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ABSTRACT
Multimodal contrastive learning models like CLIP have demon-
strated remarkable vision-language alignment capabilities, yet their
vulnerability to backdoor attacks poses critical security risks. At-
tackers can implant latent triggers that persist through downstream
tasks, enabling malicious control of model behavior upon trigger
presentation. Despite great success in recent defense mechanisms,
they remain impractical due to strong assumptions about attacker
knowledge or excessive clean data requirements. In this paper,
we introduce InverTune, the first backdoor defense framework
for multimodal models under minimal attacker assumptions, re-
quiring neither prior knowledge of attack targets nor access to
the poisoned dataset. Unlike existing defense methods that rely
on the same dataset used in the poisoning stage, InverTune effec-
tively identifies and removes backdoor artifacts through three key
components, achieving robust protection against backdoor attacks.
Specifically, InverTune first exposes attack signatures through ad-
versarial simulation, probabilistically identifying the target label by
analyzing model response patterns. Building on this, we develop a
gradient inversion technique to reconstruct latent triggers through
activation pattern analysis. Finally, a clustering-guided fine-tuning
strategy is employed to erase the backdoor function with only a
small amount of arbitrary clean data, while preserving the original
model capabilities. Experimental results show that InverTune re-
duces the average attack success rate (ASR) by 97.87% against the
state-of-the-art (SOTA) attacks while limiting clean accuracy (CA)
degradation to just 3.07%. This work establishes a new paradigm
for securing multimodal systems, advancing security in foundation
model deployment without compromising performance.

KEYWORDS
Multimodal Contrastive Learning, Backdoor Attacks, Backdoor
Inversion

1 INTRODUCTION
Multimodal contrastive learning (MCL) has revolutionized vision-
language alignment, enabling breakthroughs in various challenging
tasks like zero-shot classification [10, 20, 31, 45], image caption-
ing [5, 9, 26, 37], and visual question answering [1, 11, 12]. Models
like CLIP [32] align images and text into a shared embedding space
through web-scale pretraining, achieving remarkable generaliza-
tion without task-specific fine-tuning. Subsequent advancements,
including ALIGN [17] and CoOp [48], further enhance MCL’s ro-
bustness, cementing its role in modern multimodal systems.

∗ The first two authors contributed equally to this work.
†Corresponding author.

While MCL models have achieved impressive success in various
tasks, they are not without vulnerabilities. Especially, the reliance
on large-scale, web-crawled training data exposes MCL models to
backdoor attacks, in which adversaries implant hidden triggers to
manipulate downstream task behavior. Different from unimodal
attacks, backdoor attacks against MCL exploit target cross-modal
alignment mechanisms, inducing misalignment between visual and
textual representations. For example, BadCLIP [21] poisons training
data to associate a visual trigger with mismatched text labels. When
users unknowingly fine-tune their models with these poisoned data
under downstream tasks, a backdoor can be stealthily embedded
into the model, enabling adversaries to manipulate deployed sys-
tems. Owing to the widespread practice of fine-tuning untrusted
pre-trained models, these vulnerabilities are further exacerbated,
creating an urgent need for defenses against backdoors.

Recently, many approaches have been proposed to detect or pu-
rify backdoors. Detection methods [13] can only identify poisoned
encoders but do not provide remediation. Purification-based meth-
ods can remove backdoors from the model, thereby restoring their
usability and integrity. Yet, they either require impractical amounts
of clean data [3], need precise hyperparameter tuning [46], or cause
a terrible trade-off between model performance and defensive ef-
fectiveness [19, 42]. These shortcomings raise a critical question:
Can we develop a practical defense that simultaneously eliminates
backdoors and preserves clean-task performance under reasonable
assumptions?

Addressing this question is particularly challenging in the con-
text of MCL models. In conventional single-modal classification
models, defenders can effectively identify backdoor targets through
exhaustive testing across a predefined discrete label space, enabling
precise backdoor mitigation. However, the open-vocabulary nature
of MCL [7] fundamentally invalidates such enumeration-based ap-
proaches. Moreover, in the single-modal classification model, only
the target label is affected so that the defender can use this par-
ticularity to identify the backdoor information. In an MCL model,
the impact of a backdoor may not be limited to a single label, such
as multiple tokens, making it difficult for defenders to distinguish.
Crucially, if the target labels in MCL models can be accurately iden-
tified, it would greatly simplify the process of backdoor mitigation.

In response to the above question, we propose InverTune, a new
backdoor defense framework for MCL models, which could remove
backdoors while preserving model performance under manageable
assumptions. The workflow of InverTune is to first identify the
backdoor information and then purify it correctly. First, InverTune
identifies target labels by exploiting a key observation: backdoored
models exhibit unique vulnerabilities to adversarial perturbations
compared to clean models. This approach provides precise target
label detection and significantly reduces computational overhead

https://arxiv.org/abs/2506.12411v1
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Figure 1: Target label identification, trigger inversion, and activation tuning: InverTune’s framework for backdoor removal
(illustrated with a mushroom-targeted example).

to exhaustive search. Second, we propose a dual-space optimization
strategy that jointly analyzes the visual embedding space and cross-
modal alignment space. By minimizing the discrepancy between
perturbed and target embeddings across both spaces, InverTune
accurately isolates trigger signatures while preserving the model’s
original feature representations. Third, we perform clustering-based
fine-tuning to selectively recalibrate these neurons corresponding
to backdoors, suppressing malicious functionality without sacrific-
ing clean-task performance. We evaluate the effectiveness of Inver-
Tune against six MCL backdoor attacks, including the SOTA attack
BadCLIP, and compare it with four leading defense approaches. The
results show that, on both ImageNet classification and MSCOCO
image-to-text retrieval tasks, we reduce most attack success rate
(ASR) to within 1.0%, achieving an average ASR decrease of 89.88%
and 97.58% respectively, demonstrating SOTA defense performance.
Meanwhile, we maximally preserve the model utility, achieving an
average clean accuracy (CA) of 54.96% and 69.47%. This demon-
strates a good balance between backdoor removal and model utility
preservation during the defense process.

Our contributions can be summarized as follows:

• To the best of our knowledge,We are the first to identify backdoor
target labels in MCL models. This discovery not only enables
backdoor risk verification but also unlocks precise, low-cost de-
fense mechanisms by directly identifying the root of attacks.
• We introduce InverTune, a novel three-step defense framework
that integrates backdoor label identification, gradient-guided
trigger inversion, and activation-aware fine-tuning, requiring
only reasonable amounts of data. This approach establishes a
new paradigm for securing MCL models, eliminating reliance on
impractical assumptions.
• Extensive experimental results show that InverTune has strong
defense power. Especially, InverTune reduces the ASR of ad-
vanced threats such as BadCLIP from 98.36% to 0.49%, outper-
forming existing defenses by 17.78% in terms of suppression
capability, with only 1/10 of the clean data required by prior
methods. Notably, it achieves an average Top-10 CA of 69.47%
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Figure 2: The t-SNE plots of clean samples, backdoor samples,
and adversarial examples in (a) the clean model and (b) the
backdoored model.

on the MSCOCO image-to-text retrieval task, resolving the per-
sistent accuracy-security trade-off that hinders prior defenses.

2 THREAT MODEL
Attacker.We follow the SOTA settings [21] for backdoor attacks in
MCL models, specifically targeting the vision encoder. We assume
that the attacker can construct a poisoned fine-tuning dataset and
knows the model architecture and parameters. The attacker’s goal
is to implant a backdoor into the pre-trained CLIP model such
that the model behaves normally on benign inputs but outputs
incorrect results when exposed to inputs with triggers. To achieve
this, the attacker injects a small portion of poisoned samples into
the fine-tuning dataset, introducing visual triggers. The attacker
then fine-tunes the pre-trained model using this poisoned dataset,
manipulating the model’s responses to visual triggers. Once the
vision encoder is backdoored, the attacker has no control over
downstream applications or tasks using the model.
Defender. To conduct a practical defense, we assume that the de-
fender has no access to the pretraining dataset or the poisoned
fine-tuning dataset, and is unaware of the backdoor attack’s target.
Furthermore, the defender either has no access to the full clean
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Figure 3: Image-text similarity shift: backdoor and adversar-
ial examples are closer to target text than to original text.

dataset or only possesses a limited amount of clean data. The pri-
mary goal of the defender is to neutralize the backdoors while
maintaining the model’s original performance on the clean data.

3 INVERTUNE: DETAILED CONSTRUCTION
As illustrated in Figure 1, our proposed method, InverTune, miti-
gates backdoor attacks in MCLmodels through a three-step process:
adversarial perturbation-based target identification, trigger inver-
sion, and activation clustering-based fine-tuning.

