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Abstract—Vision-Language Models (VLMs) such as CLIP have
demonstrated remarkable capabilities in understanding relation-
ships between visual and textual data through joint embedding
spaces. Despite their effectiveness, these models remain vulnerable
to adversarial attacks, particularly in the image modality, posing
significant security concerns. Building upon our previous work on
Adversarial Prompt Tuning (AdvPT), which introduced learnable
text prompts to enhance adversarial robustness in VLMs without
extensive parameter training, we present a significant extension
by introducing the Neural Augmentor framework for Multi-modal
Adversarial Prompt Tuning (NAP-Tuning). Our key innovations
include: (1) extending AdvPT from text-only to multi-modal
prompting across both text and visual modalities, (2) expanding
from single-layer to multi-layer prompt architectures, and (3)
proposing a novel architecture-level redesign through our Neural
Augmentor approach, which implements feature purification to
directly address the distortions introduced by adversarial attacks
in feature space. Our NAP-Tuning approach incorporates token
refiners that learn to reconstruct purified features through residual
connections, allowing for modality-specific and layer-specific
feature correction. Comprehensive experiments demonstrate that
NAP-Tuning significantly outperforms existing methods across
various datasets and attack types. Notably, our approach shows
significant improvements over the strongest baselines under
the challenging AutoAttack benchmark, outperforming them by
33.5% on ViT-B16 and 33.0% on ViT-B32 architectures while
maintaining competitive clean accuracy. This work establishes
the importance of architecture redesign in prompt tuning for
adversarial robustness, moving beyond loss-focused approaches
to create an adaptive defense mechanism that can identify and
rectify adversarial perturbations across embedding spaces.

Index Terms—Adversarial robustness, Vision-Language models,
Prompt tuning, Feature purification, Neural augmentation

I. INTRODUCTION

Large-scale pre-trained Vision-Language Models (VLMs)
have demonstrated remarkable capabilities in understanding and
connecting visual and textual information, enabling impressive
performance on a wide range of downstream tasks. Models
like CLIP [1] and ALIGN [2] have shown unprecedented
zero-shot transfer abilities by learning from web-scale image-
text pairs. As these models gain widespread adoption in real-
world applications, ensuring their robustness against adversarial
attacks becomes increasingly critical.

In our previous work [3], we introduced Adversarial Prompt
Tuning (AdvPT), a novel approach that enhances the adver-
sarial robustness of VLMs by aligning text embeddings with
adversarial image embeddings through learnable text prompts.
This method represented a paradigm shift from traditional
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adversarial training [4] approaches by focusing on prompt-
level modifications rather than model parameter retraining,
offering significant computational advantages while maintaining
effectiveness.

While AdvPT demonstrated the potential of prompt tuning
for adversarial defense, it exhibited three critical limitations: (1)
its restriction to text modality prompts, (2) its reliance on single-
layer prompting, and (3) its emphasis on loss function redesign
rather than architectural innovations. Following our initial
work, several approaches [5], [6] have attempted to address
some of these issues, particularly by extending prompting to
multiple modalities and layers. However, these incremental
improvements fail to address the core architectural challenge
of prompt tuning in adversarial settings.

The fundamental limitation across all existing ap-
proaches—including both our original AdvPT and subsequent
works—is the direct transplantation of prompt tuning techniques
from the generalization domain (e.g., CoOp [7] and MaPLe
[8]) to adversarial defense without rethinking the underlying
architecture. This approach overlooks a critical insight: prompt
tuning, originally developed for clean data environments, faces
fundamentally different challenges in adversarial scenarios
where feature spaces are deliberately corrupted. Adversarial
perturbations introduce systematic distortions that cannot
be effectively countered through loss modifications alone,
regardless of whether the prompting occurs in single or multiple
modalities, or at one or multiple layers.

To comprehensively address all three limitations, we propose
the Neural Augmentor framework for Multi-modal Adversarial
Prompt Tuning (NAP-Tuning). Our approach not only extends
prompting to multiple modalities and layers but, most criti-
cally, fundamentally reconceptualizes prompt architecture for
adversarial defense by integrating feature purification mecha-
nisms. The Neural Augmentor framework incorporates token
refiners—lightweight neural networks that learn to reconstruct
clean feature representations from adversarially perturbed
inputs through residual connections. This architecture enables
modality-specific and layer-specific feature correction, yielding
substantially enhanced adversarial robustness. Fig. 1 illustrates
the evolution from text-only prompting to our comprehensive
NAP-Tuning, demonstrating how our method facilitates clean
feature reconstruction from adversarially corrupted inputs
across both modalities and multiple network layers.

Through extensive experiments under rigorous evaluation
protocols, we demonstrate that our approach significantly
outperforms our initial AdvPT and other state-of-the-art
methods, achieving superior robustness while maintaining
competitive clean accuracy. Our analysis revealed that NAP-
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Fig. 1: Comparison of adversarial prompt tuning approaches: (a) The original AdvPT that uses only text prompts, (b) Existing
multimodal approaches that incorporate prompts in both visual and text pathways, and (c) Our proposed NAP-Tuning framework
that extends multimodal prompting with feature purification via token refiners, enabling the reconstruction of clean feature
representations from adversarially perturbed inputs.

Tuning effectively learns to correct adversarial distortions in
feature space, providing insights into the working mechanisms
of successful adversarial defenses.

As an extension of our conference paper [3], this work makes
several significant contributions:

• Multi-modal defense framework: We extend the ini-
tial text-only AdvPT to a comprehensive multi-modal
framework that incorporates learnable prompts in both
text and visual pathways, creating a more effective
defense mechanism that addresses vulnerabilities across
modalities.

• Multi-layer prompt architecture: We expand from
single-layer prompting to multi-layer prompt architectures,
allowing for more nuanced and layer-specific defenses
that can address adversarial perturbations manifesting
differently at various depths of the network.

• Neural Augmentor design: Most significantly, we pro-
pose a novel architecture-level redesign through our
Neural Augmentor approach, which implements feature
purification via token refiners. This represents a paradigm
shift from previous loss-focused prompt tuning methods
to architecture-focused prompt tuning defense, addressing
the fundamental limitations of existing approaches.

