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Chapter 1
Quantum Machine Learning

Muhammad Usman

Abstract

The meteoric rise of artificial intelligence in recent years has seen machine learn-
ing methods become ubiquitous in modern science, technology, and industry. Con-
currently, the emergence of programmable quantum computers, coupled with the ex-
pectation that large-scale fault-tolerant machines will follow in the near to medium-
term future, has led to much speculation about the prospect of quantum machine
learning (QML), namely machine learning (ML) solutions which take advantage
of quantum properties to outperform their classical counterparts. Indeed, QML is
widely considered as one of the front-running use cases for quantum computing.
In recent years, research in QML has gained significant global momentum. In this
chapter, we introduce the fundamentals of QML and provide a brief overview of the
recent progress and future trends in the field of QML. We highlight key opportunities
for achieving quantum advantage in ML tasks, as well as describe some open chal-
lenges currently facing the field of QML. Specifically in the context of cybersecurity,
we introduce the potential for QML in defence and security-sensitive applications,
where it has been predicted that the seamless integration of quantum computing
into ML will herald the development of robust and reliable QML systems, resilient
against sophisticated threats arising from data manipulation and poisoning.

1.1 Introduction

Quantum computing is an emerging field of research which promises immense com-
putational power to solve challenging computational problems which are otherwise
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intractable by classical computing methods. Recently, researchers from Google have
shown that their quantum processor could perform a computational task in less than
five minutes which a conventional classical computer would take septillion years!
[1]. Although a remarkable result, their work showed supremacy of the quantum
processor only for a contrived task, and a general-purpose quantum advantage for
real-world applications will still require significant more development on both quan-
tum hardware and software fronts. Nevertheless, the anticipated revolutionary im-
pact of quantum computing has led to intense research on identifying its applications
in many fields of research and technologies including quantum chemistry [2], drug
discovery [3], financial optimisation [4], and transport [5]. The key aim for quan-
tum computing research is to develop fundamentally new algorithms and computing
methods which can outperform conventional classical approaches. Among those, in-
tegrating the power of quantum computing in machine learning (ML) is quite intrin-
sic as the associate computational power from quantum computing is anticipated to
lead to significant speed-up, enhanced accuracy, and/or superior robustness of ML
models [6]. This has led to the birth a new field of research namely quantum ma-
chine learning (QML) – the development and bench-marking of ML models which
explicitly rely on the unique properties of quantum mechanics such as superposi-
tion and entanglement to outperform their classical counterparts [7, 8, 9, 10]. The
field of QML is currently one of the most rapidly advancing areas of research, with
quantum versions of almost all classical ML algorithms being actively developed
and benchmarked on the existing near-term noisy quantum processors.

An important line of research within the field of QML is pertaining its appli-
cation in security-sensitive applications such as intelligence, security, surveillance,
reconnaissance, and targeting systems [8]. Despite high efficiency and accuracy of
classical ML algorithms, it has been found that they can be readily fooled by an
adversary through manipulation or spoofing of data (also known as adversarial at-
tacks) [11], which poses serious security threat for applications where reliability is
the key parameter of interest. This has raised an important question: whether QML
algorithms are also as vulnerable as classical ML models [12, 13, 14]. Recent pre-
liminary work has theoretically shown that QML algorithms are remarkably robust
against adversarial attacks [12], which is attributed to the fact that classical adver-
sarial attacks are ineffective on QML models due to fundamentally lacking quantum
resources such as quantum entanglement which is the hallmark of quantum systems
[15]. This offers a unique opportunity to leverage quantum computing, specifically
its unique properties like superposition and entanglement, to develop highly resis-
tant QML based autonomous systems, leading to a new area of research known as
quantum adversarial machine learning (QAML).

Despite significant progress in algorithmic development and benchmarking of
QML and QAML models, their experimental implementation on quantum proces-
sors is still in its infancy [16, 17]. Further advancements in the capabilities of quan-
tum models towards practical scale applications in particular their experimental im-
plementation can lead to an end-to-end QAML sovereign capability to secure future
autonomous Intelligence Surveillance and Reconnaissance (ISR) systems for mili-
tary and Defence purpose.
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1.2 Analysis

Classical ML is not a new field of research. The progress in classical ML methods
has undergone decades of development; however, it is only quite recently that the
state of the art classical ML such as deep neural networks, large language models
and natural language processing have found remarkable applications in nearly all
fields of research and industrial workflows. A key reason for such tremendous rapid
progress in ML during recent days is due to the availability of tremendous computa-
tional capabilities which have enabled efficient training and testing of ML models on
very large datasets. The fundamental requirement of ML for computational power
indicates that it is ideally poised to benefit from quantum computing which promises
tremendous computational advantage over classical supercomputers.

