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ABSTRACT
Large language models (LLMs) are sophisticated artificial intelli-
gence systems that enable machines to generate human-like text
with remarkable precision. While LLMs offer significant technolog-
ical progress, their development using vast amounts of user data
scraped from the web and collected from extensive user interactions
poses risks of sensitive information leakage. Most existing surveys
focus on the privacy implications of the training data but tend to
overlook privacy risks from user interactions and advanced LLM
capabilities. This paper aims to fill that gap by providing a compre-
hensive analysis of privacy in LLMs, categorizing the challenges
into four main areas: (i) privacy issues in LLM training data, (ii)
privacy challenges associated with user prompts, (iii) privacy vul-
nerabilities in LLM-generated outputs, and (iv) privacy challenges
involving LLM agents. We evaluate the effectiveness and limita-
tions of existing mitigation mechanisms targeting these proposed
privacy challenges and identify areas for further research.
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1 INTRODUCTION
Artificial intelligence (AI) stands as a groundbreaking frontier tech-
nology, offering users the ability to simplify day-to-day tasks through
automation and intelligent querying. One of the rapidly advancing
AI innovations is the Large Language Model (LLM), which has rev-
olutionized natural language processing, empowering machines to
produce human-like text with exceptional precision [30].

LLMs, trained on vast datasets and characterized by extensive
parameters, master linguistic nuances to generate sensible, coher-
ent, and conversational responses to natural language queries [128].
Notable platforms like OpenAI’s ChatGPT and Google’s Gemini,
boasting millions of active users, have gained immense popularity.

Leveraging prompt engineering [118], in-context learning capa-
bilities [13], and retrieval-augmented generation [61], LLMs have
demonstrated adaptability to diverse contexts and can undertake
translation, debugging, and storytelling tasks without requiring
training or fine-tuning. While they perform impressively in var-
ious tasks, there are opportunities for improvement in address-
ing challenges such as hallucination, the need for domain-specific
knowledge, and horizon cut-off.

1.1 Privacy Concerns in Conventional
AI/Machine Learning (ML) vs. LLMs

Despite LLMs offering significant advancements and benefits, fair-
ness, reliability, bias, security, and privacy concerns are becoming
increasingly prominent [87]. This paper focuses on the multifaceted
view of privacy in LLMs, which presents distinct challenges com-
pared to traditional AI privacy concerns related to models and data.
Privacy concerns in traditional AI focus on data privacy issues, such
as unauthorized access to sensitive information or leakage through
models via attacks like membership inference and model inversion
[104]. In addition to these traditional risks, LLMs bring about new
dimensions of privacy risks due to their advanced capabilities, such
as a profound understanding of natural language context, human-
like text generation, contextual awareness in knowledge-rich fields,
and a robust ability to follow instructions [126, 128].

The utilization of LLMs in commercial applications such as Ope-
nAI’s chatGPT and Google’s Gemini raises strong privacy concerns,
particularly regarding the collection and use of personal data [20].
LLMs are often trained on extensive datasets compiled from vari-
ous sources, including social media posts, websites, online articles,
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and books. There is a significant risk that this data, even when
de-identified, can contain sensitive personal information [128]. De-
spite the sharing of such data by individuals or organizations for
diverse agreed purposes, it is plausible that such data have been
incorporated into the training data for building LLM without their
explicit consent, constituting a privacy breach. Besides, the interac-
tive nature of LLMs poses additional privacy challenges. As users
engage with LLMs through prompts, they may inadvertently dis-
close sensitive information. The sophisticated reasoning capabilities
of LLMs can infer sensitive information about users even utilizing
seemingly harmless user inputs [128]. Additionally, LLMs often
integrate functionalities that involve communication with external
agents or third-party modules, extending the ecosystem to perform
automated tasks assigned by users. However, such integration can
further complicate privacy concerns, as each interaction has the po-
tential to generate and disseminate sensitive data across a network
of interconnected systems, each with varying levels of security and
adherence to privacy concerns.

1.2 Motivation
Evaluating privacy concerns in LLM systems is crucial for several
compelling reasons:

• Regulatory compliance. Regulations such as the General Data
Protection Regulation (GDPR) [89], the Health Insurance
Portability and Accountability Act (HIPAA) [1], or the EU AI
Act [90] impose laws on data protection and AI safety, estab-
lish substantial penalties for non-compliance and empower
individuals with rights to protect their sensitive information.
Thus, organizations must adhere to such regulations when
deploying LLM-based services.

• Inherent vulnerabilities and privacy risks in LLMs. Compared
to traditional AI, LLMs introduce exacerbated vulnerabilities,
as they are often trained on vast amounts of potentially
sensitive data. This requires comprehensive analyses and
methodologies to understand their strengths andweaknesses,
and mitigate their vulnerabilities.

• Advancement of privacy technologies for LLMs. Understand-
ing the privacy implications of LLMs facilitates evaluating
current technologies, such as differential privacy within the
context of LLMs. Such insights are crucial for pinpointing
gaps and driving innovation in developing robust mecha-
nisms for privacy-preserving LLMs.

• Public perception and Trust. The widespread use of LLMs in
consumer applications, particularly in critical sectors such
as finance and healthcare, demands transparency and robust
privacy protection to maintain public trust, as privacy viola-
tions within these domains can lead to significant financial
and individual harms.

Hence, a thorough understanding of LLM systems’ privacy chal-
lenges and the development of practical solutions are essential for
their ethical and safe deployment.

1.3 The Overall Objectives
The objectives of this paper are three-fold. First, it comprehensively
maps the landscape of privacy issues associated with LLMs, ana-
lyzing these multiple dimensions: the privacy implications of the

training data used, the potential for sensitive information leakage
through user interactions (i.e. prompts), and privacy vulnerabil-
ities specific to the deployment of LLMs (i.e., privacy breaches
through LLM-generated output and privacy challenges involving
LLM agents). Second, it provides a detailed overview of the cur-
rent mitigation strategies and technologies employed to address
these identified privacy risks. Finally, it broadens the discussion by
examining how various privacy-preserving techniques can tackle
diverse privacy threats, while highlighting key research challenges
and proposing avenues for future exploration.

To support these goals, we conducted a comprehensive review
across various sources, including the latest research papers, tuto-
rials, dissertations, and magazines focused on LLMs and privacy.
We hope this work provides a holistic perspective for researchers,
practitioners, and stakeholders engaged in the development and
deployment of LLM systems.

1.4 State-of-the-art
The state-of-the-art studies on privacy in LLMs can be broadly
categorized into privacy and security challenges in LLMmodels and
training data. Privacy in LLMs can be categorized further into two
main groups: privacy risks and defense mechanisms. The former
focuses on specific privacy and security challenges within the LLM
domain [14, 67, 70, 125], while the latter focuses on addressing
these challenges and the available defense mechanisms [20, 55,
80, 120, 128]. While many surveys [80, 106, 128] predominantly
focus on the privacy implications of LLMs and their training data,
they often overlook the distinct privacy risks introduced by user
interactions and LLMs’ advanced capabilities [14]. Consequently,
we could not identify any previous surveys or SoKs related to the
privacy challenges during LLM deployment and user interaction.

The significance of prompts cannot be overstated in LLM opera-
tion, as they facilitate the customization of pre-trained LLMs for
task-specific purposes by appending a sequence of query texts[68,
149]. However, these prompts can often contain user-sensitive in-
formation, which can be inferred by LLM service providers, who
leverage the LLMs’ capabilities and access to personal data [108].
Recent advancements in the privacy domain for LLMs offer a timely
and highly relevant overview of this emerging research area [31].

Our study delves into the latest approaches and techniques in this
domain, highlighting current research gaps and privacy challenges
in LLMs across the categories: training data, prompts, LLM outputs,
and LLM agents.

1.5 Research Questions
We formulated the following research questions (RQs) to address
the aforementioned objectives of our study systematically.

(1) RQ1: How do LLMs’ advanced inferring capabilities and con-
textual awareness impact user privacy across various dimen-
sions, such as inference of sensitive information and mem-
orization of user inputs? This question aims to explore the
core capabilities of LLMs that may lead to privacy breaches.

(2) RQ2: What privacy challenges are associated with users
actively interacting with LLMs? This question investigates
how users can inadvertently expose sensitive information
when interacting with LLMs.
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(3) RQ3: What state-of-the-art solutions are currently employed
to mitigate the privacy risks inherent in LLMs? This question
investigates the effectiveness and limitations of the existing
privacy-preservation technologies for LLMs.

(4) RQ4:What are the open challenges and possible future trends
to overcome these challenges? This question aims to high-
light ongoing challenges and predict future technologies to
preserve privacy in the context of LLMs.

1.6 Scope
This paper focuses on the papers published after 2022, aligning with
the surge of LLMs. While we acknowledge the significant body of
work exploring training data privacy concerns, we deliberately
chose not to delve extensively into them, as they have been com-
prehensively covered in existing surveys [80, 106, 128]. Instead, our
focus lies on conducting a more in-depth analysis of other privacy
challenges unique to LLMs that have not been sufficiently explored
in the literature. Moreover, our study focuses exclusively on privacy
issues within LLMs and does not address the broader security chal-
lenges. The employed methodology to identify relevant literature
and establish the categories is detailed in Appendix 6.1.

