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ABSTRACT

Differential privacy (DP) is obtained by randomizing a data analysis algorithm, which necessarily
introduces a tradeoff between its utility and privacy. Many DP mechanisms are built upon one of two
underlying tools: Laplace and Gaussian additive noise mechanisms. We expand the search space of
algorithms by investigating the Generalized Gaussian (GG) mechanism, which samples the additive
noise term x with probability proportional to e−

|x|
σ

β

for some β ≥ 1 (denoted GGβ,σ(f,D)). The
Laplace and Gaussian mechanisms are special cases of GG for β = 1 and β = 2, respectively.
In this work, we prove that all members of the GG family satisfy differential privacy, and provide an
extension of an existing numerical accountant (the PRV accountant) for these mechanisms. We show
that privacy accounting for the GG Mechanism and its variants is dimension independent, which
substantially improves computational costs of privacy accounting.
We apply the GG mechanism to two canonical tools for private machine learning, PATE and DP-SGD;
we show empirically that β has a weak relationship with test-accuracy, and that generally β = 2
(Gaussian) is nearly optimal. This provides justification for the widespread adoption of the Gaussian
mechanism in DP learning, and can be interpreted as a negative result, that optimizing over β does
not lead to meaningful improvements in performance.

1 Introduction

As applications of machine learning (ML) often involve sensitive information, there is an increasing need to provide
privacy protections for the individuals whose data are included in the training datasets. Privacy concerns have prompted
the development of privacy-preserving ML techniques, which aim to prevent the leakage of private information
analyzed during training. One of the primary frameworks for achieving this goal is differential privacy (DP), a rigorous
mathematical framework that provides quantifiable privacy guarantees [Dwork et al., 2006].

Two popular techniques for implementing DP in ML are Differentially Private Stochastic Gradient Descent (DP-SGD)
[Abadi et al., 2016] and Private Aggregation of Teacher Ensembles (PATE) [Papernot et al., 2017]. Traditionally,
DP-SGD entails Poisson sampling from the dataset, gradient clipping, and then the addition of Gaussian noise to the
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gradient. PATE, on the other hand, involves training an ensemble of teacher models on disjoint subsets of the data,
then privately aggregating the votes of the teacher models on a public dataset, in order to train a student model on the
privately labeled public dataset. PATE achieves private vote aggregation through a private variant of Argmax, which is
obtained by adding noise to the vote counts, and then finding the Argmax of the noisy histogram.

Both DP-SGD and PATE achieve privacy protection through mechanisms that add noise drawn from specific probability
distributions, namely Laplace or Gaussian. The choice of the noise distribution plays a crucial role in determining
the privacy-accuracy tradeoffs of an algorithm, and algorithm designers often make problem-dependent decisions in
choosing between Laplace and Gaussian Mechanisms. However, many of the underlying tradeoffs between these two
discrete choices remain unclear. In this work, we explore a continuum of private mechanisms that extends these two
special cases of noise distributions. We investigate the Generalized Gaussian Mechanism (GG) [Liu, 2019], denoted
GGβ,σ(f,D), which adds noise to the true function value f(D) sampled from the Generalized Gaussian distribution,5
denoted Nβ(µ, σ), with probability density function (PDF),

p(x|µ, σ, β) ∝ e−
|x−µ|β

σ . (1)

Figure 1 illustrates these PDFs with µ = 0 for different β and σ values on both linear and log scales. Interestingly, all of
the noise distributions illustrated in Figure 1 correspond to equivalent DP guarantees when used in the GG Mechanism
(see Appendix B.4 for more details). We observe that a larger β value corresponds to a PDF that is more concentrated
around the mean. In order to satisfy the same (ϵ, δ)-DP, σ must be simultaneously increased to compensate for the
lighter tail.
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Figure 1: Linear (left) and log-scale (right) PDFs of the Generalized Gaussian distribution for GG mechanisms of varying β, which
all satisfy the same (ϵ, δ)-DP privacy guarantee.

We focus on this family of mechanisms because it generalizes both the Laplace and Gaussian Mechanisms, which are
special cases of the GG Mechanism for β = 1 and β = 2, respectively.

We explore two settings relevant to ML: PATE and DP-SGD. Our findings show that the the choice of β has a relatively
small effect on test-accuracy, but that values around β = 2 perform near-optimally, although many other choices of β
also perform well. This helps explain why Gaussian noise may be so popular, but suggests that the choice of Gaussian or
Laplace Mechanism plays a smaller role than anticipated. However, for settings where small improvements are critical,
hyperparameter search over β can provide incremental gains. We do find the Gaussian mechanism does not appear to
be completely optimal, and thus our work also suggests future directions for further hyperparameter search across a
more general range of noise distributions in differentially private algorithm design. However, more importantly, we
find that for mechanisms GGβ,σ(f,D), the ℓβ sensitivity of f is actually independent of the dimension, significantly
reducing the computational complexity of privacy accounting. Our analysis leads to the negative conclusion that for
GGβ,σ(f,D) mechanisms, there is minimal or no improvement in model utility compared to the Gaussian mechanism.

1.1 Related Work

A number of prior works explored alternative DP mechanisms that extend the Laplace and Gaussian Mechanisms.
The Staircase Mechanism [Geng and Viswanath, 2014] was derived as an alternative to the Laplace Mechanism by
minimizing the variance of the noise distribution in order to improve utility guarantees. The Podium Mechanism [Pihur,
2019] improved upon the Staircase Mechanism by changing the noise distribution to be defined over finite (truncated)

5Sometimes referred to in the literature as the Exponential Power Distribution or Generalized Normal Distribution
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support, instead of the infinite support used in other mechanisms like Laplace. While both mechanisms have rigorous
analysis of utility in the single-shot regime, they are neither studied nor optimized for high-composition regimes, and
thus are not used in ML, which is the key use-case we investigate.

Alghamdi et al. [2022] developed the Cactus Mechanism to specifically address the high-composition regime by
numerically computing a mechanism that minimizes the Kullback-Leibler divergence between the conditional output
distributions of a mechanism given two different inputs, under a high number of compositions. Alghamdi et al. [2022]
derived a near-optimal divergence loss in the high-composition regime; however, they only considered privacy for
1-dimensional outputs, making the result not directly applicable to ML models. Further, they focused on the optimal DP
mechanism in the limit of a large number of compositions, explicitly ignoring the low-composition regime.

Awan and Dong [2024] address the multivariate setting by deriving a family of multivariate log-concave canonical
noise distributions [Awan and Vadhan, 2023], allowing addition of minimal noise for a particular f-DP guarantee.
However, their work is constrained to ℓ1 and ℓ∞ sensitivity settings and does not analyze the privacy-utility tradeoff of
these mechanisms for private ML. Unfortunately, the proposed mechanisms are either only for Gaussian DP (known
to underestimate privacy [Gopi et al., 2024]), or are not easily integrated with existing privacy accountants in the
subsampled regime.

Liu [2019] introduced and partially analyzed the Generalized Gaussian Mechanism, which adds noise from the
Generalized Gaussian distribution (Definition 8). They provided probabilistic-DP (a variation of approximate DP)
guarantees for β = 1 and β ≥ 2, and gave empirical results for integer β-values in the GG mechanism applied to
training Support Vector Machines on sanitized data from several tabular datasets. In a separate vein of research, Liu
et al. [2022], provided a relatively weak bound for the Rényi Differential Privacy (RDP, Definition 7) when β > 2, for
the limited use case of α = 1, which restricts much of the usefulness of the RDP formulation. To best of our knowledge,
no previous work provides tight (ϵ, δ)-DP guarantees that are useful for the high composition regime. In our work,
we consider all β ≥ 1, and explore the privacy-accuracy tradeoff of the GG mechanism and its applications to PATE
and DP-SGD, and empirically provide tighter privacy guarantees than those provided by prior works, for any number of
compositions.

1.2 Our Contributions

In this work, we investigate the Generalized Gaussian Mechanism, a little-explored family of DP mechanisms. Our
main contributions are the following:

1. GG-Mechanism and privacy accounting: We first show in Section 3 that the GG Mechanism GGβ,σ(f,D)
is DP for any β, and provide a PRV-based privacy accounting method for this mechanism. In Section 3.2
and Appendix B.2, we show that the Generalized Gaussian mechanism with ℓβ sensitivity has dimension-
independent privacy accounting, which improves the computational tractability of applying the GG-Mechanism
in high-dimensional ML applications. In Appendix A, we also introduce the Sampled Generalized Gaussian
Mechanism (SGG), which is a variant of the GG-Mechanism that first subsamples the database to make use of
privacy amplification.

2. GG-Mechanism for PATE and DP-SGD: In Section 4, we introduce the GGNMax algorithm for computing
a private argmax for PATE, and in Section 5, we show how to use the Sampled GG Mechanism for DP-SGD in
a new mechanism that we name β-Differentially Private Stochastic Gradient Descent (β-DP-SGD). We show
that all four mechanisms satisfy DP (Theorems 1, 5, 2, and 3), and we show how to extend PRV accountant to
track privacy budget over many compositions of these mechanisms.

3. Optimizing β parameter for accuracy: For guidance on optimally choosing β, in Section 4, we empirically
find that in privately computing an argmax in PATE, the choice of β has a weak relationship with the accuracy.
In Section 5, we empirically find that β-DP-SGD performs similarly for most β ∈ [1, 4] when hyperparameters
are tuned based on the choice of β, and that the Gaussian mechanism (β = 2) is nearly optimal, as it performs
approximately as well as the best choice of β under full hyperparameter tuning. Small improvements in
performance do still exist, typically around the neighborhood of β ≈ 2, which can be valuable when small
improvements are critical.

4. Numerical accountant for arbitrary mechanisms: Previously, privacy accounting for new mechanisms
required the noise distributions to be well-behaved (e.g., analytically derivable Rényi Divergence values
between distributions); our work develops a robust framework for using the PRV accountant [Gopi et al., 2024]
on new mechanisms that are not so well-behaved. This method many enables future research into novel DP
mechanisms that cannot be directly analyzed analytically.
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Our results on the optimization of β can be interpreted as a negative result, showing that in most settings, the Gaussian
Mechanism is optimal in this family, and little to no additional improvements in performance can be gained by
optimizing β. Our privacy accounting results can be interpreted as positive results, both for direct analysis of the
GG-Mechanism, and may also be of independent interest for privacy accounting of new mechanisms.

2 Preliminaries

2.1 Differential Privacy

Differential privacy (DP) is a framework for designing privacy-preserving data analysis algorithms that protect the
privacy of individuals in a dataset while allowing accurate statistical analysis. Informally, DP provides a mathematical
guarantee that an individual’s data will have only a limited affect on the result of analysis on a large database. Two
datasets are said to be neighboring if they differ only in a single data record.

Definition 1 (Differential privacy [Dwork et al., 2006]). A mechanismM : D → R satisfies (ϵ, δ)-differential privacy
if for any two neighboring datasets D,D′ ∈ D and for any S ⊆ R,

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ.

Smaller values of the parameters ϵ and δ correspond to stronger privacy guarantees. The Laplace and Gaussian
Mechanisms are examples of output perturbation mechanisms, which first evaluate a function on the input dataset, and
then add mean-zero noise to the result. The variance of the noise scales with the sensitivity of the function ∆f , defined
as the maximum change in the function’s value due to the removal or addition of a single database entry.

Definition 2 (ℓβ sensitivity [Dwork et al., 2006]). The ℓβ-sensitivity of a function f : N|x| → Rk is:

∆β(f) = max
D,D′ neighbors

∥f(D)− f(D′)∥β .

We emphasize that while differently-normed sensitivity denotes that the function is bounded for a different ℓβ norm, the
definition of a neighboring dataset remains the same – two datasets are neighboring if they differ by a single entry.

Two of the most common mechanisms in differential privacy are the Laplace Mechanism and the Gaussian Mechanism.

Definition 3. The Laplace Distribution (centered at 0) with scale b is the distribution with probability density function:

Lap(x|b) = 1

2b
exp(−|x|

b
).

Definition 4 (Laplace Mechanism [Dwork et al., 2006]). For any ϵ > 0, given a real-valued function f : D → R, the
Laplace mechanism is defined as

ML(D, f, ϵ) = f(D) + Y,

where Y ∼ Lap(∆f/ϵ). The Laplace Mechanism is (ϵ, 0)-DP.

Definition 5 (Gaussian Mechanism [Dwork and Roth, 2014]). For any ϵ > 0 and δ ∈ (0, 1], given a real-valued
function f : D → R, the Gaussian mechanism is defined as

MG(D, f, ϵ) = f(D) + Y,

where Y ∼ N (0, σ) for σ > ∆f
√

2 log(1.25/δ)/ϵ. The Gaussian Mechanism is (ϵ, δ)-DP.

One main feature of differential privacy is that the guarantees compose, meaning that the overall privacy loss (as
measured by ϵ and δ) of running multiple DP mechanisms can be bounded as a function of the privacy parameters of the
individual mechanisms. In the simplest version of composition [Dwork et al., 2006], the privacy parameters “add up”
so that running two (ϵ, δ)-DP mechanisms results in (2ϵ, 2δ)-DP overall. In practice, however, this naive composition
dramatically overestimates the incurred privacy risk, and more advanced composition algorithms [Dwork et al., 2010]
and privacy accountants [Abadi et al., 2016] are used to more accurately bound privacy risk.

A privacy accountant is a tool to track the privacy budget of a system by recording the privacy cost associated with
each query; accountants are particularly important for applications like DP-SGD, where DP mechanisms are composed
a large number of times, e.g., as many as the number of steps in gradient descent. The introduction of the Moments
Accountant [Abadi et al., 2016] enabled the first use of DP-SGD with reasonable privacy guarantees on common
datasets like MNIST [Lecun et al., 1998]. This was later replaced in many settings by accountants that rely on Renyi
Differential Privacy (RDP), introduced by Mironov [2017].
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2.2 Rényi Differential Privacy

Rényi Differential Privacy (RDP) generalizes pure differential privacy (δ = 0) and is closely related to the moments
accountant. Defined below, the RDP guarantee of a mechanism is stated in terms of Rényi divergence.
Definition 6 (Rényi Divergence). The Rényi divergence of order α between two distributions P and Q is defined as:

Dα(P ||Q) =
1

α− 1
logEx∼Q [(P (x)/Q(x))α] =

1

α− 1
logEx∼P

[
(P (x)/Q(x))α−1

]
.