3.1 Target Identification
Recent studies [27, 29] reveal that backdoored models exhibit dis-
tinct characteristics in feature representation and vulnerability
within target classes. Single-modal backdoored models establish
strong associations between target class labels and both robust
features and backdoor features. Hence, normal and backdoored
samples of the target class cluster closely in the latent space. Be-
sides, untargeted adversarial attacks would inadvertently exploit
backdoor pathways so that the optimization process for generat-
ing adversarial perturbations leans to converge toward backdoor
triggers, causing attack outcomes to disproportionately favor the
backdoor target label. In contrast, benign models exhibit approx-
imately uniform label distribution for adversarial examples. This
phenomenon has motivated backdoor defense strategies that lever-
age adversarial example analysis for trigger inversion. In the MCL
domain, Kuang et al. [19] directly utilize the insight to optimize
universal adversarial perturbations followed by anti-learning pu-
rification. However, their defense performance is unsatisfactory.

Inspired by the above finding and result, we try to understand
how the backdoor affects the target class in the MCL model. To
achieve this, we take a SOTA MCL backdoor attack method, Bad-
CLIP, as an example. Specifically, we visualize the visual encoder
features of backdoor samples, adversarial examples generated us-
ing AdvCLIP [49], and clean images from 10 randomly selected
categories, including the target category. Based on Figure 2, we find
new observations different from those in the single-modal model.
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Figure 4: Similaritymatrices between image and text features
under different attack scenarios.

Observation I

Backdoor samples form distinct clusters rather than merg-
ing with target class features.

We find that although BadCLIP’s dual-embedding optimization
reduces the visual embedding distance between poisoned samples
and target class samples, samples with triggers form a new cluster in
visual features and do not become closer to the target class samples.
Moreover, by observing adversarial examples, we also find similar
results. To understand it more, we calculate the similarity between
backdoor samples and adversarial examples, as shown in Figure 3
and Figure 4. Based on all results, we notice another observation.

Observation II

Adversarial attacks tend to exploit backdoor-induced weak-
nesses rather than direct trigger mimicry.

Since adversarial examples and backdoor samples remain signifi-
cantly distant in terms of feature space, this suggests that adversar-
ial examples do not directly mimic the features of backdoor samples.
Based on Figure 4, we can find that most adversarial examples have
higher similarity with the text features of the target class, show-
ing the backdoor also affects the adversarial attacks. This suggests
backdoors reconfigure multimodal decision boundaries, creating
“vulnerability zones” that adversarial attacks preferentially exploit.
As a result, adversarial attacks are more likely to exploit this vul-
nerability, causing higher confusion and increasing the chances of
misclassification into the target class.
Identification Strategy. Building on these insights, we develop
a target label identification strategy through differential analysis
of adversarial misclassification patterns. Specifically, given a sus-
pected compromised model, we construct a universal adversarial
perturbation designed to induce systematic misclassification across
all input images. We then compare the model’s output distribution
on adversarially perturbed samples 𝑃adv (𝑦) against its predictions
on clean samples 𝑃clean (𝑦). The target label 𝑦𝑡 is identified as the
class exhibiting the maximum increase in prediction frequency:

𝑦𝑡 = argmax
𝑦∈Y
(𝑃adv (𝑦) − 𝑃clean (𝑦)). (1)



This differential analysis isolates attack-induced bias from natural
model tendencies, leveraging the intrinsic concentration property
of backdoor attacks: backdoored models consistently steer mis-
classified samples toward the target label with disproportionate
frequency. The identified target label then serves as the founda-
tion for subsequent backdoor mitigation through gradient-guided
trigger inversion and activation suppression.

3.2 Trigger Inversion
Unlike traditional single-modal backdoor attacks where the tar-
get is a specific class label, multimodal backdoor attacks in CLIP
exploit the complex cross-modal alignment between visual and
textual representations. This fundamental difference requires a spe-
cialized approach to trigger inversion that addresses the unique
characteristics of multimodal contrastive learning models.
Multimodal Trigger Inversion Challenges. Traditional back-
door inversion methods [16, 38, 41] designed for classification mod-
els cannot be directly applied to multimodal models like CLIP for
several key reasons. (1) In CLIP, backdoor attacks operate by creat-
ingmalicious alignments between visual triggers and textual targets
across modalities. This cross-modal interaction is fundamentally
different from the class boundary manipulation in traditional clas-
sification models, as it requires simultaneous optimization over
both image and text embeddings. (2) CLIP projects both images
and text into a shared high-dimensional embedding space, where
the backdoor behavior is determined by the alignment between
these modalities. This shared space introduces additional complex-
ity compared to the discrete class labels used in traditional models,
as the backdoor functionality depends on the relative positions of
embeddings rather than direct class mappings. (3) CLIP’s zero-shot
capabilities [50] allow it to generalize to unseen classes and con-
cepts, which backdoors can exploit in ways that are not observable
in traditional models. This makes it challenging to detect and invert
triggers, as the backdoor behavior may manifest differently across
various downstream tasks.
Dual-Space Trigger Optimization. To address these challenges,
we propose a novel dual-space trigger inversion approach that
explicitly considers both the visual embedding space and the cross-
modal alignment. Specifically, given a clean input image 𝑥 , we
parameterize the trigger as a mask-pattern pair (𝑚, 𝑡img), where
the backdoor sample 𝑥 is generated via element-wise composition:

𝑥 =𝑚 ⊙ 𝑡img + (1 −𝑚) ⊙ 𝑥, (2)

where𝑚 denotes the mask, 𝑡img represents the trigger pattern, and
⊙ denotes element-wise multiplication. Our framework integrates
four synergistic loss components to ensure precise trigger recon-
struction while preserving stealthiness: Cross-Modal Alignment,
Embedding Space Preservation, Visual Similarity, and Trigger Spar-
sity. Detailedly, Cross-Modal Alignment is formulated using the
InfoNCE [30] loss to force the visual trigger embeddings to align
with the identified target text 𝑦𝑡 while diverging from non-target
classes. The contrastive loss can be expressed as:

Lalign = − log exp(sim(𝐸𝐼 (𝑥), 𝐸𝑇 (𝑦𝑡 ))/𝜏)∑𝑁
𝑗=1 exp(sim(𝐸𝐼 (𝑥), 𝐸𝑇 (𝑦 𝑗 ))/𝜏)

, (3)

where 𝐸𝐼 and 𝐸𝑇 are the image and text encoders of the suspected
model, 𝑦 𝑗 iterates over all class prompts including the target, 𝜏 is

the temperature parameter controlling the sharpness of the dis-
tribution, and 𝑁 is the number of considered classes. Then we
employ the embedding space preservation loss to prevent backdoor
samples from excessively shifting toward the target class’s textual
embedding, thereby preserving the embedding structure and main-
taining a stable data distribution to safeguard generalization. It is
formulated as follows:

Lemb = 𝐷 ( 𝐸𝐼 (𝑥)
∥𝐸𝐼 (𝑥)∥2

,
𝐸𝐼 (𝑥)
∥𝐸𝐼 (𝑥)∥2

), (4)

where 𝐷 (·) means a distance function. Here we employ the widely-
used 𝐿2-norm distance metric. Considering the attacker’s goal,
where the backdoor sample must remain visually similar to the
original, we introduce a visual similarity loss as follows:

Lsim = 1 − SSIM(𝑥, 𝑥), (5)

where SSIM(·) function computes the structural similarity between
two given images [40]. Although the loss function Lsim can make
the backdoor sample as similar as possible to the original sample,
it does not ensure the imperceptibility of the backdoor trigger.
Therefore, we introduce the trigger sparsity loss to further constrain
the trigger as follows:

Lmask = ∥𝑚∥1 . (6)

To obtain the trigger pattern and mask, we optimize the four loss
functions concurrently. Therefore, the total loss can be written as
the weighted combination of these objectives:

Linver = 𝜆1Lalign + 𝜆2Lemb + 𝜆3Lsim + 𝜆4Lmask, (7)

where 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are weighting coefficients for each term.

3.3 Activation Tuning
Building upon the inverted trigger obtained in Section 3.2, we
propose an activation-based fine-tuning strategy specifically tai-
lored for multimodal contrastive learning models like CLIP. This
approach leverages the unique activation patterns induced by back-
door triggers in the shared embedding space of multimodal models.
Key Insight. Backdoor triggers in the MCL model exploit the cross-
modal alignment mechanism, creating distinct activation signatures
in specific layers. By identifying and selectively fine-tuning these
critical neurons, we can effectively neutralize the backdoor while
preserving the model’s multimodal capabilities.
Layer Selection.