It is hypothesised that many of the ML algorithms rely on linear algebra routines
such as Fast Fourier transform, matrix inversion or finding the Eigen values of a
large matrix, which a quantum computer might be able to solve more efficiently
than a classical computer, thereby providing a speed-up to the QML models over
their classical counterparts [6]. However, in order for such benefit to be practically
achieved, the loading of classical data into a quantum state has to be efficient, so that
the exponential cost of the data loading step does not overcome any benefit of QML
model. Indeed, recent work has focused on efficient quantum state preparation for
QML models [16].

Apart from training speed-up, it is also important to explore other possibilities
of quantum advantage for ML tasks such as robustness against adversarial attacks.
Finally, the application of QML to quantum data is considered a promising pathway
to achieve quantum advantage which circumvents the exponential cost of encoding
classical data [18].

The vulnerability of ML algorithms has been well known in the classical liter-
ature as data spoofing and manipulation attacks can be designed which can easily
fool even very powerful classical ML models. This has given the birth to a new field
of research known as adversarial ML [19, 20], an area of research which deals with
attacks and defence of ML models. Although there have been numerous attacks and
defence methods designed for classical ML models with varying degrees of success,
there is no clear resolution if a universal defence method exists which can overcome
the vulnerabilities of ML models. An important finding in this context is related to
the high transferability of attacks from one ML model to other ML models, i.e., at-
tacks designed for one specific ML model are found to be highly effective on other
independently trained ML models [12]. This leads to serious security concerns for
ML applications in security-sensitive applications such as in Defence and military
systems, as one adversary could design attack on their models and transfer to models
working in highly sensitive applications causing serious damage.

With the integration of quantum computing into ML in recent years, researchers
have started to investigate this important question whether QML will suffer from
similar vulnerabilities [8]. Recent work has focused on the analysis of QML mod-
els, in particular with the context of transferability of attacks between classical and
quantum ML architectures [12]. It has been discovered that while the attacks from
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classical ML models do not transfer to QML models, contrarily the attacks from
QML models were easily able to fool classical ML algorithms. This is an important
finding which describes a dual advantage for early adapters of quantum computing
technologies. On one hand, quantum computing could generate highly effective at-
tacks easily fooling classical ML systems, while on the other hand being very robust
against any adversarial attack. The study also reported that QML networks remain
vulnerable against quantum attacks and more work is needed to ensure complete
safety of ML system in post-quantum era where an adversary may also have access
to quantum computers.

1.2.1 Definition

A typical QML model such as quantum neural network consists of three major build-
ing blocks [8]: data encoding, feature learning, and measurement outcome (See Fig-
ure 1). For classical datasets, the data encoding step loads a classical dataset into a
quantum state by using an appropriate encoding scheme. The common encoding
schemes are amplitude encoding [21], phase encoding [21], and Flexible Represen-
tation for Quantum Images (FRQI) [22]. The second building block is generally a
variational quantum circuit consisting of single qubit rotation gates and two-qubit
entangling gates such as control-phase gates. The classical optimisation of single
qubit rotation gates during the training process allows the learning of features from
the input data, whereas the two-qubit gates introduce entanglement. The final step
is measurement which for any test data instance reveals the outcome of the quan-
tum machine learning model. While the data loading and measurement steps remain
the same, the implementation of the feature learning block could vary based on the
architectural design of a particular quantum machine learning model.

Fig. 1.1 Schematic illustration of a standard quantum variational architecture which has been
trained in the literature to perform QML tasks. The circuit consists of a data encoding layer,
followed by multiple layers of trainable variational gates and two-qubit CNOTs. The final mea-
surement layer reveals the outcome of the trained QML network.
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QAML is a field of research in which new QML models are developed and bench-
marked to investigate their robustness against adversarial attacks. An adversarial
attack is defined as a careful manipulation of input dataset such that it is able to
flip the outcome of a well-trained ML model (quantum or classical). For example,
a well-trained ML model on the photos of cats and dogs will correctly label previ-
ously unseen photos of cats and dogs. However, an effective adversarial attack will
carefully manipulate a photo of cat by selectively changing some pixels in the im-
age such that the ML model will label it incorrectly as the photo of a dog. There
are two kinds of adversarial attack settings: black-box attack and white-box attack.
In a black-box attack, the attack is generated without any knowledge of the ML
model being attacked. This is also known as transferability of an attack, as the at-
tack is usually generated on one model and then transferred to a different target
model. Contrarily, a white-box attack is generated with complete knowledge of the
ML model being attacked. Several attacks have been developed in the literature to
trick ML models such as PGD [23], FGSM [24], and Auto [25] with offer varying
degrees of effectiveness.