Definition 7. (Rényi Differential Privacy [Mironov, 2017]). A randomized mechanismM satisfies (α, ϵ)-RDP with
α ≥ 1 if for any neighboring datasets D and D′:

Dα(M(D)||M(D′)) =
1

α− 1
logEx∼M(D)

[(
Pr[M(D) = x]

Pr[M(D′) = x]

)α−1
]
≤ ϵ.

RDP is desirable in ML applications because of its straightforward composition properties: the adaptive composition of
mechanismsM1, . . . ,Mk where eachMi satisfies (α, ϵi)-RDP, will together satisfy (α,

∑k
i=1 ϵi)-RDP.

Pure (ϵ, 0)-DP corresponds to (∞, ϵ)-RDP; Mironov [2017] provided more general guarantees for converting between
RDP and DP: ifM is an (α, ϵ)-RDP mechanism, it also satisfies (ϵ+ log(1/δ)

α−1 , δ)-DP for any δ ∈ (0, 1).

2.3 PRV Accountant

The privacy guarantees of a DP mechanism are commonly defined as a single tuple (ϵ, δ), but can also be described
as a function, since the probability of failure (δ) can depend on the required ϵ-bound. This naturally leads to the
definition of a privacy curve, such that for every ϵ ∈ R,M is (ϵ, δ(ϵ))-DP for the appropriate function δ(ϵ). Gopi et al.
[2024] provided an efficient method for composing privacy curves directly that gave much tighter privacy guarantees,
using an accountant called the Privacy Random Variable accountant (PRV). This relies on a connection between a DP
mechanism’s privacy curve δ(ϵ) and its uniquely defined privacy loss random variables (X,Y ), which represent the
likelihood of returning a particular outcome on two neighboring databases, respectively defined as:

X = log(Q(ω)
P (ω) ) where ω ∼ P ; Y = log(Q(ω)

P (ω) ) where ω ∼ Q,

where P and Q are the distribution of the mechanism’s output over two neighboring datasets. Intuitively, the privacy
loss random variables can be thought of as the actual ϵ value for a specific output; it is a random variable because the
outputM(D) is itself a random function.

Gopi et al. [2024] introduced the algorithm ComposePRV, which efficiently computes the privacy guarantees for the
composition of multiple DP mechanisms. ComposePRV takes as input the CDFs of PRVs Y1, . . . , Yk (as well as a few
other hyperparameters), and returns an estimate of the privacy curve for all the mechanisms composed, represented by
δ(ϵ), allowing for the direct computation of ϵ.

3 Generalized Gaussian Mechanism and Privacy Guarantees

In this section, we first introduce the Generalized Gaussian (GG) Mechanism and show that it satisfies DP (Section
3.1). Since these privacy results are existential, rather than descriptive – i.e., we show that there exists some ϵ and δ
values, rather than providing a closed form relationship between (β, σ) and (ϵ, δ) – we also present a PRV-based privacy
accounting method (Section 3.2) that can be used to measure explicit (ϵ, δ)-DP guarantees in the applications of this
mechanism to ML tasks, as studied in Sections 4 and 5.

3.1 Generalized Gaussian Mechanism

We first formally define the Generalized Gaussian distribution and introduce the Generalized Gaussian Mechanism
(Algorithm 1), which is an output perturbation mechanism that adds noise sampled from the Generalized Gaussian
distribution.
Definition 8 ([Dytso et al., 2018]). The Generalized Gaussian distribution, denoted Nβ(µ, σ), is specified by the pdf

p(x|µ, σ, β) ∝ e−
|x−µ|β

σ with normalizing constant β

2σ
1
β Γ( 1

β )
.
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The Generalized Gaussian Mechanism was introduced by [Ganesh and Zhao, 2021] for ℓ1 sensitivity and by [Liu, 2019]
for ℓβ sensitivity; we use the latter, more general version.

Algorithm 1 Generalized Gaussian Mechanism, GGβ,σ(f,D). [Liu, 2019]

1: Input: noise parameters β ≥ 1, σ > 0, vector-valued function f : D → Rd, database D ∈ D
2: Let ∆βf = maxD,D′ neighbors ∥f(D)− f(D′)∥β
3: for i = 1 to d do
4: Sample Yi ∼ Nβ(0, σ ·∆βf)
5: end for
6: Output: f(D) + (Y1, . . . Yd)

Next, we show that the GG Mechanism satisfies DP (Theorem 1). As stated, the result is existential, and does not
provide an explicit relationship between the (β, σ) noise parameters of the mechanism and the resulting DP parameters
(ϵ, δ). Critically, this guarantee that the mechanism is DP for some ϵ and δ is sufficient to apply the PRV accountant
described in Section 3.2.
Theorem 1. For any β ≥ 1, σ > 0, δ > 0 there exists a finite value ϵ such that GGβ,σ(·, ·) satisfies (ϵ, δ)-DP.

To prove Theorem 1, we first show that for all µ ≥ 0 (corresponding to the difference in the value of f on neighboring
databases) and all α > 1, the α-Rényi divergence betweenNβ(0, σ) andNβ(µ, σ) is bounded by some finite r; this step
is shown formally in Lemma 15 in Appendix C.1. Bounded Rényi divergence means that the GGβ,σ(f,D) mechanism
satisfies (α, r)-RDP, and by the RDP-to-DP conversion of Mironov [2017], it also satisfies (r + log 1/δ

α−1 , δ)-DP for any
δ ∈ (0, 1). A formal proof of Theorem 1 is given in Appendix C.2.

In Appendix A, we also introduce and analyze the Sampled Generalized Gaussian Mechanism, SGG (Algorithm 4),
which is a variant of the GG Mechanism that first applies Poisson subsampling to the input database, evaluates the
function f on the sample, and then adds Generalized Gaussian noise to the result. This mechanism is motivated by
privacy amplification by subsampling, which strengthens privacy guarantees without increasing the level of noise
added by the mechanism, by subsampling the database before applying a DP mechanism. It is particularly popular in
ML applications, such as the Sampled Gaussian Mechanism (SGM) [Mironov et al., 2019] and DP-SGD, because it
formalizes the privacy gains intuitively brought by computing each update on the small subset of training examples
selected to form each minibatch.

3.2 Privacy Accounting for GG Mechanisms

We focus on the PRV accountant because it is implemented in common codebases such as Opacus [Yousefpour et al.,
2021] and it empirically provides tighter guarantees than other accountants [Gopi et al., 2024]. In this work we
extend the PRV accountant to work for privacy accounting of arbitrary DP mechanisms such as the GG mechanism,
which do not typically exist in closed-form, providing a framework for investigating alternative DP mechanisms. In
order to calculate the privacy consumed using a PRV accountant, one must simply compute the CDF of the PRV.
In Appendix B.1, we extend the known PRVs for Laplace and Gaussian Mechanisms and compute a closed-form
expression for the PRV of the Generalized Gaussian Mechanism, which enables us to apply the PRV accountant.

We compute the privacy guarantees of GGβ,σ(f,D) using the PRV accountant by sampling from the appropriate
Nβ(µ, σ) distribution, and numerically computing an empirical estimate of the CDF of Y . [Gopi et al., 2024] provides
a tight estimate of the error in the PRV accountant’s estimate; our work relies on this computation and provides a
similarly tight error analysis that bounds the additional error from sampling, which is presented in Appendix B.3. We
then plug in this CDF as input to the ComposePRV algorithm of Gopi et al. [2024], which takes the CDFs of the PRVs
of the composed mechanisms, and returns a composed privacy curve δ(ϵ), providing the unique ϵ value for a specified
choice of δ. The implementation of the PRV accountant is described in greater detail in Appendix B.3.

Figure 2 illustrates the resulting value of ϵ as a function of σ for different values of β and fixed values of δ = 1e− 5
and ∆f = 1. Observe that all curves have a similar structural form to the known Gaussian (β = 2) and Laplace (β = 1)
Mechanisms, and that as β grows, the same (ϵ, δ)-DP guarantee necessitates a larger value of σ. In the figure, we
show the privacy curves for a single composition of the GG mechanism, but importantly, these privacy curves and their
relative differences change as a function of the number of times the mechanisms are composed.

Remarkably, when using sensitivity defined in the ℓβ norm we observe that the privacy cost of the multi-dimensional
mechanism is equivalent to the single dimension mechanism. This makes privacy accounting for GGβ,σ(f,D)
dimension independent when some ℓβ sensitivity is used. We prove this in result Appendix B.2, and also provide an
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Figure 2: DP parameter ϵ as a function of noise parameter σ with fixed δ = 10−5 and ∆f = 1, calculated using the PRV
accountant. Mechanisms with equivalent DP guarantees can be identified by computing the privacy curve’s intersection with a
horizontal line, illustrated here with a red line for (arbitrarily chosen) ϵ = 4.

analytic solution for the one dimensional GG mechanism in Appendix B.1. This dimension-independence is crucial for
machine learning, as it allows us consider numerical, sampling-based approaches. If privacy accounting depended on
dimension, sampling numerically would be computationally infeasible, as even small machine learning models regularly
have over 1,000,000 parameters (dimensions), requiring us to sample from 1,000,000+ distributions millions of times.

For a given privacy budget (ϵ, δ), varying β will change the paired σ and subsequently vary the weight of the tails of
the distributions. As a result, for a particular definition of “tail”, it is possible to derive the optimal GG mechanism that
minimizes the likelihood of an outlier; we explore this in Appendix B.5 and believe may be of independent interest.

4 GG Mechanism for PATE and Private Argmax

Private Aggregation of Teacher Ensembles (PATE) [Papernot et al., 2017] is an algorithm for training a private machine
learning model. In PATE, a dataset is partitioned and a model is trained on each partition, then the models in the
ensemble privately vote on the labels of an unlabeled dataset, and finally a model is trained on the privately labeled
dataset. A more detailed explanation is presented in Appendix D. The core step in PATE that provides formal privacy
is the private computation of the Argmax over the votes of an ensemble of models, returning the plurality of a noisy
histogram of votes. This is done based on a variation of the ReportNoisyMax algorithm, and is the center of our focus
in this section.

PATE has been extensively studied with variations of Laplace and Gaussian Mechanisms; Papernot et al. [2017]
employed LNMax, which privately aggregates votes from an ensemble of models by taking the argmax of a histogram
after adding Laplace noise. Later, Papernot et al. [2018] developed several variations based on adding Gaussian noise,
including GNMax, and empirically found them to be superior to their Laplace counterpart.

We introduce a new algorithm, GGNMax, generalizing the GNMax and LNMax algorithms, which adds noise from
the Generalized Gaussian Distribution Nβ(0, σ) (Section 4.1). We then show empirically in Section 4.2 that the effect
of β on average label accuracy is relatively weak and Laplace and Gaussian noise work produce nearly equivalent
privacy-accuracy tradeoffs. We supplement these findings with simulations in Appendix D.1, and we empirically
show that the Gaussian mechanism is near-optimal when the correct label of the histogram aligns with the non-private
majority vote.

4.1 Private Argmax and the GGNMax Mechanism

We present our Generalized Gaussian Private Argmax algorithm (GGNMax), which takes in noise parameters (β, σ), a
set of count functions each with sensitivity 1, and a database. The algorithm adds noise sampled from Nβ(0, σ) to each
function value and then returns the index of the function with the largest noisy value. This will be used as a key private
subroutine of PATE, where the count functions will be used to privately count the number of votes for each label.

7



Algorithm 2 Generalized Gaussian Private Argmax, GGNMax(β, σ, {f}, D)
1: Input noise parameters β ≥ 1, σ > 0, count functions f1, . . . , fN : D → R, database D ∈ D
2: for i = 1 to N do
3: Compute fi(D)
4: Sample Yi ∼ Nβ(0, σ)
5: end for
6: Output argmaxi∈[N ]{fi(D) + Yi}

The privacy guarantees of GGNMax rely on the privacy of the GG Mechanism, which is used as a subroutine. Note that
the GG Mechanism is known to be private for some (ϵ, δ) pair (Theorem 1), so this theorem relates the parameters of
the two mechanisms.

Theorem 2. If the (β, σ)-Generalized Gaussian Mechanism is (ϵ, δ)-DP for a fixed ϵ > 0 and δ ≥ 0, then (β, σ)-
Generalized Gaussian Private Argmax is also (ϵ, δ)-DP.

A proof of Theorem 2 is given in Appendix C.3. Note that as with the Laplace-based Report Noisy Max algorithm
[Dwork and Roth, 2014] and the Gaussian-based GNMax algorithm [Papernot et al., 2018], the privacy guarantee does
not depend on number of functions N . This makes it a desirable method for computing the argmax of the output of the
GG Mechanism, which consumes privacy proportional to the number of queries; this property allows GGNMax to have
privacy-accuracy tradeoffs that scale well in high dimensions.

4.2 PATE Experiments

As an intermediate step in PATE, the algorithm produces a histogram of votes in order to privately label an unlabeled
dataset. In order to isolate the effect of the specific privacy mechanism used for PATE, we focus our attention to study
the effect of the β parameter on the label accuracy of the private aggregation step in PATE.