Inspired by prior findings [14, 23] in CNN architectures where
backdoor patterns predominantly affect deeper network layers, we
first identify the most responsive layers to backdoor activation
in MCL models. For each layer, we quantify backdoor sensitivity
through normalized activation divergence:

diff =
∥𝜇clean − 𝜇triggered∥2

∥𝜇clean∥2
, (8)

where 𝜇clean and 𝜇triggered represent the average activations of clean
and triggered inputs, respectively. Then, we compute the mean and
standard deviation of activation differences across all layers. The
layers with activation differences exceeding the mean by more
than one standard deviation will be treated as backdoor-related.
Within these critical layers, we further analyze individual neuron
activation variances. Note that identifying only the neurons in



the backdoor-related layer greatly reduces the time and resource
overhead compared to identifying all neurons once.
Critical Neuron Identification.We identify critical neurons by
first measuring the impact of the trigger on layer activations. For
each selected layer, we calculate the mean activation difference
between the clean and trigger-affected inputs. Then, we apply K-
means clustering [24] on the activation differences to group neurons
with similar response patterns. Clustering helps address the poten-
tial variability in neuron responses. Instead of simply selecting the
neurons with the largest activation difference, K-means clustering
groups neurons with similar response patterns, ensuring that the
neurons we capture share a common sensitivity to the backdoor.
Fine-Tuning Process. Following neuron identification, we im-
plement targeted fine-tuning to eliminate backdoor functionality
while preserving clean-task performance. Specifically, we introduce
an activation alignment loss to force backdoor-sensitive neurons to
exhibit similar activation patterns for clean and triggered samples:

Lactivation =
∑︁

𝑖∈critical
∥a𝑖clean − a

𝑖
triggered∥

2
2 . (9)

This suppresses backdoor-triggered activation spikes. Moreover, to
maintain original vision-language alignment capability, we intro-
duce a cross-modal consistency loss.

Lpreserve = ∥sim(𝐸𝐼 (𝑥), 𝐸𝑇 (𝑦)) − sim(𝐸
orig
𝐼
(𝑥), 𝐸𝑇 (𝑦))∥22, (10)

where 𝐸orig
𝐼

represents the original backdoored encoders prior to
fine-tuning. This function forces the fine-tuned model to have simi-
lar normal functions to the original model. In order to achieve both
purposes, the composite optimization objective becomes:

Ltune = Lactivation + 𝛽Lpreserve, (11)

where 𝛽 is to balance the two objectives. Note that, we apply neuron
masks during gradient updates to restrict fine-tuning to critical neu-
rons. This targeted fine-tuning minimizes disruption to the model’s
overall performance while effectively mitigating the backdoor.

4 EXPERIMENT
4.1 Experiment Setup
Models.We adopt OpenAI’s open-source CLIP model [32] as our
pretrained base, using RN50 as the default backbone architecture.
For a comprehensive evaluation, we extend our analysis to RN101,
ViT-B/16, and ViT-B/32 architectures in Section 4.5.
Datasets. Following [21], we use a 500K subset of CC3M [34] for
poisoning the clean CLIP model. The evaluation framework covers
two key tasks: zero-shot classification on ImageNet-1K validation
set [33] and image-to-text retrieval on Microsoft COCO 2017 [22].
Backdoor Attacks. We evaluate our defense method against four
representative single-modal backdoor attack methods: BadNet [15],
Blended [8], SIG [4], and WaNet [28]. Additionally, we include one
self-supervised learning backdoor attack on a pretrained encoder,
BadEncoder [18], and the SOTA CLIP-specific backdoor attack,
BadCLIP [21]. We randomly select “mushroom” as the target label.
Experiments with other target labels are presented in Section 4.5.
Following the settings of [21], we set the poisoning rate to 0.3%.
Implementation Details. For the InverTune, we set 𝜆1 = 5.0,
𝜆2 = 0.5, 𝜆3 = 1.0, and 𝜆4 = 0.01 for the trigger inversion loss

in Equation (7). The optimization is performed using the Adam
optimizer with a learning rate of 1 × 10−2. For activation tuning,
we set 𝛽 = 0.5 for the fine-tuning loss in Equation (11), use a
learning rate of 8 × 10−6, and train for 200 epochs. In terms of
data usage, InverTune employs a 50K subset of the ImageNet-1K
training set [33], which is only 1/10 the size of the data used by other
baselines. In the activation tuning step, we require only a single
batch (predefined as 64) of arbitrary clean data. All experiments are
conducted on an NVIDIA A100 GPU. More details are provided in
our Supplementary Materials.
Baselines. We compare our method against several advanced
backdoor defense techniques, including CleanCLIP [3], Cleaner-
CLIP [42], PAR [35], as well as Fine-Tuning (FT) [3] as the baselines.
Evaluation Metrics. We evaluate the effectiveness of our method
using the following metrics. Clean Accuracy (CA): For zero-shot
classification tasks, CA quantifies the model’s Top-1 prediction ac-
curacy on unperturbed inputs. For image-to-text retrieval scenarios,
it measures the proportion of clean queries successfully matching
ground-truth captions within the Top-10 retrieved results. Higher
CA values indicate better preservation of the model’s normal capa-
bilities. Attack Success Rate (ASR): For classification, ASR represents
the percentage of triggered samples misclassified to target labels.
For image-to-text retrieval tasks, ASR is the percentage of triggered
inputs that retrieve target-related text in the Top-10 results. Lower
ASR scores demonstrate superior backdoor mitigation.

4.2 InverTune Performance
Defensive Performance. The experimental results in Table 1 show
InverTune’s superior defensive capabilities across multiple attack
scenarios. Our method achieves state-of-the-art performance by
reducing the ASR to below 0.5% on both ImageNet and MSCOCO
datasets in the vastmajority of attack scenarios, significantly outper-
forming most existing defense baselines. Notably, when defending
against the sophisticated BadCLIP attack, existing baseline methods
exhibit limited efficacy: only PAR demonstrates partial mitigation
capabilities yet still retains unacceptably high residual ASR e.g.,
>15%. In contrast, InverTune achieves comprehensive defense by
suppressing ASR to 0.68% without compromising model utility.
Specifically, (1) For image classification, InverTune reduces ASR
from 98.36% to 0.49%, representing a 17.29 percentage-point im-
provement over PAR’s 17.78% residual ASR; (2) For cross-modal
retrieval tasks, it decreases ASR from 99.28% to 0.68%, outperform-
ing PAR by 15.79 percentage points (16.47% vs 0.68%).
Model Performance. We notice that InverTune maintains excep-
tional preservation of model utility across diverse scenarios com-
pared to baselines. Empirical evaluations across 12 experimental
configurations with 2 tasks × 6 attack methods reveal that our
method achieves either the highest (6 cases) or second-highest (5
cases) CA. Though trailing PAR by 0.68% in ImageNet’s Blended sce-
nario (53.50% vs 54.18%), this minor gap is statistically insignificant
compared to its 17.29% ASR advantage (BadCLIP). Beside, when
defending against the BadEncoder attack on ImageNet, Cleaner-
CLIP achieves 55.98% CA slightly higher than InverTune’s 55.84%.
However, the high ASR of CleanerCLIP with 19.71% demonstrates
the weak defense capability. Moreover, we highlight that InverTune



Table 1: The defensive performance of InverTune across various tasks and adversarial attacks. The optimal ASR and CA values
are highlighted in bold, while the second-best results are indicated with underlining.

