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Abstract. In the modern context of power systems, rapid, scalable,
and physically plausible power flow predictions are essential for ensur-
ing the grid’s safe and efficient operation. While traditional numeri-
cal methods have proven robust, they require extensive computation to
maintain physical fidelity under dynamic or contingency conditions. In
contrast, recent advancements in artificial intelligence (AI) have signifi-
cantly improved computational speed; however, they often fail to enforce
fundamental physical laws during real-world contingencies, resulting in
physically implausible predictions. In this work, we introduce KCLNet,
a physics-informed graph neural network that incorporates Kirchhoff’s
Current Law as a hard constraint via hyperplane projections. KCLNet
attains competitive prediction accuracy while ensuring zero KCL vio-
lations, thereby delivering reliable and physically consistent power flow
predictions critical to secure the operation of modern smart grids.
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1 Introduction

The evolution of modern power systems has introduced novel challenges for
reliable and efficient grid operation. At the heart of these challenges lies the
power flow prediction problem, a fundamental task that involves computing the
steady-state operating conditions of a power grid under varying load, generation,
and contingency conditions. Traditionally, this problem has been solved using
numerical methods that solve non-linear equations derived from Kirchhoff’s laws
[1,22,23]. However, the increasing complexity and scale of power systems, driven
by the integration of renewable energy sources and distributed generation, have
required the development of more scalable and adaptive techniques [14].

Recent advances in machine learning [15,13,7] offer a promising alternative
by leveraging simulated and real-time data to predict power flow dynamics with
speed and accuracy. However, the power flow prediction problem is inherently
related to the physical laws that govern electrical networks. Inaccurate predic-
tions can have severe consequences, particularly under contingency conditions,
where the failure of a single component must not compromise system stability.
This is known as the N-1 criterion and is a widely recognized reliability standard
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in power grid operations [24,4]. Consequently, there is a critical need for machine
learning models that are capable of producing physically plausible solutions, even
in real-world contingency scenarios.

Physics-Informed Machine Learning (PIML) [12,20] has emerged as a robust
theoretical framework to address this challenge by integrating domain-specific
physical principles directly into the learning process. Conventional PIML strate-
gies typically fall into one of three categories: (a) incorporating soft constraints
via the loss function to penalize deviations from physical laws; (b) leveraging
simulation results or specialized weight initialization as a foundation for model
training; or (c) embedding the relevant physical principles directly into the model
architecture [9]. In the context of power flow prediction, most of the previous
works have predominantly relied on the soft constraint approach.

In this work, we focus on the integration of Kirchhoff’s Current Law, a cor-
nerstone of electrical circuit theory, directly into the model, as a hard linear
constraint. Even though, under some strong theoretical assumptions, the con-
ventional approach of imposing soft constraints in the loss function can guide the
learning process, it does not guarantee absolute adherence to physical laws. This
limitation is increasingly prominent in extreme or unseen operating conditions
like the N-1 scenario. By contrast, our approach enforces Kirchhoff’s law as a
strict equality constraint within the optimization problem, ensuring that every
prediction generated by the model is physically plausible 1. This is especially
crucial for power flow prediction, where even minor deviations from established
laws can propagate into significant operational risks under contingency scenarios.

Our contribution can be summarized as follows:

– We propose a novel physics-informed machine learning model that integrates
Kirchhoff’s law as a hard equality constraint, ensuring physically accurate
predictions under normal operating conditions and contingency scenarios.

– We provide a critical assessment of the limitations inherent to conventional
soft constraint approaches, particularly in the context of N-1 contingency
scenarios.

– We validate our methodology using simulated data depicting real-world op-
erating grid scenarios, demonstrating enhanced reliability and operational
safety in modern power systems.