• Comprehensive evaluation: We provide extensive experi-
mental validation across multiple datasets and attack types
under stricter evaluation settings. Our approach demon-
strates significant performance improvements over the
previous conference version (AdvPT), achieving average
gains of 42.6% under PGD-100 attacks and 47.5% under
the more challenging AutoAttack benchmark, establishing
new standards for adversarial robustness in VLMs.

II. RELATED WORK

A. Vision-Language Models
VLMs have established themselves as powerful frameworks

for bridging visual and textual modalities. These models can be

categorized into two principal architectures. The first category
comprises generative models built upon Large Language
Models (LLMs), such as LLaVA [9] and Qwen-VL [10],
which extend text-only LLMs with vision encoders to enable
multimodal understanding and generation.

The second category—which is the focus of adversarial
prompt tuning techniques—utilizes contrastive learning to
establish joint embeddings of images and text. Models such
as CLIP [1] and ALIGN [2] project both modalities into a
unified semantic space where related content exhibits higher
similarity. These models demonstrate exceptional capabilities
across diverse tasks through their dual-encoder architecture.
However, their susceptibility to adversarial attacks, particularly
in the visual domain, poses significant security concerns as
their deployment expands into critical applications.

B. Prompt Learning
Prompt learning emerged in natural language processing as

an efficient parameter-efficient adaptation technique for pre-
trained language models [11], [12]. This paradigm focuses on
optimizing input transformations rather than modifying model
parameters.

For VLMs, text-based prompt learning methods such as
CoOp [7] and CoCoOp [13] demonstrated that replacing
hand-crafted templates with learnable context vectors could
significantly improve model performance. Our previous work,
AdvPT [3], applied this concept to adversarial defense, showing
that learnable text prompts could enhance robustness against
adversarial attacks without modifying the underlying model.
Multi-modal prompt learning approaches including MaPLe [8]
and PromptKD [14] subsequently extended this paradigm by
incorporating prompts in both textual and visual pathways.
These architectural innovations have provided foundational
techniques for multi-modal adversarial prompt tuning, though
their primary focus on generalization rather than robustness
presents limitations when applied to adversarial defense.
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C. Adversarial Prompt Tuning

Conventional adversarial defense methods such as adversarial
training [4], TRADES [15], and MART [16] have proven
effective but remain computationally prohibitive for large-scale
VLMs. These approaches typically require training the whole
model parameters from scratch, making them impractical for
deployment in VLMs. An innovative alternative approach was
introduced by Mao et al. [17] through their TeCoA framework,
which intelligently leverages pre-trained VLM weights as
initialization and selectively finetunes CLIP’s vision encoder.

Our previous work, AdvPT [3], introduced a more efficient
and more effective paradigm by applying prompt learning to
adversarial defense in VLMs. By aligning text embeddings with
adversarial image embeddings through learnable prompts, Ad-
vPT demonstrated that robust representations could be achieved
with minimal computational overhead. Recent extensions to this
approach include FAP [5], which leverages limited data to learn
adversarially correlated text supervision while enhancing multi-
modal feature consistency and uni-modal feature differentiation
between natural and adversarial examples.

Recent advances in test-time optimization have yielded partic-
ularly impressive results in defending VLMs against adversarial
attacks. Sheng et al. [18] developed R-TPT, an elegant test-
time prompt tuning method that enhances the robustness of
vision-language models by minimizing pointwise entropy and
introducing a reliability-based weighted ensembling strategy.
Their approach demonstrates the power of adaptive defenses
that operate at inference time. TAPT [19] introduces an
unsupervised approach that optimizes bimodal prompts at test
time to enhance CLIP’s robustness while maintaining clean
performance. In parallel, Xing et al. [20] introduced TTC, an
innovative training-free defense mechanism that ingeniously
leverages CLIP’s pre-trained vision encoder to counteract
adversarial images during inference. Their approach offers
complementary protection that can be effectively combined with
existing robust models, demonstrating the value of ensemble
strategies in comprehensive defense frameworks.

While these methods have achieved incremental improve-
ments through loss function innovations, they overlook a
critical consideration: the fundamental mismatch between
prompt architectures designed for generalization and the unique
requirements of adversarial robustness. Addressing adversarial
vulnerabilities requires mechanisms specifically engineered
to counteract feature-level distortions—a challenge that far
exceeds general-purpose representation enhancement. This
insight motivates our current work, which demonstrates that
architectural innovations in prompt design can substantially
improve adversarial robustness beyond what is possible through
loss function modifications alone. By reimagining prompt
architecture specifically for adversarial defense, we address the
feature distortion mechanisms that underlie successful attacks
on VLMs.

III. PRELIMINARY: ADVERSARIAL PROMPT TUNING

To provide context for our extended approach, we first revisit
the key concepts of Adversarial Prompt Tuning (AdvPT) as
introduced in our previous work [3].

A. Revisiting CLIP

We first provide a brief overview of VLMs, with a particular
emphasis on the CLIP [1] architecture. Although our meth-
ods are specifically designed for CLIP, they are potentially
extendable to a broader range of VLMs that are based on
the contrastive learning paradigm. CLIP consists of an image
encoder fI and a text encoder fT , which project images and
text into a shared embedding space. The model is trained to
maximize the similarity between matched image-text pairs
while minimizing the similarity between unmatched pairs.

For an image x and a text description t, CLIP computes
embeddings fI(x) and fT (t), and the similarity is calculated
as:

s(x, t) =
fI(x) · fT (t)

||fI(x)|| · ||fT (t)||
(1)

For classification tasks, CLIP computes the similarity be-
tween an image and a set of text templates describing each
class (e.g., “a photo of a [CLASS]”), and selects the class with
the highest similarity.

