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Abstract

What fundamentally distinguishes an adversarial attack from a misclassification due to limited model expressivity
or finite data? In this work, we investigate this question in the setting of high-dimensional binary classification, where
statistical effects due to limited data availability play a central role. We introduce a new error metric that precisely
capture this distinction, quantifying model vulnerability to consistent adversarial attacks — perturbations that
preserve the ground-truth labels. Ourmain technical contribution is an exact and rigorous asymptotic characterization
of these metrics in both well-specified models and latent space models, revealing different vulnerability patterns
compared to standard robust error measures. The theoretical results demonstrate that as models become more
overparameterized, their vulnerability to label-preserving perturbations grows, offering theoretical insight into the
mechanisms underlying model sensitivity to adversarial attacks.

1 Introduction
Machine learning models, despite their remarkable performance across various domains, remain vulnerable to ad-
versarial examples — inputs specifically crafted to mislead models while appearing innocuous to humans. While
adversarial robustness has attracted significant research attention, a critical distinction often overlooked is be-
tween consistent (or proper) and inconsistent (or improper) adversarial examples. Consistent adversarial examples
maintain the ground-truth label despite perturbations, whereas inconsistent ones change the true classification.

Consistent vs. Inconsistent
Adversarial Perturbations
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Boundary

Learnt Model
Boundary

Class B
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XX’
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Changes both prediction
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Figure 1: Illustration of the difference be-
tween consistent Adversarial Perturbation
and inconsistent Adversarial Perturbation.

To illustrate this distinction, consider the classic example from [1]:
an image of a panda that, after subtle perturbations, is misclassified
by a neural network. This represents a consistent adversarial example
because the image still depicts a panda to human observers. In contrast,
if the perturbation were to transform the image to genuinely resemble a
different animal, it would be an inconsistent adversarial example. This
distinction is crucial: vulnerability to consistent attacks represents a
genuine failure of the model to capture invariant features that humans
naturally perceive.

The assumption that adversarial perturbations do not alter the true
class (i.e., remain consistent) underlies most practical approaches to
adversarial robustness in computer vision [1, 2]. While this assumption
has been explored in theoretical works on robust generalization [3, 4],
a mathematical understanding of their properties, such as existence and
effectiveness in tricking even simple linear classifiers remains elusive.

Following a large body of work in high-dimensional statistics [5–
10], we analyze this problem through the lens of exact asymptotics
of linear classifiers. We develop novel metrics that precisely quantify
vulnerability to both consistent and inconsistent adversarial attacks. We
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define and analyze these metrics in two complementary settings: first, a well-specified model where all input covariates
are directly available; second, a latent space model where the available covariates are feature transformations of
underlying latent variables. For both settings, we derive closed-form expressions for the consistent robustness metrics
in the high-dimensional limit—where the latent space dimension d, the number of features p, and the sample size n
all scale to infinity at fixed ratios. In the latent space model, we further derive exact asymptotic descriptions for the
performance of robust empirical risk minimization [1, 2], the mostly adopted way of finding a robust model.

Furthermore, the effect of over or under-parameterization — using more or less parameters than strictly necessary
to encode the data features — is still unclear in the adversarial settings. Some recent works [11] consider the regression
case for squared loss but in the context of classification the question is still open. While overparameterization generally
improves standard generalization [12, 13], its effects on adversarial robustness are less understood, particularly when
considering consistent versus inconsistent attacks. Conventional wisdom suggests that overparameterized models
might be more vulnerable to adversarial examples due to their flexibility in fitting noise and the more parameters
that can be changed to flip the model prediction. However, our analysis reveals a more nuanced picture: more
overparameterization can improve an attacker’s ability to craft effective adversarial examples, but this relationship
depends critically on considering attacks on already correctly classified data points. If instead we consider consistent
attacks on all possible inputs (also the misclassified by the model) we notice that increasing overparameterization
leads to an improvement because of the beneficial role that overparameterization has on the clean generalization.

Our main contributions can be summarized as

1. We establish necessary and sufficient conditions for the existence of consistent perturbations in two classes of
binary classifiers: well-specified linear classifiers, and a latent variable model that accounts for misspecification
and overparametrization in linear estimation, independently of the data distribution. Under a Gaussian design,
this leads to an exact formula for the probability that consistent attacks exist in these models.

2. We introduce novel consistent robust error metrics quantifying the impact of consistent attacks. For the
classifiers of interest, we derive an asymptotic formula that exactly characterize their high-dimensional limits
under a Gaussian design assumption.

3. We study how robust empirical risk minimization can mitigate the impact of consistent attacks in this high-
dimensional limit, for both the well-specified and latent variable model. For the latter, this requires an
exact asymptotic characterization of the robust ERM estimator under misspecification which is novel and of
independent interest.

Our work reveals that overparameterization plays a nuanced but crucial role in building resistance against consis-
tent adversarial attacks. Contrary to conventional wisdom, our theoretical analysis demonstrates that higher degrees
of parameterization can be beneficial for overall robustness, though this benefit must be balanced against increased
vulnerability on specific subsets of inputs. These insights can provide guidance for system design, highlighting the
importance of considering the consistent/inconsistent attack distinction when evaluating and optimizing model
robustness.

1.1 Further Related Works
Exact Asymptotics: Our analysis builds upon the previous literature characterizing the properties of predictors in
the high-dimensional proportional regime. This approach spans multiple theoretical frameworks: high-dimensional
probability theory [14–16], statistical physics approaches [17–23], and random matrix theory [24–31]. Our work is
particularly motivated by recent advances in Gaussian universality [32–34], which demonstrate that simple Gaussian
models often provide surprisingly accurate predictions for more complex data distributions in high dimensions.
This phenomenon emerges from concentration properties in high-dimensional spaces, leading to universality in
generalization behavior across different covariate distributions [35–38].

Adversarial Robustness: Robust empirical risk minimization, commonly known as adversarial training, was pio-
neered in computer vision [1, 2] and has since evolved into a primary defense against adversarial attacks. Researchers
have developed numerous approaches to improve its computational efficiency [39, 40] and statistical properties
[41–43]. On the theoretical front, several works have investigated the properties of robust empirical risk minimization
for linear models [4, 44–48], including sharp proportional asymptotics under different data designs [3, 11, 47, 49–54].
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Of particular relevance to our work is [47], which derives high-dimensional asymptotics for binary classification in
the well-specified model — a result which we build upon in our analysis in Section 3.

Consistent attack: The idea that adversarial attacks should be imperceptible to some metric of interest (e.g. the
human eyes in vision) underlies most of the empirical literature [1, 55, 56]. The notion of a consistent attack in the
theoretical literature was formalized in [3, 4].

Notation
We denote vectors by bold letters x ∈ Rd. Sd−1(r) = {x ∈ Rd : ||x||2 = r} denote the Euclidean sphere

of radius r, and span(x) = xR = {µx, µ ∈ R}. For q ≥ 1, ||x||q =
(∑d

j=1 x
q
j

)1/q

denote the ℓq-norm, and
Bq(r) = {x ∈ Rd : ||x||p ≤ r} the ℓq-ball of radius r > 0. We denote by q⋆ the dual of q in the ℓq sense: the number
q⋆ such that 1/q + 1/q⋆ = 1. We denote by N (0, 1) the standard normal distribution, and P[Z ≤ t] = Φ(t) its c.d.f.

2 Consistent adversarial perturbations and how to quantify them
As motivated in Section 1, the key distinction between an adversarial attack and a random perturbation of the data is
the underlying assumption that adversarial attacks leave the ground truth data distribution unchanged. Our starting
point is to formalize this notion in the context of binary classifiers.

Consider a binary classification task (µ, f⋆) defined by a covariate distribution µ over Rd and a ground-truth
classifier f⋆ : Rd → [0, 1], such that for a given x ∼ µ, we can assign a binary label y ∈ {−1,+1} with probability
given by f⋆(x) = P(y = +1|x).

Definition 1 (Consistent attack). Let f⋆, f̂ : Rd → [0, 1] denote two binary classifiers, refereed to as the target and
the model, x ∈ Rd a covariate and ŷ : [0, 1]→ {±1} a decision rule associated to f̂ . We say a perturbation δ ∈ Bq(ε)

of the model f̂ is a consistent adversarial attack with respect to the target f⋆, the covariate x ∈ Rd and the decision
rule ŷ if the following two conditions hold:

• Model deception: ŷ(f̂(x)) ̸= ŷ(f̂(x+ δ)).

• Target invariance: f⋆(x) = f⋆(x+ δ).

Otherwise, we say that the attack is inconsistent.

See Figure 1 for an illustration of a consistent vs. inconsistent attack in the case of linear classifiers.
Remark 1. Note that the second condition (target invariance) is equivalent to label invariance y(f⋆(x+δ)) = y(f⋆(x))
in the case of a deterministic ground-truth rule. In the presence of label noise, this condition rules out label swapping
due to noise.

One of our central goals in this work is to investigate the properties of consistent adversarial attacks for particular
classes of problems. Before moving to specific tasks, we introduce the central metrics allowing us to quantify these
properties.

Definition 2 (Adversarial errors). Let (µ, f⋆) denote a binary classification task. Given a classifier f̂ : Rd → [0, 1]
and its associated predictor ŷ(x), we define the following three metrics

• Robust error: This is the standard notion of robust generalization error in the adversarial literature [45, 57, 58],
and simply quantifies how vulnerable f̂ is to arbitrary perturbations in a ℓq-ball:

Erob(f̂) = E
[

max
δ∈Bq(ε)

1{y ̸= ŷ(x+ δ)}
]
, (1)

• Consistent robust error: The standard robust error considers both consistent and inconsistent perturbations.
In order to quantify the role of consistent attacks, we define the consistent robust error by excluding inconsistent
perturbations:

Ecns
rob(f̂) = E

[
max

δ∈Bq(ε):f⋆(x)=f⋆(x+δ)
1{y ̸= ŷ(x+ δ)}

]
, (2)
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Note that the critical difference between Erob and Ecns
rob lies in the constraint in the inner maximization that

satisfies the target invariance from Definition 1 (c.f. Remark 1).

• Consistent boundary error: Finally, note that the consistent robust error does not distinguish between labels
that are originally misclassified by the model and labels that become misclassified under the attack perturbation.
This motivates the introduction of a more nuanced metric, accounting only for labels that are misclassified due
to the attack:

Ecns
bnd(f̂) = E

[
max

δ∈Bq(ε):f⋆(x)=f⋆(x+δ)
1{y ̸= ŷ(x+ δ)}1{y = ŷ(x)}

]
. (3)

Remark 2. Note that for any (x, y) ∈ Rd × {−1,+1}, the constraint sets:

Crob = {δ ∈ Bq(ε) : ŷ(x) ̸= ŷ(x+ δ)} ,
Ccns

rob = {δ ∈ Bq(ε) : ŷ(x) ̸= ŷ(x+ δ) and f⋆(x) = f⋆(x+ δ)} ,
Ccns

bnd = Ccns
rob ∩ {y = ŷ(x)} ,

(4)

are nested Ccns
bnd ⊂ Ccns

rob ⊂ Crob. Therefore, we generally have:

0 ≤ Ecns
bnd ≤ Ecns

rob ≤ Erob . (5)

3 Consistent attacks in well-specified linear classification
Despite a established literature studying robust training schemes, the fundamental properties of consistent attacks
remain poorly understood. Our goal in the following is to fill this gap by studying their behavior in the context of
high-dimensional binary linear classifiers.