2 Definition of the Power Flow Prediction Problem

The power flow prediction problem is central to the analysis and operation of
electrical power systems, as it involves determining the steady-state conditions of
a grid based on prescribed inputs such as generation levels, load demands, and
network topology. Conventionally, the problem is formulated as a set of non-
linear algebraic equations derived from Kirchhoff’s Current Law (KCL), which
are typically solved using iterative numerical methods like the Newton-Raphson

1 Code Repo: https://github.com/dogoulis/ecml-pf-pred

https://github.com/dogoulis/ecml-pf-pred
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algorithm. In this section, we first review the classical formulation and solu-
tion methodologies for the power flow problem before discussing its reformula-
tion within a machine learning framework. For clarity, we begin with a concise
overview of the power grid terminology and we briefly describe one important
security criterion for the operation of the power grids.

Power Grid Terminology: In power system analysis, a bus is a node where it
represents elements such as generators, loads, or transformers and is generally
characterized by four parameters: active power (P ), reactive power (Q), voltage
magnitude (Vm) and phase angle (Va). Buses can be categorized into generators
(PV buses), loads (PQ buses) or slack buses. The latest serves as the grid’s ref-
erence point by absorbing active and reactive power, based on the discrepancies
of the other nodes. A transmission line is a branch that links two buses, with its
behavior described by electrical parameters such as resistance (r) and reactance
(x).

N-1 criterion: In power grids, the N-1 criterion is a reliability standard that
mandates the grid must continue to operate securely even if any single component
(such as a transmission line) fails. This criterion ensures that the network has
sufficient redundancy and reserve capacity, so that the loss of one element does
not lead to system instability or compromise the continuity of the power supply.

Kirchhoff’s Current Law: At the core of power system analysis lie Kirchhoff’s
laws, which govern the conservation of energy and charge in electrical networks.
KCL states that the algebraic sum of currents entering a node must equal the
sum of currents leaving the node. In power grids which we are interested in, this
principle can be expressed in terms of the active and the reactive power, under
some operational hypotheses. At any bus i, the net active power injection Pi is
equal to the sum of the active powers Pij flowing through all the transmission
lines connected to that bus: {

Pi =
∑

j∈N (i) Pij

Qi =
∑

j∈N (i) Qij

(1)

where Pi, Qi are the active and reactive powers injected at bus i, Pij , Qij rep-
resent the active and the reactive powers flowing from bus i to bus j, and N (i)
denotes the set of buses connected to bus i. Using Kirchhoff’s laws as a foun-
dation, we can derive a set of nonlinear algebraic equations which describe the
power balance at each bus. These equations incorporate other physical entities
of the grid (voltage magnitudes and angles) as well as the transmission line’s in-
trinsic characteristics. For an N -bus system, active (Pi) and reactive (Qi) power
injections at bus i are given by:{

Pi = Vi

∑N
j=1 Vj (Gij cos θij +Bij sin θij)

Qi = Vi

∑N
j=1 Vj (Gij sin θij −Bij cos θij)

(2)
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where Vi is the voltage magnitude at bus i, θij = θi − θj is the phase angle
difference between buses i and j, while Gij and Bij denote the conductance and
susceptance of the transmission line connecting i and j. The resulting system
of nonlinear equations is commonly solved using iterative numerical techniques.
One of the most widely used methods is the Newton-Raphson method, which is
favored for its quadratic convergence properties. The method iteratively refines
an initial guess of the powers and the voltages by solving the following update
equation:

x(k+1) = x(k) − J−1(x(k)) f(x(k)), (3)

where: x is the vector of state variables, f(x) represents the mismatch between
the calculated and specified power injections, J(x) is the Jacobian matrix of
partial derivatives of f with respect to x. Although the Newton-Raphson method
and its variants provide reliable solutions under normal operating conditions,
they can be computationally intensive for large-scale networks or in scenarios
with rapidly changing system conditions (i.e. contingencies).