B. Adversarial Attacks on VLMs

Adversarial attacks on VLMs can be categorized into two
types based on the attacker’s access to model components.
In our previous work [3], we considered a restricted threat
model where the attacker only has access to the image encoder.
Under this assumption, adversarial examples are crafted by
maximizing the KL divergence between clean and perturbed
image features:

xadv = argmax
x′

DKL(fI(x), fI(x
′))

s.t. ||x′ − x||p ≤ ϵ, (2)

where DKL is the KL divergence measure. In this work, we
consider a more challenging threat model that assumes the
attacker has access to both image and text encoders, including
textual prompt. This stronger adversary can generate more
effective attacks by maximizing the cross-entropy loss between
image-text pairs (even when the text is represented as learnable
vectors):

xadv = argmax
x′

LCE(fI(x
′), fT (ty))

s.t. ||x′ − x||p ≤ ϵ, (3)

where ty is the text template for class y, and LCE is the
cross-entropy loss measuring image-text similarity.

C. Basic Adversarial Prompt Tuning

AdvPT addresses the vulnerability of VLMs to adversarial
attacks by learning to align text embeddings with adversarial
image embeddings through prompt tuning. The key insight is
that this alignment can enhance robustness without requiring
modifications to the model architecture. In AdvPT, the standard
text template “a photo of a [CLASS]” is replaced with a
template containing learnable context vectors:
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Fig. 2: Overview of our proposed Neural Augmentor module
for multi-modal AdvPT.

(Vt, y) = [Vt, [CLASS]], (4)

where Vt are learnable vectors that are optimized to align with
adversarial image embeddings, and y represents class label.
The training objective for AdvPT is to maximize the similarity
between the clean text embedding (with learned prompt) and
the adversarial image embedding:

min
Vt

L(xadv, y) = max
Vt

s(xadv, (Vt, y)), (5)

where xadv is the adversarial version of image x, and (Vt, y)
is the text template for the true class y.

IV. NEURAL AUGMENTOR FOR MULTI-MODAL
ADVERSARIAL PROMPT TUNING

Adversarial attacks fundamentally operate by introducing
carefully crafted perturbations to input data that cause neural
networks to make incorrect predictions. In the context of
VLMs, these perturbations manipulate feature representations
in ways that disrupt the crucial alignment between visual and
textual information. Building upon our preliminary work on
AdvPT, we introduce a comprehensive redesign of prompt-
based adversarial defenses through our NAP-Tuning framework.
This section details our approach, its architectural innovations,
and theoretical foundations.

A. Framework Overview

Fig. 1 (c) introduces the overall framework, while Fig. 2
illustrates the architecture of our Neural Augmentor module. At
its core, our approach aims to defend VLMs against adversarial
attacks by addressing their fundamental vulnerability: the
distortion of feature representations. Unlike previous prompt
defenses that focus on loss function modifications or robust
classification boundaries, our method directly targets the
feature corruption mechanism through specialized architectural
components.

The framework consists of three primary components that
work in concert. First, a multi-modal prompting system
introduces learnable prompt vectors that operate simultaneously
in both textual and visual pathways of the model. Second,
a multi-layer prompt architecture implements hierarchical

prompting structures at different depths within the transformer
architecture to address adversarial effects at various levels of
feature abstraction. Third, Neural Augmentor modules serve as
specialized neural networks that perform feature purification
through token refiners.

B. Structural Innovations

1) Multi-Modal Prompting: A key limitation of our original
AdvPT approach was its exclusive focus on the text modality,
which left the visual pathway vulnerable to direct attacks. Our
enhanced framework addresses this limitation by implementing
learnable prompts in both textual and visual pathways, creating
a coordinated defense system.

For the text pathway, we build upon the original AdvPT
framework with enhanced prompt vectors (Vt, y). For the
visual pathway, we introduce a parallel set of prompt vectors
that operate on the visual inputs (Vi, xadv), where Vi are
learnable visual prompt vectors. These visual prompts serve
a complementary function to the text prompts, helping to
guide perturbed visual representations back toward their clean
manifold. Equation (5) can therefore be reformulated as:

min
Vi,Vt

L(xadv, y) = max
Vi,Vt

s((Vi, xadv), (Vt, y)). (6)

The dual-modal prompt system enables a more comprehensive
defense, as it can address attacks that target either modality
or the cross-modal alignment. This is particularly important in
VLMs, where adversarial perturbations can disrupt the crucial
cross-modal matching that underlies the model’s performance.

2) Multi-Layer Prompt Architecture: Adversarial perturba-
tions manifest differently across network depths, affecting
both low-level perceptual features and high-level semantic
representations. Our multi-layer prompt architecture addresses
this by placing learnable prompts at multiple depths within the
transformer network:

h(l) = Layer(l)([V(l), h(l−1)]), (7)

where hl represents the output of layer l, V(l) are layer-specific
learnable prompt vectors, and Layer(l) is the transformer layer
function. This hierarchical prompting structure allows for
targeted interventions at different levels of feature abstraction.
Let Vi = {Vj

i }lj=1 and Vt = {Vj
t }lj=1, then Equation (6) can

be reformulated as:

min
Vi,Vt

L(xadv, y) = max
Vi,Vt

s((Vi, xadv), (Vt, y)). (8)

The multi-layer design offers several advantages over the
single-layer approach of our original AdvPT. It enables
depth-specific defense, where different layers can address
distinct manifestations of adversarial perturbations, from low-
level texture disruptions to high-level semantic shifts. It also
facilitates progressive feature refinement, where corrections
applied at earlier layers can be further refined by later layers,
creating a cascading purification effect. More importantly, the
increased parameter capacity allows the model to learn more
complex defense strategies without modifying the underlying
VLM weights.
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This hierarchical structure represents a significant advance-
ment over our preliminary work, which was limited to mod-
ifying only the textual prompts. By extending the defense
mechanism throughout the network, we create a more robust
barrier against adversarial perturbations that might otherwise
bypass single-layer defenses.

C. Neural Augmentor Design

The most significant innovation in our framework is the
Neural Augmentor—a specialized neural module designed
explicitly for feature purification. Unlike conventional prompt
tuning that focuses on optimizing context vectors, our Neu-
ral Augmentor actively transforms feature representations to
counteract adversarial distortions.

