easily through depen-
dencies. More recently, Zheng et al. [53] found that
PyPI lacks robust behavioral vetting and monitoring,
leaving the ecosystem vulnerable to complex supply
chain attacks. These systemic flaws across both plat-
forms significantly increase their attack surface.
Characteristics of Malicious Packages. We investi-
gated all 4,456 malicious packages to understand the
tactics attackers use to ensure successful deception and
broad reach.

Package Naming Strategies. Our analysis of nam-
ing strategies showed that attackers frequently attempt
to camouflage their packages by mimicking legitimate
libraries or adopting naming conventions that obscure
their intent. We found that 3,171 packages (71.2%) use
long names with more than 10 characters, and 2,999
(67.3%) include dashes in the name, these tactics are
likely meant to appear consistent with conventional
naming practices. Interestingly, 525 packages (11.8%)
use the scoped format (e.g., @org/package), while
117 packages (2.6%) adopt very short names (less than
5 characters), perhaps to look core or internal. Addi-
tionally, 1,155 packages (25.9%) use names that closely
resemble those of widely adopted libraries, highlighting
the significant role of typosquatting and impersonation
in attacker strategies. Note that these categories are not
mutually exclusive.

Version Targeting Patterns. We also examined ver-
sioning patterns and found that attackers typically fa-
vor broad compatibility to maximize exposure. Our
investigations show that 1,753 packages (39.3%) target
all versions using wildcards such as ‘*‘, aiming for
maximum compatibility. Meanwhile, 2,681 packages
(60.2%) target specific versions, indicating a more con-
trolled or environment-specific deployment. Only 22
packages (0.5%) employ version ranges. This data sug-

10

gests that attackers typically avoid precise versioning
strategies and instead opt for broad compatibility to
maximize exposure to more users.
Attack Vectors and Techniques. We observed three
dominant attack vectors in packages classified under
CWE-506: typosquatting, dependency confusion, and
installation hook exploitation.

Typosquatting Attacks. Typosquatting attacks exploit
human error by publishing packages with names that
closely resemble popular libraries [54]. For example,
attackers deployed variants such as lodahs (instead
of lodash) and jquery.js (instead of jquery).
We observed a significant spike in typosquatting at-
tacks in March 2024 flooded PyPI with nearly 200
such malicious packages, all released on the same day.
These packages mimicked well-known libraries, includ-
ing pygaqme (instead of pygame) and tensoflouw
(instead of tensorflow).

Dependency Confusion Attacks. Dependency
confusion represents a sophisticated supply chain
attack where adversaries publish malicious packages
to public repositories using names that match private,
internal packages used by target organizations [55],
[56]. This attack exploits the package resolution
mechanism, where the package manager may prioritize
public repositories over private ones, or developers
may inadvertently install public packages when
intending to use internal ones. Our dataset contains
525 scoped packages using the @org/package
format, with manual analysis through a sample
among these packages, we were able to confirm that
there existed various dependency confusion attacks
with examples that include @ibm-ptc/greet-me
(targeting IBM’s private package ecosystem) [57],
@swiggy-private/analytics (targeting the
food delivery company Swiggy’s internal analytics
infrastructure) [58]. These attacks are particularly
dangerous because they target enterprise environments
where the compromise of internal tooling can lead to
widespread organizational breaches.

Installation Hook Exploitation. Installation hook
exploitation represents a direct and immediate at-
tack vector in the NPM ecosystem, abusing legiti-
mate package lifecycle scripts to execute malicious
code during package installation. NPM’s package.json
specification includes several lifecycle hooks such as
preinstall and postinstall, which were de-
signed to allow packages to perform necessary setup
tasks like compiling native extensions or configuring
environment variables [56]. However, these hooks pro-
vide attackers with a powerful mechanism to execute
arbitrary code with the same privileges as the user
installing the package, often without explicit user con-
sent or awareness. Examples from our dataset include
postinstall-dummy [59], which explicitly adver-
tises its malicious installation script functionality. These
attacks are dangerous because they execute immediately
upon installation, before developers have an opportunity