2 OVERVIEW OF PRIVACY CHALLENGES IN
LLM

Privacy in LLMs refers to protecting sensitive data that extends
beyond traditional Personally Identifiable Information (PII) to en-
compass confidential, proprietary, intellectual property, and con-
textual or behavioral data that could reveal personal attributes or
identities [52, 124]. This section outlines the key privacy challenges
associated with LLM systems. Our comprehensive analysis of the
literature reveals four main categories of privacy challenges: (i)
privacy issues related to LLM training data [36, 80], (ii) privacy
challenges in the interaction with LLM systems via user prompts in
the interaction with LLM systems [68, 146], (iii) privacy vulnerabili-
ties in LLM-generated outputs [86, 124], and (iv) privacy challenges
involving LLM agents [39, 109]. Figure 1 shows the multi-faceted
view of four identified privacy challenges in LLM systems.

2.1 Privacy in LLM Training Data
Privacy concerns in LLMs primarily revolve around protecting the
training data utilized in their development. This is a key issue in
commercial deployments of LLM systems, where they are trained
using personal data retrieved from various sources such as social
media posts and websites [55]. This practice raises significant pri-
vacy concerns as it often involves using individuals’ data without
consent and contextual integrity principles when used outside their
intended context [81]. Moreover, concerns arise regarding data
storage practices, with LLM service providers such as OpenAI stor-
ing personal information potentially conflicting with GDPR [74].
Besides the privacy concern arising from the utilization of public
data and the data owner’s consent, LLM models are susceptible to
significant privacy vulnerabilities, such as memorization and the
inadvertent leakage of PII or confidential data [20].

2.2 Privacy in Prompts
There are potential privacy leakages from user-provided input
prompts during interactions with LLM systems [107]. The ever-
increasing inference capabilities of LLM systems and their wide-
spread adoption across various domains have raised significant
privacy concerns through user prompts. User prompts are often
exposed to the service providers, raising questions about whether
current LLM systems could breach users’ privacy by inferring per-
sonal attributes from the prompts. Despite data transmission and
storage encryption, LLM service providers retain the knowledge of
the actual data contents, undermining individuals’ or entities’ trust
in these services.

The interactive utilization of LLM systems introduces a new
set of privacy risks during inference time. LLM systems are fed
with diverse types of information from various sources in their
prompts, potentially revealing more contextual data beyond the
direct sensitive data in the prompts. Recent findings in [107] have
demonstrated that modern LLM systems can be leveraged for highly
accurate predictions of personal attributes, even from seemingly
innocuous data. Previously, human involvement was necessary
for inferring private attributes. However, these models are now
swift and economical enough to automate such inferences at scale
[108]. Simultaneously, users remain unaware of these concerns,
inadvertently sharing texts containing information easily inferable
by LLM systems. For evidence of privacy vulnerability via prompts,
The New York Times1 reported instances where personal informa-
tion, including chatbot conversations and login credentials, was
unintentionally exposed.

Given these challenges, we believe the research community is
responsible for fostering a paradigm shift in LLM-centered privacy
research. New research should extend beyond examining privacy
risks associated only with models and data to explore privacy vul-
nerabilities inherent in other aspects (e.g., user interactions) of
LLMs. Prompts are one significant aspect as they directly reveal
substantial information. These approaches should prioritize user-
friendliness, ensuring users can easily and quickly verify whether
they disclose private information in their prompts.

2.3 Privacy in LLM-generated Outputs
Within the scope of privacy concerns regarding LLM-generated
outputs, we delve into issues such as the retention, extraction, and
retrieval of sensitive user data in outputs (i.e., memorizing sensitive
information from user prompts) and the inadvertent inclusion of
sensitive information in the LLM outputs.

We consider LLM-generated output privacy as a distinct aspect
of LLM privacy due to the following reasons: 1) Users may enter
sensitive information in prompts without expecting it to appear in
the output. However, LLMs may still include such information in
their responses. This issue is prevalent in In-context Learning (ICL),
where users’ private data in prompts help adapt the model to spe-
cific tasks with only black-box access. Due to the context-specific
examples in the prompts, the output can include labels of sensitive
data samples from the prompt data for ICL. 2) In commercialized

1https://www.nytimes.com/2023/03/31/technology/chatgpt-italy-ban.html
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Figure 1: A Multi-Faceted View of the Four Identified Privacy Challenges in LLMs

LLM settings like the GPT store2, specialized LLM models are fine-
tuned using private data through methods like ICL, fine-tuning,
and Retrieval-Augmented Generation (RAG). These techniques inte-
grate user queries with demonstrations or relevant documents from
a knowledge base to enhance LLM-generated responses. However,
this customization poses a risk of exposing private information
from a smaller user base to a broader audience. Although LLM
products should ideally avoid generating harmful outputs such as
sensitive information, legal, medical / health, financial advice, and
misinformation, they can be customized to produce such output. 3)
Even when users employ techniques to protect sensitive informa-
tion in input prompts, LLM-generated outputs remain vulnerable to
exposure to malicious service providers, third-party tools, external
parties, or hackers[129]. Service providers can potentially disclose
sensitive information in output prompts by analyzing training data
or accessing external sources, even with partially sensitive data
from prompts. For example, using protection mechanisms at the
user end, users can restrict LLM systems from retaining sensitive
data (e.g., passport identifier) in input prompts. However, LLM sys-
tems may still inadvertently reveal sensitive information such as
the birth year or age in the output due to its processing [120].

2.4 Privacy in LLM Agents
Recent advances in LLM Systems have led to the development of
agent-based solutions such as WebGPT [78], AutoGPT [94], and
GPT Plugins (e.g.,WebPilot [145]). As illustrated in Figure 2, in these
systems, a main LLM agent divides a user prompt into individual
tasks and transmits them to secondary agents (which can also be
LLM-based). These agents then leverage a range of powerful tools,
including other agents and third-party applications (e.g., mobile
apps, web browsers, sensors, metaverse interfaces, code interpreters,
and API plugins) to interact with external environments and carry
out real-world tasks assigned by the main LLM agent.

The transition from text-based interactions to those involving
sensitive data with agents operating in the real world raises signifi-
cant privacy concerns [99]. For example, physical interaction-based

2https://openai.com/index/introducing-the-gpt-store/
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Figure 2: The Workflow of LLM Agents

LLM agents heighten privacy risks by collecting real-world data
such as facial photos (cameras) and speech audio (microphones)
[32]. A significant challenge in such an agent-based system is the
risk of unauthorized propagation of sensitive data across different
components of the system [67]. Indeed, agents autonomously inter-
act with external tools, different data modalities, other AI models,
and APIs, making tracking and controlling data flow difficult. Users
may provide private inputs through prompts, and when process-
ing their requests, an LLM agent may share their data with exter-
nal tools or across interconnected systems without their explicit
awareness. The agent’s ability to autonomously reason, execute
multi-step actions, and retrieve information from various sources
further amplifies the privacy risks, as data may persist across in-
teractions in ways not immediately apparent to users. LLM agents
pose risks of data persistence, where sensitive information from
past interactions may resurface in future prompts, especially when
contextual memory is retained across sessions or users [67].

Hence, LLM agents extend beyond traditional LLM output pri-
vacy concerns by persisting memory, unintended exposure across
sessions and contexts, autonomously interactingwith external tools,
and operating in real-world physical interactions with environ-
ments [32]. Therefore, stricter and more diverse mitigation strate-
gies are needed to address privacy concerns in LLM agents.
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3 PRIVACY CHALLENGES IN LLM AND
MITIGATION

This section discusses privacy challenges under four broad cate-
gories and reviews existing mitigation techniques in the literature.

3.1 Privacy Issues in LLM Training Data and
Mitigation

We analyze privacy issues in LLM training data by distinguish-
ing between the causes, attack mechanisms, and consequences of
privacy vulnerabilities. Data memorization is one of the primary
causes of privacy risks, where models inadvertently retain and re-
produce sensitive information from training data. Privacy attacks
act as mechanisms that adversaries use to exploit LLMs to extract
sensitive information. These attacks can lead to consequences such
as privacy leakage. For example, unauthorized access to personal
or confidential data can compromise privacy. Figure 3 illustrates
these interrelated aspects of privacy risks in LLMs. Although prior
research works [20, 80, 106] extensively discuss privacy threats
and mitigation, they have not examined this causal structure. This
section summarises key insights, emphasizing how data memoriza-
tion contributes to privacy vulnerabilities and how various attack
techniques facilitate privacy leakages.