To study this for a realistic setting, we use the histograms generated on the MNIST and the Street View House Numbers
(SVHN) dataset [Netzer et al., 2011], produced by Papernot et al. [2017], which introduced the PATE algorithm. For
each of these datasets, we start with a collection of 10, 000 histograms; each histogram is the collection of 250 models
trained on a partition of the dataset, and evaluated on an unlabeled datapoint x. Then, for each histogram, we compute
the private label produced by the GGNMax mechanism for 20 evenly spaced values β ∈ [1, 4] and 200 values of
σ ∈ [0.01, 7]. For each fixed (ϵ, δ) and value of β, we compute the average label accuracy with respect to the ground
truth labels provided by the dataset, averaged across 25 trials for each datapoint.6

1.0 1.5 2.0 2.5 3.0 3.5 4.094.1

94.2

94.3

94.4

94.5

Ac
cu

ra
cy

MNIST

1.0 1.5 2.0 2.5 3.0 3.5 4.087.9

88.0

88.1

88.2

88.3
SVHN

 = 0.05
 = 0.1
 = 0.5

 = 1.0
 = 1.5
 = 2.0

Figure 3: Average Label Accuracy of GGNMax mechanisms with equivalent privacy guarantees and varying values of β, evaluated
on histograms which were generated by Papernot et al. [2017] as an intermediate state produced by 250 teachers trained on MNIST
(left) and SVHN (right).

Figure 3 shows the average label accuracy for the GGNMax mechanism applied to histograms generated as part of
PATE for MNIST and SVHN, as a function of β. We observe that values of β in the region of β ∈ [1, 2.5] perform
roughly equivalently, and for larger choices of β, the label accuracy decreases slightly.7

6We find that changing the number of trials has minimal effect on the mean or standard deviation of the average accuracy
7Empirically, we observe a small drop in performance around β = 2.6, which may be due to an artifact of how the mechanisms

of equivalent DP guarantees are generated. First we add noise from an evenly distributed grid of β ∈ [1, 4] and σ ∈ [0.01, 7] values,
and then we compute the privacy for those (β, σ) tuples and compute the corresponding mechanisms of approximately equal DP
guarantees. This may cause us to overestimate the ϵ when solving for mechanisms with equivalent DP guarantees.
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To further extend these findings to more settings, we investigate the privacy-accuracy tradeoff of the GGNMax algorithm
on simulated histograms in Appendix D.1. We find that when the correct label is the argmax of the unnoised histograms,
the GGNMax with β values close to 2 perform near-optimally.

5 GG Mechanism for Differentially Private Stochastic Gradient Descent

We now turn to applications of the GG Mechanism in DP-SGD, which is one of the most commonly used mechanisms
for private ML. We propose two simple changes to DP-SGD: replacing the Gaussian noise used in DP-SGD with
Generalized Gaussian noise, and using the ℓβ norm for clipping rather than ℓ2.8 As articulated in Section 2.1, this
change in sensitivity measure does not change the notion of neighboring databases, so optimization over β shoulve be
viewed as additional hyperparameter tuning to improve performance, rather than changing the nature of the privacy
guarantees.

We call the resulting mechanism the β-Generalized Gaussian Differentially Private SGD (β-DP-SGD). This is also
equivalent to changing the underlying mechanism in DP-SGD from the Sampled Gaussian Mechanism to the Sampled
Generalized Gaussian Mechanism (SGG), as DP-SGD performs Poisson subsampling on the dataset before computing
the gradient update and adding Gaussian noise. The β-DP-SGD algorithm is presented formally in Algorithm 3.9

Algorithm 3 β-Generalized Gaussian Differentially Private SGD, β-DP-SGD(β, σ,D, l, η, L,C, T )
1: Input: noise parameters β ≥ 1, σ > 0, database D = {x1, . . . , xN} of points in Rd, loss function l(θ, xi), learning

rate η, average group size L, clip norm C, and training epoch length T
2: Initialize θ1 ∈ Rd randomly
3: for t = 1 to T do
4: Construct Lt ⊆ D such that each xi ∈ D is included with probability q = L/|D| (Poisson sampling)
5: for each i ∈ Lt do
6: Compute Gt(xi) = ∇θt l(θt, xi)

7: Ḡt(xi)← Gt(xi)/max
(
1,

∥Gt(xi)∥β

C

)
8: end for
9: Sample Y1, . . . , Yd ∼i.i.d. Nβ(0, σ · C)

10: G̃t ← 1
L

(∑
i Ḡt(xi) + Y⃗

)
11: θt+1 ← θt − ηG̃t

12: end for
13: Output: θT

The following theorem states that β-DP-SGD is differentially private, which we prove in Appendix A.2.
Theorem 3. For any δ > 0, β ≥ 1, σ > 0, f : D → Rd, database D ∈ D, for any loss function of the form l(θ, xi),
learning rate η ≥ 0, average group size L, clipping norm C ≥ 0, there exists a finite ϵ > 0 such that the algorithm
β-DP-SGD(β, σ,D, l, η, L,C) satisfies (ϵ, δ)-DP.

5.1 DP-SGD Experiments

We seek to find a relationship between β and DP-SGD’s privacy-accuracy trade-off for non-convex optimization tasks
by comparing test-accuracy as a function of ϵ, for different β.

To provide a robust evaluation of the role of β in the β-DP-SGD algorithm, we focus on 4 datasets in different domains:
CIFAR-10 [Krizhevsky, 2009] and Street View House Numbers (SVHN) [Netzer et al., 2011], two common computer
vision datasets; the Adult dataset [Becker and Kohavi, 1996], a tabular dataset with a binary classification task; and
the IMDB dataset [Maas et al., 2011], a collection of movie reviews meant for binary sentiment classification. We
train three different architectures: for the vision classification tasks, we use the models described in Tramèr and Boneh
[2021], which previously achieved SOTA results for the ϵ ≤∼ 2.5 regime (ScatterNet CNNs). For the the Adult Dataset
we train a 2-layer Fully Connected Network (FCN), and for the IMDB dataset, we train a Long-Short Term Memory
(LSTM) network with ∼ 1M parameters.

8We choose to use ℓβ clipping rather than a fixed choice like ℓ2 because when using the GGβ,σ(f,D) mechanism with ℓβ
sensitivity, privacy accounting is dimension-independent. See Appendix B.2.

9Note that when using a privacy accountant with a desired (ϵ, δ)-DP guarantee, the privacy accountant tracks the privacy used at
each epoch and halts when the privacy budget has been reached, rather than running for a fixed training length T as in Algorithm 3.
We use the current presentation for simplicity.
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A full description of the hyperparameters, datasets, and models is included in Appendix E.1. Each experiment is run 3
times, which we found sufficient given standard deviations that generally fell below 0.3%.10 We find that when fixing a
choice of β and allowing for hyperparameter tuning along all other hyperparameters, we see a weak but noticeable
relationship with final test accuracy. We report the maximum test-accuracy for each dataset, i.e., the maximum across all
hyperparameters under the fixed architecture, and the standard deviation across 3 trials for each set of hyperparameters.

Figure 4 presents the maximum test-accuracy for 3 different values of ϵ, evaluated for 3 different models on 4 different
datasets (ScatterNet on CIFAR-10 and SVHN, a FCN on the Adult dataset, and an LSTM on the IMDB dataset), across
different values of β. Similar to our results with the GGNMax, we find that for all ϵ values tested, the choice of β
has a relatively weak relationship with test-accuracy across most values of ϵ. However, unlike the results in Section 4,
β-DP-SGD seems to perform worse for larger values of β, particularly for values larger than β ≥ 3.0. In Appendix E.2,
we explore the relationship of individual hyperparameters with β and find a weak, but more noticeable effect of β on
the final test-accuracy, particularly for larger ϵ.
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Figure 4: β-DP-SGD results for the corresponding architectures trained on CIFAR-10, SVHN, Adult, and IMDB, for δ = 10−6.
The test-accuracy is reported for five values of ϵ, computed for each architecture-dataset pair. A vertical dashed line denotes the
Gaussian mechanism. Note: Some values are not presented (for lower ϵ), because larger β tends to consume more privacy per step,
and the model’s privacy budget exceeds the target in the first step.

Table 1 provides numerical results on the performance of β-DP-SGD compared to that of regular DP-SGD across
different ϵ values for the example case of CIFAR-10. We observe that despite a relatively weak relationship between β
and test-accuracy, β-DP-SGD is able to reach – and slightly surpass – SOTA results. Most existing SOTA results use
privacy guarantees provided by an RDP accountant, which can overestimate privacy loss relative to PRV accounting.
In order to disambiguate empirical differences due to improved accounting versus the GG mechanism, we recreate
existing SOTA results using both the PRV and RDP accountants. As expected, we see that methods using the PRV
accountant outperform those using the RDP accountant.

The comparison of β-DP-SGD versus DP-SGD in Table 1 reveals that some minor improvements in performance result
from optimizing β, although these must be traded off against the privacy cost of hyperparameter search [Papernot and
Steinke, 2022]. Note that the optimal β-values in Table 1 are all close to 2, and for ϵ = 3, the optimal β-value equals 2.

6 Conclusion

In this work, we have studied the Generalized Gaussian Mechanism and its privacy guarantees – as well as its variants
SGG, GGNmax, and β-DP-SGD. We have demonstrated the application of these mechanisms to private ML, particularly
for PATE (via private Argmax) and DP-SGD.

While one may hope that providing an additional hyperparameter β to control the noise distribution would allow
for improvements in the privacy-accuracy tradeoff of DP mechanisms, our empirical evaluations instead reveal that
optimizing β has a relatively modest impact on test accuracy. In particular, values close to β = 2 (i.e., Gaussian noise)

10Although 3 iterations would typically be considered a small number, each run of the mechanism is already aggregating over T
rounds of the GG mechanism and corresponding gradient updates.
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Accountant Training Algorithm ϵ = 1 ϵ = 2 ϵ = 3 β value

RDP DP-SGD 60.3 (-) 67.2 (-) 69.3 (-) -
PRV DP-SGD 63.5 (0.4) 67.6 (0.1) 69.2 (0.3) -
PRV β-DP-SGD (ours) 63.7 (0.1) 67.7 (0.1) 69.4 (0.1) (2.33, 2.33, 2)

Table 1: SOTA Results for private ML, evaluated on CIFAR-10, grouped by privacy accountant. The model used is a CNN model
(∼ 5e5 parameters) trained on Scatternet features, which we refer to as ScatterNet. The β value column is set to ‘-’ if trained with
traditional DP-SGD, otherwise it reports a tuple of β values that achieve max accuracy for ϵ = 1, 2, 3, respectively (ties broken by
smaller std values). Best performance for each ϵ is bolded.

exhibit near-optimal performance, which provides insight into the popularity of Gaussian noise in DP-SGD, PATE, and
other private ML applications.

We also showed how the PRV accountant can be used for Generalized Gaussian Mechanism and its variants, and
that privacy accounting is dimension-independent for the β-GG Mechanism, using ℓβ sensitivity. This dimension-
independence has the potential to dramatically improve the computational costs of privacy accounting for this family of
mechanisms.

An interesting extension for future work is that the GG Mechanism samples noise independently across dimensions.
For the Laplace Mechanism (β = 1), it is known that sampling from a high-dimensional Laplace variant can improve
performance in private ML settings such as private empirical risk minimization [Chaudhuri et al., 2011]. Multi-
dimensional Gaussian distributions are the only spherically symmetric distribution where all the component random
variables are independent Ali [1980], so such high-dimensional variants would not improve performance for β = 2.
This suggests that for β ∈ [1, 2), it may be possible to improve utility for the same privacy guarantee by sampling from
a single high-dimensional distribution rather than sampling independently for each coordinate.
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A Sampled Generalized Gaussian Mechanism

Privacy amplification by subsampling is a technique to strengthen DP guarantees without increasing the level of
noise, by randomly sampling a subset of the input dataset before applying a DP mechanism; it is commonly used in
ML applications. The DP parameters improve proportionally to the subsampling rate, as formalized in Theorem 4.
Intuitively, each point is less likely to be used in the analysis, and the noise from sampling can be “counted” toward the
privacy budget.

For our mechanism, we will focus on Poisson subsampling, a sampling process where each element of a population is
included in a set according to the outcome of an independent Bernoulli trial. We use S(q) to refer to a Poisson sampling
procedure with sampling rate q.

Theorem 4 (Privacy Amplification by Poisson Subsampling [Kasiviswanathan et al., 2011] [Beimel et al., 2013]). Let
M be an (ϵ, δ)-DP mechanism, and let S(q) be a Poisson sampling procedure with sampling rate q. ThenM◦ S(q) is
(O(log(q)ϵ), qδ)-DP.

A.1 Sampled Generalized Gaussian Mechanism

Next, we present the Sampled Generalized Gaussian Mechanism, SGG, which is a sampled variant of the GG Mechanism.
It generalizes the Sampled Gaussian Mechanism [Mironov et al., 2019], which is a common mechanism in private ML.
This mechanism relies on privacy amplification by subsampling (Theorem 4) to attain improved privacy guarantees
relative to its non-sampled counterpart. We state the SGG Mechanism in terms of Poisson sampling because the PRV
accountant is defined only for Poisson sampling; the mechanism can immediately be extended other types of sampling
and the privacy guarantees would still hold under the appropriate accountant.

Algorithm 4 Sampled Generalized Gaussian Mechanism, SGGβ,σ,q(f,D)

1: Input noise parameters β ≥ 1, σ > 0, sample rate q ∈ (0, 1] a vector-valued function f : D → Rd, database
D ∈ D

2: Compute l2 sensitivity of f : ∆2f = maxD,D′ neighbors ∥f(D)− f(D′)∥2
3: S = ∅
4: for each data element xj ∈ D do
5: With probability q, add xj to S
6: end for
7: for i = 1 to d do
8: Sample Yi ∼ Nβ(0, σ ·∆2f)
9: end for

10: Output f(S) + (Y1, . . . Yd)

The privacy guarantees of the SGG Mechanism follow nearly immediately from privacy of the GG Mechanism (Theorem
1) and privacy amplification by sampling (Theorem 4).

Theorem 5. For any β ≥ 1, σ > 0, δ > 0, q ∈ (0, 1], there exists a value ϵ such that SGGβ,σ,q(·, ·) satisfies (ϵ, δ)-DP.

Proof. Theorem 1 states that for any β ≥ 1, σ > 0, δ > 0, there exists an ϵ > 0 for which GGβ,σ,q(·, ·) is (ϵ, δ)-DP.
The SGG Mechanism simply applies Poisson Subsampling before running this GG Mechanism on the subsampled
dataset, so by Theorem 4, SGG satisfies (O(log(q)ϵ), qδ)-DP for the same ϵ.