1) Feature Distortion Theory: To formalize our approach,
we first characterize the effect of adversarial perturbations in
feature space. Let X denote the input space and F the feature
space. For a clean image x ∈ X and its adversarial counterpart
xadv = x+ δ , the feature distortion can be expressed as:

∆fI = fI(xadv)− fI(x), (9)

where fI(x) represents the feature representation of input x.
Traditional adversarial defenses aim to make classification
boundaries robust to these distortions. In contrast, our Neural
Augmentor directly targets the distortion itself, attempting to
recover:

f̂I(x) ≈ fI(xadv) + Φ(fI(xadv)), (10)

where Φ is a learned correction function that approximates
−∆f , effectively “purifying” the adversarial features (including
both intermediate and final feature representations) back toward
their clean counterparts.

2) TokenRefiner Architecture: The core component of the
Neural Augmentor is the TokenRefiner R—a lightweight neural
network that processes individual token representations to
identify and correct adversarial distortions. For each token
representation z ∈ Rd, the TokenRefiner computes a corrective
term z̃ = R(z). The TokenRefiner function is implemented as a
two-layer network with a residual connection. It ensures stable
gradient flow during training, facilitating effective optimization.
Moreover, when no correction is needed (e.g., for clean inputs),
the network can learn to output values near zero, effectively
preserving the original features through an identity fallback
mechanism. The R operates on both text and visual tokens,
with modality-specific parameters that allow it to learn distinct
correction patterns for each pathway.

We apply the TokenRefiner R to correct potentially perturbed
feature representations before combining them with learnable
vectors for the attention mechanism. Therefore, Equation (7)
can be reformulated as:

h(l) = Layer(l)
(
Attention(V(l), h̃(l−1))

)
, (11)

where h̃(l−1) = R(h(l−1)). Through this attention mechanism,
we expect the learnable vectors V(l) and the augmented feature
representations h̃(l−1) to cooperatively optimize and enhance
robustness against adversarial attacks. Consequently, the final

learning objective can be expressed as an extension of Equation
(8):

min
Vi,Vt,
θi, θt

L(xadv, y) = max
Vi,Vt,
θi, θt

s((Vi, xadv;Ri), (Vt, y;Rt)),

(12)
where θi and θt represent the learnable parameters of the
TokenRefiner R in the visual and text branches, respectively.

The Neural Augmentor implements a feature purification
mechanism that operates across three primary dimensions. At
the token level, each representation is individually refined,
allowing for localized corrections that address token-specific
perturbations. At the layer level, TokenRefiner deployed at
different network depths learn to address distinct types of
perturbations, from low-level feature distortions to high-level
semantic shifts. At the modality level, separate TokenRefiner
for text and visual pathways allow for specialized correction
patterns that address the unique vulnerabilities of each modality.

This multi-dimensional purification approach enables a
comprehensive defense against diverse adversarial attacks,
addressing perturbations at their source—the feature represen-
tations themselves. Rather than treating adversarial robustness
as a classification boundary problem, our approach directly
targets the mechanism by which adversarial examples cause
misclassifications: the distortion of feature representations. By
restoring these representations to their clean counterparts, we
enable the model to maintain its performance even in the
presence of adversarial perturbations.

D. Training Methodology

The efficacy of our NAP-Tuning framework relies on a
theoretically grounded training methodology that addresses the
fundamental challenge in adversarial learning: optimizing the
trade-off between standard accuracy and adversarial robustness
while maintaining feature-space integrity. Unlike conventional
adversarial training approaches that focus primarily on decision
boundary robustification, our method directly targets feature-
level purification—a strategy particularly well-aligned with
the core operating principle of VLMs, which fundamentally
depends on cross-modal feature alignment.

1) Adversarial Example Generation: During training, we
generate adversarial examples using the Projected Gradient
Descent (PGD) method with the following objective:

xadv = argmax
x′

Ladv(fθ(x
′), y) s.t. ∥x′−x∥∞ ≤ ϵ, (13)

where fθ represents our model and Ladv denotes the cross-
entropy loss. We employ a standard multi-step PGD implemen-
tation to generate strong adversarial examples, ensuring that
our defense is trained against sophisticated perturbations.

Crucially, the feature-level corrections learned by our model
exhibit transferability across different attack types due to the
commonality in how various attacks distort the underlying
feature manifold. This transferability represents a significant
advantage of our feature purification approach over methods
that merely harden decision boundaries against specific attack
patterns.
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2) Principled Loss Formulation: In contrast to previous
defense methods that employ complex, multi-term loss func-
tions with heuristically determined components, we derive
a principled, minimal training objective from the theoretical
foundations of robust learning:

L(θ) = Lclean(θ) + α(τ) · Ladv(θ), (14)

where α(τ) is a theoretically motivated dynamic balancing
coefficient that evolves with training epoch τ . The clean loss
Lclean and adversarial loss Ladv are defined as:

Lclean(θ) = E(x,y)∼D[L(fθ(x), y)], (15)
Ladv(θ) = E(x,y)∼D[L(fθ(xadv), y)], (16)

where D represents the data distribution, and expectations are
taken over the training dataset.

The dynamic balancing coefficient α(τ) follows a sigmoid
schedule that systematically transitions from emphasizing clean
performance to prioritizing adversarial robustness:

α(τ) = α0 ·
1

1 + exp
(
−10

(
τ

Tmax
− 0.5

)) , (17)

where α0 is the maximum weight assigned to the adversarial
loss, and Tmax denotes the total number of training epochs.
This schedule implements a curriculum learning strategy that
allows the model to first establish representational capacity on
clean data before gradually adapting to adversarial inputs.

The theoretical justification for this scheduling approach
stems from optimization landscape analysis: the loss surface
for adversarial examples typically contains sharper curvature
and more local minima than that of clean examples. By initially
focusing on clean examples, we guide optimization toward
regions of the parameter space with favorable generalization
properties before refining these parameters to accommodate
adversarial inputs. This procedure effectively navigates the
complex optimization landscape of robust learning while
mitigating the well-documented trade-off between standard
accuracy and adversarial robustness.