to review the package contents.
In this section, we covered three more common

categories of CWE-506 attacks observed in our dataset.
However, CWE-506 covers a more diverse scenarios
that may not necessarily fall into these categories,
but they are still tagged as a CWE-506 Notably, our
analysis reveals that even trusted, well-known packages
can become vectors for CWE-506 when maintainers
deliberately inject malicious code into specific versions.
One such case is discussed in the following:
node-ipc Protestware (2022). In March 2022, the
maintainer of the popular node-ipc module in NPM,
which has more than 600K weekly downloads, intro-
duced geolocation-based file corruption logic in ver-
sions 10.1.1 and 10.1.2, targeting users in Russia and
Belarus as a political statement against the invasion of
Ukraine. The package contained malicious code, that
targeted users with IP located in Russia or Belarus,
and overwrited their files with a heart emoji [60]. This
incident, later removed in version 10.1.3, marked one
of the most prominent examples of ”protestware”. It
illustrates that even trusted packages can become vec-
tors for CWE-506 when maintainers deliberately inject
malicious code. This issue was assigned CVE-2022-
23812.

Unlike other vulnerabilities, which often stem from
negligence or poor design, these incidents are rooted in
intentional abuse. The sheer volume, concentration, and
strategic sophistication of malicious packages in NPM
and PyPI demand dedicated detection mechanisms, sup-
ply chain hardening, and ecosystem-wide monitoring.

6. Discussion
The Role of Package Managers. Our findings reveal
that Go’s vulnerability growth has been the highest
among the studied ecosystems. However, Go has also
made significant strides in security, such as with Go
Modules, which replaced GOPATH to improve depen-
dency management by removing deprecated and less-
maintained packages. In contrast, Rust’s Crates.io is
the only ecosystem with negative vulnerability growth.
This may reflect the security nature of Rust or its
lower popularity compared to more commonly targeted
ecosystems. We further observe that the Go community
has actively addressed common issues such as CWE-
20 (Improper Input Validation) and CWE-22 (Path
Traversal), both of which were among the top five
vulnerability types in their ecosystem. However, recent
community efforts have led to effective solutions, as
seen in the growing family of safe Go libraries [61].
These libraries, such as SafeText, SafeOpen, and
SafeArchive address common security issues in
Go, including input validation and path traversal. This
suggests that while vulnerabilities in Go have risen,
the community has become more proactive, constantly
developing defenses and keeping the ecosystem lively.
That said, several strategies can be further improved to
enhance the efficacy of package managers. For instance,

11

establishing clearer guidelines for package deprecation,
promoting secure default configurations, and sharing
more accurate guidelines for package submission can
potentially assist developers in maintaining packages
more securely. Overall, package managers play a critical
role in reducing risks by encouraging secure defaults
and actively maintaining packages.
Limited Usage of Existing Protection Protocols. De-
spite ongoing efforts to strengthen the security of open-
source software through mechanisms such as automated
vulnerability scanning, secure dependency management
tools, and transparent builds such as Provenance [62]
in the NPM registry, we observe that these protections
remain largely underutilized. Although provenance was
introduced over a year ago, it has not gained widespread
adoption, even among high-risk packages like rc[63],
COA[64], and ua-parser [65]. Notably, these same
packages were referenced in Provenance’s launch ma-
terials, yet they still do not enable the feature. To better
understand the adoption landscape, we examined the
NPM’s monthly top 100 most-downloaded packages
from npmleaderboard.org and found that only
12% had enabled Provenance. We observe that widely
used packages such as express have not adopted the
security mechanism. This gap between the availability
of protection tools and their actual use leaves many
repositories exposed to preventable attacks. The find-
ings emphasize the need for stronger incentives, im-
proved defaults, or tighter integration of these tools into
standard development workflows to promote adoption.