A.2 β-DP-SGD is Differentially Private

The β-DP-SGD algorithm presented in Algorithm 3 also relies on privacy amplification by subsampling for its
privacy guarantees. At each time t, the algorithm performs Poisson subsampling with q = L/|D| before its gradient
measurement and update steps. We first provide the existential privacy result that β-DP-SGD is (ϵ, δ)-DP for some
privacy parameters (Theorem 3), and then provide Corollary 1, which rephrases the privacy guarantee in a way that
enables use of the PRV accountant across all T rounds.

Theorem 3. For any δ > 0, β ≥ 1, σ > 0, f : D → Rd, database D ∈ D, for any loss function of the form l(θ, xi),
learning rate η ≥ 0, average group size L, clipping norm C ≥ 0, there exists a finite ϵ > 0 such that the algorithm
β-DP-SGD(β, σ,D, l, η, L,C) satisfies (ϵ, δ)-DP.
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Proof. Algorithm 3 can be viewed as an adaptive T -fold composition of the SGG Mechanism, with post-
processing on its results. Specifically, the algorithm’s final output θT can be written as θT = θ0 + η

∑T
t G̃t,

where the G̃t is the postprocessed output of an instantiation of SGG with q = L/|D| and function f(D) =∑
i∇θt l(θt, xi)/max

(
1,

∥∇θt l(θt,xi)∥β

C

)
and noise vector Y⃗ sampled with each entry Yi ∼ Nβ(0, σC). Since –

given β, δ, σ, q – SGG is (ϵ, δ)-DP for some ϵ (Theorem 5), then the adaptive composition and postprocessing of these
mechanisms’ outputs that is performed in Algorithm 3 will also be (ϵ, δ)-DP for some ϵ.

Corollary 1 restates this result in a way that directly allows the PRV accountant to be applied for tighter composition
across all T rounds.

Corollary 1. If the SGGβ,σ,q(f,D) mechanism composed T times on function f with sensitivity ∆f satisfies (ϵ, δ)-DP,
then for any L ≤ |D|, C = ∆f , and loss function l(θ, xi), the β-DP-SGD(β, σ,D, l, η, L,C) also satisfies (ϵ, δ)-DP.

Proof. As shown in the proof of Theorem 3, the β-DP-SGD mechanism consists of the T -fold adaptive composition
(with postprocessing) of the SGG Mechanism, with the clipping norm C specified by the sensitivity ∆f of the input
function f , so that C = ∆f . Thus by Theorem 3 and the post-processing and composition guarantees of DP, the
β-DP-SGD mechanism also satisfies (ϵ, δ)-DP for the same (ϵ, δ).

B Empirically Computing Privacy Guarantees

Due to the complexity that arises from composing multiple DP mechanisms together, any statement about the privacy-
accuracy tradeoff of a highly-composed mechanism (like DP-SGD) is typically caveated by the specific implementation
of the privacy accountant used for privacy accounting. We demonstrate an example of this in Table 1 where we present
a clear improvement in the privacy-accuracy tradeoff of existing methods by simply changing RDP to PRV accounting.

At the time of writing, numerical accountants such as the PRV accountant achieve the tightest privacy guarantees Gopi
et al. [2024]. However, as a result of using a numerical accountant, closed form solutions for the privacy consumed do
not typically exist. Specifically, Gopi et al. [2024] introduced the algorithm ComposePRV (presented here in Appendix
B.3), which efficiently computes privacy guarantees for the composition of multiple DP mechanisms based on the PRV
accountant. It takes as input the CDFs of PRVs Y1, . . . , Yk, a mesh size h, and truncation parameter L, and returns an
estimate of the privacy curve for all the mechanisms composed, represented by δ(ϵ), enabling the direct computation
of ϵ. Given ComposePRV, [Gopi et al., 2024] also shows that the PRV accountant can be directly used to compute a
mechanism’s privacy loss, including for Poisson subsampled variants of mechanisms such as SGG.

However, when using the PRV accountant one must compute the CDF of the PRV, which is not a simple task for all
differentially private mechanisms. In this work, we get around this by estimating the CDF of the PRV numerically;
while this does introduce error, it also makes the privacy accounting of arbitrary mechanisms possible. In this appendix
we show how to use the PRV accountant for the β-DP-SGD mechanism by replacing the true CDF with an empirical
estimate, and provide error bounds for the resulting privacy guarantee. In short, we replace the CDF of the PRV with the
CDF of a (binned) histogram of the PRV sampled n times, and account for the error introduced by using numerically
computed histograms.

In this appendix, we first show that how to compute the PRVs for the single-dimensional GG mechanism, and the
multi-dimensional GG mechanism, and show that the GG mechanism is dimension-independent for specific sensitivity
bounds (Appendix B.1 and Appendix B.2). We then show how to use these PRVs to do privacy accounting for the
GG mechanism and the sampled GG mechanism, and provide error bounds under the modified PRV accountant that
estimates the CDF (Appendix B.3). Lastly, we explore how to find mechanisms that satisfy equivalent (ϵ, δ)-DP
guarantees, which can be used to define a new search space of comparable mechanisms (Appendix B.4); we end by
proposing a niche, but potentially valuable use-case where the Generalized Gaussian for β /∈ {1, 2} surpasses the
Laplace or Gaussian Mechanisms, for the goal of preventing outliers (Appendix B.5).

In this paper, our privacy accounting for β-DP-SGD depends on numerically computing the CDF of the PRV for the
Generalized Gaussian Mechanism by sampling from the Generalized Gaussian. For most distributions, computing the
PRVs for a multi-dimensional output perturbation DP mechanism (e.g., a private mean in multiple dimensions) would
depend on dimension. In typical machine learning applications (the primary use-case of DP-SGD), even small models
regularly exceed 1 million parameters, so dependence on dimension could be catastrophic if estimating a histogram
involved sampling from d > 1, 000, 000 distributions. Instead, we find that the PRVs for the Generalized Gaussian
Mechanism do not depend on dimension when noise is sampled from Nβ and the function has || · ||β-sensitivity. We
note that this retroactively provides some rationale for why the Laplace and Gaussian Mechanism respectively use ℓ1-
and ℓ2-norms for their noise distributions.
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B.1 Analytic PRV for a Single-Dimensional Generalized Gaussian Mechanism

In order to compute the PRV for GGβ,σ(f,D) we consider the privacy loss random variables for two distributions
shifted by µ = ∆f , corresponding to the outputs of the mechanism on two neighboring datasets: P ∼ Nβ(µ, σ) and
Q ∼ Nβ(0, σ).
Proposition 1. For σ, β > 0, let Z ∼ Nβ(0, σ), and let µ = ∆f . Then the PRVs for GGβ,σ(f,D) are X =(
1
σ

)β(|Z|β − |Z − µ|β
)

and Y =
(
1
σ

)β(|Z − µ|β − |Z|β
)
.

Proof. Given a noise distribution Z, and the associated differentially private mechanism, we derive the PRVs X,Y .
This proof is of the same form as a similar derivation in Gopi et al. [2024], specifically deriving the PRVs for the
Gaussian mechanism. The maximum difference in output of f between two neighboring datasets is µ = ∆f , so we can
abstract the worst-case pair of neighboring datasets with distributions P ∼ Nβ(µ, σ) and Q ∼ Nβ(0, σ).

Then for t ∼ Q = Nβ(0, σ), we can define the PRV Y as the following distribution:

Y ∼ log
(Q(t)

P (t)

)
= log

( exp(−tβ)
−|t− µ|β

)
= |t− µ|β − |t|β .

By symmetry for X , for t ∼ P = Nβ(µ, σ), we can define the PRV X as the distribution:

X ∼ log
(Q(t)

P (t)

)
= log

(−|t− µ|β

exp(−tβ)
)
= |t|β − |t− µ|β .

We note that while it is not necessarily true that X = −Y for all private mechanisms, it is true for the Generalized
Gaussian mechanism, as the proof above holds for all values of β or σ.

B.2 Dimension Independence in Multi-Dimensional PRVs

We first derive the PRVs for the multi-dimensional Generalized Gaussian Mechanism, and then show that they are
dimension independent.

As shown in Proposition 1, the PRVs for the single dimensional GG Mechanism are Y = |Z − µ|β − |Z|β and
X = |Z|β − |Z − µ|β where Z ∼ Nβ(µ = ∆f, σ = 1).

As shown in Section 2.3, the definition of a PRV is random variable generated from the probability of sampling a
particular sample t,

Y ∼ log
(Q(t)

P (t)

)
where t ∼ Q and X ∼ log

(Q(t)

P (t)

)
where t ∼ P.

This definition of a PRV does not change if t is a scalar or a vector — denoted t⃗ ∈ Rd, where ti is a scalar from i-th
dimension of t⃗. We now observe that the multi-dimensional probability distribution is equal to the product distribution of
the single-dimensional PDFs, since the multidimensional GG mechanism is sampled independently for each dimension:

Pr(⃗t) =

d∏
i=1

Pr(⃗ti) ∝
d∏

i=1

exp(−|⃗ti|β/σ).

Using this fact, we can then compute the PRVs of the multi-dimensional GG Mechanism. Let µ⃗ be a d-dimensional
vector such that ||µ⃗||β = ∆f , and let µi be the i-th dimension of µ⃗. Since each dimension of the noise is sampled
independently in the GG mechanism, we denote the PRVs for a d dimensional Generalized Gaussian mechanism as Yd

and Xd. For t⃗ ∼ Q, these can be written as:

Yd ∼ log
d∏

i=1

( exp(−|ti|β/σ)
exp(−|ti − µi|β/σ)

)
=

d∑
i=1

(|ti − µi|β − |ti|β)/σ,

and by symmetry,

Xd ∼
d∑

i=1

(|ti|β − |ti − µi|β)/σ.
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For a one-dimensional mechanism, µ in the PRV calculation must equal the sensitivity ∆f of the function being
privately evaluated. However, for multi-dimensional mechanisms, µ⃗ must instead be a vector with norm ||µ⃗||β = ∆f
that maximizes the privacy loss random variables X and Y . As we will see, there are many possible µ⃗ vectors which
meet this requirement.

Below, we show that if sensitivity is measured with respect to the ℓβ norm, then the PRVs for a multi-dimensional
Generalized Gaussian mechanism are simply the PRVs of the corresponding the single-dimensional GG mechanism;
this motivates our choice of || · ||β sensitivity, rather than fixing the sensitivity for all mechanisms.

Recall the definition of the ℓβ norm: ||x⃗||ββ = (
∑

i |xi|β)1/β To start, we observe that Yd =
∑d

i=1(|ti−µi|β−|ti|β)/σ
can be rewritten as

Yd =
1

σ

[
||⃗t− µ⃗||ββ − ||⃗t||

β
β

]
.

Since differential privacy requires a worst-case bound over all pairs of neighboring databases, it requires bounding
max{ Q(t⃗)

Q(t⃗−µ⃗)
, Q(t⃗−µ⃗)

Q(t⃗)
}, for all difference vectors µ satisfying the sensitivity bound ||µ⃗||β = ∆f . If the mechanism

used ℓ2-sensitivity, then the set of µ⃗ over which this difference must be maximized is all points on an ℓ2-ball of radius
∆f , i.e., those satisfying ||µ⃗||2 = ∆f .

However, we observe that any µ⃗ in the ℓβ ball of radius ∆f , i.e., µ⃗ ∈ {x⃗ : ||x⃗||β = ∆f}, will satisfy this maximal-
difference constraint because all such points are exactly ∆f away from the origin in ℓβ-distance. Thus Y = ∥t⃗ −
µ⃗∥ββ − ∥t⃗∥

β
β will be identical for any µ⃗ on the ℓβ-ball. This includes, for example, the one-hot vector µ⃗ = ⟨1, 0, . . . , 0⟩.

For this particular choice of µ⃗, we see that the PRVs for the multidimensional GG mechanism are the same as the
single-dimensional GG mechanism:

Yd ∼
d∑

i=1

(|ti − µi|β − |ti|β)/σ

=

(
|t1 −∆f |β − |t1|β + 0 + . . .+ 0

)
/σ

= (|(t1 −∆f)|β − |t1|β)/σ
= Y.

The same holds for Xd and X:

Xd ∼
d∑

i=1

(|ti|β − |ti − µi|β)/σ

=

(
|t1|β − |t1 −∆f |β + 0 + . . .+ 0

)
/σ

= (|t1|β − |t1 −∆f |β)/σ
= X.

Thus for β-GG mechanism with sensitivity measured with a ℓβ-norm, the PRV for the multi-dimensional GG distribution
is equivalent to the PRV for a single-dimensional GG distribution, when the sensitivity is also measured with the
ℓβ-norm.

B.3 Privacy of the Sampled PRV Accountant

In this section we formally introduce the Sampled PRV accountant, and provide theoretical guarantees for its privacy
and accuracy as a PRV accountant (Algorithm 6). The algorithm works along the same lines as the PRV accountant
from Gopi et al. [2024], but instead of composing the actual CDFs of the PRVs, this algorithm composes the empirical
distribution functions (EDFs) from samples from those PRV distributions. This is an (high-probability) approximation
to the guarantees of the PRV accountant from Gopi et al. [2024] with the uncertainty coming from the sampling error of
the points obtained from the PRV distributions. Our Sampled PRV accountant (SampledComposePRV, Algorithm 6)
extends the ComposePRV algorithm to work even when the CDF of the PRVs is not known, but the algorithm instead
only has sample-access to the distribution.