Definition 3 (Linear classifiers). A linear binary classifier in Rd is a function

fw(x) = Pw(y = +1|x) = φ(⟨w,x⟩) , (6)

defined by the weight vector w ∈ Rd and a monotonic link function φ : R→ [0, 1].

The class of linear binary classifiers encompass several models of interest in statistics, such as the logit φ(t) =
(1 + e−t)−1, the probit φ(t) = 1/2(erf(t) + 1) and the noiseless φ(t) = 1t≥0 model.

3.1 Geometry of consistent attacks
As a first step, we consider the geometry of consistent attacks in the class of linear classifiers. Let fw⋆

denote a
reference linear classifier with weights w⋆ ∈ Sd−1(

√
d) and link function φ⋆, which we will refer to as the ground-

truth. Since φ⋆ : R → [0, 1] is monotonic, the target invariance condition fw⋆
(x) = fw⋆

(w + δ) is equivalent to
⟨δ,x⟩ = 0, i.e. the attack must be orthogonal to the covariate. Therefore, the set of admissible consistent adversarial
attacks with respect to the target classifier defines a hyperplane:

Hq(ε) := {δ ∈ Bq(ε) : ⟨w⋆, δ⟩ = 0} . (7)

Consider a second linear classifier fŵ with weights ŵ ∈ Rd and link function φ, which we will refer to as the
model. A successful attack should flip the predictor labels ŷ(x) ̸= ŷ(x + δ). For the standard decision function
ŷ(x) = sign(2fŵ(x)− 1) this condition is equivalent to having ⟨ŵ,x⟩(⟨ŵ,x⟩+ ⟨ŵ, δ⟩) ≤ 0. This is the case if and
only if:

|⟨ŵ, δ⟩| > |⟨ŵ,x⟩|, and sign(⟨ŵ, δ⟩) = − sign(⟨ŵ,x⟩) . (8)

In other words, in order to flip the model prediction, an attacker must have an anti-parallel component to the predictor
weights and exceed the prediction margin |⟨ŵ,x⟩|. Putting together, we can derive the following geometrical
characterization for the existence of consistent perturbations.
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Proposition 1 (Existence of consistent attack). Consider two linear classifiers defined by the weights w⋆ ∈ Sd−1(
√
d)

and ŵ ∈ Rd. Let x ∈ Rd denote a covariate, and assume ⟨ŵ,x⟩ ≠ 0. Then, a consistent attack δ ∈ Bq(ε) with respect
to w⋆,x ∈ Rd and the decision function ŷ(x) = sign(2fŵ(x)− 1) exists if and only if:

ε d⋆q⋆(ŵ⊥) ≥ |⟨ŵ,x⟩| (9)

where ŵ⊥ = ŵ − ⟨w⋆, ŵ⟩/dw⋆ is the predictor components orthogonal the target weights, d⋆q⋆(ŵ⊥) = infµ∈R ||ŵ⊥ −
µw⋆||q⋆ is the ℓq

⋆

distance to the span(w⋆) and q⋆ is the dual of q.

Proof. As discussed above, a consistent attack must satisfy the three conditions in eqs. (7) and (8). First, note that this
is only possible if ŵ⊥ ̸= 0, otherwise any admissible perturbation would a fortiori violate eq. (8). Therefore, from now
on we assume ŵ⊥ ̸= 0. Consider an admissible attack δ ∈ Hq(ε). Since −δ ∈ Hq , we can always fix the sign of δ
to satisfy the constraint sign(⟨ŵ, δ⟩) = − sign(⟨ŵ,x⟩). The restrictive condition is the margin |⟨ŵ, δ⟩| > |⟨ŵ,x⟩|.
Since ⟨δ,w⋆⟩ = 0, have ⟨ŵ, δ⟩ = ⟨ŵ⊥, δ⟩, and hence the margin condition is equivalent to |⟨ŵ⊥, δ⟩| > |⟨ŵ,x⟩|.
This condition is satisfied if and only if it is satisfied by the supremum:

sup
δ∈Hq(ε)

|⟨ŵ⊥, δ⟩| > |⟨ŵ,x⟩| (10)

Standard results from convex analysis implies that the supremum is achieved by the ℓq⋆ distance to span(w⋆), also
known as the metric projector:

sup
δ∈Hq(ε)

|⟨ŵ⊥, δ⟩| = ε inf
µ∈R
||ŵ⊥ − µw⋆||q⋆ := ε d⋆q⋆(ŵ⊥) (11)

where q⋆ is the dual in the ℓq sense: 1/q + 1/q⋆ = 1.

Remark 3. For q = 2, the infimum in eq. (11) is achieved at µ = 0:

d⋆2(ŵ⊥) = inf
µ∈R
||ŵ⊥ − µw⋆||2 = ||ŵ⊥||2. (12)

While d⋆q⋆(ŵ⊥) ≤ ||ŵ⊥||q is always an upper bound, it is not tight for q ̸= 2, except for particular choices of
w⋆ ∈ Sd−1(

√
d), for instance w⋆ =

√
de1. This highlights how the existence of consistent attacks crucially depend

on an interplay between the Euclidean geometry of the constraint set and the ℓq geometry of the adversarial attack.
A similar condition to eq. (9) holds for an inconsistent attack, but without the orthogonality constraint ⟨w⋆, δ⟩ = 0.

Since:

||ŵ||q⋆ ≥ ||ŵ⊥||q⋆ ≥ d⋆q⋆(ŵ⊥) (13)

this provides a less strict existence condition, as expected. In particular, the stronger the overlap between the
ground-truth and the model ⟨ŵ,w⋆⟩, the stronger the attack needs to be in order to flip the model prediction, in
contrast to inconsistent perturbations which are independent of the ground-truth weights w⋆. This leads to the
following corollary.

Corollary 1 (Existence of inconsistent attack). Under the same setting as Proposition 1, an inconsistent adversarial
attack exists if and only if:

ϵ||ŵ||q⋆ ≥ |⟨ŵ, x⟩|. (14)

Since ρ = d⋆
q⋆ (ŵ⊥)/||ŵ||q⋆ ∈ [0, 1], this further implies the following bounds:

ρErob ≤ Ecns
rob ≤ Erob . (15)

Proof. The existence part follows the same proof as in Proposition 1, but without the orthogonality constraint. We
then have:

sup
δ∈Bq(ε)

|⟨ŵ, δ⟩| = ε||ŵ||q⋆ . (16)

The upper-bound is immediate from Remark 2. The lower-bound follows from noting that Ecns
rob(ε) = Erob(ρε) and

that both errors are non-decreasing functions of ε.
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Proposition 1 allow us to identify the region in Rd which is vulnerable to consistent attacks. Indeed, defining the
ground-truth orthogonal margin

κq(x) =
|⟨ŵ,x⟩|
d⋆q⋆(ŵ⊥)

(17)

a covariate x ∈ Rd is vulnerable to a consistent δ ∈ Hq(ε) attack if and only if ε > κq(x), and the vulnerable region
is given by {x ∈ Rd : κq(x) < ϵ} ⊂ Rd — a tube around the decision hyperplane. Note that this implies two
ways of mitigating consistent adversarial attacks (i.e. increase κq): (a) To align with the target weights m; (b) To
reduce d⋆q⋆(ŵ⊥). While the first option is typically out of the control of the statistician, the second option can be
achieved by explicitly regularizing the training with respect to the norm dual to the attack, which is an upper-bound
to d⋆q⋆(ŵ⊥) — see eq. (13). This is consistent with previous theoretical results suggesting the use of the dual norm in
ERM [47, 59–61]. This will be the subject of Section 3.3.

Another important factor in the margin κq(ε) is the interplay between the underlying Euclidean (ℓ2) geometry
defining the classifier and the ℓq geometry of the adversarial attack. This interplay is better illustrated in the Gaussian
case.

Corollary 2 (Existence for Gaussian covariate). In the case of i.i.d. Gaussian covariates x ∼ N (0, 1/d Idd), the
probability a consistent attack exists is given by:

P [∃ consistent δ ∈ Hq(ε)] = 2Φ

(
ε
√
d
d⋆q⋆(ŵ⊥)

||ŵ||2

)
− 1 , (18)

where Φ is the standard normal c.d.f.

Proof. Conditionally on the predictor, we have ⟨ŵ,x⟩ d
= ||ŵ||2/

√
d Z with Z ∼ N (0, 1). It is immediate to see that

the condition in eq. (9) implies the result.

Remark 4. The function in eq. (18) is non-decreasing in q (non-increasing in q⋆) and d. To get some intuition, consider
the case of a random predictor, of unit norm, with a correlationm = ⟨w⋆, ŵ⟩/d (in expectation) with the target:

ŵ = mw⋆ +
√
1−m2ξ (19)

with ξ ∼ N (0, Idd). It is immediate to show that:

P [∃ consistent δ ∈ Hq(ε)] = 2Φ

(
ε
√
d
√
1−m2

d⋆q⋆(ξ)

||ŵ||2

)
− 1 (20)

since d⋆q⋆(ξ) = Θ(d
1/q⋆) for q ≥ 1 when d→∞, for ε = Θ(1) and q > 1 the probability of existence of a consistent

attack is almost surely one unless the predictor achieves perfect alignmentm2 = 1 with the target. This highlights
the susceptibility of high-dimensional predictors to adversarial attacks. However, the situation can be quite different
for a sparse predictor, since the enumerator d⋆q⋆(ŵ⊥) only penalize the part of the support which does not overlap
with the target target. We report how the existence probability depends on the attack geometry q and the dimension
d in Figure 2.

3.2 Robust Empirical Risk Minimization
A natural question is whether robust training can effectively mitigate consistent attacks. Robust empirical risk
minimization emerged as a principled way to learn classifier rules from data D = {(xi, yi) ∈ Rd × {−1,+1} : i =
1, . . . , n} that are inherently robust to adversarial perturbations. From the dataset D, the statistician estimates a
classifier by optimizing the robust empirical (regularized) risk, defined as

L(w) =

n∑
i=1

max
∥vi∥s≤r

ℓ(yi⟨w,xi + vi⟩) + λ∥w∥22 , (21)

where ℓ : R → R+ is a non-increasing convex loss function, the term ∥w∥22 is a convex regularization term, and
λ ≥ 0 is a regularization parameter. The inner maximization over vi models the worst-case perturbation for each data
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Figure 2: Probability of existence of a consistent adversarial attack for Gaussian covariates in eq. (18) as a function of
the radius ε > 0, with w⋆ =

√
de1 ∈ Rd and ŵ ∈ Sd−1(

√
d) with correlationm = ⟨w⋆, ŵ⟩/d = 0.5. (Left) Different

curves show different choices of attack geometry q with d = 10. (Right) different curves show different covariate
dimension d, for fixed q = 2. Solid curves were computed from the theoretical expression, while dots are computed
by drawing n = 103 and estimating the frequency of times the constraints in eq. (9) is satisfied.

point, constrained by the attack budget r during training. The case with r = 0 corresponds to standard ERM while
any case with r > 0 corresponds to robust training. Given the dataset D, we estimate the model binary classifier as

ŵ ∈ argmin
w∈Rd

L(w) . (22)

While robust training has proven effective in practice, understanding its properties for protection to consistent attacks
still requires analysis.