Methods BadNet Blended SIG WaNet BadEncoder BadCLIP

CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓

Im
ag

eN
et

No Defense 58.21 87.73 58.74 96.35 58.30 82.57 58.64 96.18 53.10 80.13 58.32 98.36
FT 54.13 33.67 54.64 64.10 54.36 55.59 54.59 58.38 55.98 19.71 54.16 86.03

CleanCLIP 51.92 4.62 51.38 52.36 51.42 36.72 51.45 24.98 55.29 5.21 54.18 75.17
CleanerCLIP 51.91 3.87 52.36 11.38 52.56 9.89 51.57 10.94 52.11 0.19 51.74 21.16

PAR 53.57 6.03 54.18 0.16 51.96 22.94 53.89 4.51 54.25 2.27 50.95 17.78
InverTune (Ours) 56.12 0.02 53.50 0.14 54.27 0.28 54.76 0.09 55.84 1.02 55.25 0.49

M
SC

O
C
O

No Defense 69.94 95.88 71.20 99.76 70.28 97.42 71.16 99.60 72.07 98.13 71.32 99.28
FT 68.83 39.09 69.53 67.51 68.92 63.67 69.70 70.41 68.77 25.47 68.25 88.54

CleanCLIP 65.03 14.17 63.70 55.47 64.09 38.71 67.61 64.83 67.56 13.42 66.53 84.55
CleanerCLIP 65.73 7.94 68.82 14.93 65.98 14.31 64.67 15.01 66.39 3.41 65.21 30.41

PAR 68.42 15.43 68.11 0.37 66.64 31.09 68.28 7.83 67.42 4.30 65.73 16.47
InverTune (Ours) 71.12 0.04 69.16 0.52 69.94 1.12 68.98 0.48 68.02 1.73 69.58 0.68
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Figure 5: Results of backdoor target identification and trigger
inversion.

achieves a superior security-performance trade-off which is raised
by the correct backdoor information identification.
Backdoor label Identification and Inversion. InverTune con-
sists of two important steps: target identification and trigger inver-
sion. To demonstrate this effectiveness, we exhibit the correspond-
ing results. For step 1, we apply universal adversarial perturbations
to clean examples and feed them the compromised model with
“mushroom” as the designated target class. As demonstrated in
Figure 5a, we observe dramatic distribution shifts in prediction fre-
quencies. Specifically, only two categories exhibit notable increases:
“mushroom” shows a 97.23% surge in classification frequency com-
pared to clean samples, while “agaric”, (a mushroom subspecies
sharing similar visual characteristics), experiences a marginal 2.13%
rise. This divergence distribution reveals that adversarial pertur-
bations are effectively utilized to identify the target label. For the
second step, we reconstruct trigger patterns. Here, we argue that
the trigger we construct is to activate backdoor pathways for de-
fense without requiring physical trigger replication. As shown in
Figure 5b, inverted triggers achieve similar attack behavior align-
ment with original patterns, meaning the inverted trigger largely
mimics the attack behavior of the real trigger.
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Figure 6: Influence of 𝛽 on InverTune’s Defense Effectiveness
under BadClip Attack Scenario.

4.3 Influence of hyperparameters
In this section, we study the influence of different hyperparame-
ters. As formulated in Equation (7), the coefficients 𝜆1-𝜆4 control
the relative importance of four loss components during backdoor
inversion, while 𝛽 in Equation (11) governs the trade-off between
model cleanliness and usability during the elimination phase.

Our experiments show several important patterns in hyperpa-
rameter sensitivity. For the inversion-related hyperparameters (see
in Table 2), we observe that 𝜆1, which weights the contrastive
learning loss, produces significantly improved ASR when increased,
though with diminishing returns beyond 𝜆1 > 5.0 due to deteri-
orating visual quality of the inverted triggers. The visual feature
consistency term controlled by 𝜆2 demonstrates a clear sweet spot,
where insufficient weighting (𝜆2 = 0.1) fails to achieve effective
attacks, particularly on SIG, WaNet, and BadCLIP, while excessive
emphasis (𝜆2 > 1.0) degrades ASR by over-constraining the feature
space. Optimal visual quality and attack effectiveness are achieved
with 𝜆3 = 1.0 and 𝜆4 = 0.01, which properly balance trigger stealth-
iness and functionality. Excessive values of 𝜆3 and 𝜆4 shift the focus
of the inversion process towards trigger size optimization, thereby
compromising the adversarial effectiveness of the inverted triggers.



Table 2: Influence of 𝜆 Parameters on Reverse-Engineered Trigger ASR.

Attacks 𝜆1 𝜆2 𝜆3 𝜆4

1.0 5.0 10.0 20.0 0.1 0.5 1.0 5.0 0.5 1.0 5.0 10.0 0.005 0.01 0.05 0.1

BadNet 51.97 83.73 84.84 87.67 87.11 83.73 83.86 60.86 90.52 83.73 84.53 65.42 81.70 83.73 48.75 43.32
Blended 37.09 90.21 92.09 92.62 86.72 90.21 89.57 62.33 91.83 90.21 53.17 33.38 93.97 90.21 20.02 10.02
SIG 39.84 76.38 78.84 79.29 73.62 76.38 71.18 71.74 80.02 76.38 41.74 20.08 80.10 76.38 12.44 0.05

WaNet 60.81 90.81 93.96 89.83 71.53 90.81 87.15 81.04 92.16 90.81 78.37 37.02 92.38 90.81 30.06 20.03
BadEncoder 68.72 75.58 77.43 78.59 75.13 75.58 70.76 70.23 75.04 75.58 66.64 65.38 77.13 75.58 65.23 62.52
BadCLIP 73.38 89.72 87.38 89.48 79.89 89.72 65.08 57.17 69.10 89.72 73.54 69.74 91.13 89.72 59.86 20.83

Table 3: Comparison of universal adversarial perturbation (UAP) and inverted trigger (InvT) for the Activation Tuning.

Methods BadNet Blended SIG WaNet BadEncoder BadCLIP

CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓

Top-1 UAP 55.55 23.24 53.46 89.92 54.27 58.91 52.25 25.74 52.81 67.13 52.02 54.33
InvT 56.12 0.02 53.50 0.14 54.27 0.03 54.76 0.09 55.84 0.02 55.25 0.49

Top-3 UAP 76.76 47.39 74.99 95.49 75.71 76.91 73.64 50.86 74.67 69.76 73.42 71.15
InvT 77.24 0.20 75.35 0.74 75.92 0.10 75.92 0.40 77.05 0.20 76.45 1.17

Top-5 UAP 83.63 58.98 82.02 96.75 82.84 82.16 81.05 60.76 81.73 71.04 80.80 76.18
InvT 84.10 0.46 82.54 1.47 83.04 0.20 83.04 0.77 83.87 0.44 83.35 1.67

Top-10 UAP 90.11 72.94 89.01 98.01 89.53 87.85 88.33 72.45 88.76 72.85 88.13 81.88
InvT 90.56 0.95 89.52 3.42 89.80 0.41 89.80 1.71 90.37 0.91 90.00 2.60

The elimination phase analysis (see in Figure 6) shows the critical
role of 𝛽 in balancing security and utility. The extreme case of
𝛽 = 0, which completely prioritizes backdoor removal, reduces
both CA (0.12%) and ASR (0.004%) to near-zero levels, validating
the necessity of the usability term in Equation 10. As 𝛽 increases,
we observe distinct patterns: CA shows stable improvement that
plateaus when 𝛽 > 0.50, while ASR exhibits more dramatic growth,
particularly in the range 𝛽 ∈ [0.75, 1.0] where it increases from
1.560% to 5.860%. Our selected value 𝛽 = 0.5 achieves an effective
balance, maintaining ASR at 0.49% while preserving 55.25% CA,
demonstrating both the stability of InverTune and the effectiveness
of our loss formulation.

4.4 Ablation Study
Our analysis in Section 3.1 reveals behavioral distinctions and con-
nections between adversarial and backdoor-triggered samples in
compromised models. While both input types induce target-class
misclassification, they exploit fundamentally differentmodel vulner-
abilities. This mechanistic necessitates our novel trigger inversion
approach to specifically isolate and neutralize backdoor artifacts
rather than relying solely on adversarial patterns.

To empirically validate this requirement, we conduct an ablation
study comparing the complete InverTune framework (InvT) against
a variant (UAP) that directly fine-tunes using first-stage adversarial
perturbations while omitting trigger inversion. As shown in Table
3, InvT demonstrates overwhelming superiority across all metrics.
When k=1, 3, 5, and 10, the average ASR of InvT is 0.13%, 0.46%,
0.84%, and 1.67% respectively, significantly outperforming UAP
with 53.21%, 68.59%, 74.31%, 81.00%. The performance gap stems

from UAP’s fundamental limitation: while adversarial fine-tuning
enhances noise robustness and marginally reduces surface-level
ASR, it fails to address deeper backdoor information. Moreover,
InvT simultaneously preserves superior CA through targeted back-
door pathway disruption compared to indiscriminate adversarial
examples. These experiments demonstrate the effectiveness and
necessity of the inversion step in InverTune, as it not only enhances
backdoor removal but also better preserves the model’s usability.