Our approach is similar to that of Gopi et al. [2024], where we first discretize the real space and map the samples on to
this grid (with our choice of width h) using the same mapping as Gopi et al. [2024], while truncating the samples to
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within a fixed interval [−L,L]. Note that the truncation from Gopi et al. [2024] removes the probability mass from
outside [−L,L] and then normalizes the truncated distribution. For our case, we may either construct the EDF only
using the samples from the PRV that lie within [−L,L] or we may construct the EDF from all the samples and truncate
in the same way as in Gopi et al. [2024] – both ways would be equivalent, and the distribution of the EDF would be the
same as in the case where the EDF is constructed from the original discretized and truncated PRV. After constructing
the EDF using the discretized and truncated samples for each PRV, we convolve all the EDFs using FFT with modulo
arithmetic in the same way as Gopi et al. [2024], i.e., using the operator A⊕B ≡ A+B (mod 2L).

First we need an algorithm samplen(Y, n, L, h) (Algorithm 5) which takes in a random variable Y , an integer n,
real-valued domain size L, and real-valued bin-width h, and returns a random variable Yn,L,h as output. This algorithm
generates n samples from Y , then constructs a discretized random variable over the domain [−L,L] with distribution
equal to the empirical CDF of the samples.

Algorithm 5 Sample Function sample(Y, n, L, h)
Input: Integer n, real-valued bin-width h, real-valued domain-range L, random variable Y
Output: Random variable Yn,L,h constructed from the empirical CDF of n samples from Y

1: Set m =
L−h

2

h
2: Generate independent samples from Y until we have 2n samples that lie within [−L,L]: {y1, y2, . . . , y2n} ∼i.i.d. Y

with rejection sampling
3: Define Y 1 = {y1, . . . , yn} and Y 2 = {yn+1, . . . , y2n}
4: for i = −m to m do
5: Set pi = CDFY 1(ih+ h/2)− CDFY 1(ih− h/2)
6: end for
7: Set q⃗ = 1∑2n

i=1 pi
⟨p1, . . . , p2n⟩

8: Set µ̃ = 1
n

∑2n
j=n yj −

∑m
i=−m ihqi

9: Set µ̂ = max{min{µ̃, h/2}, 0}
10: Set Ỹ =

{
ih+ µ̂ w.p. qi for −m ≤ i ≤ m

11: Return Yn,L,h

Finally, we can present our SampledComposePRV algorithm (Algorithm 6). This algorithm takes in sample-access
mechanisms to k PRVs Y1, . . . , Yk, where each Yi is the PRV for a single mechanism. For each Yi, the algorithm
generates n samples (that lie within [−L,L], using Algorithm 5) and constructs an empirical (PRV) distribution Yi,n

from the samples. Let Ỹi be the truncated and discretized version of Yi as described in Gopi et al. [2024]. Suppose
Y =

∑k
i=1 Yi is the true composed PRV, Ỹ =

∑k
i=1 Ỹi is the composition of the discretized and truncated PRVs, and

Yn =
∑k

i=1 Yi,n is the composed empirical PRV. The last summation Y n is computed correctly with high probability
by our algorithm via FFT as Ŷn =

⊕k
i=1 Yi,n, where the ⊕ operator is defined via modular arithmetic as above.

Algorithm 6 SampledComposePRV({Yi}i∈[k], h, L, n)
Input: Sample-access to PRVs Y1, Y2, . . . Yk , mesh size h, truncation parameter L that is a multiple of h, number of
samples n
output PDF of an approximation Ỹ of Y =

∑k
i=1 Yi, supported on a grid over [−L,L] with bin-width h

1: for i = 1 to k do
2: Yi,n ← sample(Yi, n, L, h)
3: end for

4: Compute PDF of Ŷn =
k⊕

i=1

Yi,n, where ⊕ is the convolution from Gopi et al. [2024].

5: Compute δŶn
(ϵ) = EŶn

[(
1− eϵ−Ŷn

)
+

]
for all ϵ ∈ [0, L].

6: Return Ŷn, δŶn
.

We present the guarantees of our privacy accountant in the following theorem, which is the main result of this section.
Theorem 6. Let s, t > 0 be some fixed parameters. LetM1,M2, . . . ,Mk be DP algorithms with privacy curves
δMi

(ϵ). Let Yi denote the PRV corresponding toMi, such that δMi
(ϵ) = δYi

(ϵ) for ϵ ≥ 0. LetM be the (adaptive)
composition ofM1,M2, . . . ,Mk, and let δM(ϵ) be its privacy curve. Let Ŷn (where n > 0) be the approximation
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of Y =
∑k

i=1 Yi produced by SampledComposePRV with mesh size h > 0 and truncation parameter L > 0. Let 2n
denote the number of samples used in sample (Algorithm 5). Then,

δŶn
(ϵ+ τ)− η ≤ δM(ϵ) ≤ δŶn

(ϵ− τ) + η,

where

η = 2

k∑
i=1

Pr[|Yi| ≥ L] + 4e−
2s2

kh2 + 4ke−
nt2

2L2 + 8ke−
nt2

2 + Pr

[∣∣∣∣ k∑
i=1

Yi

∣∣∣∣ ≥ L− t

]
+ 2k

(
t+

√
L
nh

)
,

and

τ = s+ k

(
t+ 2L

(
t
2 +

√
L
nh

))
+ 2k

(
t
2 +

√
L
nh

)
.

Additionally, SampleComposePRV takes O
(
bLh log(Lh ) + bn

)
time, where b is the number of distinct algorithms among

M1,M2, . . . ,Mk.

In order to prove Theorem 6, we will analyze a series of couplings, some of which have already been defined in Gopi
et al. [2024]. For that, we first define coupling approximations for measuring closeness between two distributions,
which were used by Gopi et al. [2024].

Definition 9 (Coupling Approximation [Gopi et al., 2024]). Given two random variables Y1, Y2, we write that
|Y1 − Y2| ≤η c if there exists a coupling between Y1, Y2 such that Pr[|Y1 − Y2| > c] ≤ η.

As a reminder to the reader, Y denotes the sum of all the original PRVs (Yi), Ỹ denotes the sum of all the truncated
and discretized PRVs (Ỹi), Y n denotes the sum of all the empirical PRVs, each created by 2n discretized and
truncated samples (Yi,n), and Ŷn denotes the convolution of all these sampled PRVs (Yi,n). First we will show that
|Y n − Ŷn| ≤η2

τ2 for some η2, τ2 ≥ 0. Next, we will prove that |Ỹ − Y n| ≤η1
τ1 for some η1, τ1 ≥ 0. We finally

prove that |Y − Ỹ | ≤η0
τ0 for some η0, τ0 ≥ 0, for our specific algorithmic setting that is slightly different from the one

in Gopi et al. [2024]. We will then invoke the following result from Gopi et al. [2024] that defines a triangle inequality
on coupling approximations.

Lemma 7 (Lemma C.1, [Gopi et al., 2024]). Suppose X,Y, Z are random variables such that |X − Y | ≤η1
c1 and

|Y − Z| ≤η2
c2. Then,

|X − Z| ≤η1+η2
c1 + c2.

This would give us |Y − Ŷn| ≤η τ , where η = η0 + η1 + η2 and τ = τ0 + τ1 + τ2. After that, we will use the following
result from Gopi et al. [2024] that translates guarantees from coupling approximations to privacy curves.

Lemma 8 (Lemma 5.2, [Gopi et al., 2024]). If Y and Ỹ are two PRVs such that |Y − Ỹ | ≤η c, then for every ϵ > 0,

δỸ (ϵ+ c)− η ≤ δY (ϵ) ≤ δỸ (ϵ− c) + η.

We start by proving that |Y n − Ŷn| ≤η2
τ2 for some η2, τ2 ≥ 0 and some given α > 0.

Lemma 9. Let Ỹ1, . . . , Ỹk, Y1,n, . . . , Yk,n, Y
n, Ŷn be defined as above. Suppose dTV(Ỹi, Yi,n) ≤ α for each 1 ≤ i ≤ k.

Then, ∣∣∣Y n − Ŷn

∣∣∣ ≤η2 0,

where η2 = Pr
[
|
∑k

i=1 Ỹi| ≥ L
]
+ 2kα.

Proof. Let λ = Pr
[
|
∑k

i=1 Ỹi| ≥ L
]

and λj = Pr
[
|
∑j

i=1 Ŷi,n +
∑k

i=j+1 Ỹi| ≥ L
]
, for 1 ≤ j ≤ k. We prove by

induction that λj ≤ λ+ 2jα. Let S be the set of all the points in the discretized version of [−L,L].
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For the base case (j = 1), consider the joint distribution (Y1,n, Ỹ2, . . . , Ỹk). Then we have the following:

|λ1 − λ| =

∣∣∣∣∣∑
s∈S

Pr [Y1,n = s] · Pr

[∣∣∣∣∣
k∑

i=2

Ỹi + s

∣∣∣∣∣ ≥ L

]
−
∑
s∈S

Pr
[
Ỹ1 = s

]
· Pr

[∣∣∣∣∣
k∑

i=2

Ỹi + s

∣∣∣∣∣ ≥ L

]∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

(
Pr [Y1,n = s]− Pr

[
Ỹ1 = s

])
· Pr

[∣∣∣∣∣
k∑

i=2

Ỹi + s

∣∣∣∣∣ ≥ L

]∣∣∣∣∣
≤

∣∣∣∣∣∑
s∈S

(
Pr [Y1,n = s]− Pr

[
Ỹ1 = s

])∣∣∣∣∣× 1 (Hölder’s inequality.)

≤ 2α

This proves our base case. Next, we assume that |λj−λ| ≤ 2jα for some j = j′ ≥ 1. We will show that |λj−λ| ≤ 2jα
for j = j′ + 1. The argument is very similar to that for the base case.

|λj − λj−1| =

∣∣∣∣∣∑
s∈S

Pr [Yj,n = s] · Pr

∣∣∣∣∣∣
j−1∑
i=1

Yi,n +

k∑
i=j+1

Ỹi + s

∣∣∣∣∣∣ ≥ L


−
∑
s∈S

Pr
[
Ỹj = s

]
· Pr

∣∣∣∣∣∣
j−1∑
i=1

Yi,n +

k∑
i=j+1

Ỹi + s

∣∣∣∣∣∣ ≥ L

 ∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈S

(
Pr [Yj,n = s]− Pr

[
Ỹj = s

])
· Pr

∣∣∣∣∣∣
j−1∑
i=1

Yi,n +

k∑
i=j+1

Ỹi + s

∣∣∣∣∣∣ ≥ L

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
s∈S

(
Pr [Yj,n = s]− Pr

[
Ỹj = s

])∣∣∣∣∣× 1 (Hölder’s inequality.)

≤ 2α

Therefore, by triangle inequality, we get the following.

|λj − λ| = |λj − λj−1 + λj−1 − λ| ≤ |λj − λj−1|+ |λj−1 − λ| ≤ 2(j − 1)α+ 2α = 2jα

This completes the inductive step. Consequently, |λk − λ| ≤ 2kα, which implies that λk ≤ λ+ 2kα.

We finally use the following result from Gopi et al. [2024] to complete the proof of Lemma 9.

Lemma 10 (Lemma C.7, Gopi et al. [2024]). Let X1, . . . , Xk be random variables supported on [−L,L]. Then,∣∣∣∣∣
k∑

i=1

Xi −
k⊕

i=1

Xi

∣∣∣∣∣ ≤β 0,

where β = Pr
[
|
∑k

i=1 Xi| ≥ L
]
.

This result would imply that |Y n − Ŷn| ≤β 0, where β = Pr
[
|
∑k

i=1 Yi,n| ≥ L
]
. However, because of our claim

above, β ≤ Pr
[
|
∑k

i=1 Ỹi| ≥ L
]
+ 2kα. Combining the two yields the required result.

Next, we show that |Ỹ − Y n| ≤η1 τ1 for some η1, τ1 ≥ 0.

Lemma 11. Let Ỹ1, . . . , Ỹk, Y1,n, . . . , Yk,n, Ỹ , Y n be defined as above. Then,∣∣∣Ỹ − Y n
∣∣∣ ≤η1

τ1,

where η1 = 2ke−nt2/2, τ1 = 2kα, and α = t
2 +

√
L
nh .
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Proof. Suppose it holds that for each 1 ≤ i ≤ k, with probability at least 1−β/k (for some 0 < β < 1), dTV(Ỹi, Yi,n) ≤
α for some 0 < α < 1. We will determine the values of α, β later in this proof. For j ≥ 1, let λ̃j =

∑j
i=1 Ỹi and

λj =
∑j

i=1 Yi,n. We will show by induction that |λ̃j−λj | ≤ βj
k

2jα. Let S′ be the set of all the points in the discretized
version of [−L,L] and S be a similarly discretized version of [−Lk,Lk].

For the base case (j = 1), |Ỹ1 − Y1,n| ≤ β
k
2α trivially holds due to our construction. Next, assume that the claim holds

for some j = j′ ≥ 1. We show that |λ̃j − λj | ≤ βj
k

2jα for j = j′ + 1.

∑
s∈S

∣∣∣∣∣Pr
[

j∑
i=1

Ỹi = s

]
− Pr

[
j∑

i=1

Yi,n = s

]∣∣∣∣∣ =∑
s∈S

∣∣∣∣∣Pr
[

j∑
i=1

Ỹi = s

]
− Pr

[
j−1∑
i=1

Ỹi + Yj,n = s

]

+ Pr

[
j−1∑
i=1

Ỹi + Yj,n = s

]
− Pr

[
j∑

i=1

Yi,n = s

] ∣∣∣∣∣
≤
∑
s∈S

∣∣∣∣∣Pr
[

j∑
i=1

Ỹi = s

]
− Pr

[
j−1∑
i=1

Ỹi + Yj,n = s

]∣∣∣∣∣
+
∑
s∈S

∣∣∣∣∣Pr
[
j−1∑
i=1

Ỹi + Yj,n = s

]
− Pr

[
j∑

i=1

Yi,n = s

]∣∣∣∣∣
≤ 2α+ 2(j − 1)α

= 2jα

The first inequality follows from the triangle inequality. We now reason about the last inequality. The first sum of
absolute values holds because the two terms in the absolute value differ only at j, i.e., one is Ỹj and the other is Yj,n.
The TV-distance between them is at most α with probability at least 1− β/k, therefore, the summation is at most 2α.
The second summation is at most 2(j − 1)α because the two terms in the absolute value differ on all 1 ≤ i ≤ j − 1,
and by the inductive hypothesis, the summation is at most 2(j − 1)α. Applying the union bound, this proves the claim.
This also implies that

|Ỹ − Yn| ≤β 2kα. (2)

Next, we invoke the following lemma from Canonne [2020], which bounds the TV-distance between a distribution over
a discrete domain and the empirical distribution formed by i.i.d. samples from the distribution, to determine α, β.