3.3 High-dimensional asymptotic analysis
Motivated by Remark 4, we now investigate the behavior of both standard and robustly trained predictors in the high-
dimensional limit where consistent adversarial attacks proliferate. More concretely, we will derive sharp asymptotic
results for the case where ŵ is a trained predictor under the Gaussian design assumption, and discuss the benefits of
robust empirical risk minimization in mitigating consistent adversarial attacks. We will work under the following
assumptions.

Assumption 3.1 (Data distribution). We assume the covariates are isotropic Gaussian x ∼ N (0, 1/d Idd) and that
labels are generated from a ground-truth linear classifier y ∼ Rad(fw⋆

(x)) where fw⋆
(x) = P(y = +1|x) =

φ(⟨w⋆,x⟩) with monotonic link function φ and ground-truth weights w⋆ ∈ Sd−1(
√
d).

Assumption 3.2 (Scaling of the Adversarial Strength). For a given perturbation geometry δ ∈ Bq(ε) with q > 1, we
assume that ε = Od(d

−1/q⋆) as d→∞, where q⋆ is the dual. We define the rescaled radius as ε̃ = ε d
1/q⋆ .

Remark 5. As briefly discussed in Remark 4, Assumption 3.2 provides the right scaling for non-trivial attacks in the
high-dimensional limit considered in this work: a slower scaling would result in a perturbation strength which is too
weak and any faster scaling would result in a perturbation that flips any label. The same scaling was considered in
previous asymptotic analyses of robust training in [47, 49, 52, 54].

Assumption 3.3 (Asymptotic Gaussianity). We consider the high-dimensional limit for which d→∞. Suppose that
w⋆ ∈ Sd−1(

√
d) and that w is a d dimensional Gaussian such that the following quantities concentrate to

1

d
∥w∥22 −−−→

d→∞
q ,

1

d
⟨w⋆,w⟩ −−−→

d→∞
m, (23)

where q,m ∈ R such that q ≥ m2.

Remark 6. Even though this assumption may appear restrictive at first sight, it is asymptotically satisfied in the
high-dimensional limit of interest in this work by different estimators, such as the minimizer of a convex ERM
[9, 20, 62, 63], robust ERM [10] and Bayesian estimation [64–66]. This will be precisely the case we study for robust
training in the following analysis.
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The performance of robust adversarial training for well-specified linear classifiers on Gaussian covariates (As-
sumption 3.1) has been studied by [47] in the proportional high-dimensional asymptotics where n diverges with d at
constant ratio α = n/d = Θ(1). In particular, the authors characterize the limiting distribution of the entries of ŵ as
a function of the parameters (q,m) satisfying Assumption 3.3 (c.f. Remark 6).

We are now ready to state our main result about the limiting behavior of the consistent metrics in the high-
dimensional limit.

Theorem 3.1 (Consistent metrics for well-specified model). Under Assumptions 3.1 to 3.3 the metrics defined in eqs. (2)
and (3) with decision rule ŷ(x) = sign(2fw(x)− 1) concentrate in high dimension to the following two dimensional
integrals

Ecns
rob =

∫
d(ν, µ)1{ν(µ− ε̃A) < 0} , (24)

Ecns
bnd =

∫
d(ν, µ)1{ν(µ− ε̃A) < 0}1{µν > 0} , (25)

where

A =
√
q −m2

√
2

q⋆

√
Γ
(
q⋆+1

2

)
√
π

, (26)

and the pair ν, µ is jointly Gaussian with zero mean and covariance
(

1 m
m q

)
where the values are taken from eq. (23).

The proof of this statement can be found in Appendix B. The argument is based on the explicit solution of the
inner maximization and subsequent evaluation of the resulting expression in the high dimensional limit.

For completeness we report here the limiting value of the Erob as being

Erob =

∫
d(ν, µ)1{ν(µ− ε̃B) < 0} , B =

√
2q

q⋆

√
Γ
(
q⋆+1

2

)
√
π

, (27)

and we note that this limiting form was already established in previous work [47, 49, 54].
An important observation is that the consistent version of the errors (eqs. (24) and (25)) depend on the quantity√
q −m2 while the inconsistent version (eq. (27)) depends on √q. Since

√
q −m2 <

√
q (as q ≥ m2 > 0), this

mathematical distinction explains why consistent attacks are less effective than inconsistent ones for the same attack
strength ε, confirming our earlier result from Corollary 1 and as illustrated in Figure 3 (Center). The former quantity
is precisely the length of P⊥w appearing in Proposition 1.

Some additional experiments that compare the consistent and inconsistent version of the boundary error are
provided in Appendix A.

Figure 3 (Center) shows the asymptotic dependence of the metrics in Definition 2 with the rescaled perturbation
strength ε̃g in the high-dimensional limit. This provides a quantitative measure of how strong a consistent adversarial
attack needs to be to flip a certain percentage of the classifier labels: for instance, to flip 50% of the labels with an
L∞ attack one needs ε̃g ≈ 1 (εg ≈ d−1/2).

Figure 3 (Right) shows the performance of robustly trained ŵ as a function of α = n/d, demonstrating a monotonic
decrease of all the metrics defined above with the sample complexity α for two different attack geometries. While
the errors Erob and Ecns

rob start from the same values, the value Ecns
rob decreases faster with α, indicating that with

more samples the model learns more robust representations that are particularly effective against proper adversarial
attacks.

Together with Theorem 3.1, we can leverage the results from [47] to study the consistent errors of ŵ from eq. (22)
trained from a dataset of n input-output pairs and dimension d where both n and d diverge with α = n/d fixed.
Additional details are discussed in Appendix B.

4 The role of overparameterization: Latent Variable Model
Despite many empirical works on the subject, the interplay between adversarial attacks and overparameterization
remains poorly understood, with contradictory evidence on the susceptibility of large neural networks to adversarial
attacks [67].
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Figure 3: (Left) Probability of existence of adversarial perturbations under Gaussian data for both cases of consistent
and inconsistent attacks. Here we consider the predictor trained with non-robust training and vanishing regularization
λ = 10−3. (Center) Dependence of the metrics in eqs. (1) to (3) for the well-specified model as a function of the
attackers norm. Here we have taken q = 31.786 andm = 3.879. The points are simulations for d = 500. We see good
agreement already at finite dimension. (Right) Performance difference for optimally regularized non robust training
under attacks constrained with different norms. The points show the average and std of 10 different realizations with
d = 500.

In this section, we investigate this question on a popular mathematical testbed for studying the role of overparam-
eterization, the latent variable model [13]. In this model, the ground-truth classifier fw⋆(z) = φ(⟨w⋆, z⟩) is defined
in a latent space with latent covariates z ∈ Rd and weights w⋆ ∈ Sd−1(

√
d). Labels are generated according to

the latent rule y ∼ Rad(fw⋆
(z)) as in eq. (6). The statistician does not observe the latent covariates z directly but

instead has access to a transformed representation x ∈ Rp defined as

x = Fz + u , (28)

where F ∈ Rp×d is the feature matrix and u ∼ N (0, 1/p Idp) is an independent covariate noise term.
While this model seems simplistic, recent Gaussian universality results have shown that in the proportional

limit, ERM on this latent variable model is equivalent to ERM on a two-layer neural network with frozen first-layer
weights (a.k.a. random features model) [18, 27, 29, 32–34, 68]. This places the latent variable model as a convenient
testbed to study the phenomenology associated to overparameterized networks — such as benign interpolation —
in a mathematically tractable setting. In this mapping, the level of overparameterization is given by the features
dimension p. For this reason, we will often switch between the latent space and the random features when discussing
the model, for instance referring to p > d as the overparameterized case.

4.1 Geometry of consistent attacks on the latent space
We now discuss the geometrical properties of consistent attacks in the latent variable model. Note that in this context
an adversary could either attack the latent space (δ ∈ Rd) or feature space (δ ∈ Rp). Considering perturbations in
feature space, i.e. perturbations to x, will result in a similar analysis as the one carried out for the model of Section 2.
Therefore in the following we focus on the latter, where the conditions in Definition 1 translate to:

• Target invariance: δ ∈ Hq(ε) = {δ ∈ Bq(ε) : ⟨w⋆, δ⟩ = 0}.

• Model deception: |⟨θ̂,F δ⟩| > |⟨θ̂,F z + u⟩| and sign(θ̂,F δ) = − sign(⟨θ̂,F z + u⟩)

where the model weights are denoted by θ̂ ∈ Rp to avoid confusion. Adapting the argument in Section 3.1 to this
case is straightforward, leading to the following characterization of consistent latent space attacks.

Proposition 2 (Existence of consistent latent space attacks). Consider the setting of binary classification in the latent
space model: a linear classifier defined by the weightsw⋆ ∈ Sd−1(

√
d) assign labels according to y ∼ Rad(fw⋆(z))where

fw⋆(z) = φ⋆(⟨w⋆, z⟩), while the statistician observes only the pairs (x, y) ∈ Rp ×{−1,+1} with x = Fz+u ∈ Rd,
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Figure 4: Dependence of the different perturbation metrics for the Latent Space model of Section 4. Here we
consider the case of non-robust empirical risk minimizer in the min norm limit (λ = 10−3, r = 0). We see that the
consistent perturbations are less effective than the standard one both in the underparameterized (γ > 1) and in the
overparameterized (γ < 1).

fitting a linear classifier fθ̂(x) = φ(⟨θ̂,x⟩) with weights θ̂ ∈ Rp. Then, a consistent attack δ ∈ Bq(ε) with respect to
w⋆ ∈ Sd−1(

√
d), z ∈ Rd and the decision function ŷ(x) = sign(2fθ̂(x)− 1) exists if and only if:

εd⋆q⋆(P⊥F
⊤θ̂) ≥ |⟨θ̂, Fz + u⟩| (29)

where P⊥ = Idd−w⋆w
⊤
⋆ /d is the projector in the space orthogonal target weights and q⋆ is the dual of q.

Remark 7. While in the well-specified case the vulnerable region is determined by the margin κq(x) defined in eq. (17),
in the latent model this is defined by the latent margin:

ηq(z) :=
|⟨θ̂,F z + u⟩|
d⋆q⋆(P⊥F⊤θ̂)

(30)

Note that this can be larger or smaller than κq(x), depending on the details of the problem.