7. Conclusion
In this paper, we provide a longitudinal analysis

of security challenges in 10 different programming
languages, revealing an alarming 98% annual increase
in reported vulnerabilities—nearly four times the 25%
growth rate of OSS packages. We also reveal the in-
crease in lifespan of vulnerabilities, indicating a po-
tential decline in the security of the ecosystems. Ad-
ditionally, our findings highlight that a small number
of Common Weakness Enumerations (CWEs) are re-
sponsible for the majority of reported vulnerabilities,
suggesting that targeted mitigation could significantly
improve overall OSS security. Furthermore, we discuss
the alarming presence of intentionally malicious pack-
ages – particularly in the NPM and PyPI ecosystems
– by analyzing their characteristics and attack vectors.
These insights highlight an urgent need to rethink how
we govern and secure open-source ecosystems – calling
for stronger review processes, more effective automated
detection tools, greater transparency in package publish-
ing, and a more proactive, community-driven approach
to managing software supply chain threats.

References
[1] J. P. Dantas, S. R. Silva, V. C. Gomes, A. N. Costa, A. R.

Samersla, D. Geraldo, M. R. Maximo, and T. Yoneyama, “As-
apy: A python library for aerospace simulation analysis,” in
Proceedings of the 38th ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pp. 15–24, 2024.

[2] M. Ghiasi, T. Niknam, Z. Wang, M. Mehrandezh, M. Dehghani,
and N. Ghadimi, “A comprehensive review of cyber-attacks and
defense mechanisms for improving security in smart grid en-
ergy systems: Past, present and future,” Electric Power Systems
Research, vol. 215, p. 108975, 2023.

[3] A. N. Costa, F. L. Medeiros, J. P. Dantas, D. Geraldo, and N. Y.
Soma, “Formation control method based on artificial potential
fields for aircraft flight simulation,” Simulation, vol. 98, no. 7,
pp. 575–595, 2022.

[4] N. L. Wright, F. Nagle, and S. Greenstein, “Open source soft-
ware and global entrepreneurship,” Research Policy, vol. 52,
no. 9, p. 104846, 2023.

[5] H. Yang, X.-Y. Liu, and C. D. Wang, “Fingpt: Open-
source financial large language models,” arXiv preprint
arXiv:2306.06031, 2023.

[6] J. M. Tyler, B. J. Murch, C. Vasilakis, and R. M. Wood,
“Improving uptake of simulation in healthcare: User-driven
development of an open-source tool for modelling patient flow,”
Journal of Simulation, vol. 17, no. 6, pp. 765–782, 2023.

[7] vUpgradeU, “Open source development: A double-edged
sword,” 2023. Accessed: 2024-10-15.

[8] CyberSaint, “Impact of using open source software on cyberse-
curity,” 2023. Accessed: 2024-10-15.

[9] The Hacker News, “27 malicious pypi packages with info-
stealing capabilities discovered,” 2023. Accessed: 2024-10-14.

[10] Sysdig, “The hidden economy of open source software,” 2023.
Accessed: 2024-10-15.

[11] Phylum, “Dozens of npm packages caught attempting to deploy
reverse shell,” 2023.

[12] Bleeping Computer, “Hundreds of malicious python packages
found stealing sensitive data,” 2023. Accessed: 2024-10-14.

[13] United States Congress, “Securing open source software
act.” https://www.govinfo.gov/content/pkg/BILLS-117s4913is/
pdf/BILLS-117s4913is.pdf, 2021. Accessed: 2024-10-07.

[14] The White House, “Summary of the 2023 request
for information on open source software security.”
https://www.whitehouse.gov/wp-content/uploads/2024/08/
Summary-of-the-2023-Request-for-Information-on-Open-
Source-Software-Security.pdf, 2024. Accessed: 2024-10-07.

[15] Cybersecurity and I. S. A. (CISA), “Cisa open source software
security roadmap.” https://www.cisa.gov/resources-tools/
resources/cisa-open-source-software-security-roadmap, 2023.
Accessed: 2025-01-22.

[16] GeeksforGeeks, “Top web development languages.” Accessed:
2024-12-16.

[17] LambdaTest, “Best languages for web development.” Accessed:
2024-12-16.