3 Related Work

Recent advances in applying artificial intelligence to power flow prediction can be
broadly divided into methods that rely primarily on learning from data without
explicit physical constraints, and methods that incorporate physics-based guid-
ance or constraints during training. An example of the former is described in [5],
where the authors propose a neural network to tackle the power flow prediction
problem based on a guided-dropout technique, and they validate their approach
in different contingency cases. Similarly, the authors in [7] propose LeapNet, a
latent-space network that handles structural or parametric shifts by encoding
inputs into a hidden representation, applying a conditional “leap” dependent on
discrete topology changes, and decoding back to flow predictions. Furthermore,
in [16], the authors introduce two modeling approaches: a partial least squares
(PLS) regression model and a Bayesian linear regression model. Both models
are derived from a linearized formulation of the underlying problem, which is
obtained by adopting specific assumptions regarding grid operations.

In contrast, several physics-informed approaches add explicit power-flow con-
straints. The authors in [13] propose a method that enforces piecewise-linearity,
combining a baseline linearization (derived from the Jacobian at a nominal oper-
ating point of the grid) with ReLU-based low-rank updates to compactly approx-
imate the power flow equations, thus introducing a physics-based term into the
network’s architecture. PowerflowNet [15] employs a graph neural network archi-
tecture equipped with message passing layers, augmented by an additional loss
term representing the squared mismatch between the neural network’s predicted
power injections and the injections computed from the power-flow equations,
thus penalizing physical inconsistency. The authors in [10] propose a physics-
informed geometric deep learning scheme that encodes the grid’s topology via
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graph neural networks, with partial derivatives or power flow constraints con-
tributing to the training loss and encouraging alignment with Kirchhoff’s laws.
Finally, the authors at [6] present a Graph Neural Solver for AC power flows that
leverages message passing across nodes and edges while penalizing Kirchhoff’s
law violations. Most of these works can be broadly classified under the term
of PIML, where physical constraints are included into the loss function as an
additional term. Concretely, the total loss function can be formulated as follows:

L(θ) = Lreg(θ)︸ ︷︷ ︸
MSE

+ Lphysics(θ), (4)

where Lreg(θ) is a standard regression loss (commonly the mean squared
error) that measures the discrepancy between the model’s predictions and the
ground-truth data, and Lphysics(θ) is a term enforcing physical consistency, most
commonly by penalizing the mismatch in the power flow equations described in
2. Additionally, it is important to note that the formulation of power flow predic-
tion is not universally standardized; some approaches focus on estimating trans-
mission line flows while others predict nodal injections. However, by leveraging
the governing physical equations, these formulations can often be interchanged,
although the extent of this conversion is inherently dependent on the initial
problem definition. In our approach, crucially, physical constraints are embed-
ded directly into the model architecture, thereby ensuring that all predictions
rigorously conform to the underlying physical laws (see Section 4 below).

4 Proposed Method

4.1 Grid Represented as a Graph

A power grid can be naturally modeled as a graph G = (V, E), where the set of
nodes V represents buses and the set of edges E corresponds to the transmission
lines connecting them (see Figure 1). Each node is endowed with three attributes:
active (Pi) and reactive power injections (Qi) and voltage magnitudes (Vi) (note
that here we omit the Va feature), while each edge is characterized by intrinsic
electrical parameters which are the resistance (ri) and the reactance (xi). The
principal objective is to compute the active and reactive power flows at both
ends of each edge (transmission line).

4.2 Model Architecture

Figure 2 presents an overview of the complete architecture of the proposed GNN-
based model for power flow prediction. The model takes as input the node fea-
tures xi and the edge attributes eij , which together encode the electrical and
topological characteristics of the network. Mathematically, the overall model
implements a function

f : (X,E)→ Ŷ,
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Fig. 1. Illustration of a power grid (IEEE5) represented as a graph. Two generator
nodes (G1 and G2, shown in yellow) are connected to three load nodes (L1, L2, and
L3, shown in pink) through multiple transmission lines (labeled l1, l2, l3, l4, l5, l6,
and l7). Each generator node is associated with the node features {P g

i , Q
g
i , V

g
i }, while

each load node is associated with {P l
i , Q

l
i, V

l
i }. The edge features are ({ri, xi}), which

represent the intrinsic electrical characteristics of the transmission lines (as discussed
in Section 2). The formulation of the problem is to predict the associated from- and
to-bus vector: (pfromi , ptoi , qfromi , qtoi ).