Data
Memorization

Consequences

Unauthorized Access
to Personal DataExtraction attacks Inference Attacks

Gradient leakage
attacks

Reconstruction
attacks

Training data
extraction attacks

Membership
inference attacks

Attribute inference
attacks

User inference
attacks

Training on
Sensitive Datasets

Overfitting

Inadequate
Regularization

Causes Attack Mechanisms

Figure 3: The Privacy Challenges in LLM Training Data

3.1.1 Potential Causes of Privacy Issues. Many privacy issues in
LLMs arise due to data memorization, which can be exploited by
privacy attacks, ultimately resulting in privacy leakages [53]. Data
memorization is an intrinsic characteristic of many ML models, as
the training process involves retaining specific information from
input data to make accurate predictions [3]. However, while users
expect LLMs to generate novel content that is semantically similar
to the training data, the verbatim memorization and reproduction
of learned phrases can potentially expose sensitive data and breach
privacy [36, 80]. Hence, memorization is particularly problematic
when LLMs are trained on personal information datasets.

Beyond data memorization, privacy leakage can stem from train-
ing on sensitive datasets without proper sanitization [14]. Over-
fitting and inadequate regularization (e.g., dropout, weight decay)
further exacerbate the risk by making models more likely to retain
and expose specific training data [54, 112].

Mitigation. A fundamental approach to mitigating privacy is-
sues in LLM training data is to reduce data memorization, which is
the basis for many attacks. We first examine techniques designed
to address the challenge of data memorization. One straightforward
approach is to deduplicate training datasets, as data redundancy
can exacerbate model memorization. Even a 10-fold data duplica-
tion can lead to a 1000-fold increase in memorization [51]. Another
method is early detection of memorization during the training

phase, enabling practitioners to take corrective actions such as
discarding memorized points, reverting to a checkpoint, or halt-
ing the training process for adjustments [80]. The utilization of
filtering techniques such as the bloom filter method (which is a
probabilistic data structure used to detect and filter out memorized
or sensitive data efficiently) [45] is another defense mechanism
for memorization, scanning the training datasets to check if the
model’s next token forms an 𝑛-gram in the training set and select-
ing an alternate token by sampling from the model’s posterior if
it does. However, this method does not guarantee privacy and can
be bypassed with plausible, minimally modified prompts, failing to
prevent training data leakage entirely. Another promising approach
for mitigating memorization challenges is differential privacy (DP:
detailed in Table 1), which adds noise to data during training, pro-
viding mathematical guarantees for privacy but reducing utility
[150]. LLM editing offers yet another approach, in which neurons
corresponding to memorization and storage of specific training
data knowledge can be directly edited (i.e., by altering internal
parameters) [15].

A key consequence of data memorization is personal or confi-
dential data leakage, which poses a significant privacy risk. While
general techniques such as deduplication [51, 60] can help mitigate
model memorization and reduce the risk of personal data leakage,
some studies specifically target this issue by employing advanced
approaches, such as fuzzy logic deduplication [13] to prevent the
retention of sensitive information. Other methods to prevent pri-
vacy leakage include data cleaning, PII scrubbing, and filtering with
restrictive terms of use [4, 124]. Data cleaning enhances privacy
by correcting errors, implementing anonymization, and following
secure practices to protect sensitive information [85, 124]. PII scrub-
bing filters [4, 23, 110] use Named Entity Recognition (NER) to tag
and remove PII. However, these tools cannot guarantee complete
removal, and AI advancements can infer PII from non-PII data.
Therefore, minimizing data retention and enforcing purging poli-
cies are critical to reducing the risk of breaches and unauthorized
access. While most of these approaches are applied to smaller text
corpora, the use of extensive training data in LLMs presents challenges.
More empirical studies are needed to evaluate their effectiveness in
such large-scale models with larger datasets.

Recently, knowledge unlearning techniques [33, 130, 140] have
been utilized in LLMs to force models to forget specific knowledge
without requiring full retraining. These knowledge unlearning tech-
niques involve randomly sampling data from the training corpus
and performing gradient ascent, altering the direction during lan-
guage modeling on target token sequences. However, the success of
this method depends heavily on specific target data and the domain
of the data to be unlearned [106].

Another recent method for addressing PII leakage in LLMs is
ProPILE [56], a tool that allows data subjects to assess the inclu-
sion and potential leakage of personal data in LLM systems during
deployment. ProPILE considers the linkability and structurability
of data in inferring PII. Singh et al. [105] proposed a multi-faceted
whispered tuning approach by integrating PII redaction, DP, out-
put filtering, and architectural improvements to enhance privacy
preservation. Likewise, OpenAI utilizes filtering and fuzzy dedupli-
cation techniques to remove PII from the corpora utilized for model
training [13]. Despite these efforts, achieving complete prevention of
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privacy leaks remains challenging. Hence, in-depth studies are neces-
sary to design effective defense techniques for PII leakages on LLMs
while maximizing user education and involvement.

3.1.2 Potential Privacy Attacks. To exploit data memorization in
LLM training data, various privacy attack mechanisms have been
developed, each employing different techniques and targeting spe-
cific vulnerabilities. While LLMs utilize Deep Learning (DL) for
model building, all traditional attacks on DL models may not di-
rectly apply to LLMs due to limited access to model parameters
and the prevalent use of application programming interfaces (APIs)
in most LLMs. However, certain LLM service providers offer open-
source models (e.g., LLaMA, BERT, DeepSeek, Mistral 7B ), making
DL-related attacks extended to the LLMs. Privacy attacks on LLM
can be broadly categorized into two classes: extraction attacks and
inference attacks.

Extraction Attacks. Extraction attacks involve adversaries at-
tempting to extract sensitive information or insights from the LLM
model by accessing model gradients, the training data, or adver-
sarial prompting. LLMs may inadvertently capture and reproduce
sensitive information in the training data, potentially raising pri-
vacy concerns during the text generation process [80]. Various
types of data extraction attacks include gradient leakage attacks
[9, 22, 152], reconstruction attacks [8, 19, 69], and training data
extraction attacks [14, 79, 127, 147]. Gradient leakage attacks ex-
ploit DL optimization algorithms, accessing gradients to leak sen-
sitive data. However, this attack is challenging when the model
architecture is unknown (i.e., closed-source) [22]. Reconstruction
attacks aim to recover private training data by analyzing model
parameters, gradients, or generated output. Even without direct
access to LLMs, attackers can use shadow modeling with external
datasets and feedback from the target LLM [143]. Training data
extraction attacks target sensitive information in training data by
strategically querying LLM systems via prompts to retrieve spe-
cific examples, including personal information [14, 20]. Jailbreaking
[117] and prompt injection [103] security attacks make LLMs more
vulnerable to extraction attacks and introduce substantial privacy
risks with broad and potentially severe implications even without
direct model access. Jailbreaking attacks exploit both direct and
indirect techniques to bypass the safety and alignment constraints
of LLMs. These attacks often use manually or automatically crafted
adversarial prompt templates designed to deceive the model into
generating harmful content or revealing sensitive information, po-
tentially including memorized data from its training corpus [70]. In
terms of extracting private information, a multi-step jailbreaking
approach has bypassed ChatGPT’s safety mechanisms, successfully
extracting PII from ChatGPT and LLM-powered search engines
[62]. Another study tested 3,700 templated jailbreak prompts, ana-
lyzing their effectiveness across different LLMs [88]. Additionally,
an automated framework, ReNeLLM, was proposed to generate
effective jailbreak prompts using prompt rewriting and scenario
nesting to infer private information [25].

Inference Attacks. Inference attacks aim to acquire knowledge
or insights about a model or data characteristics by observing the
model’s responses or behavior [128]. Common inference attacks

in LLMs include membership inference attacks (MIA), attribute
inference attacks, and user inference attacks [46, 75, 116].

In MIAs, an adversary attempts to predict whether a particular
data point (e.g., a particular sentence or document) is a member of
a target model’s training dataset [29] (Detailed in Table 1). MIA can
be conducted solely based on the text generated by LLM systems.
While MIAs generally perform no better than random guessing
for LLM training data due to the vast datasets used [29], their
effectiveness improves when small datasets are used for fine-tuning
for specific tasks, known as ‘User Inference Attacks’ [50]. These
attacks are prevalent in fine-tuned LLMs using techniques such as
full fine-tuning, RAG, and ICL techniques [28, 37].

User inference attacks present a significant privacy risk for LLMs
fine-tuned on a smaller group of user data, where an attacker tries to
determine if a specific user participated in the fine-tuning process.
Minimal user samples and black-box access to the fine-tuned model
are sufficient for this attack to succeed [50]. This poses a privacy
risk if the fine-tuning task reveals sensitive information about users,
such as a model fine-tuned exclusively on users with a rare disease.

Attribute inference attacks (Detailed in Table 1) pose another
privacy risk for LLM systems, as adversaries can use these attacks to
identify users’ attributes through prompts using publicly available
partial data of users [107]. Robin et al. [107] demonstrated that
personal details can be inferred accurately from current LLMs.
While prompt injection is often discussed in the literature as a
backdoor security attack, it can also be used for attribute inference.