4.5 Backdoor Configuration
Section 4.2 presents a comprehensive evaluation of InverTune’s
effectiveness. In this sections, we conduct in-depth analyses of the
defense mechanism across different dimensions, including target
labels and model architectures. To save resources, we mainly focus
on BadCLIP, which represents the most advanced attack and poses
the most significant challenge to defenses.
The impact of target label. To assess the generalizability of Inver-
Tune across diverse attack targets, we further set “banana”, “lemon”,
and “ski” as the target label and train BadCLIP attack models with
distinct trigger patterns. As illustrated in Table 4, baseline like
FT and CleanCLIP remain vulnerable to BadCLIP attacks regard-
less of target label variations. More advanced defenses such as
CleanerCLIP and PAR exhibit notable performance fluctuations:
CleanerCLIP’s effectiveness decreases from 16.16% to 25.36% and
PAR’s from 11.72% to 36.07% when switching from “ski” to “lemon”.
In contrast, InverTune maintains consistent defensive capabilities,
achieving superior performance in both ASR (≈ 1%) and CA met-
rics across all target labels. These results demonstrate InverTune’s



Table 4: Performance comparison of InverTune and baseline
defenses against BadCLIP under different target labels.

Target Label Banana Lemon Ski

CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓
No Defense 58.20 98.16 58.11 97.16 58.31 98.46

FT 54.77 83.14 54.93 89.65 54.34 79.70
CleanCLIP 53.48 74.85 54.50 72.82 53.94 77.75
CleanerCLIP 52.09 20.41 51.69 25.36 51.67 16.16

PAR 53.64 17.65 53.91 36.07 53.62 11.72
InverTune (Ours) 57.01 1.14 55.81 1.01 56.93 1.51

Table 5: Performance comparison of defense methods across
different model architectures.

Backbone RN101 ViT-B/16 ViT-B/32

CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓
No Defense 59.17 83.17 66.78 99.90 60.97 99.23

FT 56.85 58.29 63.01 83.75 54.72 91.61
CleanCLIP 56.14 42.53 61.91 80.33 53.16 79.36
CleanerCLIP 52.76 3.25 58.81 31.17 53.64 64.60

PAR 55.60 1.17 57.98 18.14 50.82 76.37
InverTune (Ours) 55.76 1.00 59.80 0.09 54.83 0.17

robust ability to identify and neutralize backdoor threats regardless
of the target label selection.
The impact of model structure. To assess the generalizability of
InverTune on architectures, we evaluate its performance across di-
verse model architectures including RN101, ViT-B/16, and ViT-B/32.
As shown in Table 5, architectural transitions significantly impact
defense performance. Notably, baselines exhibit substantial per-
formance fluctuations across different architectures. For instance,
PAR shows severe performance degradation when transitioning
from RN101 to ViT-B/32, with ASR increasing dramatically from
1.17% to 76.37% and CA declining from 55.60% to 50.82%. Similarly,
CleanerCLIP’s effectiveness varies considerably, with ASR rang-
ing from 3.25% to 64.60% across different architectures. In contrast,
InverTune exhibits remarkable stability and superior defensive ca-
pability across all evaluated architectures, maintaining an average
ASR of merely 1.22% under BadCLIP attacks while preserving com-
petitive CA. This consistent performance across both CNN-based
(RN50, RN101) and Transformer-based (ViT-B/32, ViT-B/16) archi-
tectures validates its architectural robustness and generalizability.
This architecture-agnostic effectiveness originates from InverTune’s
backdoor inversion paradigm, which directly targets fundamental
cross-modal activation patterns rather than architecture-specific
features.

5 RELATEDWORK
5.1 Backdoor Attacks in MCL
Traditional backdoor attacks, such as BadNet [15], Blended [8],
SIG [4] and TrojanNet [36], originally target unimodal neural net-
works but can be adapted to compromise Multimodal Contrastive

Learning models through data poisoning. However, recent MCL-
specific attacks exploit cross-modal interactions more effectively.
Carlini et al. [6] show that minimal data poisoning can introduce se-
vere vulnerabilities. BadEncoder [18] targets self-supervised learn-
ing by poisoning pre-trained image encoders, causing downstream
classifiers to inherit backdoor behaviors while maintaining model
accuracy. GhostEncoder [39] introduces a dynamic invisible back-
door using image steganography to embed hidden triggers into
benign images. Notably, BadCLIP [21] introduces a dual-embedding
framework that aligns poisoned samples with target features, creat-
ing natural-looking triggers resistant to standard defenses. Adding
to this threat landscape, Bai et al. [2] propose a prompt-based back-
door attack that manipulates both image and text encoders using
learnable triggers and trigger-aware prompts. These approaches
highlight the diverse strategies employed in backdoor attacks and
the urgent need for effective defenses.

5.2 Backdoor Defenses in MCL
Backdoor defenses in MCL involve both detection and mitigation
strategies. DECREE [13] focuses on identifying backdoors but lacks
effective mechanisms for removal. While SSL-Cleanse [47] is de-
signed for self-supervised learning, it not only detects backdoors
but also incorporates a purification process to mitigate them. Fine-
tuning-based approaches, such as CleanCLIP [3], PAR [35], and
CleanerCLIP [42], attempt to remove backdoors by re-learning
representations or leveraging counterfactual augmentations. How-
ever, these methods may require large clean datasets or introduce
performance trade-offs. ABD [19] creatively leverages adversarial
examples to approximate backdoor samples but faces challenges
in maintaining clean accuracy. Pre-training defenses, such as Ro-
CLIP [44] and SafeCLIP [43], mitigate backdoors by filtering poi-
soned data during pre-training. However, their effectiveness relies
on access to the pre-training process, making them unsuitable for
scenarios where only a trained model is available. Our method aims
to effectively eliminate backdoor threats in multimodal contrastive
learning models while preserving their original performance and
generalization capabilities.

6 CONCLUSION
In this paper, we present InverTune, a novel backdoor defense
framework for large-scale multimodal contrastive learning models.
Our approach integrates three key components: adversarial-based
target label identification, gradient-guided trigger inversion, and
activation-aware fine-tuning. Extensive evaluations on multiple
datasets demonstrate that InverTune achieves state-of-the-art de-
fensive performance across diverse attack scenarios, consistently
reducing attack success rates while maintaining model utility. Our
framework significantly enhances the robustness of multimodal
models against backdoor threats, providing a practical solution for
real-world applications.
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A INTRODUCTION AND CONFIGURATIONS
OF DIFFERENT BACKDOOR ATTACKS

A.1 Backdoor Attacks Settings
For all six types of attacks, we adopt a 500K subset of the CC3M
dataset [34] as the fine-tuning dataset. All attacks target the class
“mushroom.” For attacks that require textual descriptions, we con-
struct them by collecting 131 mushroom-related captions from the
CC3M dataset and randomly assigning them to the poisoned image
samples as their corresponding text descriptions.
• In the BadNet [15] attack, we adopt a 16 × 16 patch filled with
Gaussian noise sampled from a standard normal distribution as
the trigger, which is fixed to the bottom-right corner of the clean
images.
• In the Blended [8] attack, we generate a trigger image of the
same size as the input image using a uniform distribution. We
set the transparency of the trigger image to 0.2 and blend it with
the clean image, whose transparency is set to 0.8.
• In the SIG [4] attack, sinusoidal noise is generated along the hor-
izontal axis of the image, creating vertical stripes. For each pixel
along the width, noise is injected using a sinusoidal function with
a frequency of 6 cycles per image width. The noise amplitude is
scaled to 60/255 to stay within a suitable range. This perturbation
is applied uniformly to all RGB channels. After adding the noise,
pixel values are clipped to [0, 1] to ensure validity.
• In the WaNet [28] attack, we apply a warping transformation to
the image using a distortion grid. Following the original imple-
mentation, we generate the grid by interpolating a noise tensor
to match the image resolution. The grid is then scaled and clipped
to [−1, 1] for compatibility with grid sampling. The warping is
performed using bilinear interpolation, introducing subtle but
adversarial distortions.
• For the BadEncoder [18] attack, we follow the original method-
ology, where the visual encoder is fine-tuned to embed backdoor
triggers while preserving its functionality on clean samples. Un-
like the original implementation, we replace the trigger from the
official repository with a 16 × 16 pure white image to ensure a
fair comparison with other attacks. This attack is distinct in that
it does not require constructing textual descriptions or setting a
poisoning rate. Instead, it directly fine-tunes the visual encoder
using a reference dataset and a shadow dataset.
• For the BadCLIP [21] attack, following their provided code, we
first optimize the patch based on the “mushroom” label. After
obtaining the patch, we performDual-Embedding injection attack
on the clean CLIP model.

For all the attacks described above, we start from the CLIP model
pretrained by OpenAI [32], and fine-tune it to obtain a poisoned
CLIP model with learning rate 1e-6, batch size 128, and 10 training
epochs.

A.2 Visualization of Trigger Patterns
Regarding the attacks mentioned in this paper, in addition to the
introduction above, we also present them in the first row of Figure 7.