where X ∈ RN×3 is the node feature matrix, E ∈ R|E|×2 is the edge attribute
matrix, and Ŷ ∈ R|E|×4 contains the predicted flow parameters for each edge.
In the initial stage, an MLP-based message passing module inspired by [15]
processes the concatenated vector

zij = [xi, xj , eij ] ,

for each edge (i, j). This module computes the hidden state as:

hij = W2 LeakyReLU
(
W1 zij + b1

)
+ b2,

where W1 and W2 are weight matrices and b1 and b2 are bias vectors. The
intermediate embedding for node i is then obtained by aggregating the messages
from its neighbors:

x′
i =

∑
j∈N (i)

hij .

These intermediate embeddings are further refined by a GATv2Conv layer [2],
which employs a multi-head attention mechanism. In this layer, both the updated
node embeddings x′

i and the edge attributes eij contribute to the computation
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Fig. 2. Illustration of the proposed KCLNet.

of attention coefficients aij , and the refined node embeddings are given by

x′′
i =

∑
j∈N (i)

aij x
′
j .

To preserve the original node information and facilitate effective gradient prop-
agation, a learnable skip connection is incorporated. The original node features
are first projected into the hidden space via

x̃i = Wskip xi,

and then combined with the refined embeddings:

x̂i = x′′
i + x̃i.

Finally, edge-level predictions are derived by constructing representations for
each edge. For a given edge (i, j), the final node embeddings corresponding to
nodes i and j are concatenated with the edge attributes:

zedge
ij = [x̂i, x̂j , eij ] ,

and the resulting vector is passed through an additional MLP, referred to as
EdgeMLP, to produce the predicted flow parameters:

ŷij = EdgeMLP
(
zedge
ij

)
.

4.3 KCL Projections for Physical Constraints

Kirchhoff’s Current Law (KCL) states that, at each bus, the total incoming
power must equal the total outgoing power (see eq. (1)). To impose this principle,
we proceed with the following notations:

– For each bus i ∈ {1, . . . , N}, let Pnet(i) and Qnet(i) be the measured active
and reactive power injections, respectively.
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– For each line (edge) e, let pfrom
e , pto

e denote the predicted active power flows,
and qfrom

e , qto
e the predicted reactive power flows.

Given a bus i, define its calculated active and reactive power injections as

Pcalc(i) =
∑

e∈Efrom(i)

pfrom
e +

∑
e∈Eto(i)

pto
e , Qcalc(i) =

∑
e∈Efrom(i)

qfrom
e +

∑
e∈Eto(i)

qto
e ,

where E from(i) and Eto(i) denote the sets of edges for which bus i is respectively
the source and the target.

KCL in Terms of Predicted Flows. From eq. (1), the KCL requirement at
each bus i can be expressed as

Pnet(i) + Pcalc(i) = Pnet(i) +
∑

e∈Efrom(i)

pfrom
e +

∑
e∈Eto(i)

pto
e = 0, (5)

for active power, and

Qnet(i) +Qcalc(i) = Qnet(i) +
∑

e∈Efrom(i)

qfrom
e +

∑
e∈Eto(i)

qto
e = 0, (6)

for reactive power.

Projection Operators. We enforce these constraints by constructing hyper-
plane projections for each node. Specifically, for bus i, we define two projections:
ΠP

i (for active power) and ΠQ
i (for reactive power). Both operators act on the

prediction vector y ∈ R|E|×4 to ensure that KCL holds at i.

Normal Vectors. First, define the vectors aP,i,aQ,i ∈ R|E|×4 that capture the
contribution of each component of y to the net power injection at bus i. From
eqs. (5) and (6), the entries of aP,i are

aP,i
e,l =


1, if e ∈ E from(i) and l = 1,

1, if e ∈ Eto(i) and l = 2,

0, otherwise,

and aQ,i is defined similarly for reactive power.