Mitigation. Differential Privacy (DP) techniques have become
a popular approach in addressing such privacy attacks[66, 102, 105,
137]. Besides DP, techniques to reduce memorization (discussed
in Section 3.1.1) can also help prevent these privacy attacks. For
example, Jagielski et al. [47] discovered that using larger datasets
during fine-tuning or more extended training with non-sensitive
data could effectively mitigate privacy concerns by reducing the
MIA. Furthermore, test-time defense and instruction processing are
also crucial for mitigating privacy attacks [128]. Test-time defenses
filter malicious inputs, detect abnormal queries, and post-process
LLM outputs. Instruction pre-processing transforms user prompts
to eliminate adversarial contexts or malicious intents [64, 96]. En-
hancing LLM architectures can also improve safety by integrating
LLMs with knowledge graphs [136] and cognitive architectures
[97]. Furthermore, the LLM training process can employ robust
optimization methods such as adversarial training [134] and robust
fine-tuning [26] to prevent malicious text attacks.

However, these techniques have limitations, such as challenges
in effectively handling adversarial inputs, ensuring scalability in
large models, and maintaining a balance between privacy and model
performance, particularly in dynamic, real-world scenarios.

Federated learning (FL) may potentially solve privacy attacks
in LLM systems by shifting processing from central servers to
users [95, 115]. However, its application to LLMs faces challenges
due to inadequate FL framework support, handling vast data and
complexmodels, and optimizing communication and computational
resources. Some studies [34, 131] have explored FL for LLMs, but its
viability remains uncertain. Federated LLM fine-tuning may enable
parameter-efficient fine-tuning with limited resources [58].
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Fully Homomorphic Encryption (FHE) has been explored as a
privacy-preserving solution [92, 98, 142] for language models such
as DistilBERT [101] (66M parameters) and BERT (110M parameters)
[24]. While FHE has been applied to smaller models with limited
datasets [92, 98, 142], scaling it to larger models, such as GPT with
massive datasets, remains challenging due to the computational
complexity. Outsourcing computation can also be securely con-
ducted for small language models (LM): for instance, an encrypted
RNN text classifier was shown to predict on homomorphically
encrypted input without accuracy loss [63], and such overhead
remains manageable at this scale. With a compact model, full on-
device inference becomes realistic, retaining user data locally and
mitigating cloud-related vulnerabilities [71, 122, 132]. Conversely,
LLMs with billions and trillions of parameters often demand cloud-
based infrastructures and massive datasets, introducing more com-
plex privacy concerns.

Mitigation strategies for jailbreaking attacks are extensively stud-
ied in the literature and can be categorized into prompt-level and
model-level approaches, depending on whether they modify the
protected LLM. Prompt-level defenses (e.g., input sanitization) [148]
focus on filtering adversarial prompts using rule-based detection or
classifier-based approaches. Model-level defenses (e.g., adversarial
training) [48] involve enhancing LLMs through safety training, re-
inforcement learning with human feedback (RLHF), and adversarial
fine-tuning to improve robustness against attacks. Constitutional
AI frameworks [6] and automated moderation systems also help
enforce ethical guidelines and restrict unintended model behaviors.
To protect private information from jailbreaking, prior work has
explored mostly prompt-level mitigation: defending with additional
prompts and using a harmfulness classifier to filter malicious inputs
[25, 88]. The study in [62] outlined potential approaches at both
model-level defenses and prompt intention detection mechanisms
to prevent the disclosure of private information.

Key Takeaways

LLM systems have shown an ability to memorize training
data, raising concerns about the unintentional disclosure of
sensitive information and privacy breaches. Despite the ef-
forts to address these issues with methods such as differen-
tial privacy, knowledge unlearning, and test-time defenses,
adversaries may still infer private data through adversar-
ial prompting. Researchers should focus on establishing
responsible practices that safeguard privacy while preserv-
ing the utility of LLMs trained on large-scale datasets.

3.2 Privacy Challenges in the Interaction with
LLM systems via Prompts and Mitigation

This section focuses on privacy challenges when users interact
with pre-built LLM systems via prompts. We identify three types
of privacy challenges associated with prompts in the literature: the
direct leakage of sensitive data in prompts, the potential inference
of sensitive information, and the leakage of contextual information
from user devices and activity logs.

3.2.1 The Direct Leakage of Sensitive Data in Prompts. Users might
inadvertently reveal personal data through prompts when interact-
ing with the system, often due to a lack of awareness or reluctance
to undertake additional efforts to minimize personal information
in prompts. Even individuals with strong technical backgrounds,
often in IT industries, reportedly leaked sensitive company data
through ChatGPT prompts in a late 2022 incident3.

This challenge became more prominent with the integration of
LLMs into interactive computing systems such as conversational
agents, making them widely accessible for everyday tasks. Users
tend to disclose more private information when engaging with
LLM-based conversational agents due to the tools’ high utility and
human-like interactions [146]. Moreover, many users are uncon-
cerned about revealing personal data in prompts, maybe under the
misconception that LLM companies no longer collect interaction
data, based on various published statements [120]. However, despite
the prevailing belief, often the company’s privacy policies indicate
that user prompts are periodically integrated into the training pro-
cess by default [120, 146]. The extent of sensitive data revealed in
user prompts is evidenced in the study by Zhang et al. [146]. To
identify PII leakage in prompts, they analyzed real-world ChatGPT
conversations. The study uncovered significant amounts of sensi-
tive and personal data in LLM prompts, providing a comprehensive
overview of user disclosure behaviors.

Protecting personal data in prompts is imperative. Conversations
between users and LLMs can become embedded in LLM parameters
during training, making them vulnerable to adversarial attacks.
Hence, data protection measures should be implemented at the user
end to protect data from service providers and external parties.

Mitigation. A straightforward mitigation technique for poten-
tial direct leakage of sensitive data is input validation and sanitiza-
tion. Some approaches rely on LLM service providers to implement
these solutions, so their efficacy depends on the trustworthiness of
the providers or the LLM itself. Other methods acknowledge that
privacy vulnerabilities can arise from both LLM service providers
and external parties, offering a safer solution than those relying
on the trustworthiness of the service providers. One sanitization
approach involves using NER or predefined policies and rules to
identify and remove specific sensitive details in prompts. Research
works [17, 65, 68] and commercial products [41, 73] focus on prompt
privacy using this method.

To address the dilemma of potentially compromising prompt
utility by removing all personal information from user prompts,
EmojiCrypt [68] converts sensitive information in prompts into an
encrypted format using emojis and mathematical operations. This
method retains informative value for LLMs while making the data
incomprehensible to humans. However, it relies on trusting the LLM
for encryption, mainly aiming to conceal information from other
users. Other constraints include a limited symbolic vocabulary and
the risk of introducing inaccuracies.

Another lightweight anonymization technique proposed in [17]
aims to protect prompt privacy through substitution or masking.
The approach involves two core techniques: hiding private enti-
ties in prompts using generative schemes and NER models and
seeking private entities for de-anonymization. Both models are
3https://tinyurl.com/yny4mjdh
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implemented on the user’s system. After anonymizing the text with
the Hide model, the result is sent to the LLM, and the Seek model
de-anonymizes the output. This approach commendably does not
trust the LLM. However, it relies on a small corpus or NER for identify-
ing sensitive data, which limits its ability to conceal other words and
sentence structures. Additionally, replacing entity words in prompts
can challenge tasks that rely on precise semantics.

Another potential approach involves designing secure prompt
templates and sensitive data redaction tools to minimize personal
data leakage [73]. This could include using structured data for
inputs instead of free text. Variables can be safely inserted into
the prompt template without giving users direct control over the
prompt structure, allowing for easy removal of sensitive data.

Another technique is a combination of small local LMs and re-
mote LLMs. Hartmann et al. [43] proposed a privacy-preserving
mechanism where a local small LM at the user’s end personalizes
outputs without disclosing confidential information to the remote
model. They explored three algorithms: (1) generating a high-level
description of the query locally and using the remote LLM for few-
shot examples, (2) creating a similar novel problem with new unla-
beled examples for the remote LLM, and (3) maintaining the query’s
structure while substituting private information with placehold-
ers. These methods may be domain-specific, rule, or NER-dependent,
requiring users to have sufficient knowledge to manage them.

TextObfuscator [151] protects user privacy using text obfus-
cation techniques. It learns private representations that obscure
original words while retaining their functionality. This is achieved
by identifying prototypes for each word and clustering functionally
similar words around the same prototype. Random perturbations
are then applied to these clusters, obscuring original words and
maintaining functionality. However, this approach requires signif-
icant computational power on local machines, only protects word
privacy during inference.

Recently, Ruoyan et al. [100] integrated FHE and provable se-
curity theory with parameter-efficient fine-tuning to propose a
secure inference scheme for LLMs, ensuring the protection of both
user-side inputs and server-side private parameters. Likewise, [139]
designs efficient FHE counterparts for the core algorithmic building
blocks of prompt ensembling. In [16, 21, 42], the authors explored
privacy-preserving inference using transformer models, incorporat-
ing FHE and secure multi-party computation to protect the input
text in user prompts. However, computing and communication effi-
ciency remain a challenge when handling multiple prompts.