V. EXPERIMENTS

This section systematically evaluates the effectiveness of
our proposed NAP-Tuning. We first introduce the experimental
setup, then validate the key components of our method through
a series of carefully designed experiments, and comprehensively
compare with existing approaches.

A. Experimental Setup

1) Datasets and Models: To comprehensively evaluate the
effectiveness of our approach, we conduct tests on 11 widely
used image classification datasets, including ImageNet [21],
Caltech101 [22], DTD [23], EuroSAT [24], FGVC Aircraft [25],
Food101 [26], Oxford Flowers [27], Oxford Pets [28], Stanford
Cars [29], SUN397 [30], and UCF101 [31]. These datasets
encompass a diverse range of visual tasks from fine-grained
recognition to scene classification. We follow the training and
testing splits defined in [7]. For the ImageNet test set, consistent

with prior adversarial attack studies [32]–[34], we randomly
sample 1,000 images, ensuring one image per class.

Our experiments are conducted on the CLIP model, where
the default configuration employs the publicly available ViT-
B/16 architecture unless otherwise specified. We also include
results for the ViT-B/32 model as a supplementary evaluation. In
accordance with previous work, we use hand-crafted prompts as
textual inputs (e.g., “a photo of a <class>, a type
of pet” for Oxford Pets).

2) Attack Methods: To evaluate adversarial robustness, we
implement both white-box and black-box adversarial attacks
with more stringent settings compared to our conference version.
For white-box attacks, we use learnable textual vectors to
construct cross-entropy loss and employ stronger PGD-100 [4]
and AutoAttack [35]. For black-box attacks, we utilize more
advanced methods such as CWA [36] and AGS [37].

3) Defense Baselines: We compare our method against
several strong baselines, including variants of AdvPT and the
recent FAP [5]:

• AdvPT: the original Adversarial Prompt Tuning method,
which performs prompt tuning exclusively on the text side.
It adapts the textual input prompts to improve robustness
without modifying the visual inputs.

• AdvPT-V: an extension of AdvPT that applies prompt
tuning on the vision side. Specifically, it introduces
additional learnable prompts into the visual encoder,
enabling adaptation of the visual input space to adversarial
perturbations.

• AdvPT-VLJ (vision-language joint prompt tuning): this
variant simultaneously introduces learnable prompts to
both the vision and text modalities. Moreover, it estab-
lishes a mapping between the vision and language prompts,
allowing joint adversarial tuning of both modalities. This
structure follows a design similar to MaPLe [8].

• AdvPT-VLI (vision-language independent prompt tuning):
a modification of AdvPT-VLJ that removes the mapping
between vision and language prompts. In this setup, the
learnable prompts for the visual and textual inputs are
optimized independently, without explicit cross-modal
interactions.

• FAP [5]: a recent method proposed for few-shot adver-
sarial robustness, which carefully designs the objective
function.

4) Implementation Details: Our training framework spans
90 epochs with a batch size of 512. We adopt the AdamW
optimizer with an initial learning rate of 1× 10−4, which is
modulated through a cosine annealing schedule. For adversarial
example generation during training (as defined in Equation
(12)), we implement PGD-5 with a default perturbation
magnitude ϵ = 1/255 for both training and testing phases,
though we analyze the effects of different ϵ values in subsequent
sections. For the TokenRefiner R, we implement a default 2-
layer neural network architecture, with the impact of network
depth examined in our ablation studies. Regarding the multi-
layer prompt architecture, our default configuration utilizes all
12 transformer layers, with layer-specific effects analyzed in
detailed experiments. The hyperparameter α0 in Equation (17)
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TABLE I: Evaluation results on ViT-B16 under clean and adversarial settings. Performance is reported across multiple datasets
under white-box (PGD and AutoAttack) and black-box attacks (CWA and AGS), where † presents our method. Best results are
highlighted in bold.
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FAP 49.6 91.8 56.8 23.2 24.3 66.6 82.2 85.4 58.6 61.2 70.6 65.6
AdvPT 52.1 93.1 61.8 46.9 30.8 74.9 88.2 89.8 67.8 70.5 74.3 73.0
AdvPT-V 51.2 88.4 36.0 23.5 15.4 56.5 53.3 81.9 48.3 55.8 51.6 51.3
AdvPT-VLI 54.4 84.7 35.4 17.7 11.4 55.5 52.5 76.9 45.2 50.1 48.5 50.8
AdvPT-VLJ 53.0 86.5 35.2 16.4 8.5 52.6 50.7 77.7 42.5 51.0 48.6 49.1
NAP-Tuning† 48.7 92.2 58.2 78.9 55.3 59.2 95.7 81.7 83.9 60.4 72.3 73.9

A
G

S

Vanilla 53.5 86.8 30.9 11.0 18.1 56.9 56.9 78.0 54.1 53.7 49.7 54.3
FAP 51.1 88.2 50.2 12.3 22.2 58.9 77.4 80.1 53.4 55.0 61.3 58.5
AdvPT 54.6 88.5 51.5 26.1 26.1 55.9 76.0 80.4 62.6 62.8 64.1 61.5
AdvPT-V 53.0 85.8 33.2 15.6 13.6 47.6 47.7 78.2 44.3 51.3 44.3 50.8
AdvPT-VLI 56.3 81.1 33.6 14.7 10.6 46.2 48.5 74.3 41.5 46.2 41.7 47.5
AdvPT-VLJ 54.9 83.0 31.6 12.1 7.5 44.0 45.3 73.9 38.6 46.2 41.4 47.3
NAP-Tuning† 50.5 90.4 54.1 72.1 52.5 53.7 93.5 77.2 81.0 56.3 68.1 67.2