Projection Formulas. Using these normal vectors, the orthogonal (affine) hyper-
plane projections that zero out the KCL violations at bus i are

ΠP
i (y)

def
= y − ⟨a

P,i,y⟩+ Pnet(i)

∥aP,i∥2
aP,i, ΠQ

i (y)
def
= y − ⟨a

Q,i,y⟩+Qnet(i)

∥aQ,i∥2
aQ,i.

Applying ΠP
i removes the component of y collinear to aP,i that violates eq. (5),

while ΠQ
i does the same for eq. (6).
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Sequential Node Projections. Combining these local projections for each of
the N buses, and choosing some variable-ordering permutation σ : {1, . . . , N} →
{1, . . . , N}, we define

ΠKCL
σ

def
= ΠP

σ(1) ◦Π
Q
σ(1) ◦ ΠP

σ(2) ◦Π
Q
σ(2) ◦ · · · ◦ ΠP

σ(N) ◦Π
Q
σ(N).

Although applying ΠKCL
σ once may not fully enforce all KCL constraints (since

projections generally do not commute), repeated application of ΠKCL
σ will asymp-

totically converge to a KCL-feasible solution, as in Kaczmarz’s iterative hyper-
plane method [11]. In practice, however, finding a good ordering σ is nontrivial;
one often resorts to random selection [3] and convergence can be slow.

Alternative Formulation. An alternative to applying node-by-node projec-
tions is to assemble all KCL constraints into a single linear system and directly
project onto its solution space using the Moore-Penrose pseudoinverse [18].

Constructing the System Ay + b = 0. Recall eqs. (5)–(6), which describe KCL
at each bus i. Each of these can be written as a dot-product constraint:

⟨aP,i,y⟩ + Pnet(i) = 0, ⟨aQ,i,y⟩ + Qnet(i) = 0,

where aP,i and aQ,i are the normal vectors defined earlier.
The main idea is now to stack all these constraints into a linear system

Ay + b = 0,

where A ∈ Rm×d and b ∈ Rm, with d = 4 |E|,m = 2N . Concretely,

A
def
=



(aP,1)⊤

(aP,2)⊤
...

(aP,N )⊤

(aQ,1)⊤

(aQ,2)⊤
...

(aQ,N )⊤


and b

def
=



Pnet(1)
Pnet(2)...
Pnet(N)
Qnet(1)
Qnet(2)...
Qnet(N)


.

So that, solving Ay + b = 0 enforces all KCL equations at once.

Moore-Penrose Approach [19]. An orthogonal (least-squares) projection onto the
affine space of admissible solutions {z ∈ Rd : A z+ b = 0} is given by

ỹ = y − A†
(
Ay + b

)
,

where A† ∈ Rd×m is the Moore–Penrose inverse of A. By definition, if we let

A = U Σ V ⊤
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be the singular-value decomposition (SVD) of A (where U and V are orthonor-
mal, and Σ is diagonal in the nonzero singular values), then

A† def
= V Σ† U⊤,

with Σ† being the reciprocal of all nonzero singular values (and zero in any null
dimensions).

Optimization View. This global projection via pseudoinverse solves the problem

min
ỹ
∥ỹ − y∥2 subject to A ỹ + b = 0,

i.e. it is the closest point in Euclidean distance to the original prediction y
that satisfies all KCL constraints. Therefore, the Moore–Penrose projection is
the optimal way to solve the KCL equations system, in the least-squares sense,
starting from prediction y. This also spares the choice of the variable ordering
σ above, whose optimization is a hard combinatorial problem.