Lemma 12 (Proof of Theorem 1, [Canonne, 2020]). Given an unknown distribution X ∈ ∆([b]), let X̂ be the empirical
distribution obtained from n independent samples drawn from X . Then the expected total variation distance dTV

between X̂ and X , satisfies:

E[dTV(X, X̂)] ≤ 1

2
√
n

b∑
i=1

√
X(i) ≤ 1

2

√
b

n
.

Furthermore, this expected result can be converted into a high probability guarantee:

Pr

[
|dTV(X, X̂)− E[dTV(X, X̂)]| ≥ t

2

]
≤ 2e−

1
2nt

2

∀t > 0.

We instantiate Lemma 12 with 2e−nt2/2 = β/k, or equivalently, β = 2ke−nt2/2. Note that there are 2L/h+1 < 4L/h
bins in our discrete distribution, so we can also set b = 4L/h. Therefore, this lemma implies that for each 1 ≤ i ≤ k,
with probability at least 1− β/k,

α := dTV(Ỹi, Yi,n) ≤
t

2
+

√
L

nh
.

Substituting these values of α and β in Equation (2) gives the statement of Lemma 11.

We next show that |Y − Ỹ | ≤η0
τ0 for some η0, τ0 ≥ 0.
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Lemma 13. Let Y1, . . . , Yk, Ỹ1, . . . , Ỹk, Y, Ỹ be defined as above. Then,∣∣∣Ỹ − Y
∣∣∣ ≤η0

τ0,

where η0 =
∑k

i=1 Pr[|Yi| ≥ L] + 2e−
2s2

kh2 + 2k(e−
nt2

2L2 + e−
nt2

2 ), τ0 = s+ k
(
t+ 2L

(
t
2 +

√
L
nh

))
.

Proof. This lemma is an analogue of Corollary C.8 from Gopi et al. [2024]. To prove this lemma, we will rely on
Hoeffding’s inequality, stated as follows.

Lemma 14 (Hoeffding’s Inequality). Let X1, . . . , Xn be i.i.d. random variables and L > 0, such that for each
1 ≤ i ≤ n, Xi ∈ [−L,L]. Let S = 1

n

∑n
i=1[Xi]. Then for all t > 0,

Pr [|S − E[S]| ≥ t] ≤ 2e−
nt2

2L2 .

For each 1 ≤ i ≤ k, let Y L
i be the truncated (but not discretized) and conditional version of Yi obtained via rejection

sampling, and let XL
i,1, . . . , X

L
i,n be the truncated (but not discretized) samples from Y L

i used to determine µ̂ in
Algorithm 5 (which in Algorithm 5, refers to the samples yn+1, . . . , y2n collected for any given PRV, Yi), and let X̂i,j

be the version of XL
i,j mapped on to the midpoint of the interval it lies in. Using Lemma 14, with probability at least

1− 2ke−
nt2

2L2 , for each 1 ≤ i ≤ k,

E[XL
i ]− t ≤ XL

i :=
1

n

n∑
j=1

XL
i,j ≤ E[XL

i ] + t.

Now, for a fixed 1 ≤ i ≤ k, we will refer to the underlying discrete distribution of X̂i,j as Pi. This implies by linearity
of expectations that E[XL

i ] = E[Pi]. Let Qi be the (empirical) discrete distribution defined by X̂i,1, . . . , X̂i,n. We are
interested in bounding |E[Pi]− E[Qi]|.
First, we show that if dTV(Pi, Qi) ≤ α0, then |E[Pi] − E[Qi]| ≤ 2Lα0. Let S be the set of points in [−L,L] over
which Pi has been defined.

|E[Pi]− E[Qi]| =

∣∣∣∣∣∑
s∈S

s(pi(s)− qi(s))

∣∣∣∣∣
≤ L ·

∑
s∈S

|pi(s)− qi(s)| (Hölder’s inequality.)

≤ 2Lα0

We now use Lemma 12 to bound α0. As in Lemma 11, using the union bound, we have that that with probability at
least 1− 2ke−nt2/2, for each 1 ≤ i ≤ k, |E[Pi]− E[Qi]| ≤ 2Lα0, where

α0 ≤
t

2
+

√
L

nh
.

In Gopi et al. [2024], Algorithm 2 defines a quantity, µ ∈ [0, h/2], which depends on the parameters of the actual
distributions of the PRVs and acts as an additive offset to define the truncated and discretized distribution from the
truncated (but not discretized) distribution (Y L

i ): µ = E[XL
i ] − E[Pi]. This offset is determined using the CDFs of

the actual PRVs, and is used to satisfy certain technical requirements for their proof. Since our proofs have similar
technical requirements, we approximate µ empirically using random samples (y1, . . . , yn in Algorithm 5 for a given
PRV Yi) from the PRVs (which we call, µ̂) in Algorithm 5, and show using the above that µ and µ̂ are close to one
another. From our construction, µ̂ = max{min{XL

i − E[Qi], h/2}, 0}. The above implies using triangle inequality

that with probability at least 1− 2k(e−
nt2

2L2 + e−
nt2

2 ),

µ− (t+ 2Lα0) ≤ µ̂ ≤ µ+ (t+ 2Lα0).

Now, let γ = t+ 2Lα0; this implies that |µ̂− µ| ≤ γ with high probability.

We first prove two facts, which are analogs of Lemmas C.5 and C.6 from Gopi et al. [2024]. The first fact (analog of
Lemma C.5 in Gopi et al. [2024]) is that with high probability, for each 1 ≤ i ≤ k, (1) E[Ỹi] = E[Y L

i ] + τi for some
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|τi| ≤ γ, (2) |Y L
i − (Ỹi − µ̂)| ≤0

h
2 , and (3) |Y L

i − Yi| ≤λi 0 (where λi = Pr[|Yi| ≥ L]). Part (3) has already been
shown in Gopi et al. [2024], so we will focus on the first two.

We start by proving part (1). We have shown above that |XL
i − E[Qi]| ≤ γ with high probability, so it must be the

case that µ̂ = µ + τi (for some |τi| ≤ γ). Our construction (using the fact that E[Qi] =
∑m

j=−m jhqj) implies the
following:

E[Ỹi] = µ̂+

m∑
j=−m

jhqj = µ+ τi +

m∑
j=−m

jhqj = τi +

E[Y L
i ]−

m∑
j=−m

jhqj

+

m∑
j=−m

jhqj = τi + E[Y L
i ].

To prove part (2), we argue in a similar way as in Gopi et al. [2024] by defining a coupling between Y L
i and Ỹi

(conditioned on what we proved above regarding µ̂). Sample y ∼ Y L
i , and suppose y ∈

(
ih− h

2 , ih+ h
2

]
for some

integer −m ≤ i ≤ m. Consider ỹ = µ̂+ ih. The distribution of ỹ matches that of Ỹi by construction in Algorithm 5,
so it is a valid coupling between Y L

i and Ỹi (because the two marginals y, ỹ have the intended distributions) and
|y − (ỹ − µ̂)| = |y − ih| ≤ h

2 .

Our second fact (analog of Lemma C.6 in Gopi et al. [2024]) is that given |Y L
i −(Ỹi−µ̂i)| ≤0

h
2 and E[Ỹi] = E[Y L

i ]+τi
for all 1 ≤ i ≤ k and for some |τi| ≤ γ,∣∣∣∣∣

k∑
i=1

Y L
i −

k∑
i=1

Ỹi

∣∣∣∣∣ ≤η′ h

√
k

2
log

(
2

η′′

)
+

∣∣∣∣∣
k∑

i=1

τi

∣∣∣∣∣
for some η′, η′′ ≥ 0.

To prove this claim, let Zi = Y L
i − Ỹi. Then Zi ∈ [−µ̂i − h

2 ,−µ̂i +
h
2 ] and E[Zi] = −τi. We now apply Hoeffding’s

inequality (Lemma 14) once again to get the following:

Pr

[∣∣∣∣∣
k∑

i=1

Zi −
k∑

i=1

(−τi)

∣∣∣∣∣ ≥ s

]
≤ 2e−

2s2

kh2 =⇒ Pr

[∣∣∣∣∣
k∑

i=1

Zi

∣∣∣∣∣ ≥ s+

∣∣∣∣∣
k∑

i=1

τi

∣∣∣∣∣
]
≤ 2e−

2s2

kh2 .

Setting η′ = 2e−
2s2

kh2 + 2k(e−
nt2

2L2 + e−
nt2

2 ) (by taking a union bound) and η′′ = 2e−
2s2

kh2 , we have the following:∣∣∣∣∣
k∑

i=1

Y L
i −

k∑
i=1

Ỹi

∣∣∣∣∣ ≤η′ h

√
k

2
log

(
2

η′′

)
+

∣∣∣∣∣
k∑

i=1

τi

∣∣∣∣∣ .
This completes the proof of this claim.

Now, we also know that ∣∣∣∣∣
k∑

i=1

Y L
i −

k∑
i=1

Yi

∣∣∣∣∣ ≤λ 0,

where λ =
∑k

i=1 Pr[|Yi| ≥ L]. Therefore, using Lemma 7, we get the following:∣∣∣∣∣
k∑

i=1

Yi −
k∑

i=1

Ỹi

∣∣∣∣∣ ≤λ+η′ s+

∣∣∣∣∣
k∑

i=1

τi

∣∣∣∣∣ .
Therefore, for η0 = λ+ η′ and τ0 = s+ kγ, our lemma holds.

Proof of Theorem 6. We will first chain the results of Lemmas 13, 11, and 9 using Lemma 7, and we will show a
coupling approximation between Ŷn and Y , similar to the result of Corollary C.8 in Gopi et al. [2024]. Then we will
apply Lemma 8 to provide guarantees on the privacy curves and finish our proof.

From Lemma 9, we know that |Y n − Ŷn| ≤η2 0, where η2 = Pr
[
|
∑k

i=1 Ỹi| ≥ L
]
+ 2kα. We can bound

Pr
[
|
∑k

i=1 Ỹi| ≥ L
]

using Corollary C.8 from Gopi et al. [2024], which says that,

Pr

[∣∣∣∣∣
k∑

i=1

Ỹi

∣∣∣∣∣ ≥ L

]
≤ Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L− h

√
k

2
log

(
2

η′′

)]
+

k∑
i=1

Pr [|Yi| ≥ L] + η′,
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for some η′ > 0. From the proofs of Lemma 13 and Corollary C.8 from Gopi et al. [2024], we know that this

η′ = 2e−
2s2

kh2 + 2k(e−
nt2

2L2 + e−
nt2

2 ) and η′′ = 2e−
2t2

kh2 . From Lemma 12, with probability at least 1− 2ke−nt2/2, the

α in Lemma 9 equals t+
√

L
nh . Applying Lemmata 7, 13, 11, and 9, and the union bound, we get∣∣∣Y − Ŷn

∣∣∣ ≤η τ,

where

η = 2

k∑
i=1

Pr[|Yi| ≥ L] + 4e−
2s2

kh2 + 4ke−
nt2

2L2 + 8ke−
nt2

2 + Pr

[
|

k∑
i=1

Yi| ≥ L− t

]
+ 2k

(
t+

√
L

nh

)
,

and

τ = s+ k

(
t+ 2L

(
t

2
+

√
L

nh

))
+ 2k

(
t

2
+

√
L

nh

)
.

Finally, combining the above with Lemma 8, for all ϵ ≥ 0,

δŶn
(ϵ+ τ)− η ≤ δY (ϵ) ≤ δŶn

(ϵ− τ) + η.

Our runtime guarantees come at a linear cost in Õ(bLh + bn) for computing the empirical histograms and the means.
The first term comes from the computation of δŶn

(ϵ), which was shown in Gopi et al. [2024] to take time Õ(bL/h),
and the second term comes from our sampling process. To elaborate on the second term, it takes O(n) time to create a
histogram for a single PRV, and there are b distinct PRVs, so the added time for this step is just O(bn). Computing µ̂i is
takes O(L/h) time, so the total time for all the µ̂i’s is at most O(bL/h), which gets absorbed in the first term.

B.4 Mechanisms with Equivalent Privacy Guarantees

For any privacy accountant, it is generally possible to run the accounting algorithm many times to compute the
hyperparemeters required to achieve a particular degree of privacy. We introduce the following simple but effective
algorithm for using the PRV accountant as part of a binary search over possible values of σ in order to compute the
minimal σ value that GGβ,σ satisfies (ϵ, δ)-DP for a given β.

Let PRV (β, σ, δ) be a subroutine that runs the PRV accountant for the GGβ,σ mechanism, and returns the ϵ value
associated, such that GGβ,σ satisfies (ϵ, δ)-DP.

Algorithm 7 Binary-search σ-solver
1: Input: β ≥ 1, ϵ > 0, δ > 0, tolerance τ > 0
2: Output: σ, such that GGβ,σ satisfies (ϵ, δ)-DP
3: σmin = σmax = 1
4: while PRV (β, σmin, δ) > ϵ do
5: σmin = σmin/2.
6: end while
7: while PRV (β, σmax, δ) < ϵ do
8: σmax = σmax ∗ 2.
9: end while

10: while PRV (β, σmax, δ)− ϵ > τ do
11: σmid = σmax+σmin

2
12: if PRV (β, σmid, δ) > ϵ then
13: σmin = σmid

14: else σmax = σmid

15: end if
16: end while
17: return σmax

For our empirical results in Sections 4 and 5, we compare how the value of β impacts accuracy for a fixed privacy
guarantee.
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B.5 Outliers for Equivalently Private Mechanisms

Using the sampled-PRV privacy accountant and the Binary-search σ-solver algorithm described in Appendix B.4, we
are able to compute the σ-value — as function of ϵ, δ, and β — such that GGβ,σ(f,D) satisfies (ϵ, δ)-DP. Such a
computation is currently not possible with other popular privacy accountants, such as the RDP accountant and GDP
accountant,11, and no such analytic privacy bound currently exists for the GG mechanism for non-integer values of β.