B BASELINE DEFENSE SETTINGS
In this section, we provide a detailed description of the experimental
settings for the four baseline methods discussed in the Main Text.

All the defense methods use subsets of the CC3M dataset [34] in
their original setups, though the exact number of samples varies
slightly. For fair comparison, we standardize the training data by
using a fixed subset of 500K samples across all methods.

• The fine-tuning method (FT), first introduced by CleanCLIP [3],
involves fine-tuning the model with a multimodal contrastive
loss on a clean dataset. In our experiments, we use the official
implementation provided by CleanCLIP, with a learning rate
of 4.5e-6, warmup steps of 50, batch size of 64, and 10 training
epochs.
• CleanCLIP [3] extends FT by adding a self-supervised loss term.
Following its original setup, we set theweights of the self-supervised
loss term and the contrastive loss term to 1, with other hyperpa-
rameters remaining the same as those in FT.
• PAR [35] adopts a custom learning rate schedule. However, due to
the increased size of the fine-tuning dataset, the original setting
does not reproduce the reported performance. Therefore, in our
experiments, we modify the start learning rate to 3e-6 and the
peak learning rate to 5e-6, while keeping all other parameters
consistent with the original setup.
• CleanerCLIP [42] is implemented based on CleanCLIP [3]. We
follow its original setup, using a batch size of 64 and training
for 10 epochs with the AdamW optimizer. The learning rate is
linearly warmed up over 10,000 steps, and a weight decay of 0.1
is applied. The Adam momentum factor and RMSProp factor are
set to 0.9 and 0.999, respectively, with an epsilon of 1e-8. The
base learning rate is set to 4.5e-6.

C IMPLEMENTATION DETAILS OF
INVERTUNE

C.1 Backdoor Label Identification
The first step of InverTune is to identify the target category for the
backdoor attack. To achieve this, we leverage the 1,000 classes from
ImageNet-1K [33] and combine them with predefined templates to
construct text prompts.

These categories are derived from WordNet [25], a lexical data-
base that structures words into a hierarchical network based on
their semantic relationships. The ImageNet-1K classes encompass
a remarkably diverse array of objects, spanning nearly all aspects
of the physical world. These include animals (e.g., tiger, goldfish,
hummingbird), everyday objects (e.g., laptop, toaster, umbrella), ve-
hicles (e.g., fire truck, sports car, airplane), architectural structures
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Figure 7: Backdoor sample examples and visualization of trigger inversion effects.

(e.g., lighthouse, suspension bridge, pagoda), and various tools and
instruments (e.g., screwdriver, stethoscope, cello).

Given their extensive coverage, these 1,000 categories serve as
well-suited candidates for identifying the target labels in back-
door attacks. Their diversity ensures a broad spectrum of potential
backdoor targets, making them highly relevant for identifying and
mitigating threats in multimodal contrastive learning models. Ad-
ditionally, the hierarchical nature of WordNet provides a strong
semantic foundation, facilitating precise and meaningful target
label selection.

Furthermore, Even if the attacker chooses a target category out-
side ImageNet-1K, a semantically similar class likely exists within
it due to WordNet’s hierarchy. This ensures our defense remains
effective, as the attacker’s target can still be meaningfully mapped
to an existing label, maintaining robustness against unexpected
attacks.

C.2 Trigger Inversion
Algorithm 1 generates high-fidelity backdoor trigger reconstruc-
tions while maintaining visual subtlety. The four loss components
work together to achieve this, as detailed in Section 3.2 of the Main
Text.

The trigger reconstruction process typically converges within
a few hundred iterations, significantly faster than training a back-
door from scratch. This efficiency stems from directly optimizing
in CLIP’s embedding space rather than attempting to model the
backdoor through proxy tasks or surrogate networks.

Importantly, our approach supports a wide range of backdoor im-
plementations beyond the standard patch-based triggers. The mask-
pattern formulation can reconstruct complex, spatially distributed
triggers and even global transformations. The clamp operation on
the trigger pattern (line 26, 27) ensures the reconstructed values
remain within CLIP’s preprocessing bounds, producing realistic
images that can be directly used in subsequent defense strategies.

The reconstructed trigger serves as a critical component for
our overall defense framework, enabling us to analyze backdoor
behavior and develop targeted mitigation strategies in the activa-
tion tuning stage. By reproducing the backdoor’s trigger, we can
effectively probe the model’s internal representations to identify
compromised components.

C.3 Activation Tuning
After trigger inversion, we focus on mitigating its impact on the
model without compromising normal functionality. Traditional
fine-tuning methods applied to the entire network risk degrading
the model’s critical cross-modal performance, which is essential for
multimodal models like CLIP. In contrast, Algorithm 2 introduces a
novel activation tuning approach that specifically targets neurons
involved in backdoor behavior.

The algorithm operates in three phases: (1) identifying network
layers most affected by the backdoor trigger, (2) pinpointing the
specific neurons within these layers responsible for the backdoor
behavior, and (3) selectively fine-tuning only the identified neurons
using a custom loss function. This targeted approach minimizes
disruption to the model’s cross-modal alignment, which is central
to CLIP’s zero-shot prediction capabilities.

By focusing on critical neurons identified through activation
analysis, Algorithm 2 offers significant advantages over traditional
backdoor mitigation techniques. This selective intervention is more
efficient than whole-network fine-tuning, preserving CLIP’s core
functionality while effectively addressing backdoor pathways.

D DETAILED RESULTS OF INTERMEDIATE
STEPS IN INVERTUNE

D.1 Target Category Identification Results for
Six Attacks

We present the target class identification results across six distinct
attack scenarios, where “mushroom” serves as the ground truth
target label in all cases. Our analysis reveals systematic and statisti-
cally significant increases in the prediction frequency of the target
class after adversarial perturbation, with attack-specific variations
in magnitude.

Based on the experimental results presented in Tables 6, 7, 8 and
11, we observe particularly pronounced adversarial effects in four
attack scenarios. These effects, induced by adversarial perturbations,
manifest as substantial shifts in the prediction frequency toward
the target class. The BadCLIP attack induces the most significant
shift, with a 97.23% increase in mushroom prediction frequency,
followed by Blended (61.06%), BadNet (39.33%), and SIG (37.40%). As
shown in Table 10, even the relatively moderate BadEncoder attack



Algorithm 1 Dual-Space Trigger Inversion for Multimodal CLIP Backdoors
1: Input: Suspected backdoored CLIP model 𝐹 with image encoder 𝐸𝐼 and text encoder 𝐸𝑇 ; Clean images X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}; Target text

label 𝑦𝑡 identified from Step 1; Number of steps 𝑇 ; Loss weights 𝜆1, 𝜆2, 𝜆3, 𝜆4
2: Output: Inverted trigger mask𝑚 and pattern 𝑡img
3: Initialize mask𝑚 ← random tensor in range [0, 1] of shape 3 × 224 × 224
4: Initialize trigger pattern 𝑡img ← random tensor of shape 3 × 224 × 224
5: 𝜃 ← {𝑚, 𝑡img} ⊲ Parameters to optimize
6: Initialize optimizer with learning rate 𝛼
7: Precompute all text embeddings for available classes {𝑦1, 𝑦2, . . . , 𝑦𝑁 }:
8: 𝐸𝑇 (𝑦 𝑗 ) ← normalized text embeddings for each class 𝑗 ∈ {1, . . . , 𝑁 }
9: for step = 1 to 𝑇 do
10: Sample a batch of clean images {𝑥1, 𝑥2, . . . , 𝑥𝑏 } ⊆ X
11: Generate poisoned samples: 𝑥𝑖 =𝑚 ⊙ 𝑡img + (1 −𝑚) ⊙ 𝑥𝑖 for 𝑖 ∈ {1, . . . , 𝑏}
12: Compute image embeddings: 𝐸𝐼 (𝑥𝑖 ) ← 𝐹𝐼 (𝑥𝑖 )
13: Normalize embeddings: 𝐸𝐼 (𝑥𝑖 ) ← 𝐸𝐼 (�̃�𝑖 )

∥𝐸𝐼 (�̃�𝑖 ) ∥2
14: ⊲ Calculate the four loss components
15: ⊲ 1. Cross-Modal Alignment Loss via InfoNCE
16: Lalign ← − 1

𝑏

∑𝑏
𝑖=1 log

exp(sim(𝐸𝐼 (�̃�𝑖 ),𝐸𝑇 (𝑦𝑡 ) )/𝜏 )∑𝑁
𝑗=1 exp(sim(𝐸𝐼 (�̃�𝑖 ),𝐸𝑇 (𝑦 𝑗 ) )/𝜏 )

17: ⊲ 2. Embedding Space Preservation Loss
18: Lemb ← 1

𝑏

∑𝑏
𝑖=1 ∥𝐸𝐼 (𝑥𝑖 ) − 𝐸𝐼 (𝑥𝑖 )∥2

19: ⊲ 3. Visual Similarity Loss
20: Lsim ← 1

𝑏

∑𝑏
𝑖=1 (1 − SSIM(𝑥𝑖 , 𝑥𝑖 ))

21: ⊲ 4. Trigger Sparsity Loss
22: Lmask ← ∥𝑚∥1
23: ⊲ Combined Loss
24: Linver ← 𝜆1Lalign + 𝜆2Lemb + 𝜆3Lsim + 𝜆4Lmask
25: Update parameters: 𝜃 ← 𝜃 − 𝛼∇𝜃Linver
26: Clamp mask:𝑚 ← clamp(𝑚, 0, 1)
27: Clamp trigger: 𝑡img ← clamp(𝑡img,−1.7922, 2.1461) ⊲ CLIP normalization bounds
28: end for
29: return𝑚, 𝑡img

(4.20% increase) leads to a statistically significant bias, maintaining
a 3.62 percentage point advantage over the second-most predicted
class (“pillow” at 0.58%).