Corollary 3 (Existence for Gaussian latent variables). In the case of i.i.d. Gaussian latent variables z ∼ N (0, 1/d Idd)
and u ∼ N (0, 1/p Idp), the probability a consistent attack exists is given by:

P [∃ consistent δ ∈ Hq(ε)] = 2Φ

 d⋆q⋆(P⊥F
⊤θ̂)√

||θ̂||22 + p/d||F⊤ θ̂||22

√
pε

− 1 (31)

where Φ is the standard normal c.d.f.

Remark 8. In the latent variable model, it is the projection of the predictor in latent space F⊤ θ̂ and not the predictor
itself that counts for the probability of existence. In particular, the energy of θ̂ ∈ Rp which is part of Ker(F⊤) only
contributes to the ℓ2 norm in the denominator. In other words: in the overparametrized setting p > d one can
reduce the probability of existence of consistent attacks by both having high alignment with the target ⟨w⋆,F

⊤ θ̂⟩ or
by placing a lot of energy in the p − d directions in Ker(F⊤). This is closely related to the conditions for benign
overfitting in [69].

4.2 High-dimensional asymptotics
We now move to the analysis of trained predictors in the context of the latent variable model.

Consider training data D = {(xi, yi) ∈ Rp × {−1,+1} : i = 1, · · · , n} independently drawn from the latent
variable model. Our goal in this section is to characterize the asymptotic behavior of the estimated binary linear
classifier defined by the vector θ̂ estimated from D using eqs. (21) and (22). Our results will hold under the following
assumptions.
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Assumption 4.1 (High-dimensional limit). We consider the proportional high-dimensional limit where n, p, d→∞
at fixed ratios α := n/d and ψ := p/n. For convenience, we also define γ := (αψ)−1 = d/p.
Assumption 4.2 (Data Distribution Latent Space Model). We assume that data (x, y) ∈ Rp × {−1,+1} is drawn
from a latent variable model with z ∼ N (0, 1/d Idd) and ground-truth linear classifier fw⋆(z) = φ(⟨w⋆, z⟩) with
w⋆ ∈ Sd−1(

√
d). The observed features x ∈ Rp are generated as x = F z + u with u ∼ N (0, Idp) independent of

the other quantities and

F =


[ √

p
d Idd

0(p−d)×d

]
if p ≥ d[

Idp 0p×(d−p)

]
if p < d

. (32)

Remark 9. All the phenomenology that follows also hold for a random Gaussian feature matrix F ∈ Rp×d. The
choice of feature matrix in eq. (53) was previously considered in [13] in the context of ridge regression. Our results
also extended this discussion to binary classification.

In the following we will investigate the impact of adversarial attacks in the latent variable model. Note that
in this context an adversary could either attack the latent space (δ ∈ Rd) or feature space (δ ∈ Rp). Considering
perturbations in feature space, i.e. perturbations to x, will result in a similar analysis as the one carried out for the
model of Section 2. Therefore in the following we focus on the second case.

The consistent and inconsistent adversarial errors associated to a predictor ŷ are defined in the latent space model
as

Ecns
rob = E

[
max

δ∈Bq(ε):f⋆(x)=f⋆(x+δ)
1{y ̸= ŷ(F(z + δ) + u)}

]
, (33)

Ecns
bnd = E

[
max

δ∈Bq(ε):f⋆(x)=f⋆(x+δ)
1{y ̸= ŷ(F(z + δ) + u)}1{y = ŷ(F z + u)}

]
, (34)

Erob = E
[

max
δ∈Bq(ε)

1{y ̸= ŷ(F(z + δ) + u)}
]
. (35)

The main technical result for this part consists in characterizing the high dimensional behavior of the robust
empirical risk minimizer θ̂ as the solution of a system of self-consistent equations. We state here the result for s =∞
in eqs. (21) and (22) and leave the case for generic s to the appendix.
Theorem 4.1 (Self Consistent equations for Latent Space Model). Under Assumptions 3.2, 4.1 and 4.2 the values of the
following sufficient statistics

m =
1

d
w⊤

⋆ F⊤ θ̂ , qf =
1

p
∥θ̂∥22 , qℓ =

1

d
θ̂
⊤
FF⊤ θ̂ , q = qℓ + qf , P =

1

p
∥θ̂∥q

⋆

q⋆ , (36)

concentrate in high dimension to the solution of the following system of self consistent equations. The self-consistent
equations are made of a first set 

m̂ = α
√
γEξ

[∫
R dy ∂ωZ0fℓ

]
q̂ = αγEξ

[∫
R dy ∂ωZ0fℓ

]
V̂ = −αγEξ

[∫
R dy ∂ωZ0fℓ

]
P̂ = 2rP

1/sEξ

[∫
R dy ∂ωZ0fℓ

] , (37)

that depend on the loss function g and binary linear classifier link function φ through Z0 ≡ Z0(y,m/
√
qξ, 1−m2/q) and

fℓ ≡ fℓ(y,
√
qξ, V, P ) defined as

Z0(y, ω, V ) = Ez∼N (ω,V )[P(y | z)] , fℓ(y, ω, V, P ) =
(
P
V ℓ(y,·−yε

s⋆√
P )
(ω)− ω

)
/V , (38)

where P(y | z) is different from zero only for y = ±1 and it is equal to P(y = +1 | z) = φ(z) from eq. (6). Also with
Pf(·) we indicate the proximal operator of a function f and ξ ∼ N (0, 1). The second set of equations

m̂ = 1√
γEξ

[
∂ϱZw⋆

f1w
]

q̂ = (1 + γ)Eξ

[
Zw⋆

(f1w)
2
]
+ (1− γ)Eξ

[
(f2w)

2
]

V̂ = (1 + γ)Eξ

[
Zw⋆∂ϱf

1
w

]
+ (1− γ)Eξ

[
∂ϱf

2
w

]
P̂ = γEξ

[
Zw⋆

∣∣f1w∣∣s⋆]+ (1− γ)Eξ

[∣∣f2w∣∣s⋆]
for γ ≤ 1 , (39)
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m̂ = 1√

γEξ [∂ϱZw⋆
fw]

q̂ = 2Eξ [Zw⋆fw]

V̂ = 2Eξ [Zw⋆∂ϱfw]

P̂ = Eξ

[
Zw⋆ |fw|

s⋆
] for γ > 1 , (40)

depends on the regularization norm and the prior over the ground truthweights throughZw⋆ ≡ Zw⋆(m̂ξ/
√

(1 + γ)q̂, m̂2/(1 + γ)q̂),

f1w ≡ fw(
√
q̂
√
1 + 1

γ ξ, V̂ (1 + 1
γ ), P̂/2) and f

2
w ≡ fw(

√
q̂ξ, V̂ , P̂/2) for γ ≤ 1 and Zw⋆

≡ Zw⋆
(m̂ξ/

√
2q̂, m̂2/2q̂) and

fw ≡ fw(
√
2q̂ξ, 2V̂ , P̂/2) for γ > 1 where

Zw⋆(ϱ,Λ) =
1√

Λ + 1
e

ϱ2

2(Λ+1) , fw(ϱ,Λ, π) =
sign(ϱ/Λ) ·max(|ϱ/Λ| − π/Λ, 0)

2λ/Λ + 1
. (41)

The values of qℓ and qf are obtained from the solution of the previous equations as

qℓ =
1

γ

{
Eξ

[
Zw⋆

(f1w)
2
]

γ ≤ 1

Eξ

[
Zw⋆

(fw)
2
]

γ > 1
, qf =

{
γEξ

[
Zw⋆

(f1w)
2
]
+ (1− γ)Eξ

[
(f2w)

2
]

γ ≤ 1

Eξ

[
Zw⋆

(fw)
2
]

γ > 1
, (42)

with the previous definitions of Zw⋆
and fw .

The proof of the previous statement can be found in Appendix B. It is based on the use of GordonMin-Max theorem
to characterize the minimizer of the robust risk in eq. (21) through a low dimensional set of self consistent equation.
This kind of asymptotic characterization is fairly common in the study of high dimensional system [12, 16, 70, 71].

With the previous result we can characterize the high-dimensional behavior of the proper adversarial errors in
this data model.

Theorem 4.2 (Proper Metrics for Latent Space Model). Under the same setting of Theorem 4.1 the metrics defined
in eqs. (33) and (34) evaluated for θ̂ from eq. (22) and decision rule ŷ = sign(2fθ̂(x)− 1) concentrate to the following
values

Ecns
rob =

∫
d(ν, µ)1

{
ν
(
µ− ε̃ s⋆

√
A
)
< 0
}
, (43)

Ecns
bnd =

∫
d(ν, µ)1

{
ν
(
µ− ε̃ s⋆

√
A
)
< 0
}
1{µν > 0} , (44)

where

A = inf
κ∈R


γEξ

[∫
dw⋆ h

1
∣∣f1w − κw⋆

∣∣s⋆]+ γEξ

[∫
dw⋆ h

1|κw⋆|s
⋆
]

+ (1− γ)Eξ

[∫
dw⋆ h

2
∣∣f2w − κw⋆

∣∣s⋆]+ (1− γ)Eξ

[∫
dw⋆ h

2|κw⋆|s
⋆
] for γ ≤ 1

Eξ

[∫
dw⋆ h

3|fw − κw⋆|s
⋆
]
+ Eξ

[∫
dw⋆ h

3|κw⋆|s
⋆
]

for γ > 1

, (45)

where h1 ≡ h(m̂ξ/
√

(1 + γ)q̂, m̂2/(1 + γ)q̂), h2 ≡ h(0, 0) and h3 ≡ h(m̂ξ/
√
2q̂, m̂2/2q̂) with h(ϱ,Λ) = e−

1
2w

2
⋆e−

Λ
2 w2

⋆+ϱw⋆ .
Additionally the pair ν, µ is jointly Gaussian with zero mean and covariance

(
1 m
m q

)
where the values of q,m are the

ones obtained by the solution of the system of equations in Theorem 4.1.

4.3 The interplay between overparameterization and consistent attacks
Theorem 4.1 and 4.2 allow us to investigate the efficacy of consistent adversarial attacks on overparameterized models.

We start by considering robust training with optimally tuned regularization parameter and r. We see that all
the three metrics considered in this work decrease with a function of the amount of data used in training, as shown
in Figure 5 (Left), meaning that the more data is always beneficial no matter the metric considered. Interestingly
there is a crossing for the different lines for different overparameterization level γ, meaning that the same level of
overeparameterization is not optimal for any amount of data availability.
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Figure 5: Dependence of error as a function of α and ψ for the latent space model defined in Section 4. For both
panels the lines are the exact asymptotic solution of eqs. (37), (39) and (40) and the error bars are average and std
over 10 realizations with d = 500 and p, n scaled accordingly. (Left) Robust error as a function of the number of data
available during training. We see that all the metrics decrease as a function of the number of training data. (Right)
Robust errors as a function of the number of latent space parameters. We see that while Erob and Ecns

bnd increase with
the number of features while Ecns

rob decreases.