Algorithmic Steps. One can thus enforce KCL as follows:
Require: y ∈ Rd (initial predicted flows)
Require: A ∈ Rm×d, b ∈ Rm, A† ∈ Rd×m (KCL system)
1: r ← Ay + b // KCL residual
2: ỹ ← y −A† r
3: return ỹ

As above, because A and A† only depend on the topology of the power grid, they
can be assembled once for a fixed network structure. In addition, this projec-
tion can be implemented in practice as two fully connected linear layers, with
a residual connection for the second one, which allows for full back-propagation
and thus training of the full architecture, e.g. via stochastic gradient descent.

Physically Consistent Predictions. Integration of the global Moore-Penrose
pseudoinverse projection step described above, into the model’s architecture, as
a last layer, ensures that the final predicted flows satisfy the power conservation
principle. In contrast, as discussed in Sec. 3, most methods in the literature
merely direct the model towards lower KCL violations by incorporating them into
the loss function, thereby offering no assurances regarding physical consistency.

5 Experiments

In this section, we systematically evaluate our proposed approach with two pri-
mary objectives. First, we benchmark the model against state-of-the-art methods
on standard IEEE test cases under both nominal and contingency (N-1) condi-
tions, focusing on predictive accuracy and adherence to physical constraints.
Second, we perform an ablation study to assess specifically the impact of the
final projection layer on performance and physical feasibility.
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5.1 Datasets

To conduct our experiments, we employ two widely used benchmark datasets
from the power engineering community and have also become standard bench-
marks in recent deep-learning research: the IEEE 14-bus and IEEE 118-bus test
cases. Each dataset comprises a single grid instance with nominal values assigned
to every bus, containing 14 and 118 buses, respectively. To adapt these datasets
for a machine learning framework, we augment the available data by generating
multiple independent and identically distributed (iid) instances by sampling near
the nominal values. New data instances are generated for all buses by sampling
from a normal distribution centered at their nominal values with a small vari-
ance. Specifically, the active power, voltage magnitude, and reactive power are
sampled as follows: P ∼ N

(
P̄ , 0.01

)
, V ∼ N

(
V̄ , 0.01

)
, Q ∼ N

(
Q̄, 0.01

)
,

where the bar over the variable denotes the nominal value of the corresponding
variable. After generating these perturbed grid parameters, we obtain the ground
truth for the targeted variables using the Newton-Raphson method mentioned
above.

5.2 Implementation Details

In this study, we simulated 20000 distinct operational scenarios for power grids,
capturing a comprehensive range of realistic conditions representative of real-
time grid operations. Additionally, to assess model robustness under contingency
conditions, we generated N-1 contingency scenarios by removing a single trans-
mission line at random, while excluding the one that is directly connected to
the slack bus. In particular, these N-1 cases were excluded from the training
set, ensuring an unbiased evaluation of the robustness of the models to realis-
tic grid perturbations. We trained our models using the AdamW optimizer [17].
The learning rate was equal to 10−3, while Xavier normal initialization [8] was
applied to the linear layers of the proposed network. All training and evaluation
processes were performed on a server with a single NVIDIA GeForce RTX 4080
SUPER GPU.

Metrics: To assess the accuracy of our models, we employ the Mean Squared
Error (MSE) with respect to the ground-truth as a primary metric. Indeed, this
method is the gold standard in the literature. Additionally, to ensure physical
feasibility, we quantify the average KCL satisfaction for each grid. Mathemat-
ically, let N denote the total number of buses in the network and Pnet(i) and
Pcalc(i) denote respectively the net injected and calculated power at bus i, as in
4.3. The global energy conservation loss for active power is then defined as the
mean squared mismatch between the measured and calculated injections:

LP =
1

N

N∑
i=1

(Pnet(i) + Pcalc(i))
2
,
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and similarly for reactive power:

LQ =
1

N

N∑
i=1

(Qnet(i) +Qcalc(i))
2
.

Finally, the overall physics-informed loss, which quantifies the degree of Kirch-
hoff’s Current Law (KCL) satisfaction, is given by:

LKCL =
1

2
(LP + LQ) .