[18] BrowserStack, “Best languages for web development.” Ac-
cessed: 2024-12-16.

[19] S. Academy, “Best languages for web development.” Accessed:
2024-12-16.

[20] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of
security vulnerabilities in python packages,” Empirical Software
Engineering, vol. 28, no. 59, 2023.

[21] M. Zimmermann et al., “Small world with high risks: A study of
security threats in the npm ecosystem,” in 28th USENIX Security
Symposium (USENIX Security 19), pp. 995–1010, 2019.

12

https://www.govinfo.gov/content/pkg/BILLS-117s4913is/pdf/BILLS-117s4913is.pdf
https://www.govinfo.gov/content/pkg/BILLS-117s4913is/pdf/BILLS-117s4913is.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/08/Summary-of-the-2023-Request-for-Information-on-Open-Source-Software-Security.pdf
https://www.cisa.gov/resources-tools/resources/cisa-open-source-software-security-roadmap
https://www.cisa.gov/resources-tools/resources/cisa-open-source-software-security-roadmap

[22] R. Duan et al., “Towards measuring supply chain attacks on
package managers for interpreted languages,” arXiv preprint
arXiv:2002.01139, 2021. Presented at NDSS.

[23] N. Zahan et al., “Do software security practices yield fewer vul-
nerabilities?,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp. 231–240, IEEE, 2023.

[24] A. Decan, T. Mens, and M. Claes, “An empirical comparison of
dependency issues in oss packaging ecosystems,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 2–12, IEEE, 2017.

[25] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empirical Software Engineering, vol. 24, no. 1,
pp. 381–416, 2019.

[26] R. Kikas et al., “Structure and evolution of package dependency
networks,” in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pp. 102–112, IEEE, 2017.

[27] A. Decan, T. Mens, and E. Constantinou, “On the impact of se-
curity vulnerabilities in the npm package dependency network,”
in Proceedings of the 15th International Conference on Mining
Software Repositories, pp. 181–191, 2018.

[28] A. Zerouali et al., “On the impact of security vulnerabilities
in the npm and rubygems dependency networks,” Empirical
Software Engineering, vol. 27, no. 5, p. 107, 2022.

[29] I. Pashchenko et al., “Vulnerable open source dependen-
cies: Counting those that matter,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2018.

[30] MITRE, “Common vulnerabilities and exposures (cve).” https:
//cve.mitre.org/about/, 2024. Accessed: 2024-10-13.

[31] MITRE, “Mitre corporation.” https://www.mitre.org/. Accessed:
2024-10-13.

[32] C. Team, “Common weakness enumeration (cwe).” https://
cwe.mitre.org/, 2024. Accessed: 2024-10-13.

[33] N. I. of Standards and T. (NIST), “National vulnerability
database (nvd).” https://nvd.nist.gov/. Accessed: 2024-10-13.

[34] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Mad-
dila, and L. Williams, “What are weak links in the npm supply
chain?,” in Proceedings of the 44th International Conference
on Software Engineering: Software Engineering in Practice,
pp. 331–340, 2022.

[35] “github/advisory-database,” Oct. 2024. [Online; accessed 3. Oct.
2024].

[36] Snyk, “Snyk vulnerability database.” https://snyk.io/vuln. Ac-
cessed: 2024-10-13.

[37] Libraries.io, “Libraries.io - discover open source libraries.”
https://libraries.io/. Accessed: 2024-10-13.

[38] Github.com, “Build software better, together.”
https://github.com/. Accessed: 2024-10-13.

[39] “Open Source Vulnerability format - Open Source Vulnerability
schema,” Oct. 2024. [Online; accessed 3. Oct. 2024].

[40] M. Kluban, M. Mannan, and A. Youssef, “On measuring vulner-
able javascript functions in the wild,” in Proceedings of the 2022
ACM on Asia conference on computer and communications
security, pp. 917–930, 2022.

[41] D. Sushma, M. Nalini, R. A. Kumar, and M. Nidugala, “To de-
tect and mitigate the risk in continuous integration and continues
deployments (ci/cd) pipelines in supply chain using snyk tool,”
in 2023 7th International Conference on Computation System
and Information Technology for Sustainable Solutions (CSITSS),
pp. 1–10, IEEE, 2023.