Table 9 reveals an intriguing pattern of taxonomic-specific vul-
nerability in the WaNet attack. The method produces nearly identi-
cal prediction increases for both the target “mushroom” category
(26.38%) and its taxonomically related counterpart “agaric” (25.99%),
with merely a 0.39 percentage point differential. This remarkable
similarity validates the relationship between the adversarial per-
turbations and the target class of the backdoor attack, as stated in
the Main Text. From another perspective, the CLIP model’s inher-
ent semantic clustering enables the identification of a semantically
similar class within the ImageNet-1K label space, even when the
attacker’s intended target does not fall within the 1,000 predefined
categories, as discussed in Section C.1. This property facilitates the
subsequent steps of trigger inversion and activation tuning.

D.2 Inverted Trigger Visualization Results for
Six Attacks

Our inversion results, shown in the bottom row of Figure 7, demon-
strate two distinct spatial distribution patterns corresponding to

different attack types. For localized trigger attacks (BadNet, Bad-
CLIP, and BadEncoder), the inverted triggers maintain the charac-
teristic bottom-right corner positioning observed in the original
attacks. Conversely, for globally distributed attacks (Blended, SIG,
and WaNet), the inverted triggers successfully reproduce the ex-
pected multi-region distribution patterns.

The spatial consistency between original and inverted triggers
is evident in both cases, with the inverted versions achieving com-
parable attack success rates to their original counterparts. These
results confirm that our inversion method preserves the essential
spatial characteristics of different trigger types while maintaining
their functional effectiveness.

D.3 Key Layers Selected in Activation Tuning
In this section, we present the layer selection results during the
Activation Tuning process. Since different attacks show minimal
variation in layer activation outcomes, we demonstrate the anoma-
lous response layers for four distinct CLIP architectures (RN50,
RN101, ViT-B/16, ViT-B/32) when confronted with inversion trig-
gers, using the BadCLIP attack as the representative case.



Algorithm 2 Activation Tuning for Backdoor Mitigation in MCL Models
1: Input: Backdoored CLIP model 𝐹 with encoders 𝐸𝐼 and 𝐸𝑇 ; Inverted trigger (𝑚, 𝑡img) from Algorithm 1; Clean inputs X; Set of candidate

layers L; Balance parameter 𝛽
2: Output: Fine-tuned CLIP model with neutralized backdoor
3: Phase 1: Identify Critical Layers
4: Compute clean activations {𝐴𝑙

clean} for each layer 𝑙 ∈ L using X
5: for each 𝑥 ∈ X do
6: Generate triggered image 𝑥 ←𝑚 ⊙ 𝑡img + (1 −𝑚) ⊙ 𝑥
7: end for
8: Compute triggered activations {𝐴𝑙

triggered} for each layer 𝑙 ∈ L
9: for each layer 𝑙 ∈ L do
10: Compute mean clean activation 𝜇𝑙clean ← mean(𝐴𝑙

clean)
11: Compute mean triggered activation 𝜇𝑙triggered ← mean(𝐴𝑙

triggered)
12: Calculate normalized activation difference:
13: diff𝑙 ←

∥𝜇𝑙clean−𝜇
𝑙
triggered ∥2

∥𝜇𝑙clean ∥2
14: end for
15: Calculate threshold 𝜏 ← mean({diff𝑙 }) + std({diff𝑙 })
16: Identify critical layers Lcritical ← {𝑙 ∈ L | diff𝑙 > 𝜏}
17: Phase 2: Identify Critical Neurons
18: for each layer 𝑙 ∈ Lcritical do
19: Compute activation difference Δ𝑙 ← |𝜇𝑙clean − 𝜇

𝑙
triggered |

20: Apply K-means clustering to Δ𝑙 with 𝑘 = 2 clusters
21: Identify critical cluster 𝐶𝑙

critical with largest centroid value
22: Create neuron mask𝑀𝑙 where neurons in 𝐶𝑙

critical are set to 1
23: end for
24: Phase 3: Selective Fine-tuning
25: Create parameter masks based on critical neuron masks {𝑀𝑙 }
26: Initialize fine-tuned model 𝐹 ′ ← 𝐹 ⊲ Copy of original model
27: Create optimizer for model parameters with neuron-masked gradients
28: for each training step do
29: Sample batch of clean images {𝑥1, 𝑥2, ..., 𝑥𝑏 } ⊆ X
30: Generate triggered images {𝑥𝑖 =𝑚 ⊙ 𝑡img + (1 −𝑚) ⊙ 𝑥𝑖 }
31: ⊲ Compute activation alignment loss
32: Lactivation ← 0
33: for each layer 𝑙 ∈ Lcritical do
34: Extract activations for clean and triggered inputs: 𝑎𝑙clean, 𝑎

𝑙
triggered

35: Apply neuron mask: 𝑎𝑙clean ← 𝑎𝑙clean ⊙ 𝑀
𝑙

36: Apply neuron mask: 𝑎𝑙triggered ← 𝑎𝑙triggered ⊙ 𝑀
𝑙

37: Lactivation ← Lactivation + ∥𝑎𝑙clean − 𝑎
𝑙
triggered∥

2
2

38: end for
39: ⊲ Compute preservation loss
40: With original model 𝐹 , compute 𝐸orig

𝐼
(𝑥𝑖 ) for each 𝑥𝑖

41: With fine-tuned model 𝐹 ′, compute 𝐸𝐼 (𝑥𝑖 ) for each 𝑥𝑖

42: Lpreserve ← ∥sim(𝐸𝐼 (𝑥𝑖 ), 𝐸𝑇 (𝑦𝑖 )) − sim(𝐸
orig
𝐼
(𝑥𝑖 ), 𝐸𝑇 (𝑦𝑖 ))∥22

43: ⊲ Combined loss
44: Ltune ← Lactivation + 𝛽 · Lpreserve
45: Compute gradients and apply masked updates to parameters
46: Update only parameters corresponding to critical neurons
47: end for
48: return Fine-tuned model 𝐹 ′



Table 6: Top 20 classes with the largest absolute increase
under adversarial attack on BadNet-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 18 19981 +39.93%
echidna 34 11675 +23.28%
ocarina 43 9361 +18.64%
switch 16 5232 +10.43%
agaric 68 952 +1.77%
eggnog 38 834 +1.59%
chain mail 43 456 +0.83%
doormat 51 330 +0.56%
plastic bag 32 207 +0.35%
ashcan 31 141 +0.22%
monitor 56 122 +0.13%
crossword puzzle 44 55 +0.02%
space bar 4 9 +0.01%
file 2 7 +0.01%
cardigan 0 0 +0.00%
crane 0 0 +0.00%
maillot 0 0 +0.00%
brabancon griffon 3 0 −0.01%
ear 3 0 −0.01%
drake 4 0 −0.01%

Table 7: Top 20 classes with the largest absolute increase
under adversarial attack on Blended-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 18 30547 +61.06%
doormat 64 2442 +4.76%
poncho 56 1740 +3.37%
switch 26 1564 +3.08%
eggnog 37 1432 +2.79%
echidna 39 570 +1.06%
ocarina 41 558 +1.03%
sock 78 494 +0.83%
pillow 60 305 +0.49%
web site 63 301 +0.48%
worm fence 33 259 +0.45%
slug 42 267 +0.45%
chain mail 48 240 +0.38%
plunger 37 190 +0.31%
mashed potato 79 215 +0.27%
miniskirt 74 180 +0.21%
hotdog 49 152 +0.21%
cassette 39 138 +0.20%
joystick 40 132 +0.18%
monitor 42 116 +0.15%