5.3 Comparison with other models

We compare our model against three well-established models from the liter-
ature [7,13,15]. Note, that since the classical Newton-Raphson solver already
generates the ground-truth labels for our datasets, using it as a benchmark
would be redundant, since by definition it will show zero error. However, graph-
based approaches have showcased much faster performance in previous works
[15], which also highlights the importance of these surrogate models. The selec-
tion of these models was motivated by their diverse approaches to integrating
physics-informed knowledge: one model omits such integration entirely, another
incorporates partial domain knowledge through its architectural design, and the
third enforces a soft physics constraint via its loss function. Since the power
flow prediction problem has not yet been uniformly defined, each architecture
addresses the task within its own formal framework (as discussed in Section
3). Therefore, since PowerFlow predicts node features, we compute the average
squared mismatch using the equations in 2.

5.4 N-case Analysis

In the nominal operating scenario (N-case), we evaluated model performance on
the IEEE 14-bus and IEEE 118-bus test cases. As shown in Table 1, the observed
MSEs ranged from 0.169 to 0.746. Although KodyNet reported a lower MSE on
the IEEE 14-bus case (0.169), it also exhibited a relatively higher mismatch in
Kirchhoff’s Current Law (KCL) (1.288). In contrast, KCLNet maintained zero
KCL violation, with MSE values of 0.381 on IEEE14 and 0.273 on IEEE118.
We observe that the predictions obtained using the larger IEEE118 network
generally outperform those from smaller networks. This can be attributed to the
inherently local nature of power flow prediction, whereby localized errors have a
reduced impact on the overall grid performance in larger systems compared to
more confined network models.

5.5 N-1 Case Analysis

Under N-1 contingency conditions, where a single transmission line is removed
to simulate grid perturbations, the overall MSE increased across all models, as
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Dataset Model MSE KCL Violation

IEEE118

LeapNet 0.591 (0.001) 1.169 (0.019)

KodyNet 0.298 (0.004) 0.359 (0.002)

PowerFlowNet 0.642 (0.003) 0.327 (0.001)

KCLNet 0.273 (0.002) 0.000 (0.000)

IEEE14

LeapNet 0.439 (0.001) 1.664 (0.148)

KodyNet 0.169 (0.001) 1.288 (0.093)

PowerFlowNet 0.746 (0.028) 1.933 (0.042)

KCLNet 0.381 (0.005) 0.000 (0.000)

Table 1. Performance results in N-case: We report the average of 10 runs of the MSE
and KCL violation for each model on the IEEE 14-bus and IEEE 118-bus datasets under
nominal operating conditions. For each metric, the corresponding standard deviation
(std) is provided in parentheses. The model with the best (lowest) MSE is highlighted
in bold. Values reported as 0.000 indicate numerical errors on the order of 1e-4, with
all results rounded to three decimal places.

detailed in Table 2. Notably, KCLNet continued to enforce complete compliance
with KCL (zero violation), while recording MSE values of 0.533 on IEEE14 and
0.2768 on IEEE118. Furthermore, it is evident that within the larger IEEE118
dataset, the MSE of the proposed architecture is close to that observed in the
complete network (N-case). A natural interpretation is that the removal of a
single transmission line predominantly affects only a localized region of the grid,
rather than inducing widespread, global changes in performance. The other mod-
els, despite achieving comparable MSEs, displayed non-negligible KCL viola-
tions. These observations suggest that embedding physical constraints into the
modeling framework can contribute to maintaining feasibility under both nomi-
nal and perturbed grid conditions, although further analysis is required to fully
elucidate the trade-offs involved.