[42] T. Kim, S. Park, and H. Kim, “Why johnny can’t use secure
docker images: Investigating the usability challenges in using
docker image vulnerability scanners through heuristic evalua-
tion,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, pp. 669–685,
2023.

[43] D. Noever, “Can large language models find and fix vulnerable
software?,” arXiv preprint arXiv:2308.10345, 2023.

[44] Internet Archive, “Wayback machine,” 2024. Accessed: 2024-
10-14.

[45] IBM, “Log4shell: The vulnerability explained,” 2024. Accessed:
2024-10-14.

[46] Lawrence Abrams, “US govt offers $10 mil-
lion bounty for info on Clop ransomware.”
https://www.bleepingcomputer.com/news/security/us-govt-
offers-10-million-bounty-for-info-on-clop-ransomware/,
Accessed: 06-30-2023.

[47] Cisco Talos, “Active exploitation of the MOVEit
Transfer vulnerability by Clop ransomware group.”
https://blog.talosintelligence.com/active-exploitation-of-moveit/,
Accessed: 06-30-2023.

[48] Center of Internet Security, “The SolarWinds
Cyber-Attack: What You Need to Know.”
https://www.cisecurity.org/solarwinds, Accessed: 06-30-2023.

[49] G. Team, “Go modules reference.” https://go.dev/ref/mod, 2023.
Online; Accessed: 2024-10-12.

[50] G. Team, “Go proxy.” https://proxy.golang.org/, 2023. Online;
Accessed: 2024-10-12.

[51] M. Valais, “Using the GO111MODULE everywhere!.”
https://maelvls.dev/go111module-everywhere/#go111module-
with-go-116, 2021. Online; Accessed: 2024-10-12.

[52] A. Bagmar, J. Wedgwood, D. Levin, and J. Purtilo, “I know
what you imported last summer: A study of security threats in
thepython ecosystem,” 2021.

[53] W. Guo, Z. Xu, C. Liu, C. Huang, Y. Fang, and Y. Liu,
“An empirical study of malicious code in pypi ecosystem,” in
2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 166–177, 2023.

[54] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s
knife collection: A review of open source software supply chain
attacks,” in Detection of Intrusions and Malware, and Vulnera-
bility Assessment: 17th International Conference, DIMVA 2020,
Lisbon, Portugal, June 24–26, 2020, Proceedings 17, pp. 23–43,
Springer, 2020.

[55] A. Birsan, “Dependency confusion: How i hacked into apple,
microsoft and dozens of other companies.” https://medium.com/
@alex.birsan/dependency-confusion-4a5d60fec610, 2021. Ac-
cessed: 2025-05-15.

[56] Snyk, “npm dependency confusion attack targeting gxm refer-
ence.” https://snyk.io/blog/npm-dependency-confusion-attack-
gxm-reference/, 2022. Accessed: 2025-05-15.

[57] Snyk, “SNYK-JS-IBMPTCGREETME-8518693: Malicious
Package in @ibm-ptc/greet-me.” https://security.snyk.io/vuln/
SNYK-JS-IBMPTCGREETME-8518693, 2024. Accessed:
2025-05-25.

[58] Snyk, “SNYK-JS-SWIGGYPRIVATEANALYTICS-
8553970: Malicious Package in @swiggy-
private/analytics.” https://security.snyk.io/vuln/SNYK-JS-
SWIGGYPRIVATEANALYTICS-8553970, 2024. Accessed:
2025-05-25.

[59] Snyk, “SNYK-JS-POSTINSTALLDUMMY-2847431: Mali-
cious Package in postinstall-dummy.” https://security.snyk.io/
vuln/SNYK-JS-POSTINSTALLDUMMY-2847431, 2022.
Accessed: 2025-05-25.