3.2.2 The Potential Inference of Sensitive Information. Aside from
direct leaks of sensitive data, the capabilities of LLMs enable even
seemingly insignificant data to unveil sensitive information through
inference [57]. Leveraging their advanced capabilities, LLMs can
infer various personal attributes from prompts with the help of
extensive sets of unstructured training data. For instance, from the
prompt, “I always get stuck there waiting for a hook turn,” LLMs
could infer that the individual is in Melbourne, as hook turns are a
distinct traffic maneuver primarily employed there [65]. This infer-
ence ability, combined with widespread LLM availability, reduces
the costs of private data inferences, enabling adversaries to scale
beyond limitations imposed by costly human profilers. Existing
rule-based or NER-based redaction tools often prove inadequate in

protecting users from such sensitive inference, as they struggle to
detect revealing, context-dependent cues.

Mitigation. Most existing works utilize LLMs themselves as
a mitigation technique to identify sensitive information that can
be inferred from prompts. A study in [107] shows the ability of
pre-trained LLMs to infer personal attributes from the text given at
inference time. Their extensive experiments demonstrated LLMs’
capacity to infer personal attributes from real-world data, even
when the text is anonymized using commercial tools. While this
paper highlighted the potential for sensitive data leakage from
prompts, it did not delve into mitigation techniques.

Building on the work in [107], a later study [108] introduced a
framework for anonymizing texts using an adversarial feedback-
guided approach. This method leverages LLMs’ strong attribute
inference abilities to guide a separate anonymizer LLM. The process
involves two steps: an ‘LLM adversary’ performs private attribute
inference, and an ‘anonymizing LLM’ adjusts the text to obscure
or generalize the inferred cues. However, this method doesn’t fully
address where the LLM adversary should be located (user or service
provider) or the utility of the anonymized text. Using smaller, fine-
tuned LLMs locally could improve this process by identifying inference
data before it reaches the remote LLM, and incorporating LLM bias
and prior knowledge may enhance inference detection.

3.2.3 The leakage of contextual information. LLMs often rely on
contextual information to generate personalized and impactful
content, leveraging their in-context learning capabilities. The con-
textual information may include users’ personal data, such as app
usage data (e.g., shopping lists, logs, and calendar events). Most
users include contextual data in prompts for improved performance,
as it is more parameter and data-efficient than fine-tuning [28].

Given the granular nature of contextual data, privacy risks natu-
rally arise. It’s essential to understand these risks, mainly because
the data used in prompts often comes from smaller, private datasets,
unlike the large public corpora used for pretraining LLMs. This
small set of private data is more vulnerable to inference attacks.
Therefore, striking a balance between performance and privacy is
crucial.

Mitigation. In the literature, techniques for protecting contex-
tual data in prompts include hashing operations [133], prompt en-
sembling [28], and employing a personalized LM on the local with
contextual information to improve the remote LLM responses[141].

Yim et al. [133] used a hash operation on context data before send-
ing it to the LLM, ensuring only hashed values are transmitted. The
LLM’s response also includes hashed values that are then reverted
to their original form. This method protects personal data privacy
while enabling personalized responses. Duan et al. [28] employed a
prompt ensembling method to mitigate MIA on prompted data with
contextual information. This method reduces the MIA success rate
to near-random guessing levels. The prompt ensembling technique
aggregates prediction probability vectors over multiple indepen-
dent prompted models into an ensemble prediction. In CoGenesis
[141], smaller, personalized LMs on user devices access private
data and activity logs, while advanced general LLMs operate in the
cloud, receiving only general instructions and providing high-level
knowledge. This allows for collaborative content generation, where
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the user-end model uses context and responses from the LLMs to
produce personalized outputs.

Existing techniques face key challenges. Hashing methods [133]
rely on trusting the LLM and only protect against eavesdropping.
Prompt ensembling [28] lacks formal privacy guarantees and adds
computational overhead. CoGenesis [141] depends on logit access,
limiting its use with closed-source LLMs, and tested on synthetic data,
raising questions about real-world applicability.

Key Takeaways

User prompts submitted to LLM systemsmay contain sensi-
tive information. Given the advanced inference capabilities
of modern LLMs, even seemingly benign or contextual data
can lead to the disclosure of private details, making tradi-
tional NER or rule-based detection methods inadequate. As
mitigation, researchers are investigating the use of small,
fine-tuned LLMs with ICL/RAG techniques at the user’s
end to assess the risk of sensitive information inference
and enhance prompt privacy.

3.3 Privacy Vulnerabilities in LLM-generated
Outputs and Mitigation

Privacy vulnerabilities in LLM outputs arise when sensitive infor-
mation, whether learned from training data or newly produced in
response, is inadvertently disclosed to unintended recipients. This
can happen if the model memorizes personal or confidential details
in a generated text or synthesizes proprietary content (such as in-
ternal strategies, algorithms, or trade secrets) accessible beyond
authorized channels. In either case, allowing these outputs to be
publicly visible or logged by external systems exposes private data
to potential misuse.

3.3.1 Revealing Sensitive Information in LLM-generated Output. As
reported in many studies [65, 86, 146], LLMs canmemorize sensitive
data from prompts and include them in their output despite users
explicitly requesting them not to memorize their data in prompts.
Priyanshu et al. [86] evaluated chatbot responses’ compliance with
privacy regulations, particularly when user data are used as few-
shot samples for ICL. They found that ChatGPT reproduces PII
accurately 57.4% of the time, decreasing to 30.5% with regulation
prompts and 15.2%with explicit removal prompts. This behavior can
be considered a privacy violation as it occurs without user consent.
Moreover, there’s the potential for additional privacy breaches if
these outputs are compromised through attacks, eavesdropping, or
retraining the LLM model with user data.

This risk is heightened when the model is fine-tuned with private
data for domain-specific applications, such as when organizations
use LLMs for specialized internal tasks. Even within a controlled
setting, sensitive data can be exposed to all users with access per-
missions. For example, an LLM-driven HR chatbot fine-tuned with
employee details could inadvertently allow employees to view sen-
sitive information about their peers’ salaries and benefits4. Without
proper controls to restrict access, the model could expose this in-
formation to all users.
4https://medium.com/snowflake/handling-sensitive-data-with-llms-aa765f8ce840

This risk increases when LLM-generated outputs are shared with
third-party services, especially in integrated systems, such as chat
platforms or APIs. Unlike LLM agents, which autonomously inter-
act with external tools and the environment, LLM output privacy
concerns stem from the uncontrolled dissemination of generated
responses to third-party services without the user’s explicit aware-
ness, increasing the risk of unintentional data leakage. Ensuring
control and transparency in accessing privacy data with user con-
sent is crucial, especially since the output can potentially be sent to
numerous third-party applications once it leaves the LLM. Hence, it
is essential to implement techniques to manage the data workflow
and keep users informed about it.

Mitigation. Mitigation techniques for privacy challenges in
LLM systems’ outputs are still nascent, with only a few research
studies addressing this issue. Given the lack of user control over the
black box settings in LLM services, controlling the LLM systems’
decisions is challenging. The only feasible method for users to
influence the model output is solely through prompts. Otherwise,
service providers are responsible for managing the output.

Yao et al. [129] proposed an initial approach to protect LLM de-
cisions in a black-box manner. They define decision privacy and
investigate instance obfuscation strategies for decision privacy.
They tackled the privacy concerns of decision-making by append-
ing an ‘obfuscator’ (another random text) to the original prompt.
The method uses obfuscators to alter LLM decision distribution,
preventing adversaries from inferring the correct decision while
the data owner resolves it from obfuscated inputs.

Likewise, to protect the privacy of decisions made in ICL, the
studies in [113, 119] concentrated on differentially private aggrega-
tion methods to prevent the direct extraction of private data. Wu
et al. [119] introduce the DP-ICL framework, which can aggregate
and release responses without heavily relying on any individual
examples provided in the demonstrated private data. The funda-
mental concept behind the DP-ICL framework involves producing
differentially private responses by aggregating noisy consensus
from an ensemble of LLMs’ outputs, each operating on separate
sets of examples.

In summary, current mitigation techniques for protecting private
information in LLM outputs illustrate a clear trade-off between privacy
and utility. Specifically, the approach in [129], designed mainly for
static tasks (e.g., text classification), does not adequately address the
generative nature of LLM outputs, risking exposure of confidential data
through dynamic outputs. Moreover, cross-session data retention poses
an additional threat to data privacy: if previous conversation states,
memory buffers, or hidden user context are not carefully managed
or sanitized, sensitive information can reappear in later responses,
bypassing any initial privacy safeguards. Consequently, while these
methods offer valuable insights, they require further refinement to
incorporate robust safeguards against unintended data exposure.
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Key Takeaways

Recent techniques such as ICL and RAG have exacerbated
privacy concerns with LLM-generated outputs, as users
increasingly provide sensitive data for domain-specific
tasks. The opaque nature of black-box LLM services lim-
its user control, making it difficult to manage or audit
model-generated decisions externally. To mitigate these
risks, users may obfuscate their input before submission.
Additionally, LLM providers may consider implementing
techniques like DP to reduce potential leakage in outputs.