Combining this empirical privacy accountant with the known CDF of the Generalized Gaussian distribution Nβ(0, σ)
[Dytso et al., 2018], we can compute the weight w of the tail of the distribution, as a function of the mecha-
nism’s parameters and a cutoff parameter τ , which specifies the threshold for defining the tail: w(β, ϵ, δ, τ) =∫ −τ

−∞ GGβ,ϵ,δ(x)dx+
∫∞
τ

GGβ,ϵ,δ(x)dx, where GGβ,ϵ,δ(x) is a probability distribution associated with a Generalized
Gaussian for a particular value of β that satisfies (ϵ, δ)-DP.12 Using this formalism, given a tail threshold τ , any sample
that falls in the tail can be labeled as an outlier, and the weight w described how likely such an outlier is to be observed,
given the mechanism’s parameters.

Figure 5 plots the weight in the tail of a GG distribution that satisfies a particular (ϵ, δ)-DP guarantee, as a function of
β, and varying τ = {1, 2, 4}. The left shows the tail weight for the GG Mechanism satisfying (1.5, 10−5)-DP, and the
right shows tail weight for the SGG Mechanism satisfying (1.5, 10−5)-DP using Poisson sampling rate q = 0.01 and
composed over 100 rounds. Given a desired (ϵ, δ)-DP guarantee, a practitioner that wishes to minimize the probability
of outliers in any of their computations could generate such a plot and then pick the choice β which provides a minimum
weight, thus minimizing the likelihood of outliers.
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Figure 5: Likelihood of outliers for the GG Mechanism (left) and SGG Mechanism with Poisson sampling probability
q = 0.01 composed 100 rounds (right), both that satisfy (1.5, 10−5)-DP . In the legend, tail refers to the τ tail cutoff
parameter. The jaggedness in the plotting comes from the contributions of sampling error methods and integration error
for very small weights; values are slightly smoothed with a Savitzky-Golay filter with polynomial order 2 and window
size 5.

While for the single-shot GG mechanism (left), the Laplace mechanism appears optimal (i.e., has the least weight in the
tail), Figure 5 shows that that there are regimes where the tails of Laplace and Gaussian are heavier (i.e., outliers are
more likely) than other equivalently private mechanisms in the GG family. This shows it is possible for that there to exist
values of β /∈ {1, 2} for which the associated GG Mechanism outperforms Laplace and Gaussian mechanism on this
particular metric. This observation provides a potential direction for new methods to evaluate and search for alternative
DP mechanisms: minimizing outliers was one of the main considerations cited by both the US Census [Abowd et al.,
2022] and researchers behind PATE [Papernot et al., 2018] when deciding to use the Gaussian mechanism instead of the
Laplace mechanism. Of course, the likelihood of outliers should be integrated with other organizational objectives and
constraints, since in general, an algorithm designer’s goal is not simply to minimize outliers, but rather to minimize
some loss function (e.g., maximize accuracy) that is impacted by outliers

11These are the only two other privacy accountants supported by Opacus, the most popular private machine learning library
Yousefpour et al. [2021]

12We are explicitly not specifying the value of σ for ease of presentation. Specifying the input β parameter and the desired privacy
parameters ϵ, δ will uniquely determine the minimum σ value that achieves the privacy parameters.
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C Omitted Privacy Proofs

C.1 Bounded Rényi Divergence of the Generalized Gaussian Mechanism

Here, we prove that the Renyi divergence between two Generalized Gaussian random variables is bounded, which is
used in the proof of Theorem 1. The two distributions in the statement of Lemma 15 correspond to the maximally
different output distributions of the GG Mechanism on neighboring databases, where µ > 0 is the sensitivity of the
input function. Note that this bound would be unchanged if we shifted the means of both distributions by the same
amount, so we do not need to consider the values of the function, only the difference in the values.
Lemma 15. The Renyi Divergence Dα(Nβ(0, σ)||Nβ(µ, σ)) is bounded for all α > 1, β ≥ 1, σ > 0, and µ > 0.

Proof. Fix β ≥ 1, σ > 0, and µ > 0, and consider the PDFs of generalized Gaussian random variables, Nβ(0, σ) and
Nβ(µ, σ). These PDFs are:

p(x) =
1

Z
exp
(
−
∣∣∣x
σ

∣∣∣β) and q(x) =
1

Z
exp
(
−
∣∣∣x− µ

σ

∣∣∣β),
with normalization constant Z = 2σ Γ

(
1 + 1

β

)
. The Rényi divergence of order α > 1 is defined as,

Dα(p∥q) =
1

α− 1
log

∫ ∞

−∞

p(x)α

q(x)α−1
dx. (3)

Substituting the densities into the integrand gives:

p(x)α

q(x)α−1
=

1

Zα
exp
(
−α
∣∣∣x
σ

∣∣∣β) · Zα−1 exp
(
(α− 1)

∣∣∣x− µ

σ

∣∣∣β)
=

1

Z
exp
(
−α
∣∣∣x
σ

∣∣∣β + (α− 1)
∣∣∣x− µ

σ

∣∣∣β).
Define f : R→ R as,

f(x) = exp

(
−α

∣∣∣x
σ

∣∣∣β + (α− 1)

∣∣∣∣x− µ

σ

∣∣∣∣β
)
.

It is sufficient to show that, barring a finite range of real numbers, the exponent in f is negative, which would make the
integral converge. For that, we consider three intervals: x < 0, 0 ≤ x ≤ µ, and µ < x, and define three functions f1,
f2, and f3 on these intervals, respectively, as follows.

f1(x) := −α
(
−x

σ

)β
+ (α− 1)

(
µ− x

σ

)β

f2(x) := −α
(x
σ

)β
+ (α− 1)

(
µ− x

σ

)β

f3(x) := −α
(x
σ

)β
+ (α− 1)

(
x− µ

σ

)β

Note that these functions describe the behavior of the exponent of f in their respective domains.

We start by showing that f3 is always negative in the range (µ,∞). Note that the right derivative of f3 equals that of its
left derivative at x = µ because it is a polynomial function and the limits on both the sides will be equal. We compute
the derivative of f3 as follows:

f ′
3(x) = −

αβxβ−1

σβ
+

(α− 1)β(x− µ)β−1

σβ
.

For any t > 0, xt is an increasing function, but on t = 0, xt = 1 is a constant function. Therefore, for β = 1,

f ′
3(x) = −

αβ

σβ
+

(α− 1)β

σβ
= − β

σβ
< 0.

For β > 1,

f ′
3(x) = −

αβxβ−1

σβ
+

(α− 1)β(x− µ)β−1

σβ
=

β

σβ

[
−αx−β−1 + (α− 1)(x− µ)β−1

]
.
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However, since x > µ, xβ−1 > (x − µ)β−1 and α > 1, f ′
3 must always be negative whenever x > µ. Also,

f3(µ) = −α
(
µ
σ

)β
< 0, which implies that f3(x) < 0 whenever x > µ.

We next consider the range 0 ≤ x ≤ µ. Not that this is a finite interval and that f2(x) will be finite on all x in this
domain because f2 is a polynomial function where the rational terms are well-defined in the domain.

We finally consider the third range x < 0 and the function f1. Substitute y = −x and define g1(y) = α
(
y
σ

)β
+ (α−

1)
(
y+µ
σ

)β
for y > 0. In this, we have simply changed the variables and the domains so that f1(x) = g1(−x) for all

x < 0. Now, the argument for this case is the same as in that for f3, while noting that the term
(
y
σ

)β
is now shifted to

the left as
(
y+µ
σ

)β
. Therefore, g1(y) < 0 for y > 0, which implies that f1(x) < 0 for x < 0.

Finally, we can split the integral for the Renyi divergence into three intervals x < 0, 0 ≤ x ≤ µ, and µ < x. We have
shown that in the middle interval, the integrand is bounded, therefore, the integral will be bounded in this finite range.
On the other hand, we have shown that in the other two intervals, the exponent in f is always negative, which means
that the integral in both cases will converge to finite values. This proves the lemma.

C.2 DP Guarantees of Generalized Gaussian Mechanism

Theorem 1. For any β ≥ 1, σ > 0, δ > 0 there exists a finite value ϵ such that GGβ,σ(·, ·) satisfies (ϵ, δ)-DP.

Proof. By Lemma 15 we know that the Rényi divergence of the GG Mechanism on any two neighboring databases
Dα(Nβ(0, σ)||Nβ(∆f, σ)) is bounded. By the definition of Rényi Differential Privacy [Mironov, 2017] (Defini-
tion 7), then the GG Mechanism must satisfy (α, ϵ)-RDP for the finite ϵ corresponding to the upper bound on
Dα(Nβ(0, σ)||Nβ(∆f, σ)). Then by the known translation between RDP and DP [Mironov, 2017], the GG Mechanism
also satisfies (ϵ+ log(1/δ)

α−1 , δ)-DP for the same ϵ and for any δ ∈ (0, 1).

C.3 DP Guarantees of GGNmax

Theorem 2. If the (β, σ)-Generalized Gaussian Mechanism is (ϵ, δ)-DP for a fixed ϵ > 0 and δ ≥ 0, then (β, σ)-
Generalized Gaussian Private Argmax is also (ϵ, δ)-DP.

The proof of Theorem 2 follows closely to the proof of privacy of the ReportNoisyMax algorithm with Laplace noise,
as presented in Dwork and Roth [2014]. It is included here for completeness.

Proof. Fix neighboring databases D,D′, where D = D′ ∪ {a}. Let c and c′ respectively denote the vector of function
values (i.e., counts) when the database is D and D′. We use two properties:

1. Monotonicity of counts. For all j ∈ [N ], cj ≥ c′j

2. Lipschitz property. For all j ∈ [N ], 1 + c′j ≥ cj

Fix any i ∈ [N ]. We will bound from above and below ratio of the probabilities that i is selected with D and with D′.
Fix r−i, a draw from [Nβ(0, σ)]

N−1 used for all the noisy function evaluation except for the ith function. We use the
notation Pr[i|ζ] to mean the probability that the output of the GGNmax algorithm is i conditioned on ζ.

We first argue that Pr[i|D, r−i] ≤ eϵ Pr[i|D′, r−i] + δ. Define

r∗ = min
ri

: ci + ri > cj + rj ∀j ̸= i.

Note that having fixed r−i, i is will be the output of the GGNmax mechanism (i.e., the ith function will have the largest
noisy count) when the database is D if and only if ri ≥ r∗. Then for all 1 ≤ j ̸= i ≤ N :

ci + r∗ > cj + rj

⇒ (1 + c′i) + r∗ ≥ ci + r∗ > cj + rj ≥ c′j + rj

⇒ c′i + (r∗ + 1) > c′j + rj

Thus if ri ≥ r∗ + 1, then i will be the output of GGNmax, meaning that the ith function had the largest noisy count,
when the database is D′ and the noise vector is (ri, r−i). We now wish to relate the probability of Pr[ri ≥ 1 + r∗] to
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the probability Pr[ri ≥ r∗]. We note that this is the step where the proof diverges from the privacy proof of Report
Noisy Max, as given in Dwork and Roth [2014].

Let Z ∼ Nβ(0, σ). We are given that GGβ,σ(f,D) satisfies (ϵ, δ)-DP, so,

Pr[Z ≥ r∗] ≤ eϵ Pr[Z ≥ r∗ + 1] + δ

⇒ Pr[i|D,x−i] = Pr[ri ≥ r∗] ≤ eϵ Pr[ri ≥ r∗ + 1] + δ ≤ eϵ Pr[i|D′, x−i] + δ.

We now argue that Pr[i|D′] ≤ eϵ Pr[i|D] + δ. Define, again,

r∗ = min
ri

: c′i + ri > c′j + rj ∀j ̸= i.

Note that having fixed r−i, i is will be the output of the GGNmax when the database is D′ if and only if ri ≥ r∗. For
all 1 ≤ j ̸= i ≤ N ,

c′i + r∗ > c′j + rj

⇒ 1 + c′i + r∗ > 1 + c′j + rj

⇒ c′i + (1 + r∗) > (1 + c′j) + rj

⇒ ci + (1 + r∗) ≥ c′i + (r∗ + 1) > (1 + c′j) + rj ≥ cj + rj

Thus, if ri ≥ r∗ + 1, then i will be the output of GGNmax on database D with randomness (ri, r−i). We again wish to
relate the probability of Pr[ri ≥ 1 + r∗] to the probability Pr[ri ≥ r∗], where Z ∼ Nβ(0, σ). Again using the fact that
GGβ,σ(f,D) satisfies (ϵ, δ)-DP,

Pr[Z ≥ r∗] ≤ eϵ Pr[Z ≥ r∗ + 1] + δ

⇒ Pr[i|D′, x−i] = Pr[ri ≥ r∗] ≤ eϵ Pr[ri ≥ r∗ + 1] + δ ≤ eϵ Pr[i|D,x−i] + δ.

Thus the GGNmax mechanism satisfies the same (ϵ, δ)-DP guarantee as the 1-dimensional GGβ,σ(f,D) mechanism
with sensitivity ∆ = 1 for the count functions.

D Additional Details and Results for Private Argmax and PATE

PATE (Private Aggregation of Teacher Ensembles) is an algorithm to train a private machine learning model. In the
first step, the private dataset is partitioned into T datasets, such that a single user’s data is only in single partition. A
“teacher” model is trained for each partition. Then, the teacher models are collected to privately vote on how to label
an unlabeled, public dataset, usually through an algorithm based off of the Report-Noisy-Max algorithm. A “student”
model is trained on the privately labeled dataset. We present a high-level overview of the algorithm in Figure 6.
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Figure 6: Diagram of PATE implementation [Papernot et al., 2017]
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In the main body of the paper we primarily explore the idea of how the choice of β affects the label accuracy of PATE;
in order to explore this more fully, we propose a new measure for accuracy for the private Argmax problem, which is
better suited to the goals of private ML — measuring the probability of returning the true Argmax, rather than returning
an outcome with score similar to the true Argmax. For this utility measure, we empirically find that β = 2 (Gaussian) is
again near-optimal.