13

https://cve.mitre.org/about/
https://cve.mitre.org/about/
https://www.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://nvd.nist.gov/
https://snyk.io/vuln
https://libraries.io/
https://github.com/
https://go.dev/ref/mod
https://proxy.golang.org/
https://maelvls.dev/go111module-everywhere/#go111module-with-go-116
https://maelvls.dev/go111module-everywhere/#go111module-with-go-116
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://snyk.io/blog/npm-dependency-confusion-attack-gxm-reference/
https://snyk.io/blog/npm-dependency-confusion-attack-gxm-reference/
https://security.snyk.io/vuln/SNYK-JS-IBMPTCGREETME-8518693
https://security.snyk.io/vuln/SNYK-JS-IBMPTCGREETME-8518693
https://security.snyk.io/vuln/SNYK-JS-SWIGGYPRIVATEANALYTICS-8553970
https://security.snyk.io/vuln/SNYK-JS-SWIGGYPRIVATEANALYTICS-8553970
https://security.snyk.io/vuln/SNYK-JS-POSTINSTALLDUMMY-2847431
https://security.snyk.io/vuln/SNYK-JS-POSTINSTALLDUMMY-2847431

[60] Snyk, “SNYK-JS-NODEIPC-2426370: Malicious Package in
node-ipc.” https://security.snyk.io/vuln/SNYK-JS-NODEIPC-
2426370, 2022. Accessed: 2025-05-16.

[61] G. B. Hunters, “The family of safe golang libraries is growing,”
2023. Accessed: 2024-10-14.

[62] B. D. Harrison, Philip, “Introducing npm package provenance,”
Apr. 2023. Accessed: 2024-10-14.

[63] npm, “rc - npm package,” 2024. Accessed: 2024-10-14.

[64] npm, “coa - npm package,” 2024. Accessed: 2024-10-14.

[65] npm, “ua-parser-js - npm package,” 2024. Accessed: 2024-10-
14.

[66] “CWE - CWE-79: Improper Neutralization of Input During Web
Page Generation (’Cross Site Scripting’),” 2024. Accessed:
2024-10-14.

[67] “CWE - CWE-22: Improper limitation of a pathname to a
restricted directory (’path traversal’),” 2024. Accessed: 2024-
10-14.

[68] “CWE - CWE-94: Improper control of generation of code (’code
injection’),” 2024. Accessed: 2024-10-14.

[69] “CWE - CWE-1321: Improper Handling of Prototype Pollu-
tion,” 2024. Accessed: 2024-10-14.

[70] “CWE - CWE-122: Heap-based Buffer Overflow,” 2024. Ac-
cessed: 2024-10-14.

[71] “CWE - CWE-416: Use After Free,” 2024. Accessed: 2024-10-
14.

[72] “CWE - CWE-787: Out-of-Bounds Write,” 2024. Accessed:
2024-10-14.

[73] Microsoft, “Range operator.” Microsoft Docs, 2024. Accessed:
2024-10-14.

[74] “CWE - CWE-362: Concurrent Execution using Shared Re-
source with Improper Synchronization (’Race Condition’),”
2024. Accessed: 2024-10-14.

Appendix
1. Terminology Definitions.

Below, we provide the formulas and definitions for
each term used in our study to ensure clarity and
precision.
Vulnerability Lifespan The vulnerability lifespan mea-
sures the duration a vulnerability persists in a package
before being patched. Since a single package may have
multiple affected version ranges, we calculate the total
lifespan by summing the durations of all such ranges.
This provides a comprehensive view of how long vul-
nerabilities remain unresolved across different versions.
n∑

i=1

(
First Patched Version Release Datei−First Affected Version Release Datei

)
Here, n represents the number of affected version
ranges for a given package.
Time-to-Fix Time-to-Fix measures the duration be-
tween the disclosure of a vulnerability and the release
of a patched version of the affected package. It is
calculated by subtracting the disclosure date of a report
from the release date of the first unaffected version.
This metric highlights how quickly ecosystems respond
to disclosed vulnerabilities.