In Figure 5 (Right) we consider the role of optimal robust training as a function of ψ = p/n. The metrics Erob

and Ecns
rob present a different behavior in the large ψ regime. The first one stays approximately constant while the

second one decreases with overparmeterization and this decrease is faster and faster the more data is given to the
model (greater α). On the other hand we have that Ecns

bnd in the same region is increasing.
In conclusion, although overparameterized models are more vulnerable to consistent adversarial attacks, this does

not a fortiori imply a detriment in the overall model performance, as measured for instance byEcns
rob , since improvement

of previously badly classified points can have a compensatory effect. This might provide an explanation for the
contradictory observations in the empirical literature [67]. Additional experiments are presented in Appendix A.

5 Conclusions
In this work, we investigated the fundamental distinction between consistent and inconsistent adversarial attacks in
high-dimensional binary classification. We introduced novel metrics for consistent adversarial attacks and studied the
robustness of the robust empirical risk minimization estimators, both in a well-specified and in a latent space setting.
Curiously we found that overparameterization has a dual effect on consistent adversarial robustness depending on
the error metric considered. Specifically: while the boundary error increases with overparameterization—indicating
heightened vulnerability for correctly classified examples—the overall consistent robust error decreases. This counter-
intuitive result stems from the beneficial role overparameterization plays in improving clean generalization, which
mitigates the increased vulnerability of decision boundaries.

We hope that these findings will revel of value for the broader robust machine learning community. Rather than
viewing overparameterization as detrimental to adversarial robustness, one should consider their specific robustness
objectives and take into consideration that overparameterization could improve overall performances. Moreover,
our exact characterizations provide theoretical guidance for selecting optimal regularization parameters and attack
budgets during robust training.

Several limitations and directions for future work emerge from our study. Specifically exploring the connection
between consistent adversarial robustness and other notions of robustness, such as distributional robustness or
robustness to natural perturbations.
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Figure 6: Behavior of Ecns
rob for the Gaussian Features case as a function of the attack strength perturbation. The

performances are for model trained as per eqs. (21) and (22) and with the α and γ specified in the figure. The error
bars refer to 10 repetitions of the experiments for d = 1024. The metrics consider the ŵ trained with λ = 10−3,
r = 0.0 and s =∞.

Appendix

A Additional Experiments and Figures Setting

A.1 Setting of the Figures in the Main Text
We note that the optimization over the hyperparameters r and λ are performed with the use of the theory. In the
asymptotic limit the self consistent equation give a deterministic function of the model’s parameter. With gradient
free optimization techniques1 we find the minimal values.

Figure 3 (Left) The curves are realized for a w obtained from standard training, i.e. minimization of eq. (22) with
r = 0, λ = 10−3 and r = 2. We have that the number of data is fixed at α = 1.0. The points are produced as
10 different realizations with d = 500 fixed.

Figure 3 (Right) Here we show the performances of different types of attack metrics, either L∞ or L2 constrained.
We have that in both cases the errors correspond to optimally tuned robust estimation, r and λ chosen to have
minimum errors. We have that the regularization geometry is r = 2 and that the geometry in adversarial
training is s = 2. The points are produced as 10 different realizations with d = 500 fixed.

Figure 4 In this case we consider vanishing regularization non robust trained empirical risk minimization of eqs. (21)
and (22). We consider the values of α and γ as per the figure. The value of λ = 10−3. The points are produced
as 10 different realizations with d = 500 fixed.

Figure 5 (Left,Right) We consider optimally tuned robust empirical risk minimization with s =∞ and r = 2. The
points are produced as 10 different realizations with d = 500 fixed and the values of n, p scaled accordingly.

A.2 Additional Experiments
To test the robustness of our findings with respect to the choice of the feature matrix procedure chosen in Assump-
tion 4.2, specifically the generation of the input data x as a function of the latent variable z we consider a different
kind of latent space model.

Another model used to characterize overparameterization is the hidden manifold model [12, 18] where the
latent space covariates are still drawn from a gaussian z ∼ N (0, Idd) but the feature space covariates are a linear
transformation x = Fz where Fij ∼ N (0, 1) each component independently.

1Specifically we use np.minimize with Nelder-Mead algorithm.
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Figure 7: Behavior of Ecns
bnd for the Gaussian Features case as a function of the attack strength perturbation. The

performances are for model trained as per eqs. (21) and (22) and with the α and γ. The error bars refer to 10 repetitions
of the experiments for d = 1024. The metrics consider the ŵ trained with λ = 10−3, r = 0.0 and s = inf .
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Figure 8: Comparison of consistent boundary error and inconsistent boundary error as a function of the attack
strength. (Left) Case of the well-specified model presented in Section 3. The error bars refer to 10 repetitions of the
experiments for d = 500. The metrics consider the ŵ trained with α = 1.0, λ = 10−2, r = 0.0 and s = 2. (Right)
Case of the latent space model presented in Section 4. The error bars refer to 10 repetitions of the experiments for
d = 512. The metrics consider the ŵ trained with α = 1.0, λ = 10−2, r = 0.0 and s = 2.

We explore the behavior of the error metrics defined in eqs. (33) and (34) in Figures 6 and 7. We see that the
behavior is similar to the one of the model defined in the main text. The black line presented in the same figure is the
performances of the well specified model in the main text.

Crucially we see also in this case the metric Ecns
rob equals the value of the clean generalization error in the εg → 0+

limit and it reaches one in the εg →∞ limit. We have that Ecns
bnd is zero in the εg → 0+ limit.

We additionally compare the consistent and inconsistent formulation of the boundary error as a function of the
attack strength in Figure 8. The inconsistent boundary error is defined from the same formula as eq. (3) with the
removal of the consistent condition f⋆(x) = f⋆(x+ δ). We have that also in this case consistent attacks produce a
milder increase in the boundary error but the qualitative behavior is the same.

B Proof of the Results in the Main Text
In this section, we provide rigorous proofs for the theoretical results presented in the main paper, focusing on
Theorem 4.1.

Central to our analysis is the Convex Gaussian MinMax Theorem (CGMT), a fundamental tool that bridges
complex high-dimensional optimization problems with simpler low-dimensional counterparts. The CGMT enables
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us to transform our challenging primary optimization problem into a more tractable auxiliary problem, ultimately
leading to the self-consistent equations presented in Equations (37), (39) and (40).

We begin by stating the CGMT in its general form.

Theorem B.1 (CGMT [14, 72]). Let G ∈ Rm×n be an i.i.d. standard normal matrix and g ∈ Rm, h ∈ Rn two i.i.d.
standard normal vectors independent of each other. For compact sets Sw ⊂ Rn and Su ⊂ Rn, consider the following
optimization problems with continuous function ψ on Sw × Su:

C(G) := min
w∈Sw

max
u∈Su

u⊤Gw + ψ(w,u) (46)

C(g,h) := min
w∈Sw

max
u∈Su

∥w∥2g⊤u+ ∥u∥2h⊤w + ψ(w,u) (47)

The following statements hold:

1. For all c ∈ R: P(C(G) < c) ≤ 2P(C(g,h) ≤ c)

2. When Sw and Su are convex sets and ψ is convex-concave on Sw × Su, for all c ∈ R: P(C(G) > c) ≤
2P(C(g,h) ≥ c)

3. Consequently, for all µ ∈ R, t > 0: P(|C(G)− µ| > t) ≤ 2P(|C(g,h)− µ| ≥ t)

We will utilize a specialized version of the CGMT developed by [20] for generalized linear models.

B.1 Mathematical Preliminaries
Our analysis relies heavily on Moreau envelopes and proximal operators from convex analysis. These concepts have
become essential tools in the asymptotic analysis of high-dimensional convex problems [73, 74]. We provide key
definitions below.

Definition 4 (Moreau Envelope). For a convex function f : Rn → R, its Moreau envelope is defined as:

MV f(·)(ω) = min
x

[
1

2V
∥x− ω∥22 + f(x)

]
(48)

whereMV f(·) : Rn → R.

Definition 5 (Proximal Operator). For a convex function f : Rn → R, its Proximal operator is defined as:

PV f(·)(ω) = argmin
x

[
1

2V
∥x− ω∥22 + f(x)

]
(49)

where PV f(·) : Rn → Rn.

Theorem B.2 (Gradient of Moreau Envelope [8], Lemma D1). For a convex function f : Rn → R with Moreau envelope
MV f(·) and Proximal operator PV f(·):

∇ωMV f(·)(ω) =
1

V

(
ω − PV f(·)(ω)

)
(50)

Additionally, we will use these important properties:

MV f(·+u)(ω) =MV f(·)(ω + u) , PV f(·+u)(ω) = u+ PV f(·)(ω + u) (51)

which follow directly from a change of variables in the minimization.

Definition 6 (Dual of a Number). We define the the dual of a number a ≥ 0 as being a⋆ as the only number such
that 1/a + 1/a⋆ = 1.

22



B.2 Assumptions and Preliminary Discussion
We restate here all the assumptions that we make for the problem.

Assumption B.1 (Estimation from the dataset). Given a dataset D made of n pairs of input outputs {(xi, yi)}ni=1,
where xi ∈ Rd and yi ∈ R we estimate the vector ŵ as being

ŵ ∈ argmin
w∈Rd

n∑
i=1

max
∥vi∥s≤r

ℓ

(
yi
w⊤(xi + vi)√

d

)
+ λ∥w∥22 , (52)

where ℓ : R→ R is a convex non-increasing function and where the second term is a convex regularization function
whose strength can be tuned with λ ∈ [0,∞).

Assumption B.2 (Data Distribution). We assume that data (x, y) ∈ Rp × {−1,+1} is drawn from a latent variable
model with z ∼ N (0, 1/d Idd) and ground-truth linear classifier fw⋆

(z) = φ(⟨w⋆, z⟩) with w⋆ ∈ Sd−1(
√
d). The

observed features x ∈ Rp are generated as x = Fz+u with u ∼ N (0, Idp) independent of the other quantities and

F =


[ √

p
d Idd

0(p−d)×d

]
if p ≥ d[

Idp 0p×(d−p)

]
if p < d

. (53)

Assumption B.3 (High-Dimensional Limit). We consider the proportional high-dimensional regime where both the
number of training data and input dimension n, d, p→∞ at a fixed ratio α := n/d and ψ = p/n.

This setting considers most of the losses used in machine learning setups for binary classification, e.g. logistic,
hinge, exponential losses. We additionally remark that with the given choice of regularization the whole cost function
is coercive.

Assumption B.4 (Scaling of Adversarial Norm Constraint). For a given perturbation geometry δ ∈ Bq(r)with q > 1,
we assume that r = Od(d

1/q⋆+1/2) as d→∞, where q⋆ is the dual. We define the rescaled radius as ε̃t = ε/d1/q⋆+1/2.