PG
D

Vanilla 2.7 28.3 2.0 0.1 0.0 14.4 3.2 8.8 1.4 1.4 4.0 6.7
FAP 24.0 62.4 26.7 0.0 5.2 21.8 51.7 33.7 19.5 25.4 10.9 23.3
AdvPT 1.5 27.0 6.6 0.2 0.6 0.9 4.3 2.8 0.7 1.6 2.1 5.2
AdvPT-V 19.6 61.5 18.6 8.1 3.8 12.4 25.0 38.0 9.8 17.3 17.0 20.4
AdvPT-VLI 21.8 59.1 18.6 10.0 2.9 12.9 21.7 38.2 10.0 15.7 14.2 20.2
AdvPT-VLJ 20.0 58.7 16.4 10.2 2.3 11.4 20.5 32.8 8.6 14.9 12.7 18.9
NAP-Tuning† 29.6 80.8 38.9 48.7 34.4 28.8 86.6 52.1 64.8 35.2 49.5 50.7

A
ut

oA
tt

ac
k

Vanilla 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0
FAP 1.6 1.1 4.7 2.3 2.7 1.4 1.1 1.9 1.4 2.6 1.8 2.2
AdvPT 0.1 0.0 0.2 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.0 0.1
AdvPT-V 14.9 55.3 15.0 2.2 2.2 8.6 18.8 32.1 5.9 12.5 13.0 17.9
AdvPT-VLI 17.0 54.3 14.3 9.2 1.6 9.1 16.2 33.6 4.8 11.4 11.3 17.0
AdvPT-VLJ 10.3 43.9 10.3 3.7 1.2 4.4 9.7 19.8 1.9 6.7 6.0 11.1
NAP-Tuning† 28.3 80.6 38.4 44.4 34.1 28.3 86.2 50.7 64.2 33.6 48.7 51.4

is set to 5.0. All experiments are conducted on NVIDIA A800
80GB GPUs.

B. Main Results

The main evaluation results are summarized in Tables I
and II. Overall, NAP-Tuning achieves highly competitive clean
accuracy compared to existing baselines. While its clean
performance is slightly lower than that of AdvPT, this is
expected, as AdvPT explicitly prioritizes clean accuracy in the
robustness-accuracy trade-off, often at the cost of adversarial
robustness.

In terms of adversarial robustness, NAP-Tuning demonstrates
clear and consistent advantages. Under black-box attacks,
particularly CWA and AGS, our method outperforms all
baselines across both ViT-B16 and ViT-B32 backbones, high-
lighting its superior generalization to unseen adversarial threats.
More importantly, under white-box attacks such as PGD and

AutoAttack, NAP-Tuning exhibits significant improvements.
AutoAttack is widely regarded as the most rigorous and
comprehensive white-box evaluation benchmark, combining
several strong attacks to provide a thorough assessment of
model robustness. Under this challenging setup, NAP-Tuning
achieves substantial gains over all competitors: on ViT-B16,
it attains 51.4% on average under AutoAttack, outperforming
the strongest baseline (AdvPT-V) by 33.5%; on ViT-B32, it
reaches 44.0%, exceeding the best competitor (AdvPT-VLJ)
by 33.0%. These results clearly demonstrate the robustness of
NAP-Tuning against powerful, diverse adversarial threats.

C. Multi-layer Prompt Architecture

To investigate how the depth of our multi-layer prompt
architecture affects model robustness, we conduct an ablation
study by varying the number of layers where prompts are
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TABLE II: Evaluation results on ViT-B32 under clean and adversarial settings. Performance is reported across multiple datasets
under white-box (PGD and AutoAttack) and black-box attacks (CWA and AGS), where † presents our method. Best results are
highlighted in bold.

Im
ag

eN
et

Calt
ech

DTD
Euro

sat

Airc
ra

ft

Foo
d10

1

Flow
ers

Pets Car
s

SUN
UCF

Avg

C
le

an

Vanilla 62.0 91.4 44.2 45.4 19.3 80.4 66.6 87.4 60.2 62.1 63.5 62.0
FAP 54.0 91.0 57.1 47.1 22.4 65.5 82.5 81.6 50.0 62.6 63.8 61.6
AdvPT 63.5 93.5 64.1 79.0 27.5 79.0 91.3 88.5 70.5 71.9 77.8 73.3
AdvPT-V 58.8 90.2 40.8 24.6 17.1 70.4 59.1 83.6 50.3 59.5 57.1 55.6
AdvPT-VLI 61.4 89.2 33.3 24.9 10.0 68.6 54.3 83.9 47.1 54.3 56.9 53.1
AdvPT-VLJ 61.4 87.0 31.1 19.2 9.3 65.7 49.5 83.6 46.0 53.9 55.2 51.1
NAP-Tuning† 48.9 89.8 55.1 80.4 48.2 60.2 94.2 78.0 77.2 59.2 69.3 69.1

C
W

A

Vanilla 48.6 90.5 40.6 33.4 16.1 74.6 61.8 85.2 55.7 59.5 60.1 60.1
FAP 50.8 90.4 55.4 40.1 21.7 63.9 81.2 80.6 48.9 61.5 62.1 59.7
AdvPT 51.2 92.9 60.0 54.9 26.7 73.7 88.2 87.5 65.5 69.3 74.3 67.7
AdvPT-V 48.0 89.2 36.5 10.8 14.3 59.0 52.5 78.0 43.3 54.3 50.5 48.8
AdvPT-VLI 50.7 87.5 29.4 23.5 8.4 57.9 49.2 80.2 38.3 48.7 48.3 47.5
AdvPT-VLJ 51.2 83.9 29.1 21.7 7.4 56.7 46.0 80.2 35.7 49.3 48.6 46.3
NAP-Tuning† 46.1 89.5 54.0 77.6 48.2 57.4 94.3 77.6 77.0 58.2 68.6 68.0