2. Rise and Fall of Top CWEs
Figure 9 illustrates different ecosystem’s top five

most reported CWEs over time. These CWEs have
either become more prominent or less frequent due to
improvements in ecosystem security practices.

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

1000

2000

3000

4000

Cu
m

ul
at

iv
e

Co
un

t

NPM
CWE-506
CWE-79
CWE-22
CWE-1321
CWE-78

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

50

100

150

200

Cu
m

ul
at

iv
e

Co
un

t

RubyGems
CWE-79
CWE-1333
CWE-94
CWE-22
CWE-352

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

200

400

600

Cu
m

ul
at

iv
e

Co
un

t

Maven
CWE-79
CWE-352
CWE-611
CWE-22
CWE-502

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

200

400

Cu
m

ul
at

iv
e

Co
un

t

PyPI
CWE-506
CWE-79
CWE-22
CWE-94
CWE-502

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

50

100

150

Cu
m

ul
at

iv
e

Co
un

t

NuGet
CWE-94
CWE-79
CWE-122
CWE-416
CWE-22

20
20

20
21

20
22

20
23

20
24

20
25

0

500

1000

Cu
m

ul
at

iv
e

Co
un

t

Composer
CWE-79
CWE-89
CWE-352
CWE-94
CWE-434

20
21

20
22

20
23

20
24

20
25

0

50

100

150

Cu
m

ul
at

iv
e

Co
un

t

Go
CWE-22
CWE-79
CWE-863
CWE-770
CWE-89

20
21

-01

20
21

-07

20
22

-01

20
22

-07

20
23

-01

20
23

-07

20
24

-01

20
24

-07

20
25

-01
0

20

40

60

80

Cu
m

ul
at

iv
e

Co
un

t

Crates
CWE-416
CWE-362
CWE-415
CWE-787
CWE-125

20
24

-05

20
24

-06

20
24

-07

20
24

-08

20
24

-09

20
24

-10

20
24

-11

20
24

-12

20
25

-01
0

50

100

Cu
m

ul
at

iv
e

Co
un

t

C/C++
CWE-122
CWE-416
CWE-125
CWE-787
CWE-120

Figure 9. Top five most reported CWEs in each ecosystem over time.

3. Discouraged and Prohibited CWEs
Table 4 includes the CWEs that are marked as

discouraged or prohibited to use by MITRE.

4. Common and Ecosystem-Specific CWEs
Table 5 includes examples for common and

ecosystem-specific CWEs.

14

https://security.snyk.io/vuln/SNYK-JS-NODEIPC-2426370
https://security.snyk.io/vuln/SNYK-JS-NODEIPC-2426370

TABLE 4. DISCOURAGED AND PROHIBITED COMMON WEAKNESS ENUMERATION (CWE) AND THEIR DESCRIPTION

CWE ID Description CWE ID Description
CWE-19 Data Processing Errors CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
CWE-20 Improper Input Validation CWE-255 Credentials Management Errors
CWE-74 Improper Neutralization of Special Elements in Output CWE-264 Permissions, Privileges, and Access Controls
CWE-75 Failure to Sanitize Special Elements into a Different Plane CWE-265 Privilege / Sandbox Issues
CWE-118 Incorrect Access of Indexable Resource (’Range Error’) CWE-269 Improper Privilege Management
CWE-119 Improper Restriction of Operations CWE-274 Improper Handling of Insufficient Privileges
CWE-138 Improper Neutralization of Special Elements CWE-275 Permission Issues
CWE-284 Improper Access Control CWE-285 Improper Authorization
CWE-287 Improper Authentication CWE-300 Channel Accessible by Non-Endpoint
CWE-310 Cryptographic Issues CWE-311 Missing Encryption of Sensitive Data
CWE-330 Use of Insufficiently Random Values CWE-345 Insufficient Verification of Data Authenticity
CWE-372 Incomplete Internal State Distinction CWE-391 Unchecked Error Condition
CWE-400 Uncontrolled Resource Consumption CWE-435 Improper Interaction Between Multiple Entities
CWE-438 Behavioral Problems CWE-610 Externally Controlled Reference to a Resource in Another Sphere
CWE-657 Violation of Secure Design Principles CWE-662 Improper Synchronization
CWE-664 Improper Control of a Resource Through its Lifetime CWE-665 Improper Initialization
CWE-668 Exposure of Resource to Wrong Sphere CWE-680 Integer Overflow to Buffer Overflow
CWE-682 Incorrect Calculation CWE-690 Unchecked Return Value to NULL Pointer Dereference
CWE-692 Incomplete Cleanup CWE-693 Protection Mechanism Failure
CWE-697 Incorrect Comparison CWE-703 Improper Check or Handling of Exceptional Conditions
CWE-707 Improper Neutralization CWE-755 Improper Handling of Exceptional Conditions
CWE-788 Access of Memory Location After End of Buffer CWE-834 Excessive Iteration
CWE-840 Business Logic Errors CWE-1047 Modules with Circular Dependencies
CWE-1056 Invocation of a Control Element at a Deep Layer CWE-1068 Inconsistency Between Implementation and Documented Design
CWE-1103 Use of Platform-Dependent Third Party Components CWE-1118 Insufficient Documentation of Error Handling Techniques
CWE-1119 Excessive Use of Unconditional Branching CWE-1125 Excessive Attack Surface