D.1 Simulations for Ensemble-Based Private Vote Aggregation

While PATE is one of the primary motivations for the GGNMax mechanism, taking a private Argmax is a very
general problem and is particularly important for algorithms which attempt to reconcile beliefs (or votes) across many
parties. Classical work in differential privacy on private Argmax considers that for a vector of values, the utility of the
mechanism is a function of the probability that the mechanism returns any index that has a value associated with, close
to the maximum value. However, in a task like classification in ML, there is only a single label that is the “correct”
label, and thus we argue that for a task like classification in ML, a mechanism should be evaluated on how often it
returns the label that would have been assigned without noise.

Building upon this intuition, we define the Hardmax Utility of an Argmax mechanismM on functions {fi} over a
distribution P of databases as:

Hardmax-UtilityP(M, {fi}) := Pr
D∼P

[M(D, {fi}) = argmaxi(fi(D))].

With this utility measure in mind, we wish to measure the impact of β on the Hardmax utility of GG Private Argmax
algorithm. Given a vector of function values {fi(D)}, noise addition can only change the Argmax if the noise added is
larger than the existing gap between the highest function value and all other values. We refer to the difference between
the largest and second largest value in {fi(D)}, as the runner-up-gap.

To empirically evaluate the impact of β on the Hardmax utility, we construct a set of random histograms with varying
running-up-gaps; by varying the runner-up-gap, we vary the extend to which the outcome of the mechanism can be
changed by outliers in the noise terms.

For our simulations, we construct 500 histograms of votes as follows. We fix the total number of votes (simulating
votes from teacher models) as V = 1000 and fix the largest number of votes for class 0 as x0 = v. For a runner-up
parameter r ∈ [.001, 0.2], we fix the largest number of votes for class 0 at x0 = v, and the second-largest number of
votes for class 1 at x1 = v(1− r), corresponding to a runner-up-gap of vr = 100r. For 2-class histograms, fixing V
and r fully specifies the (deterministic) histogram. For N -class histograms, votes for the first three classes x0, x1, x2

are set so x1 = x0 · (1− r) (to ensure a runner-up-gap of r), x2 = x1 · 0.95, and (N−3)∗x2

2 + x1 + x0 = V . The next
N − 4 classes have votes uniformly sampled on the integers between 0 and x2, inclusive, and the final class has the
remainder of votes required to reach V votes in total: xN−1 = V −

∑N−2
i=0 xi. If xN−1 is negative or greater than x1,

the histogram is not used and random values are resampled. We then instantiate GGNmax on each database (histogram)
with counting queries fi that count the number of votes for each class i.

For a given (ϵ, δ)-DP guarantee and for a range of values βi ∈ [1, 4], we compute σi such that (βi, σi)-Generalized
Gaussian Private Argmax satisfies (ϵ, δ)-DP (see Appendix B.4 for algorithmic details of this process). For each pair
(βi, σi), we compute the Hardmax Utility of each mechanism by computing the likelihood of the (βi, σi)-Generalized
Gaussian Private Argmax algorithm returning the true argmax, averaged across 50 trials.
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Figure 7: Hardmax Utility for 2-class histogram. Left: Hardmax Utility as a function of runner-up-gap, for mechanisms satisfying
(1,10−5)-DP. Right: Area-Under-the-Curve (AUC) of the curves on the left for different values of ϵ. AUC is rescaled so that 1.0 is
the maximum.
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Figure 7 shows the Hardmax Utility of (βi, σi)-Generalized Gaussian Private Argmax for 2-class histograms under
varying β values. The left shows the Hardmax utility as a function of the runner up gap for varying β values. We
observe that varying β for a fixed runner-up-gap does not have a substantial impact on Hardmax utility, and that the
optimal β value typically does not dependent on the runner-up-gap.

The right shows the Area-Under-the-Curve (AUC) of the Hardmax utility curves (similar to those on the left) as a
function of β for different values of ϵ. Higher AUC means a better overall accuracy. The AUC is integrated over a
range of runner-up-gap values from 0% to 10%, and AUC is rescaled such that 1.0 is the maximum. We observe that
empirically, values of β close to β = 2 have better Hardmax-Utility than ones further away, regardless of the (ϵ, δ)-DP
parameters. However, we do note that while β = 2 is near-optimal, β values slightly smaller than 2 do give even
better performance. A key takeaway is that Gaussian does outperform Laplace, although there is room for further
improvements over Gaussian by fine-tuning the β parameter.

Figure 8 extends these findings to a multi-class setting with 25 classes. On the left, we see that the choice of β has a
larger impact on Hardmax utility in the multi-class setting, but that the optimal choice β is again independent of the
runner-up-gap. On the right, we observe that the impact of β is also more pronounced in this multi-class setting, and
that the optimal β value is much closer to 2 in this setting.

We also observe that as β grows, the AUC (right) becomes more jagged – this is also true for Hardmax Utility (left), but
is more difficult to observe. This is because for a fixed ϵ, the sensitivity of β on σ increases as β grows. Let σ′(β, ϵ, δ)
be the function that returns the minimum value of σ that satisfies (ϵ, δ)-DP for a given choice of β; the value of σ′

increases in β at an increasing rate for a fixed (ϵ, δ) pair, as can be observed in Figure 2. Our experiments use evenly
spaced values of σ and β, so the gap between the truly optimal σ and the best choice of σ from an evenly discretized
set, increases as a function of β.
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Figure 8: Hardmax Utility for 25-class histogram. Left: Hardmax Utility as a function of runner-up-gap, for mechanisms with
equivalent (2,10−5)-DP. Right: Area-Under-the-Curve (AUC) of the curves on the left for different values of ϵ, where a higher AUC
means a better overall accuracy. AUC is rescaled such that 1.0 is the maximum to normalize across different sizes of domain.

E Additional β-DP-SGD Results and Implementation Details

E.1 Hyperparameters Used in Training

Hyperparameters We run our β-DP-SGD algorithm for a maximum of 100 epochs for each parameter setting and
sweep over the following parameters: β (12 evenly spaced values of β ∈ [1, 4]), noise multiplier (6 evenly spaced
values of σ ∈ [0.5, 3.0]), average batch size L ∈ {128, 256}, learning rate η ∈ {0.5, 1.0}, and clipping norm
C ∈ {0.05, 0.1, 0.25, 0.5}, for δ = 10−6. In practice, we run for T = 100 epochs, then compute the privacy budget
after each training epoch. We return the maximum utility the model achieved before the privacy budget was exceeded;
we also early stop if the utility drops for 10 epochs consecutively. Each experiment is run 3 times, which we found
sufficient given standard deviations that generally fell below 0.3%.

Datasets: We train on CIFAR-10 [Krizhevsky, 2009] and Street View House Numbers (SVHN) [Netzer et al., 2011],
two common computer vision datasets, which respectively contain 60,000 and 99,289 small, color images split across
ten classes; the Adult dataset [Becker and Kohavi, 1996], a tabular dataset with a binary classification task; and the
IMDB dataset [Maas et al., 2011], a collection of movie reviews meant for binary sentiment classification.

Models: For the vision classification tasks (CIFAR-10 and SVHN), we use the models described in in Tramèr and
Boneh [2021], which previously achieved SOTA results for the ϵ ≤∼ 2.5 regime. Specifically, we train Convolutional
Neural Networks (CNNs) on pretrained image features produced by scattering networks Oyallon and Mallat [2015]
as described in Tramèr and Boneh [2021]; these are referred to as ScatterNet. For the the Adult Dataset we train

29



a 2-layer Fully Connected Network (FCN), with 32 neurons in the hidden layer. For the IMDB dataset, we train a
Long-Short Term Memory (LSTM) network with 1,081,002 parameters, in order to demonstrate the method on a
relatively medium-sized model from scratch.

E.2 The Role of Individual Hyperparameters in β-DP-SGD

Below, we investigate the role of individual hyperparameters on the the final test-accuracy. We replicate the experiments
of Section 5.1, but holding fixed individual hyperparameters, and varying those fixed values to determine whether
that hyperparameter substantially impacts test-accuracy. Specifically, we evaluate the impact of the learning rate
(E.2.1), clipping norm (E.2.2), batch size (E.2.3), and noise multiplier (E.2.4). The remaining parameters are optimized
as described in Appendix E.1, and we see little effect in varying other values. We report the average maximum
test-accuracy for each trial independently – this means that for each plot and each fixed value of β, hyperparameters are
evaluated independently, and the maximum average-test-accuracy is taken for each value of β.

In general, we observe that while some hyperparameters may have some small effect, varying these hyperparameters
do not have a substantial effect on test-accuracy. They also do not impact the general relationship between β and
test-accuracy: β = 2 remains near-optimal for most parameter values, although generally not exactly optimal.

As in the presentation of results in Section 5.1, some plots do not have test-accuracy values reported for specific choices
of β and ϵ. This is because larger values of β tend to consume more privacy per-step, and the starting ϵ required
exceeded the ϵ budget for that curve.

E.2.1 Learning Rate

Here we explore the impact of varying the learning rate on the test-accuracy, as a function of β. Figures 9 and 10 show
test-accuracy results of β-DP-SGD on all four databases with respective learning rates 0.5 and 1.0. We observe that
performance is relatively similar across these two figures, and thus conclude that learning rate does not have a strong
impact.
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Figure 9: β-DP-SGD results with learning rate 0.5

E.2.2 Clipping Norm

Here we explore the impact of varying the clipping norm on the test-accuracy, as a function of β. Figures 11, 12, and 13
show test-accuracy results of β-DP-SGD on all four databases with respective clipping norms of 0.05, 0.10, and 0.25.
We observe that clipping norm appears to have a bigger effect on the relationship between test-accuracy and β than
learning rate, but still relatively minor and only at larger (sub-optimal) values of β.
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Figure 10: β-DP-SGD results with learning rate 1.0
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Figure 11: β-DP-SGD results with clipping norm 0.05
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Figure 13: β-DP-SGD results with clipping norm 0.25

E.2.3 Batch Size

Here we explore the impact of varying the batch size on the test-accuracy, as a function of β. Figures 14 and 15 show
test-accuracy results of β-DP-SGD on all four databases with respective batch sizes of 128 and 256. As has been
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Figure 12: β-DP-SGD results with clipping norm 0.1

observed with non-private training, in our experiments we observe that batch size does have a substantial effect on
test-accuracy, with lower batch sizes yielding less reliable performance across parameter values. This aligns with
findings from De et al. [2022], which found that larger batch sizes can improve test accuracy; however, as a confounding
effect, they also found that larger batch sizes require more training epochs, once the batch size exceeds a certain
threshold.
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Figure 14: β-DP-SGD results with batch size 128

E.2.4 Noise Multiplier

Here we explore the impact of varying the noise multiplier σ on the test-accuracy, as a function of β. Figures 16, 17, 18,
and 19 show test-accuracy results of β-DP-SGD on all four databases with noise multipliers of 1.5, 2.0, 2.5, and 3.0.
We observe that varying the noise multiplier has a relatively weak effect on accuracy, although for larger values of σ,
the test accuracy curve (as a function of β) is flatter, with less dependence on β – particularly for ScatterNet and LSTM.

As the noise multiplier increases, the privacy budget consumption per step decreases — this means that for fixed (ϵ, δ),
the total number of training steps in training increases. For a fixed noise multiplier, increasing the value of β, increases
the privacy cost for a single step — this means that for a fixed σ, increasing β decreases the total number of training
steps. While existing work found that models attain higher accuracies when larger batch sizes are trained for more
training epochs De et al. [2022], we do not find any such evidence. Introducing the β parameter appears to remove this
effect.

Empirically, across all values of noise multipliers evaluated, β = 2 remains near-optimal on all datasets and ϵ values
evaluated.
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Figure 15: β-DP-SGD results with batch size 256
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Figure 16: β-DP-SGD results with noise multiplier σ = 1.5
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Figure 17: β-DP-SGD results with noise multiplier σ = 2.0
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Figure 18: β-DP-SGD results with noise multiplier σ = 2.5
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Figure 19: β-DP-SGD results with noise multiplier σ = 3.0

E.3 Sampling from the Generalized Gaussian Distribution

Unlike the Gaussian and Laplace distributions, sampling from the Generalized Gaussian mechanism is not natively
supported by built-in libraries like Python’s ‘math’ library, or the commonly used numpy library. Another commonly
used library for statistical computing, SciPy, does have the ‘scipy.stats.gennorm’ function; however, we found that it
regularly takes too long for intensive computations like stochastic gradient descent in practical settings, which involves
sampling from high-dimensional gradients thousands of times. Further, the Scipy function is only able to be sampled on
a CPU, which makes it ill-suited for DP-SGD, which is regularly performed on a GPU.

We implement a method for sampling from the Generalized Gaussian mechanism included in our code here: https://
github.com/RoyRin/Generalized-Gaussians. In our experiments, we can sample from the Generalized Gaussian
only ∼ 1.3x slower than sampling from a Gaussian directly. It is possible to conduct similar sampling using the method
of inverse probability transforms, since the Generalized Gaussian has a known CDF.

E.4 Reproducibility and Computing Resources

For our DP-SGD experiments, the execution of our techniques does not result in a significant increase in processing
time compared to the conventional application of DP-SGD. The only addition to the computation duration comes
from increased amounts of hyperparameter searching. All experiments and data analysis are reproducible in the
codebase provided https://github.com/RoyRin/Generalized-Gaussians. The DP-SGD results in this paper
were completed in under 500 hours of GPU time, which was split across 16 machines that were mounted on Nvidia T4
and RTX6000 machines GPUs. All data analysis was conducted on a 8 core machine with 16 GB RAM machine.
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