A
G

S

Vanilla 46.1 85.0 29.8 11.8 13.4 50.9 49.1 73.6 47.5 49.6 46.9 45.8
FAP 52.0 89.9 54.4 31.6 21.7 63.4 81.0 80.1 48.8 61.1 61.5 58.7
AdvPT 48.6 88.0 48.5 29.9 23.9 50.5 71.9 74.9 57.3 57.5 60.1 55.6
AdvPT-V 47.7 85.9 33.6 3.6 12.3 49.3 46.7 73.6 37.9 48.9 44.3 44.0
AdvPT-VLI 50.6 83.8 26.4 14.7 6.7 49.3 43.0 76.1 33.9 43.7 41.8 42.7
AdvPT-VLJ 51.2 80.0 26.7 14.6 7.2 48.0 39.5 74.5 32.0 44.5 43.1 41.9
NAP-Tuning† 45.2 87.4 48.4 70.6 45.9 52.0 91.7 72.3 73.1 54.0 64.9 64.1

PG
D

Vanilla 2.0 29.1 4.9 0.2 0.0 7.4 1.7 4.2 0.4 1.5 3.0 6.7
FAP 23.4 67.1 32.8 0.4 7.0 26.2 57.3 40.0 17.6 29.8 31.5 23.3
AdvPT 2.8 31.7 10.0 0.4 0.8 1.8 8.7 3.2 2.0 2.9 4.5 5.2
AdvPT-V 19.0 64.6 19.8 0.3 2.9 15.0 23.0 36.3 9.6 18.9 18.3 20.4
AdvPT-VLI 20.7 62.1 16.3 5.7 1.5 15.9 19.3 37.6 8.4 16.2 17.7 20.2
AdvPT-VLJ 20.9 59.9 15.2 10.1 2.0 15.3 18.8 37.5 9.6 16.9 18.2 18.9
NAP-Tuning† 26.5 77.9 34.2 49.1 25.4 28.4 82.4 41.3 52.4 31.5 45.0 44.9

A
ut

oA
tt

ac
k

Vanilla 0.0 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1
FAP 2.0 1.3 5.0 1.6 3.5 2.0 1.9 1.5 1.0 3.2 2.3 2.2
AdvPT 0.0 0.6 0.5 0.1 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.2
AdvPT-V 8.3 44.8 12.4 0.0 0.5 5.4 8.8 16.3 2.8 7.4 7.2 10.0
AdvPT-VLI 9.3 44.2 10.5 0.2 0.4 5.6 7.6 16.4 2.1 6.2 6.8 10.1
AdvPT-VLJ 10.1 44.7 10.3 1.2 0.6 6.1 7.9 18.9 2.3 7.2 8.3 11.0
NAP-Tuning† 20.9 77.7 34.0 48.8 25.2 28.0 82.3 40.9 50.7 31.1 44.6 44.0

inserted, from 1 to 12. Fig. 3 presents the performance on eleven
diverse datasets under both clean and adversarial conditions.

The results reveal several key insights. First, as shown
in the average performance (Fig. 3l), both clean and robust
accuracy generally improve as the number of layers increases,
confirming the effectiveness of our hierarchical prompting
strategy. Interestingly, we observe dataset-specific patterns
related to task complexity. For more challenging datasets
such as ImageNet (Fig. 3f), SUN397 (Fig. 3j), and Food101
(Fig. 3e), performance follows an inverted U-shape, peaking
at intermediate layer depths before declining. This pattern
indicates mild overfitting when increasing parameter capacity
without corresponding increases in training examples (shot=16).
The highlighted regions in these plots mark the optimal layer
ranges for these datasets.

These findings reveal the potential for further performance
enhancements through larger training sets and dataset-specific

layer optimization, suggesting that improved robustness can
be achieved through straightforward data augmentation. Nev-
ertheless, our method demonstrates strong performance even
with the default configuration (layer=12) as shown in Table I
and Table II, consistently outperforming baseline approaches
across diverse datasets.

D. Adversarial Regularization Parameter

We analyze the impact of adversarial regularization weight
(α) on both standard (clean) and adversarial (robust) accuracy.
Fig. 4 presents results across α values from 0.01 to 100, with
panel (a) showing both metrics on a single y-axis and panel
(b) using dual y-axes to highlight relative trends.

The results show that clean accuracy remains stable (98.5%-
99.1%) across all α values, while robust accuracy increases
substantially from 79.9% at α=0.01 to 93.9% at α=2.0, with
diminishing gains thereafter. For α ≥ 5.0, robust accuracy
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Fig. 3: Clean and robust accuracy across datasets when varying the number of prompt layers (1-12). Complex datasets (ImageNet,
Food101, SUN397) show optimal performance at intermediate depth, while other datasets benefit from deeper architectures.

consistently exceeds 94%. Rather than specifically optimizing
for the peak performance at α=20.0 (94.4% robust accuracy),
we adopt α=5.0 as our representative configuration, which
achieves 98.8% clean accuracy and 94.2% robust accuracy.
These findings demonstrate that our approach effectively
balances clean accuracy and adversarial robustness across a
broad range of α values, exhibiting strong performance without
requiring fine-tuned parameter selection.

E. TokenRefiner Architecture

We analyze the impact of TokenRefiner network depth on
model performance using Oxford Flowers (simpler task) and
ImageNet (more challenging task). Fig. 5 presents clean and
robust accuracy across different TokenRefiner layer config-
urations. Results demonstrate that TokenRefiner is essential
for model convergence—its absence (layer = 0) prevents the
model from converging under 5-step PGD training, resulting in
poor performance (4.6% clean accuracy on ImageNet, 25.8%
on Oxford Flowers). Performance improves substantially as
layers increase from 0 to 2, with ImageNet clean accuracy

rising from 4.6% to 54.4% and robust accuracy from 1.9%
to 28.0%. Similarly, Oxford Flowers shows improvements
from 25.8% to 96.1% (clean) and from 15.1% to 86.6%
(robust). Performance stabilizes beyond 2 layers, leading us
to select a 2-layer architecture for our final implementation.
Notably, unlike previous approaches such as FAP [5] and
APD [6], which lack specialized prompt structure designs and
are therefore limited to weaker adversarial search strategies, our
TokenRefiner enables convergence under stronger adversarial
perturbations. The consistent pattern across datasets of varying
complexity suggests our approach generalizes well without
requiring task-specific architectural adjustments.