3.4 Privacy Challenges while Involving Agents
in the LLM System Tasks and Mitigation

This section addresses privacy challenges that arise when users
interact with LLM agents to accomplish tasks that communicate
with the external world. These privacy challenges in LLM agents
can be categorized into three areas: automated task execution via
LLM agents, adversarial interactions of agents, and the potential
exposure of sensitive information to third-party tools via agents.

3.4.1 Privacy Issues Caused by Automated Task Execution via LLM
Agents. Human instructions via prompts often contain ambiguities
or omit crucial details. It is imperative to ensure the resilience
and reliability of the agents’ decisions, guaranteeing alignment
between the actions performed by the agent and their intended
tasks. Given that unknown risks lie in complex environments and
user instructions, LLM agents are prone to causing unexpected
privacy and safety issues [99, 121]. For instance, a LLM agent tasked
to process emails might click on phishing links, leading to potential
privacy breaches and financial loss. Similarly, if instructed to send
an email with file content, the agent might accidentally include
sensitive details like credit card information. In another example,
[35] demonstrated that LLM agents could even exploit one-day
vulnerabilities to hack websites based on task descriptions.

However, due to their long-tail nature, identifying the risks asso-
ciated with LLM agents is challenging. These risks arise as agents
interact with various tools to execute tasks, coupled with the open-
ended nature of potential issues and the substantial engineering
effort required for testing such interactions.

Mitigation. Several approaches assess whether user instruc-
tions are safe to execute without compromising user privacy and
safety when evaluating LLMs’ risk awareness regarding agent pri-
vacy. ToolEmu [99] implemented a GPT-4 powered emulator with
diverse tools and scenarios to identify potential failure modes in
LLM agents and create sandbox states to trigger such failures. It
also includes a GPT-4 powered safety evaluator to quantify risks.
Similarly, AgentMonitor [77] proposed using an LLM to monitor
and halt unsafe actions, preventing potential safety and privacy
issues on the open internet. Both ToolEmu and AgentMonitor use
LLMs to identify risky actions in agents. However, these methods
have limitations: They often ignore core constraints, particularly
in complex multi-turn interactions (back-and-forth interactions
between LLM agents, users, and diverse environments), and rely
on humans to provide risk descriptions.

To evaluate LLMs’ risk awareness in agent safety through com-
plex multi-turn interactions, Yuan et al. [135] developed R-Judge, a
benchmark dataset. The dataset includes user instructions, agent
action histories, and environment feedback annotated with safety
labels. In evaluating automated harmful action detection, most
LLMs struggled to identify safety and privacy risks, with GPT-4
achieving an F1 score of 72.52% versus the human score of 89.07%.

Hua et al. [44] presented TrustAgent, an agent framework em-
ploying three strategies to ensure safety: pre-planning (injecting
safety knowledge before plan generation), in-planning (bolstering
safety during plan generation), and post-planning (ensuring safety
through post-planning inspection). Experiments show that TrustA-
gent enhances both safety and helpfulness. However, the study
underscores the need for inherent reasoning abilities within LLMs
to support truly safe agents.

Aside from the methods discussed that rely on external super-
vision from humans or other LLMs, which require significant in-
vestment in human labor and computational resources, alternative
methods can operate without human supervision. Self-alignment
[111] is an emerging paradigm where LLMs can independently
achieve value alignment. Pang et al. [84] explored this direction for
achieving self-alignment of LLMs through multi-agent role-playing.
This method allows the LLM to create a simulation environment
that mirrors real-world multi-party interactions and simulates the
social consequences of a user’s instruction. It records the textual
interactions of the roles and summarizes them as the final output.
Although the simulation process can be time-consuming during
inference, fine-tuning can mitigate this issue.

In summary, while these methods aim to prevent LLM agents
from disclosing sensitive or personal data, they come with notable
trade-offs and limitations tied directly to data privacy. Supervision-
based approaches (ToolEmu, AgentMonitor, and TrustAgent) are ef-
fective at flagging and mitigating privacy risks but depend on human
oversight. This reliance introduces its own privacy challenges (e.g.,
potential exposure of private information to supervisors) and can be
resource-intensive. R-Judge seeks to automate the detection of privacy-
related risks, yet it struggles with nuanced or context-dependent leaks,
highlighting that even advanced models like GPT-4 still fall short of
human-level detection in complex data-privacy scenarios. Meanwhile,
self-alignment techniques attempt to reduce reliance on external su-
pervision by enabling the model itself to learn protective behaviors
around sensitive data. However, these methods are computationally
expensive and have yet to prove robust across diverse real-world pri-
vacy contexts (where inadvertent disclosure can occur in unpredictable
ways). Moving forward, designing scalable, adaptive frameworks with
minimal human involvement remains critical: such approaches must
specifically address how to protect sensitive information while ensur-
ing that any oversight mechanisms themselves do not become new
vectors for privacy compromise.

3.4.2 Adversarial Interactions of Agents. Privacy risks can be fur-
ther exacerbated by adversarial agents that mimic honest behavior
and request additional private information under the guise of need-
ing it for prompt execution tasks. Since LLM agents have demon-
strated remarkable capabilities in generating human-like text, users
may unwittingly disclose more information than they would to
other service-providing systems [146]. In [107], the authors explore
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the interaction between LLM agents and users, where agents gather
additional information through human-like conversations.

LLM agents present complex privacy concerns due to their gen-
erative power and vulnerability to adversarial manipulation. Tech-
niques such as ICL and RAG can be exploited to train agents for
malicious purposes with minimal input. [39] found that modifying
a single agent can rapidly lead to widespread harmful behaviors
among agents without further intervention from the adversary. The
nature of LLM agents and advanced techniques increases the risk of
adversarial attacks and interactions. For evidence, [114] introduced
Evil Geniuses, a virtual team that develops malevolent strategies
and conducts Red-Blue exercises, demonstrating successful harmful
actions through adversarial interactions. Similarly, [109] explored
the potential for LLMs to act as adversaries by perturbing text sam-
ples to bypass safety measures. They investigated whether LLMs
can inherently create adversarial examples from benign samples
to deceive existing safeguards. Their findings underscore signifi-
cant challenges for (semi-)autonomous systems using LLM agents,
particularly concerning potential adversarial behavior.

Mitigation. Chern et al. [18] proposed a multi-agent debate
mechanism to improve quality and mitigate adversarial behavior. In
this approach, agents self-evaluate through discussion and feedback.
They tested this method with state-of-the-art models, evaluating
susceptibility to red team attacks in single- and multi-agent settings.
The results show that multi-agent debate generally produces less
toxic responses to adversarial prompts without introducing new
risks at inference time. However, the approach is resource-intensive,
requires multiple queries, relies on knowledge from a single LLM,
and does not address removing toxic outputs effectively.

Though multi-agent settings can mitigate this issue, multiple
agents can have secret collusion between themselves. Motwani et
al. [76] formalized the issue of secret collusion in generative AI
systems, proposing mitigation measures based on AI and security
principles. They investigated monitoring the information content
in agents’ communications, focusing on agents’ capabilities and in-
centives to evade detection. Using monitoring agents, they detected
steganographic techniques that agents use to hide information by
analyzing cover text anomalies and agent simulations. Future work
could extend this by examining complexity and information theory,
optimizing pressures, and exploring complex multi-agent settings.

Common alignment methods to reduce privacy risks include fine-
tuning [40, 138] and rewardmodeling [59]. During fine-tuning,mod-
els are trained on specific datasets, incorporating human-generated
examples to align with desired behaviors. Reward modeling in-
volves optimizing a reward function to reflect desired outcomes,
often using reinforcement learning techniques to adjust the model’s
behavior accordingly. Although intelligent personal agents should
minimize user interruptions, integrating user opinions or human
assistance can prove valuable when making significant decisions.

In summary, while multi-agent debate and alignment strategies en-
hance LLM privacy, they come with trade-offs. Debate-based methods
reduce adversarial risks but are resource-intensive and knowledge-
limited. Secret collusion raises concerns about hidden adversarial be-
havior, requiring costly monitoring. Fine-tuning and reward modeling
enhance alignment but may not generalize well.

3.4.3 Potential Exposure of Sensitive Information to Third-party
Tools. The next challenge is preventing the unnecessary and unau-
thorized disclosure of user-sensitive information during interac-
tions with agents to third-party tools and the external world [67].
The LLM agents orchestrate the task and invoke relevant third-
party tools to execute it with the collected private information.
However, in this process, the LLM possesses knowledge of the
user’s private input and autonomously initiates queries in places
without user awareness or inadvertently shares this information
with the other agents or external tools. Another threat model is
adversarial third-party applications that can manipulate the con-
text of interaction to trick LLM-based agents into exposing private
information irrelevant to the task [5].

Mitigation. The study in [144] examined privacy concerns for
tool-using LLMagents. They proposed PrivacyAsst using encryption-
based and shuffling-based solutions to preserve privacy. The encryption-
based solution allows tasks to operate on encrypted inputs. In
contrast, the shuffling-based solution uses attribute-based forgery
generative models and an attribute shuffling mechanism to create
privacy-preserving requests. However, limitations include the de-
tectability of dummy prompts by advanced LLMs, the complexity
and computational cost of encryption, reliance on third-party tools,
and the burden of creating multiple dummy inputs on users.