5.6 Ablation Study

In this section, we assess the impact of the final projection layer of our KCLNet
model. Specifically, we remove the KCL projection layer to relax the hard phys-
ical constraints during training, thereby expanding the loss space. We observe
that removing the final projection layer generally allows the network to achieve
a lower MSE, which is expected as the loss space becomes less constrained by the
hard projection (Table 3). For example, under the N-case scenario on IEEE14,
the MSE drops from 0.381 (with projection) to 0.353, and similarly, in the N-1
case the MSE reduces from 0.533 to 0.492. Although for IEEE118 under normal
conditions the MSE shows a slight increase (from 0.273 to 0.296), the overall
trend suggests that the relaxation permits better optimization of the primary
objective. Notably, the corresponding KCL violations are relatively low (ranging
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Dataset Model MSE KCL Violation

IEEE118

LeapNet 0.643 (0.002) 1.149 (0.061)

KodyNet 0.591 (0.003) 0.361 (0.007)

PowerFlowNet 0.981 (0.001) 0.845 (0.001)

KCLNet 0.2768 (0.000) 0.000 (0.000)

IEEE14

LeapNet 0.452 (0.004) 1.632 (0.109)

KodyNet 0.199 (0.001) 1.292 (0.130)

PowerFlowNet 0.845 (0.023) 1.629 (0.040)

KCLNet 0.533 (0.003) 0.000 (0.000)

Table 2. Performance results in N-1 case: We report the average of 10 runs of the
Mean Squared Error MSE and KCL violation for each model on the IEEE 14-bus
and IEEE 118-bus datasets under nominal operating conditions. For each metric, the
corresponding standard deviation (std) is provided in parentheses. The model with the
best (lowest) MSE is highlighted in bold. Values reported as 0.000 indicate numerical
errors on the order of 1e-4, with all results rounded to three decimal places.

from 0.039 to 0.047), slightly below those seen in the other models. This indicates
that even without the final projection layer enforcing strict physical constraints,
the model still achieves a reasonable level of physical feasibility while benefiting
from a more flexible loss landscape.

Dataset
N Case N-1 Case

MSE KCL Violation MSE KCL Violation

IEEE118 0.296 (0.002) 0.039 (0.001) 0.272 (0.000) 0.047 (0.002)

IEEE14 0.353 (0.001) 0.043 (0.001) 0.492 (0.001) 0.046 (0.001)

Table 3. Performance of KCLNet without the final projection layer under nominal
(N case) and contingency (N-1 case) conditions. We report the mean and standard
deviation in parentheses, calculated over 10 runs.

6 Conclusion

In this work, we introduced a physics-informed machine learning approach for
power flow prediction that integrates Kirchhoff’s Current Law (KCL) as a hard
constraint via hyperplane projections. Our proposed model, KCLNet, consists of
a Graph Neural Network architecture followed by a physics-informed projection
layer, ensuring every prediction remains physically plausible under both nominal
and contingency (N−1) operating conditions. Experimental evaluations on the
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IEEE 14-bus and IEEE 118-bus test cases show that KCLNet, while maintaining
competitive Mean Squared Error (MSE) values on smaller grids, achieves the
lowest MSE on the larger IEEE 118-bus system. Meanwhile, it enforces KCL
with zero numerical violation—an outcome contrasting with other state-of-the-
art methods that, despite occasionally achieving lower MSEs on smaller test
grids, exhibit non-negligible KCL deviations.

These results indicate that directly embedding physical constraints into the
model architecture not only enhances reliability but also contributes to oper-
ational safety in real-world grid scenarios. Notably, the scalability and strong
performance on the larger IEEE 118-bus system suggest that KCLNet is well-
suited for more extensive networks in practice.

Future Extensions. Beyond our current scope, we next propose two directions
that could further expand the applicability and impact of KCLNet,

– Nonlinear Network Equations and Diffusion-Based Projections:
When the steady state of a physical system is governed by nonlinear equa-
tions, one could explore deterministic diffusion or similar iterative methods
to approximate the projection on the nonlinear constraint manifold.

– Application to Various Physical Networks Scenarios: The analogy
between electrical flows and other resource flows is especially relevant in
contemporary smart grid and smart city applications, where Kirchhoff-like
conservation principles arise naturally. For instance, [21] demonstrates a traf-
fic management system guided by network “circuit” theorems akin to KCL.
Extending KCLNet to such contexts promises physically consistent predic-
tions in a wide range of complex, networked systems.
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