F. Perturbation Magnitude

We analyze the impact of perturbation budgets during both
training and testing phases. Table III shows results on the
Flowers dataset with varying ϵ values. The results reveal a clear
trade-off between clean accuracy and adversarial robustness.
As training perturbation budget increases from ϵ = 1 to
ϵ = 4, clean accuracy decreases from 96.1% to 87.5%,
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Fig. 4: Effect of adversarial regularization weight (α) on clean
and robust accuracy. Clean accuracy remains stable (98.5%-
99.1%) while robust accuracy improves significantly with
increasing α, stabilizing above 94% for α ≥ 5.0.
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Fig. 5: TokenRefiner performance across different network
depths. Performance improves dramatically from 0 to 2 layers
before stabilizing, with consistent patterns across datasets of
varying complexity.

while robustness against stronger attacks improves substantially.
Models trained with larger ϵ values perform significantly better
when tested under matching or higher perturbation budgets—a
model trained with ϵ = 4 achieves 55.9% accuracy when
tested at the same level, versus only 17.1% for a model trained
with ϵ = 1. Models experience rapid performance degradation

TABLE III: Accuracy (%) under ℓ∞-bounded adversarial
perturbations. Models are trained and evaluated with varying
perturbation magnitudes (measured in ϵ/255). Bold values
indicate the highest robustness at each test-time perturbation
level.

Training ϵ Clean Accuracy Robust Accuracy @ Test-time ϵ

1 2 4 8

1 96.1 86.5 67.0 17.1 0.1
2 94.2 87.2 75.3 38.1 1.3
4 87.5 79.2 75.7 55.9 11.8

when tested with perturbations larger than their training budget.
This observation suggests that, similar to traditional adversarial
training, adversarial prompt tuning exhibits a clear trade-off
between clean accuracy and adversarial robustness.

G. Few-shot Learning

We examine the impact of shot count on model performance.
Fig. 6 illustrates the relationship between number of shots
(1-16) and model accuracy across diverse datasets. Clean
accuracy shows consistent improvement, with average accuracy
increasing from 40.6% (single shot) to 73.2% (16 shots)—a
1.8× improvement. More remarkably, robust accuracy exhibits
steeper relative gains, rising from 14.1% to 49.8%—a dramatic
3.5× improvement.

This differential impact reveals a key insight: while few-shot
learning is known to enhance clean accuracy, its benefits for
robust performance are substantially more pronounced. The
results indicate that robustness requires a richer representation
of class concepts that becomes increasingly available with
additional examples. These findings align with our observations
in Section V-C, confirming that increasing shot count offers
tremendous potential for performance enhancement in our
method, providing a straightforward path to significantly
improved robustness without architectural modifications.

H. Context Vector Count

We examine how the number of learnable context vectors (Vt)
affects model performance. Fig. 7 shows results for models with
1-16 context vectors on ImageNet and Oxford Flowers datasets.
For ImageNet, clean accuracy remains relatively stable (55.9%-
58.1%) across different vector counts, while robust accuracy
shows modest improvements with increased vectors, peaking
at 29.6% with 14-16 vectors. On Oxford Flowers, both metrics
maintain high performance across all configurations, with clean
accuracy ranging from 95.5% to 96.5% and robust accuracy
between 85.2% and 86.7%. These findings suggest that the
number of context vectors Vt has a relatively minor impact
on overall performance compared to the influence of layer
count in Multi-Layer Prompts observed in Section V-C. This
indicates that input-level representational capacity is not the
primary performance bottleneck, particularly for less complex
datasets where even few context vectors prove sufficient.

VI. CONCLUSION AND DISCUSSION

This paper presents the Neural Augmentor framework for
Multi-modal Adversarial Prompt Tuning (NAP-Tuning), a
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Fig. 6: Impact of shot count on clean and robust accuracy across eleven datasets. Each subplot (a-k) shows performance on
individual datasets, while subplot (l) presents the average across all datasets.

2 4 6 8 10 12 14 16

Number of learnable vectors ( t)
0

20

40

60

80

100
ImageNet

Clean
Robust

2 4 6 8 10 12 14 16

Number of learnable vectors ( t)

Oxford Flowers

Clean
Robust

Ac
cu

ra
cy

 (%
)

Fig. 7: Effect of context vector count (1-16) on ImageNet and
Oxford Flowers. Performance varies minimally across different
vector counts, indicating context vectors are not a primary
bottleneck for model capability.

novel architecture-focused approach to enhancing adversarial
robustness in Vision-Language Models. Our work addresses
significant limitations in existing adversarial prompt tuning
methods by fundamentally reconceptualizing prompt architec-
ture through feature purification mechanisms.

A. Conclusion

We have extended adversarial prompt tuning from text-
only to multi-modal contexts and from single-layer to multi-
layer architectures while introducing token refiners that enable
modality-specific and layer-specific feature correction. This
architectural innovation represents a paradigm shift from
previous loss-focused approaches, emphasizing the critical role
of feature purification in addressing adversarial distortions.
Through extensive experimentation, we have demonstrated
that NAP-Tuning substantially outperforms existing methods,
achieving state-of-the-art robustness against strong attacks
while maintaining competitive clean accuracy.

B. Broader Implications

Our findings have several significant implications: 1) high-
light the insufficiency of merely transplanting prompt tuning
techniques from generalization domains to adversarial defense
without architectural reconsideration; 2) underscore the im-
portance of addressing adversarial perturbations at the feature
level rather than solely through loss modification.
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C. Discussion

Future work could explore adaptive token refiners that dynam-
ically adjust their behavior based on detected perturbation char-
acteristics, integration of uncertainty quantification mechanisms
to improve refinement reliability, and extension to other multi-
modal tasks beyond classification. Additionally, investigating
the theoretical connections between feature purification and
information bottleneck principles could yield deeper insights
into adversarial robustness in representation learning.

In conclusion, our work establishes that addressing adver-
sarial robustness in VLMs requires fundamental architectural
innovations rather than merely adapting existing prompt tuning
techniques. The Neural Augmentor framework provides a
principled approach to this challenge, offering both improved
performance and conceptual insights that advance our under-
standing of robust multi-modal learning.
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