B.3 Problem Simplification
Recall that we start from the following optimization problem:

Φd = min
w∈Rd

n∑
i=1

max
∥vi∥s≤r

ℓ

(
yi
w⊤(xi + vi)√

d

)
+ λ∥w∥22 . (54)

The non-increasing property of ℓ allows us to simplify the inner maximization, leading to an equivalent formulation

Φd = min
w∈Rd

n∑
i=1

ℓ

(
yi
w⊤xi√

d
− r√

d
∥w∥s⋆

)
+ λ∥w∥22 . (55)

To facilitate our analysis, we introduce auxiliary variables P = ∥w∥p
⋆

⋆ /d and P̂ (the Lagrange parameter relative
to this variable), which allow us to decouple the norm constraints. This leads to a min-max formulation

Φd = min
w∈Rd,P

max
P̂

n∑
i=1

ℓ

(
yi
w⊤xi√

d
− r

s⋆
√
d

s⋆
√
P

)
+ λ∥w∥22 + P̂∥w∥s

⋆

s⋆ − dP P̂ , (56)

where we switched the value of r for its value without the scaling in d. This reformulation is what will allow us to
apply the CGMT in subsequent steps.

It’s worth noting the significance of the scaling for r as detailed in Assumption B.4. In the high-dimensional limit
d→∞, it’s essential that all terms in Φd exhibit the same scaling with respect to d. This careful scaling ensures that
our asymptotic analysis remains well-behaved and meaningful in the high-dimensional regime.
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B.4 Scalarization and Application of CGMT

To facilitate our analysis, we further introduce effective regularization and loss functions, r̃ and ℓ̃, respectively. These
functions are defined as

ℓ̃(y, z) =

n∑
i=1

ℓ

(
yizi −

r
s⋆
√
d

s⋆
√
P

)
, r̃(w) = ∥w∥22 + P̂∥w∥s

⋆

s⋆ . (57)

A crucial step in our analysis involves inverting the order of the min-max optimization. We can justify this operation
by considering the minimization with respect to w ∈ Rd at fixed values of P̂ and P . This reordering is valid due to
the convexity of our original problem. Specifically, the objective function is convex in w and concave in P̂ and P ,
and the constraint sets are convex. Under these conditions, we apply Sion’s minimax theorem, which guarantees
the existence of a saddle point and allows us to interchange the order of minimization and maximization without
affecting the optimal value.

We additionally notice that the data distribution defined in Assumption B.2 lies under the same framework as the
one presented in [20]. Specifically can be seen as the case treated in Section 3.1 with the choice of non linearity just
adding Gaussian noise.

This reformulation enables us to directly apply [20, Lemma 11]. This lemma represents a meticulous application
of Theorem B.1 to scenarios involving non-separable convex regularization and loss functions. The result is a lower-
dimensional equivalent of our original high-dimensional minimization problem that represent the limiting behavior
of the solution of the high-dimensional problem.

Consequently, our analysis now focuses on a low-dimensional functional, which takes the form

Φ̃ = min
P,m,η,τ1

max
P̂ ,κ,τ2,ν

[
κτ1
2
− αLℓ −

η

2τ2

(
ν2ρ+ κ2

)
− ητ2

2
− Lr +mν − PP̂

]
(58)

where we have restored the min max order of the problem.
In this expression, g and h are independent Gaussian vectors with i.i.d. standard normal components. The terms

Lℓ and Lr represent the scaled averages of Moreau Envelopes (eq. (48))

Lℓ =
1

n
E
[
M τ1

κ ℓ̃(y,·)

(
m
√
ρ
s+ ηh

)]
(59)

Lr =
1

d
E
[
M η

τ2
r̃(·)

(
η

τ2
(κg + νw⋆)

)]
(60)

The extremization problem in eq. (58) is related to the original optimization problem in eq. (54) as it can be thought as
the leading part in the limit n, d→∞.

This dimensional reduction is the step that allows us to study the asymptotic properties of our original high-
dimensional problem through a more tractable low-dimensional optimization and thus have in the end a low dimen-
sional set of equations to study.

It’s important to note that the optimization problem Φ̃ is still implicitly defined in terms of the dimension d and,
consequently, as a function of the sample size n. We introduce two variables

weq = P η∗
τ∗
2
r̃(.)

(
η∗

τ∗2
(ν∗t+ κ∗g)

)
, zeq = P τ∗

1
κ∗ ℓ̃(,,y)

(
m∗
√
ρ
s+ η∗h

)
(61)

where (η⋆, τ⋆2 , P ⋆, P̂ ⋆, κ⋆, ν⋆,m⋆, τ⋆1 ) are the extremizer points of Φ̃.
Building upon [20, Theorem 5], we can establish a convergence result. Let ŵ be an optimal solution of the problem

defined in eq. (54), and let ẑ = 1√
d
Xŵ. For any Lipschitz function φ1 : Rd → R, and any separable, pseudo-Lipschitz

function φ2 : Rn → R, there exist constants ϵ, C, c > 0 such that

P
(∣∣∣∣ϕ1( ŵ√

d

)
− E

[
ϕ1

(
weq√
d

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4 (62)

P
(∣∣∣∣ϕ2( ẑ√

n

)
− E

[
ϕ2

(
zeq√
n

)]∣∣∣∣ ≥ ϵ) ≤ C

ϵ2
e−cnϵ4 (63)
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It demonstrates that the limiting values of any function depending on ŵ and ẑ can be computed by taking the
expectation of the same function evaluated at weq or zeq, respectively. This convergence property allows us to
translate results from our low-dimensional proxy problem back to the original high-dimensional setting with high
probability.

B.5 Derivation of Saddle Point equations

We now want to show that extremizing the values ofm, η, τ1, P, P̂ , ν, τ2, κ lead to the optimal value Φ̃ of eq. (58).
We are going to directly derive the saddle point equations and then argue that in the high-dimensional limit they
become exactly the ones reported in the main text.

We obtain the first set of derivatives that depend only on the loss function and the channel part by taking the
derivatives with respect tom, η, τ1, P to obatin

∂

∂m
: ν = α

κ

nτ1
E

[(
m

ηρ
h− s
√
ρ

)⊤

P τ1
κ ℓ̃(.,y)

(
m
√
ρ
s+ ηh

)]
∂

∂η
: τ2 = α

κ

τ1
η − κα

τ1n
E
[
h⊤P τ1

κ ℓ̃(·,y)

(
m
√
ρ
s+ ηh

)]
∂

∂τ1
:
τ21
2

=
1

2
α
1

n
E

[∥∥∥∥ m√ρs+ ηh− P τ1
κ ℓ̃(·,y)

(
m
√
ρ
s+ ηh

)∥∥∥∥2
2

]
∂

∂P
: P̂ =

α

n
∂PE

[
M τ1

κ ℓ̃(y,·)

(
m
√
ρ
s+ ηh

)]
(64)

By taking the derivatives with respect to the remaining variables κ, ν, τ2, P̂ we obtain a set of equations depending
on regularization and prior over the teacher weights

∂

∂κ
: τ1 =

1

d
E
[
g⊤P η

τ2
r̃(·)

(
η

τ2
(νw⋆ + κg)

)]
∂

∂ν
: m =

1

d
E
[
w⊤

⋆ P η
τ2

r̃(·)

(
η

τ2
(νw⋆ + κg)

)]
∂

∂τ2
:
1

2d

τ2
η
E

[∥∥∥∥ ητ2 (νw⋆ + κg)− P η
τ2

r̃(·)

(
η

τ2
(νw⋆ + κg)

)∥∥∥∥2
2

]
=

η

2τ2

(
ν2ρ+ κ2

)
−mν − κτ1 +

ητ2
2

+
τ2
2η

m2

ρ

∂

∂P̂
: P =

1

d
∂P̂E

[
M η

τ2
r̃(·)

(
η

τ2
(κg + νw⋆)

)]
(65)

The rewriting of these equations in the desired form in Theorem 4.1 follows from the same considerations as in [20,
Appendix C.2], specifically two changes of variables and a integration by parts.

To perform this rewriting the first ingredient we need is the following change of variables

m← m, q ← η2 +
m2

ρ
, V ← τ1

κ
, P ← P ,

V̂ ← τ2
η
, q̂ ← κ2 , m̂← ν , P̂ ← P̂ .

(66)

ant the use of Isserlis’ theorem [75] to simplify the expectation where Gaussian g, h vectors are present.

B.5.1 Rewriting of the Saddle Point Equations

To obtain specifically the form implied in the main text we introduce

Z0(y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2δ
(
y − f0(x)

)
. (67)
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The function Z0 can be interpreted as a partition function of the conditional distribution Pout and contains all of the
information about the label generating process.

In the case of sp norms, we can leverage the separable nature of the regularization to simplify our equations. The
key insight here is that the proximal operator of a separable regularization is itself separable. This property allows us
to treat each dimension independently, leading to a significant simplification of our high-dimensional problem.

First, due to the separability, all terms depending on the proximal of either ℓ̃ or r̃ simplify the n or d at the
denominator. This cancellation is crucial as it eliminates the explicit dependence on the problem dimension, allowing
us to derive dimension-independent equations.

Next, we introduce
Zw(ϱ,Λ) =

∫
dw e−

1
2w

2

e−
Λ
2 w2+ϱw, (68)

which, in turn, leads in the form shown in the main text.
We note additionally that to obtain the specific form of the saddle point equations presented in Theorem 4.1 one

needs to apply the specific form for the proximal operator of the Elastic-Net, specifically that

PV (λ1|·+λ2|·|2)(v) =
sign(v) ·max(|v| − λ1V, 0)

2V λ2 + 1
. (69)

B.6 Preliminaries Calculations For The Error Functions
We start by proving the following lemma that will be useful in the following. The following lemma will be specific for
the case of

Lemma 1 (Concentration of adversarial perturbations). Given a decreasing function g, y ∈ {±1}. For x,w, δ ∈ Rd

we have that

max
δ:∥δ∥q≤ε,⟨w⋆,δ⟩=0

g

(
y
⟨w,x+ δ⟩√

d

)
= sup

κ∈R
g

(
y
⟨w,x⟩√

d
− ε√

d
∥w − κw⋆∥q⋆

)
(70)

Lemma 1. Since g : R→ R in eq. (70) is a decreasing, non necessary continuous, function, one simply minimize the
argument of the function and then pass it through the original function. We can analyze the following

min
δ:∥δ∥q≤ε,⟨w⋆,δ⟩=0

y ⟨w,x+ δ⟩ = y ⟨w,x⟩+ min
δ:∥δ∥q≤ε,⟨w⋆,δ⟩=0

y ⟨w, δ⟩ (71)

we thus focus now on the second part only as the first part can be considered afterwards and separately from the
minimization. Since we consider a binary classification problem y ∈ {+1,−1}we can perform the change of variables
δ → yδ and we see that the constraints do not depend on y. We can write

min
δ:∥δ∥q≤ε,⟨w⋆,δ⟩=0

⟨w, δ⟩ = min
δ:∥δ∥q≤ε

sup
κ
⟨w, δ⟩+ κ⟨w⋆, δ⟩ = min

δ:∥δ∥q≤ε
sup
κ
⟨w + κw⋆, δ⟩ (72)

Now we want to use the fact that strong duality holds for the primal and dual problem then by interchanging the
order we obtain

sup
κ

min
δ:∥δ∥q≤ε

⟨w + κw⋆, δ⟩ = sup
κ
−ε∥w + κw⋆∥q⋆ = −ε inf

κ
∥w + κw⋆∥q⋆ (73)

where we have used the definition of the dual norm and 1/q + 1/q⋆ = 1. By reintroducing the factors in front we have

− ε√
d
inf
κ
∥w + κw⋆∥q⋆ (74)

and thus the form we are interested in.