The visual encoder of ResNet architectures consists of four
residual layers. For these architectures, the analysis shows con-
centrated sensitivity in the final residual layers. As shown in Ta-
ble 12, RN50 exhibits extreme sensitivity in visual.layer4 with

Table 8: Top 20 classes with the largest absolute increase
under adversarial attack on SIG-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 76 18775 +37.40%
agaric 14 8808 +17.59%
monitor 54 5183 +10.26%
modem 65 1596 +3.06%
chain mail 48 1480 +2.86%
thimble 34 734 +1.40%
airship 40 653 +1.23%
admiral 18 551 +1.07%
ocarina 42 533 +0.98%
echidna 37 485 +0.90%
joystick 37 476 +0.88%
desktop computer 101 347 +0.49%
file 3 230 +0.45%
ashcan 37 242 +0.41%
microwave 59 249 +0.38%
crate 53 227 +0.35%
switch 16 171 +0.31%
television 71 220 +0.30%
centipede 27 155 +0.26%
sidewinder 25 141 +0.23%

Table 9: Top 20 classes with the largest absolute increase
under adversarial attack on WaNet-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 18 13206 +26.38%
agaric 60 13056 +25.99%
chain mail 48 5634 +11.17%
switch 26 2008 +3.96%
echidna 39 1578 +3.08%
admiral 14 1059 +2.09%
joystick 40 836 +1.59%
stinkhorn 45 671 +1.25%
poncho 56 568 +1.02%
file 0 422 +0.84%
ocarina 41 419 +0.76%
shovel 53 407 +0.71%
projectile 8 319 +0.62%
consomme 67 372 +0.61%
eggnog 37 317 +0.56%
carbonara 60 325 +0.53%
armadillo 46 256 +0.42%
Indian cobra 28 222 +0.39%
microwave 61 235 +0.35%
doormat 64 234 +0.34%

an impact value of 1.3802, which exceeds the significance threshold
(𝜇 + 𝜎 = 0.9914) by 39.2%. Similarly, Table 13 reveals that RN101’s
visual.layer4 shows comparable vulnerability with an impact of



Table 10: Top 20 classes with the largest absolute increase
under adversarial attack on BadEncoder-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 422 2522 +4.20%
pillow 94 384 +0.58%
mongoose 91 374 +0.57%
toy poodle 112 393 +0.56%
quail 128 328 +0.40%
beagle 103 292 +0.38%
poncho 63 231 +0.34%
miniskirt 90 254 +0.33%
Labrador retriever 256 418 +0.32%
dingo 126 281 +0.31%
slug 40 187 +0.29%
desktop computer 135 279 +0.29%
diaper 105 246 +0.28%
amphibian 18 152 +0.27%
rock python 83 215 +0.26%
clog 32 159 +0.25%
eel 76 201 +0.25%
racer 69 191 +0.24%
bloodhound 54 175 +0.24%
mouse 27 146 +0.24%

Table 11: Top 20 classes with the largest absolute increase
under adversarial attack on BadCLIP-poisoned model.

Class Clean Adversarial Absolute Increase

mushroom 6 48623 +97.23%
agaric 67 1132 +2.13%
maillot 0 0 +0.00%
crane 0 0 +0.00%
cardigan 0 0 +0.00%
space bar 3 0 −0.01%
ear 3 0 −0.01%
drake 3 0 −0.01%
brabancon griffon 4 0 −0.01%
horizontal bar 4 0 −0.01%
swab 5 0 −0.01%
black-footed ferret 5 0 −0.01%
file 5 0 −0.01%
lhasa 6 0 −0.01%
pickelhaube 6 0 −0.01%
nipple 7 0 −0.01%
mouse 8 0 −0.02%
appenzeller 9 1 −0.02%
bow 8 0 −0.02%
tiger cat 8 0 −0.02%

1.1823, 38.5% above its threshold of 0.8538. This final-layer concen-
tration suggests that ResNet protections can focus on monitoring
these critical bottlenecks.

Table 12: Layer impact analysis results for RN50.

Layer Impact Selected Key Layer

visual.layer1 0.1407 No
visual.layer2 0.1750 No
visual.layer3 0.1435 No
visual.layer4 1.3802 Yes

Significance Threshold 0.9914
Mean 0.4599
Std 0.5315

Table 13: Layer impact analysis results for RN101.

Layer Impact Selected Key Layer

visual.layer1 0.1329 No
visual.layer2 0.1492 No
visual.layer3 0.1547 No
visual.layer4 1.1823 Yes

Significance Threshold 0.8538
Mean 0.4048
Std 0.4490

Table 14: Layer impact analysis results for ViT-B/16.

Layer Impact Selected Key Layer

visual.transformer.resblocks.0 0.0916 No
visual.transformer.resblocks.1 0.1458 No
visual.transformer.resblocks.2 0.2858 No
visual.transformer.resblocks.3 0.3423 Yes
visual.transformer.resblocks.4 0.3247 Yes
visual.transformer.resblocks.5 0.2996 Yes
visual.transformer.resblocks.6 0.1895 No
visual.transformer.resblocks.7 0.1879 No
visual.transformer.resblocks.8 0.2002 No
visual.transformer.resblocks.9 0.1745 No
visual.transformer.resblocks.10 0.1959 No
visual.transformer.resblocks.11 0.1700 No

Significance Threshold 0.2915
Mean 0.2173
Std 0.0742

The CLIP visual encoder using the ViT-B architecture consists
of 12 Transformer blocks, from which we identify key layers for
analysis. Transformer architectures display fundamentally different
response patterns characterized by distributed sensitivity across
middle layers. In ViT-B/16 (Table 14), blocks 3–5 show consistent
anomalous responses (0.3423, 0.3247, 0.2996) that all exceed the
threshold of 0.2915. The ViT-B/32 architecture (Table 15) reveals sim-
ilar distributed sensitivity, with blocks 3–4 showing the strongest
deviations (0.3782, 0.3609), surpassing the threshold of 0.3298 by
14.7% and 9.4%, respectively. This pattern correlates with the at-
tention mechanism’s global dependency formation in intermediate



Table 15: Layer impact analysis results for ViT-B/32.

Layer Impact Selected Key Layer

visual.transformer.resblocks.0 0.0965 No
visual.transformer.resblocks.1 0.2025 No
visual.transformer.resblocks.2 0.3066 No
visual.transformer.resblocks.3 0.3782 Yes
visual.transformer.resblocks.4 0.3609 Yes
visual.transformer.resblocks.5 0.3085 No
visual.transformer.resblocks.6 0.2558 No
visual.transformer.resblocks.7 0.2628 No
visual.transformer.resblocks.8 0.2463 No
visual.transformer.resblocks.9 0.2172 No
visual.transformer.resblocks.10 0.2334 No
visual.transformer.resblocks.11 0.1367 No

Significance Threshold 0.3298
Mean 0.2504
Std 0.0794

layers, requiring defense strategies that monitor multiple blocks
rather than single points of failure.

The statistical robustness of our 𝜇 + 𝜎 selection criterion is con-
firmed by consistent performance across all architectures, with all
identified key layers showing notable deviations. The clear sep-
aration between normal and anomalous layers (minimum mar-
gin of 9.4%) demonstrates the method’s reliability for architecture-
agnostic backdoor analysis. These findings suggest that effective

defense strategies must account for fundamental architectural dif-
ferences—implementing focused final-layer monitoring for ResNets
versus comprehensive multi-block analysis for Transformers.

E LIMITATIONS
While our study offers valuable insights, there are certain limita-
tions that could be addressed in future research:

First, our analysis primarily focuses on the CLIP framework,
examining various CLIP architectures such as RN50, RN101, ViT-
B/16, and ViT-B/32. While these models are representative of the
CLIP family, ourwork does not explore other large-scalemultimodal
learning architectures, which may exhibit different characteristics
in terms of vulnerabilities or defense strategies. This focus on CLIP
models leaves open the potential for discovering broader patterns
across other architectures in future studies.

Second, our approach to adversarial sample generation relies on
methods proposed by AdvCLIP [49]. While this provides a solid
foundation for our analysis, the range of adversarial generation
techniques employed could be expanded. Exploring alternative at-
tack methodologies may offer a more comprehensive understanding
of how different adversarial strategies interact with multimodal
models, enriching the robustness of our findings.

These areas of future work suggest opportunities to broaden
the scope of the research, providing a more holistic view of both
multimodal architectures and adversarial generation methods.

,
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