AirGapAgent [5] focuses on preventing unintended data leakage
during third-party interactions. It restricts access to only the neces-
sary data for specific tasks, considering user privacy preferences.
The design involves two LLMs: one minimizes data for sharing
appropriately, while the other handles third-party interactions with
the minimized data. This ensures the agent can distinguish between
private and non-private data for each task.

PrivacyAsst and AirGapAgent enhance privacy but face challenges:
PrivacyAsst incurs high computational costs and third-party reliance,
while AirGapAgent’s effectiveness depends on accurate filtering. Both
highlight the trade-off between privacy and usability, requiring more
scalable, adaptive solutions.

Key Takeaways

LLM agents’ automated interactions with the physical and
digital worlds amplified their privacy vulnerabilities. Ex-
isting mitigation approaches often rely on human-guided
LLM emulators to enforce user-specific privacy preferences
and prevent sensitive information leakage. Emerging ap-
proaches such as self-alignment seek to reduce human
oversight by enabling agents to self-assess privacy risks
through multi-agent role-playing.

Overall, Figure 4 provides an intricate portrayal of privacy con-
cerns, encapsulating the four broader privacy challenges and the
tailored mitigation technologies deployed at various phases of LLM
systems, including data pre-training, training, and post-training
approaches. A more detailed summary of these approaches can be
found in Appendix: Table 2.
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Figure 4: Summary of Privacy Challenges in LLM Systems and Mitigation Techniques in the Literature

4 DISCUSSION AND FUTURE DIRECTIONS
This section highlights how some privacy-preserving methods
could address multiple privacy threats and discusses their research
challenges and potential future directions.

NER is widely used for direct leakage prevention in both train-
ing data and user prompts. Similarly, encryption and DP-based

mechanisms can mitigate multiple privacy risks with trade-offs
in processing and model performance. Adversarial regularization,
which enhances the robustness of LLM, also plays a role in mitigat-
ing privacy attacks. However, these solutions are often complex due
to fine-tuning between privacy preservation and model efficiency.
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Furthermore, many solutions operate in isolation, addressing indi-
vidual threats rather than working together as part of a unified and
adaptive privacy framework.

Privacy concerns in LLM systems usually stem from foundational
models and extend to various downstream applications.Traditional
methods for protecting LLM training data fall short against more
advanced attacks, especially when dealing with fine-tuned LLMs
and their various ways of user interaction. These models are partic-
ularly susceptible to inference attacks due to their complexity and
natural language interaction. Existing mitigation techniques—such
as detection, filtering, and model stacking— often come with trade-
offs such as reduced performance, incomplete filtering, and higher
latency and computational costs. To enhance LLM privacy, future
approaches should explore hybrid models that integrate adaptive
filtering, modular architectures, and human-in-the-loop validation.
Reducing training data influence through prompt conditioning
or modular architectures could provide additional privacy gains
without sacrificing accuracy, particularly in fine-tuned models. De-
veloping domain-specific privacy frameworks tailored for LLMs
will also be crucial in aligning with emerging regulations. Future
research should also focus on developing adaptive privacy mech-
anisms that dynamically assess conversation context and adjust
LLM responses accordingly, ensuring that privacy-sensitive topics
trigger enhanced protections such as real-time content filtering,
obfuscation, or user alerts.

Other privacy-preserving approaches for generic models, such
as cryptographic techniques, knowledge unlearning, and Feder-
ated Learning, show opportunities and challenges for the LLM
domain. Cryptographic methods, while theoretically effective, are
computationally expensive when applied to LLMs due to their large-
scale processing requirements. Knowledge unlearning struggles
with completely removing sensitive information when dealing with
deeply integrated training data [106]. Adapting such techniques for
LLMs requires careful optimization to balance privacy, efficiency,
and performance.

Another critical direction is the advancement of policy-driven
AI governance. Efforts such as the EU AI Act [90], AI Safety Insti-
tutes [2], and Anthropic’s Constitutional AI [7] highlight the need
for clearer guidelines on data collection, storage, and use in LLM
systems. Automated auditing mechanisms and adversarial testing
can further enhance transparency and accountability in LLM de-
ployment, while continuous monitoring, adversarial testing, and
proactive threat modeling could mitigate other privacy risks.

5 CONCLUSION
Our SoK identifies four main categories of privacy challenges: (i) pri-
vacy issues in LLM training data, (ii) privacy challenges associated
with user prompts, (iii) privacy risks in LLM-generated outputs,
and (iv) privacy vulnerabilities involving LLM agents. While the
literature has extensively examined privacy issues in training data,
privacy issues arising from user interactions and LLM outputs, par-
ticularly involving small and private datasets through fine-tuning,
ICL, RAG, and agents, remain underexplored. Addressing these
overlooked areas requires further research to strengthen privacy
safeguards across user prompts, LLM outputs, and agent-based
applications.
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6 APPENDICES
6.1 Source Selection and Strategy
We conducted a literature review adhering to the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [83]. Our search spanned databases such as ACM, IEEE
Xplore, Springer, ScienceDirect, and Google Scholar, targeting re-
search papers that explore various privacy challenges in LLM sys-
tems published after 2022. The initial screening employed broad
keywords such as ‘privacy challenges in LLMORChatGPT,’ ‘privacy
in LLM,’ ‘privacy attacks in LLM,’ ‘responsible LLM,’ and ‘security
AND privacy challenges in LLM.’ We then refined our search strat-
egy by categorizing the identified challenges (such as ’privacy in
LLM agents’, ’privacy in LLM prompts’, ‘privacy in LLM output
OR decision’, and ‘privacy in LLM training data’) via screening the
identified challenges via initial search. Additionally, we used the
mitigation methodologies found in the identified papers to search
for further relevant studies. Survey papers on training data privacy
challenges in LLMs were included as well.

Figure 5 shows the PRISMA and snowball approach of the paper
search and selection process. Our search yielded a total of 17,900
records. We removed duplicates, screened titles and abstracts, and
applied exclusion criteria, such as eliminating long-short repeti-
tive papers, papers irrelevant to the focused area, security-related
papers, those with no citations or published in non-A/A*/B con-
ferences, and technical papers focused on root techniques with
modifications. After this filtering, we were left with 101 records.
We also employed a snowballing technique by reviewing the bib-
liographies of the identified papers to capture additional relevant
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studies. Ultimately, our study comprised 116 papers categorized as
follows: Training data (n=51), Prompts (n=24), Outputs (n=8), LLM
agents (n=24), Legal/copyright/bias (n=9), Survey papers (n=14),
copyright data (n=12), and Responsible LLM (n=7).

# records identified
through multiple keyword
db searches (n=17900)

# records after duplicates
removed (n=12200)

# records after
title and abstract

screenings and exclusion
scenarios (n=113)

# studies included in
SoK

(n =128)
Training data (n=51)

Prompts (n=24)

Ouputs (n=8)

LLM agents (n=24)

Legal / copyright / Bias
(n=9)

Survey papers (n=14)

Copyright data(n=12)

Responsible LLM (n=7)

# systematic review
reference check

"snowballing" (n=15)

# records excluded
(n=12087)

Figure 5: PRISMA and Snowballing Approach for Paper
Searching and Selection (# implies number of)

6.2 Glossary
Table 1 lists the abbreviations used in the paper along with their
descriptions.

6.3 Responsible Large Language Models
Concerns and Privacy Implications

This section addresses responsible AI concerns in LLM systems,
particularly from user interactions and LLM systems’ inherent
black-box nature. Responsible LLMs’ concerns include ethical and
legal issues due to LLMs tendency to copy proprietary material,
transparency, reliability, explainability, accountability, fairness, and
bias [52, 55].

The first challenge lies in the lack of transparency and interoper-
ability of LLM, with service providers managing user data without
clear mechanisms for users to understand its use. Ensuring strin-
gent data protection is crucial due to the rising number of data
breaches 5 and the absence of strict regulations. The black-box
nature of LLMs complicates verifying data processes, heightening
privacy concerns.

Another concern within LLM systems is the perpetuation of
unfair discrimination and representational harm through reinforc-
ing stereotypes and social biases [55]. The association of social
identities with LLM decisions often results in excluding specific
social communities from the LLM’s outcomes. Furthermore, hate

5https://www.statista.com/statistics/290525/cyber-crime-biggest-online-data-
breaches-worldwide/

speech generated by LLMs may incite violence and cause signif-
icant offense. Despite efforts by many LLM service providers to
remove such content from their training corpora, bias and unfair
discrimination remain persistent issues in LLMs.

Next, the potential for misinformation and disinformation is
heightened by LLMs’ ability to generate persuasive yet potentially
false or misleading content. This capability can be exploited to
spread misinformation, manipulate public opinion, or create fraud-
ulent materials, posing significant risks to public health, democracy,
and social harmony [10].