The previous Lemma is interesting as it is the basis of the proof of Theorems 3.1 and 4.2. Additionally it tells us
that given the distribution of both w⋆ and w one can evaluate the limiting form for the term appearing as a function
of κ and then take the extremization over κ.

Now we would like to evaluate the limiting value of the previous equation under the condition that it is the
norm of a Gaussian vector with a specific covariance. Firstly we acknowledge that any Lp norm of a Gaussian vector
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concentrates. The proof of this is an application of [76, Theorem 5.5] applied to the Lipschitz function ∥M ·∥p with
M being the square root of the covariance or the Gaussian vector.

Specifically for the case considered the result can be found stated as [77, Corollary 1]. Specifically we have that
by considering a scaling for ε such that ε q⋆

√
d/
√
d = ε̃. If we have that the two variables are correlated element to

element as wi = m(w⋆)i + qξ where w⋆, ξ ∼ N (0, Idd) independently we have that

ε√
d
inf
κ
∥w̃ + κw⋆∥q⋆ −−−→

d→∞
ε̃ inf

κ

√
2

π(2q⋆)−1

√(
m

ρ
+ κ

)2

+ q − m2

ρ
q⋆

√
Γ

(
q⋆ + 1

2

)
(75)

the previous equation is always minimized for κ = − m/ρ and thus it leads to

ε̃
√
2

√
q − m2

ρ
q⋆

√
Γ((q

⋆ + 1)/2)√
π

. (76)

This is the case of Theorem 3.1.
To study the limiting value of eq. (74) for the trained predictor one should know the limiting joint distribution of

ŵ and w⋆. For the case of Theorem 4.2 one can apply [20, Lemma 5], which is a more complete version of eq. (61), to
characterize the probability distribution of the trained vector and obtain the form in Theorem 4.2.

B.7 Proper Error Metrics
Once one has that the perturbation due to the adversarial attack concentrates to some limitng value one can also find
the limiting distribution of the metrics eqs. (2) and (3). The results can be derived with the local fields method [66].
We are expressing it for the more difficult case of the latent space model. Specifically we have that( ⟨w⋆,z⟩√

d
⟨ŵ,x⟩√

p

)
∼ N

((
0
0

)
,

(
1 m
m q

))
(77)

where the values of m, q are the ones that can be found from teh solution of the set of self consistent equations
in Theorem 4.1.

C Statistical Physics Derivation of the Main Result
Here we present an alternative derivation of our main result using statistical physics methods, specifically the replica
technique [78]. We begin by formulating a Gibbs measure from the empirical risk with an inverse temperature
parameter β, then analyze the zero-temperature limit to characterize the optimal solution space.

C.1 Gibbs Measure Formulation
We define a Gibbs probability measure over the weight spacew ∈ Rd. This measure is constructed so that weights
minimizing the empirical risk have the highest probability. By taking the zero temperature limit (β →∞), we can
focus exclusively on these optimal solutions.

The Gibbs measure is defined as:

µβ(dw) =
1

Zβ
e−β[

∑n
µ=1 g(yµ,w⊤xµ,w,εt)+λ

2 ∥w∥2
2]dw (78)

=
1

Zβ

n∏
µ=1

e−βg(yµ,w⊤xµ,w,εt)

︸ ︷︷ ︸
Pg,εt

e−
βλ
2 ∥w∥2

2︸ ︷︷ ︸
Pw

dw (79)

Here, Pg,εt represents the probability distribution associated with the channel, while Pw denotes the prior probability
distribution on weights.
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The partition function Zβ normalizes this measure:

Zβ =

∫
Rd

dwe−
βλ
2 ∥w∥2

2

n∏
µ=1

e−βg(yµ,w⊤xµ,w,εt) (80)

As β →∞, the measure concentrates around solutions that minimize the empirical risk. The free energy density,
our primary quantity of interest, is given by:

βfβ = − lim
d→∞

1

d
ED logZβ (81)

C.2 Replica Technique Application
To compute the average of the free energy, we employ the replica trick:

lim
d→∞

1

d
ED logZβ = lim

r→0
lim
d→∞

1

d

∂rEDZr

1
(82)

This approach involves three key limits: 1. The zero temperature limit (β →∞) to identify the global minimum
of our optimization problem 2. The thermodynamic limit of large dimension (d→∞) with fixed sampling ratio 3.
The replica limit (r → 0) enabling the logarithm computation

We begin with the replicated partition function, noting our case includes a dependency on εt in the output
probability:

EDZr
β =

n∏
µ=1

Exµ

r∏
a=1

∫
Rp

Pw (dwa)Pg,εt

(
yµ |

x⊤
µw

a

√
p

)

=

n∏
µ=1

∫
R
dyµ

∫
Rd

Pw⋆
(dw⋆)

∫
Rp×r

r∏
a=1

Pw (dwa)Exµ

[
P0

(
yµ |

z⊤
µw⋆√
d

)
r∏

a=1

Pg,εt

(
yµ |

x⊤
µw

a

√
d

, sa

)]
(83)

where Pg,εt is explicitly defined as:

Pg,εt

(
yµ |

x⊤
µw

a

√
p
,wa

)
=

√
β√
2π
e
−βg

(
y

x⊤
µ wa

√
p − εt√

p∥w
a∥q⋆

)
, (84)

and P0 can represent any general noisy channel distribution.
The expectation term can be rewritten as:

Exµ

[
P0

(
yµ |

z⊤
µw⋆√
d

)
r∏

a=1

Pg,εt

(
yµ | xµw

a

√
p
,wa

)]

=

∫
R
dνµP0 (y | νµ)

∫
Rr

[
r∏

a=1

dλaµPg,εt

(
yµ | λaµ,wa

)]
Exµ

[
δ

(
νµ −

z⊤
µw⋆√
d

)
r∏

a=1

δ

(
λaµ −

x⊤
µw

a

√
p

)] (85)

When averaging over the dataset, the new variables follow a Gaussian distribution with covariances:

ρ ≡ E
[
ν2µ
]
=

1

d
∥w⋆∥22 , (86)

ma ≡ E
[
λaµνµ

]
=

√
γ

d
w⊤

⋆ F⊤ wa , (87)

Qab ≡ E
[
λaµλ

b
µ

]
=

1

p
wa⊤

(
FF⊤ +Idp

)
wb , (88)

which can be organized into a single covariance matrix for the Gaussian pair (νµ, λµ).
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We perform the following change of variables for the overlap matrix:

1 ∝
∫
R
dρ δ

(
γpρ− ∥w⋆∥22

)∫
Rr

r∏
a=1

dma δ
(
p
√
γma −w⊤

⋆ F⊤ wa
)

∫
Rr×r

∏
1≤a≤b≤r

dQab δ
(
pQab −wa⊤(FF⊤ +Idp)w

b
)

=

∫
R

dρdρ̂

2π
e−iρ̂(pγρ−∥w⋆∥2

2)
∫
Rr

r∏
a=1

dma dm̂a

2π
e−i

∑r
a=1 m̂a(p

√
γma−w⊤

⋆ sa)

∫
Rr×r

∏
1≤a≤b≤r

dQab dQ̂ab

2π
e−iQ̂ab(pQab−wa⊤(FF⊤ + Idp)w

b)

(89)

We define additional overlaps:
P a =

1

p
∥wa∥q

⋆

q⋆ , (90)

which enter our computation as:

1 ∝
∫ r∏

a=1

dP a δ
(
pP a − ∥wa∥q

⋆

q⋆

)
=

∫ r∏
a=1

dP a dP̂ a

2π
e−iP̂a(pPa−∥wa∥q⋆

q⋆
) (91)

The replicated partition function can now be written as:

EDZr
β =

∫
dρdρ̂

2π

r∏
a=1

dma dm̂a

2π

dP a dP̂ a

2π

∏
1≤a≤b≤r

dQab dQ̂ab

2π
epΦ

(r)

(92)

where the r-replicated functional Φ(r) is:

Φ(r) = Ψt + αγΨ(r)
y

(
ρ,ma, Qab, P a

)
+Ψ(r)

w

(
ρ̂, m̂a, Q̂ab, P̂ a

)
(93)

We have defined the trace term Ψt as:

Ψ
(r)
t = −γρρ̂−√γ

r∑
a=1

mam̂a −
∑

1≤a≤b≤r

QabQ̂ab −
r∑

a=1

P aP̂ a (94)

The prior part of the replicated free energy Ψ
(r)
w is:

Ψ(r)
w =

1

p
log

[∫
Rd

Pw⋆
(dw⋆) e

ρ̂∥w⋆∥2
2

∫
Rp×r

r∏
a=1

Pw (dwa) e
∑r

a=1

(
m̂aw⊤

⋆ F⊤ wa+P̂a∥wa∥q⋆

q⋆

)
+
∑

1≤a≤b≤r (Q̂
abwa(FF⊤ + Idp)w

b)
] (95)

And the channel part Ψ(r)
y is:

Ψ(r)
y = log

[∫
R
dy

∫
R
dνP0(y | ν)

∫ r∏
a=1

dλaPg,εt (y | λa, P a)N
(
ν, λa;0,Σab

)]
(96)

where we’ve used the fact that (νµ, λµ) µ = 1, . . . n factors over all data points.
In the thermodynamic limit (d→∞ with fixed γ and α), the integral in eq. (92) concentrates around values that

extremize Φ(r), giving the free energy density:

βfβ = − lim
r→0+

1

r
extrΦ(r) = − lim

r→0+
∂r extrΦ

(r) (97)
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C.3 Replica Symmetric Ansatz
We propose the following replica symmetric ansatz for our variables:

ma = m m̂a = m̂ for a = 1, . . . r

qaa = Q q̂aa = − 1
2 Q̂ for a = 1, . . . r

qab = q q̂ab = q̂ for 1 ≤ a < b ≤ r
P a = P P̂ a = − 1

2 P̂ for a = 1, . . . r

(98)

The trace term becomes:

Ψt =
1

2
qq̂ +

1

2
QQ̂+

1

2
PP̂ −√γmm̂ =

1

2
(qq̂ + (V + q)(V̂ − q̂)) + 1

2
PP̂ −√γmm̂ (99)

And the channel term becomes:

Ψy = Eξ

[∫
R
dyZ0

(
y,

m
√
q
ξ, ρ− m2

q

)
logZy(y,

√
qξ, V, P )

]
(100)

with definitions:

Z0(y, ω, V ) =

∫
dx√
2πV

e−
1

2V (x−ω)2P0(y | x) , (101)

Zy(y, ω, V, P ) =

∫
dx√
2πV

e−
1

2V (x−ω)2
√
β√
2π
e
−βg

(
yx−εt

q⋆√
P
)
. (102)

C.3.1 Prior Term for Separable Regularization

Applying our ansatz to eq. (103), we can take the zero replica limit on the prior term:

Ψw =
1

p
Eξ,w⋆

[
log

∫
Rp

Pw (dw) e−
V̂
2 w⊤(FF⊤ + Idp)w− P̂

2 ∥w∥q⋆

q⋆
−w⊤(m̂Fw⋆−

√
q̂(FF⊤ + Idp)

1/21ξ)
]

(103)

Using the specific form of the feature matrix from eq. (53), we can simplify:

FF⊤ =


[

p
d Idd 0

0 0

]
if p ≥ d

Idp if p < d

, FF⊤ +Idp =


[ (

1 + p
d

)
Idd 0

0 Id(p−d)

]
if p ≥ d

2 Idp if p < d

. (104)

For γ = d/p < 1 (when p ≥ d), we have:

Ψ(γ≤1)
w = γ

∫
e−

1
2 ξ

2

√
2π

P (dw⋆) log

∫
P (dw)e

− V̂
2 (1+ 1

γ )w2− P̂
2 |w|q

⋆
+ m̂√

γ ww⋆+
√
q̂
√

1+ 1
γ wξ

+ (1− γ)
∫
e−

1
2 ξ

2

√
2π

P (dw⋆) log

∫
P (dw)e−

V̂
2 w2− P̂

2 |w|q
⋆
+
√
q̂wξ ,

(105)

And for γ = p/d > 1 (when p < d):

Ψ(γ>1)
w =

∫
e−

1
2 ξ

2

√
2π

P (dw⋆) log

∫
P (dw)e−V̂ w2− P̂

2 |w|q
⋆
+m̂w∗w+

√
2q̂wξ , (106)

After variable changes, we can express:

Ψ(γ≤1)
w = γEξ

[
Zw⋆

(
m̂√
q̂

ξ√
1 + γ

,
m̂2

q̂

1

1 + γ

)
logZw

(√
q̂

√
1 +

1

γ
ξ, V̂

(
1 +

1

γ

)
,
P̂

2

)]
(107)

+ (1− γ)Eξ

[
logZw

(√
q̂ξ, V̂ ,

P̂

2

)]
, (108)

30



Ψ(γ>1)
w = Eξ

[
Zw⋆

(
m̂√
2q̂
ξ,
m̂2

2q̂

)
logZw

(√
2q̂ξ, 2V̂ ,

P̂

2

)]
, (109)

where we define:

Zw⋆
(ζ,Λ) =

∫
P⋆(dw⋆)e

− 1
2Λω2+ζω (110)

Zλ
w(ζ,Λ, ϕ) =

∫
dwe−

βλ
2 w2

e−
Λ
2 w2−ϕ|w|q

⋆
+ζw . (111)

We also define:
fw(γ,Λ, λ2, λq⋆) = argmin

z

[
λ2z

2 + λq⋆ |z|q
⋆

+
Λ

2
z2 − γz

]
(112)

C.4 Zero Temperature Limit
For the zero temperature limit, we apply the following parameter scalings:

V → β−1V q → q m→ m P → P

V̂ → βV̂ q̂ → β2q̂ m̂→ βm̂ P̂ → βP̂
(113)

The channel term limit becomes:

Ψ̃y = lim
β→∞

1

β
Ψy = −Eξ

[∫
dyZ0

(
y,

m
√
q
ξ, ρ− m2

q

)
MV g(y,·;P,εt)(

√
qξ)

]
(114)

whereMV g(y,·;P,εt) is the Moreau envelope:

MV g(y,·;P,εt)(ω) = min
z

[
ℓ
(
yx− εt

q⋆
√
P
)
+

1

2V
(z − ω)2

]
. (115)

The zero temperature limit of the prior term gives:

Ψ̃(γ≤1)
w = γEξ

[
Zw⋆

(
m̂√
q̂

ξ√
1 + γ

,
m̂2

q̂

1

1 + γ

)
logZw

(√
q̂

√
1 +

1

γ
ξ, V̂

(
1 +

1

γ

)
,
P̂

2

)]

+ (1− γ)Eξ

[
logZw

(√
q̂ξ, V̂ ,

P̂

2

)]
.

Ψ̃(γ>1)
w = Eξ

[
Zw⋆

(
m̂√
2q̂
ξ,
m̂2

2q̂

)
logZw

(√
2q̂ξ, 2V̂ ,

P̂

2

)]
.

(116)

After taking the zero temperature limit, our free energy density is:

lim
β→∞

fβ = extr
V,q,m,P

V̂ ,q̂,m̂,P̂

{
−1

2
(qV̂ − q̂V )− 1

2
PP̂ +

√
γmm̂+ αγΨ̃y + Ψ̃w

}
. (117)

C.5 Saddle-Point Equations
The extremization condition in eq. (117) yields the following relation for overlaps:

q̂ = −2αγ∂qΨ̃y, q = −2∂q̂Ψ̃w

Q̂ = −2αγ∂QΨ̃y, Q = −2∂Q̂Ψ̃w,

P̂ = −2αγ∂P Ψ̃y, P = −2∂P̂ Ψ̃w

m̂ = α
√
γ∂mΨ̃y, m =

1
√
γ
∂m̂Ψ̃w.

(118)
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The saddle-point equations for the channel part are:

P̂ = αγεtq
⋆P q⋆−1Eξ

[∫
R
dy yZ0fℓ,εt

]
,

V̂ = −αγEξ

[∫
R
dyZ0∂ωfℓ,εt

]
,

q̂ = αγEξ

[∫
R
dyZ0f

2
ℓ,εt

]
,

m̂ = α
√
γEξ

[∫
R
dy ∂ωZ0fℓ,εt

]
,

(119)

For the prior term derivatives, we use the identities:

∂1Zw(γ,Λ) = Zw(γ,Λ)fw(γ,Λ) , (120)

∂2Zw(γ,Λ) = −
1

2

(
∂γfw(γ,Λ) + f2w(γ,Λ)

)
, (121)

The derivative with respect to m̂ gives:

∂m̂Ψ̃(γ≤1)
w =

√
γEξ

[
∂1Zw⋆

(
m̂ξ√
q̂(1 + γ)

,
m̂2

q̂(1 + γ)

)
fw

(√
q̂

√
1 +

1

γ
ξ, V̂

(
1 +

1

γ

))]
, (122)

∂m̂Ψ(γ>1)
w = Eξ

[
Zw⋆

(
m̂ξ√
2q̂
,
m̂2

2q̂

)
fw⋆

(
m̂ξ√
2q̂
,
m̂2

2q̂

)
fw

(√
2q̂ξ, 2V̂

)]
, (123)

The derivative with respect to q̂ gives:

∂q̂Ψ̃
(γ≤1)
w = −1

2
(1 + γ)Eξ

[
Zw⋆

(
m̂ξ√
q̂(1 + γ)

,
m̂2

q̂(1 + γ)

)
fw

(√
q̂

√
1 +

1

γ
ξ, V̂

(
1 +

1

γ

))2
]

(124)

− 1

2
(1− γ)Eξ

[
fw

(√
q̂ξ, V̂

)2]
, (125)

∂q̂Ψ̃
(γ<1)
w = −Eξ

[
Zw⋆

(
m̂ξ√
2q̂
,
m̂2

2q̂

)
fw

(√
2q̂ξ, 2V̂

)2]
. (126)

The derivative with respect to Q̂ gives:

∂Q̂Ψ̃
(γ≤1)
w = −1

2
(1 + γ)Eξ

[
Zw⋆

(
m̂ξ√
q̂(1 + γ)

,
m̂2

q̂(1 + γ)

)
∂1fw

(√
q̂

√
1 +

1

γ
ξ, V̂

(
1 +

1

γ

))]
(127)

− 1

2
(1− γ)Eξ

[
∂1fw

(√
q̂ξ, V̂

)]
(128)

∂Q̂Ψ̃
(γ>1)
w = −Eξ

[
Zw⋆

(
m̂ξ√
2q̂
,
m̂2

2q̂

)
∂1fw

(√
2q̂ξ, 2V̂

)]
(129)

And finally, the derivative with respect to P̂ gives:

∂P̂ Ψ̃
(γ≤1)
w = −1

2
γEξ

[
Zw⋆

(
m̂√
q̂

ξ√
1 + γ

,
m̂2

q̂

1

1 + γ

) ∣∣∣∣fw(√q̂√1 +
1

γ
ξ, V̂

(
1 +

1

γ

))∣∣∣∣q
⋆]

(130)

− 1

2
(1− γ)Eξ

[∣∣∣fw(√q̂ξ, V̂ )∣∣∣q⋆] . (131)

∂P̂ Ψ̃
(γ>1)
w = −Eξ

[
Zw⋆

(
m̂√
2q̂
ξ,
m̂2

2q̂

) ∣∣∣fw(√2q̂ξ, 2V̂
)∣∣∣q⋆] . (132)

Combining these derivatives with eq. (118) yields the final self-consistent equations.
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The values of the feature space and latent space norms are

qℓ =
1

d

∥∥∥F⊤ w
∥∥∥2
2
, qf =

1

p
∥w∥22 , (133)

and we have that

qℓ =
1

γ

{
E
[
Zw⋆

()f2w
]

γ ≤ 1

E
[
Zw⋆

()f2w
]

γ > 1
, (134)

qf =

{
γE
[
Zw⋆

()f2w
]
+ (1− γ)E

[
f2w
]

γ ≤ 1

E
[
Zw⋆()f

2
w

]
γ > 1

(135)

D Numerical Details
The self-consistent equations from Theorem 4.1 are written in a way amenable to be solved via fixed-point iteration.
Starting from a random initialization, we iterate through both the hat and non-hat variable equations until the
maximum absolute difference between the order parameters in two successive iterations falls below a tolerance of
10−5.

To speed-up convergence we use a damping scheme, updating each order parameter at iteration i, designated as
xi, using xi := xiµ+ xi−1(1− µ), with µ as the damping parameter.

Once convergence is achieved for fixed λ, hyper-parameters are optimized using a gradient-free numerical
minimization procedure for a one dimensional minimization.

For each iteration, we evaluate the proximal operator numerically using SciPy’s [79] Brent’s algorithm for root
finding (scipy.optimize.minimize_scalar). The numerical integration is handled with SciPy’s quad
method (scipy.integrate.quad), which provides adaptive quadrature of a given function over a specified
interval. These numerical techniques allow us to evaluate the equations and perform the necessary integrations with
the desired accuracy.

Regarding the computer hardware all the experiments have been run on consumer grade hardware, specifically
MacStudio M2 Ultra 2022, and none of the run took more than 1 day of CPU time.
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