TABLE 5. COMMON VULNERABILITY PATTERNS AND ECOSYSTEM-SPECIFIC CWES ACROSS SOFTWARE PLATFORMS.

CWE Ecosystem(s) Description

CWE-79
(Cross-Site Scripting) [66]

Composer, Maven
NPM, PyPI XSS remains a major security concern in web applications, especially dominating Com-

poser (1208), Maven (728), NPM (589), and PyPI (344).
CWE-22
(Path Traversal) [67]

NPM, Maven
PyPI Path traversal enables attackers to access files outside limited boundaries. NPM (571),

Maven (259), and PyPI (187) show the highest number of reports from this category.
CWE-94
(Code Injection) [68]

NuGet, Composer
NPM, Maven, PyPI Code injection is reported with high frequency in NuGet (181), Composer (168), NPM

(151), and Maven (133), followed by PyPI (114). This indicates a high risk in dynamic
server-side applications, especially those that handle user input.

CWE-1321
(Prototype Pollution) [69] NPM Over 560 reports of prototype pollution in NPM highlight the necessity for improved

validation mechanisms in libraries that perform object handling.
CWE-122
(Heap Buffer Overflow) [70] C/C++ The top reported CWE for C/C++ is heap-based buffer overflow (135 reports). This reflects

the challenges of manual memory management, leading to memory corruption issues.
CWE-416
(Use After Free) [71] C/C++, Crates Memory usage after it has been freed leads to undefined behavior or security vulnerabil-

ities. This is mostly observed in C (135) and Crates (78).
CWE-787
(Out-of-Bounds Write) [72] NuGet This is mostly seen in packages where memory safety practices are crucial. The trends

show that this CWE type has decreased in NuGet, likely due to better memory safety
practices such as the introduction of Index and Range types in C# 8 [73].

CWE-362
(Race Condition) [74] C/C++, Crates This has been a prominent vulnerability in C and Crates in the past years. However, the

reports on this CWE have become less frequent, reflecting improved concurrency handling.

15

	Introduction
	Background and Related Work
	Vulnerability Disclosure Process
	Dependency Network and Vulnerability Analysis
	Package Vulnerability Analysis

	Research Questions
	Data Collection
	Vulnerability Reports
	Package and Repository Information
	Integrated Dataset Generation
	Generated Dataset

	Large-Scale Security Analysis in OSS
	Comparing Vulnerability vs Package Growth
	Vulnerability Lifespan and Concentration
	Vulnerability Distribution and Patterns Across Ecosystems.
	Analysis of Packages with Malicious Intent (CWE-506)

	Discussion
	Conclusion
	References
	Appendix
	Terminology Definitions.
	Rise and Fall of Top CWEs
	Discouraged and Prohibited CWEs
	Common and Ecosystem-Specific CWEs