Accountability in the deployment and use of LLM systems presents
a critical issue, as it involves determining responsibility for the
actions and outputs of these models [49]. When LLMs generate
harmful or unethical content, such as misinformation or biased
responses, it can be challenging to pinpoint who is responsible—the
developers, users, or the organizations deploying the models. This
issue is compounded by the complexity and opacity of LLMs, which
can obscure the decision-making processes of the models. Estab-
lishing precise accountability mechanisms, such as transparent
reporting standards, ethical guidelines for development, and over-
sight committees, is essential to ensure that all parties involved are
held responsible for the impacts of LLM technologies [11].

6.3.1 Mitigation. Various approaches have been proposed to ad-
dress responsible AI concerns, but they are still nascent for LLM
systems. Potential solutions include improving user-friendly pri-
vacy policies and ethical data principles, conducting model au-
dits, and using explainable AI techniques like Local Interpretable
Model-agnostic Explanations (LIME) [93] and SHapley Additive
exPlanations (SHAP) [72] to make LLM processes transparent. Fea-
ture visualization and activation maximization offer insights into a
model’s learning process, though their application to LLMs with
millions of parameters is challenging. Additionally, it is crucial to
educate users about the privacy implications of LLMs, their data
usage policies, and the importance of protecting their privacy. Im-
plementing mechanisms to quantify or explain privacy risks can
further inform users of potential consequences. However, further
work is needed to evaluate the effectiveness of these solutions.

In conclusion, addressing these concerns requires a multi-faceted
approach that encompasses technical strategies (such as algorithms
for detecting and mitigating biases), policy development (including
privacy protection regulations), ethical guidelines (like respecting
intellectual property), and stakeholder engagement (with collabo-
ration among industry, academia, and regulatory bodies).

6.4 Summary of Privacy Challenges and
Solutions

Table 2 summarizes the privacy challenges and the details of existing
mitigation techniques proposed in the literature.
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Table 1: The Glossary Table

Abbreviations Description
Artificial Intelligence (AI) The science of making machines that can think like humans
Machine Learning (ML) The capability of a machine to imitate intelligent human behavior
Large Language Model (LLM) Trained on vast datasets and characterized by extensive parameters to generate sensible responses
GDPR General Data Protection Regulation
HIPAA Health Insurance Portability and Accountability Act of 1996
LLM systems user prompts Natural language instructions to describe the task and achieve the desired outcomes
LLM agents A system endowed with intricate reasoning capabilities, enabling it to interact with other systems

and perform actions
Personally Identifiable Information
(PII)

Information that can be used to identify individuals

Responsible AI (RAI) An approach to developing and deploying AI in an ethical, trustworthy, safe, and legal way
Fine-tuning in LLM The process of adjusting the parameters of a pre-trained large language model to a specific task

or domain
In Context Learning (ICL) A method to adapt the LLM to a specific task by incorporating demonstrations into the prompt
Retrieval Augmented Generation
(RAG)

A technique where an LLM retrieves relevant information from external sources to enhance its
generated responses

Differential Privacy (DP) A formal mathematical framework for ensuring privacy in data analysis. It provides strong guar-
antees that the inclusion or exclusion of any individual’s data in a dataset does not significantly
impact the output of a computation, thereby protecting individual privacy. It achieves this by
introducing controlled noise to statistical computations, making inferring private details about
any single participant difficult. The strength of privacy protection is controlled by a parameter
called epsilon (𝜖)—a lower 𝜖 provides stronger privacy but may reduce accuracy.

Knowledge unlearning Knowledge unlearning is the process of selectively removing specific information from a trained
model while preserving overall performance, which is crucial for privacy protection and regu-
latory compliance. Common approaches include exact unlearning (retraining without specific
data), influence-based methods, and fine-tuning to mitigate privacy risks and data poisoning.

Federated Learning (FL) A machine learning approach where models are trained across multiple decentralized devices or
servers, preserving data privacy by keeping data local

MIA Membership Inference Attack: The objective of a MIA is to determine whether a specific data
point 𝑥 (a sentence or document in LLM context) was included in the training dataset D of a
model𝑀 . This is achieved by computing a membership score 𝑓 (𝑥 ;𝑀), which is then compared
against a predefined threshold to decide whether the target sample was part of the training data
by analyzing its output [104].

Attribute Inference Attack In an attribute inference attack, the adversary aims to predict sensitive attributes of an individual
whose data was used to train a target model, given that the adversary already knows other
attributes of that individual [38].

Jailbreak attacks A jailbreak attack is an adversarial technique used to bypass the safety restrictions and ethical
guardrails of LLMs. These attacks manipulate the model into generating responses that it is
designed to avoid, such as harmful, biased, or restricted content. Jailbreak attacks exploit tech-
niques like prompt engineering (deceptive inputs), role-playing (bypassing safeguards through
scenarios), encoding tricks (obfuscation or special characters), and multi-turn exploits (gradual
manipulation) to evade AI restrictions.

RLHF Reinforcement Learning from Human Feedback
Intellectual Property (IP) It encompasses creations of the mind, including inventions and works of art, protected by law

through patents, copyrights, trademarks, and trade secrets
API Application Programming Interface
NER Named Entity Recognition: This involves identifying and classifying named entities in a text

into predefined categories, such as the names of persons, organizations, locations, dates, times,
and other entities.
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Table 2: Summary of Privacy Challenges in LLM Systems and Solutions. Experimented on ‘Open/closed source LLM system’: =
Closed-source LLM systems, = Open source LLM systems, = Both. ‘Threat model’: = Trusting LLM service provider and
consider threats from external parties only, = Threat from both service provider and external parties. (This table continues
on the next page.)

Privacy
Chal-
lenges

Specific Issues Solution Technical description Tested on
Open/closed
source LLM

Threat
model

In LLM
Training
data

Data mem-
orization
and
personal
data
leakage

Data deduplication Fuzzy deduplication techniques [13]
Detection and Filtering Bloom filter [45], Filtering with restrictive terms

[91], PII scrubbing filters and NER [23], Output
filtering [105]

Data cleaning Correcting errors and inconsistencies, implement-
ing anonymization, data minimization, and se-
cure practices to protect sensitive information
[13, 124]

Differential privacy Adding noise to data when training[12, 15, 66,
105, 137, 150]

Knowlege unlearning Force models to forget specific knowledge with-
out requiring full retraining [33, 130, 140]

Privacy
attacks

Model stacking /
Dropout

Model stacking: combines multiple base
models[27], Dropout: regularization technique
used in neural networks to prevent overfitting
[123]

Test time defense and
instruction processing

Filters malicious inputs, detects abnormal queries,
and post-processes LLM-generated output. [64,
96]

Adversarial regulariza-
tions

LLM training process employs robust optimiza-
tion methods like adversarial training [134] and
robust fine-tuning [26] to prevent malicious text
attacks

Prompt-level ap-
proaches

Filtering adversarial prompts using rule-based
detection or classifier-based approaches [148]

Model-level approaches Enhancing LLMs through safety training, RLHF,
and adversarial fine-tuning [6, 48]

In
Prompts

Direct
leakage

Input validation and
sanitization

NER and encryption [68]
NER and Substitution/masking [17]
NER and obfuscation [73]

Local small LM and re-
mote LLM combination

Use NER to remove sensitive information be-
fore sending data to remote LLM, and add again
locally[43]

Text obfuscation Obscure original word information while retain-
ing original word functionality [151]

Cryptographic ap-
proach: Fully harmonic
encryption

Encrypting data in such a way that computations
can be performed on the encrypted data without
needing to decrypt it first [16, 42, 100, 139]

Inference of sen-
sitive

Local small LM and re-
mote LLM combination

Adversarial feedback-guided approach using
LLM [108]

Contextual
information
leakage

Hash operation Transmitting only hashed values of sensitive data
and service providers can revert back [133]

-

Prompt ensembling Using multiple different prompts to hide actual
prompt of the user[28]

Local small LM and re-
mote LLM combination

Remote LLMs provide high-level guidance and
enhance the result in local LM with contextual
information [141]
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In LLM-
generated
Outputs

Revealing
Sensitive
Information

Text obfuscation Appending an another random text to the original
prompt [129]

-

Differentially private
aggregation

Aggregate and release responses without relying
on any individual outputs [119]
Synthetic few-shot demonstrations [113]

Transparency in
decision making

Explainable AI tech-
niques

Feature importance analysis[72], interactive ex-
ploration tools [82], and human-AI interpretation

- -

In LLM
Agents

Ambiguities
in automated
task
execution

LLM sandbox LLM powered emulator and safety evaluator [77,
99], Complex multi-turn interactions [135]

Injecting safety knowl-
edge in different stages

Safety knowledge injection in pre-planning, in-
planning, and post-planning [44]

Self-alignment Self-alignment of LLMs through multi-agent role-
playing [84]

Adversarial
interactions
of agents

Multi-agent debate
mechanism

Self-evaluate through discussion and feedback

Mitigation measures
based on AI and secu-
rity principles

Monitoring agents’ communication content [76]

Exposure of
Sensitive
Information
to External
Tools

Encryption and
shuffling-based solu-
tions

Operate on encrypted inputs and attribute-based
forgery generative models with shuffling mecha-
nism [144]

Access restriction meth-
ods

Limits access to necessary data based on user
privacy preferences [5]
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