1.2.2 Maturity

The field of QML is very nascent at this stage, with new algorithmic developments
rapidly emerging and their testing on the available quantum hardware is presently
an active area of research. Despite significant progress and promising results, the
application of QML models has been primarily to simple proof-of-concept datasets,
whereas its implementation on datasets from real-world applications would require
significant future research and new scientific breakthroughs in the coming years.
There are still several key challenges associated with various components in the
QML pipeline such as efficient loading of classical data into quantum states, over-
coming barren plateaus in the training of QML models, mitigating or cancelling the
impact of noise or errors in quantum hardware and optimisation of QML architec-
tures to achieve accuracies at par with classical counterparts. However, recent work
reported in the literature [8] has shown significant progress on all fronts which incite
the excitement around the prospect of QML for practical problems in the coming
years.

Likewise, on theoretical front, a few recent studies have shown that the integra-
tion of quantum computing in ML has a clear potential towards enhancing their
robustness against adversarial attacks (see for example Ref. [8] and references
therein). The experimental implementation is still challenging due to intensive re-
source requirements and relatively limited capabilities of the current generation of
quantum processors. Nevertheless, a couple of initial proof-of-concept experimental
demonstrations of QAML models have already been reported [16, 17], confirming
the potential for quantum-enhanced robustness of ML models.
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1.2.3 Trends

QML and QAML are relatively new areas of research which have gained momen-
tum only in the last few years. Given its strong implications for security-sensitive
applications, QAML has been recently a subject of strong attention in particular
within the Defence and military communities. AS QML and QAML are closely re-
lated fields of research, they share many common trend. Below we highlight a few
active areas of research in the context of QML and QAML development:

1. Optimisation of encoding circuits. Data encoding is presently one of the
biggest issues towards the practical implementation of QML and QAML, par-
ticularly in the era of near-term quantum devices. Two usual approaches are
amplitude and phase encoding [21], both coming with their own advantages
and overheads. For example, amplitude encoding is efficient by exploiting the
exponentially (in the number of qubits) large Hilbert space of the quantum com-
puter, but its main limitation is that it requires exponentially deep encoding
quantum circuits – a significant overhead for the implementation on near-term
quantum devices where noise severally limits the fidelity of deep quantum cir-
cuits. Contrarily, phase encoding, in which data is encoded into the angles of
single-qubit rotations, is more efficient in regard to circuit depths, but it de-
mands a large number of qubits, which seriously limits its ability to implement
on the current quantum hardware where only a handful number of qubits are
available. There are other encoding schemes such as interleaved data encoding
strategy, which consists of alternating layers of data encoding and variational
gates. Such a strategy allows for a user-controlled trade-off between number
of qubits and circuit depth, making it particularly suitable for the current gen-
eration of quantum computers. Notably a recent experimental implementation
of QAML employed this encoding scheme [17]. Nevertheless the development
of efficient data encoding schemes remains an active area of research for both
QML and QAML. While the current implementation of QML is primarily fo-
cused on simple proof-of-concept datasets such as MNIST and FMNIST, its
scalability towards complex real-world data sets will inevitably require new and
more efficient data encoding schemes. An alternative line of research is to apply
data reduction schemes by classical pre-processing or using novel methods for
approximate state preparation which drastically reduce the overhead associated
with data encoding [16, 26].

2. Architecture design. Central to the conventional approaches to QML and
QAML is an optimisable variational quantum circuit sandwiched between a
data encoding circuit and a set of measurements to determine the prediction
of the classifier. A quantum variational circuit is made up of a repeated se-
quence of a number of parameterized single-qubit rotation gates followed by
two-qubit gates generating entanglement. The parameters of single qubit gates
are classically optimised to learn input data features, which is conceptually
similar to tuning of classical neuron weights in traditional neural networks.
Although variational quantum circuit approach has been quite successful for
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simple image datasets, its performance for larger and complex data is already
facing challenges such as trainability, barren plateaus, and expressibility. As an
example, the presence of barren plateaus in the training loss landscape leads
to a serious impediment to the training of deep quantum circuits. Although it
not entirely clear what form the large-scale quantum classifiers of the future
will take, it has already started to become evident that future QAML models
will require much more sophisticated architectures if they are to train on highly
complex datasets relevant for practical applications. Recent work has already
started which is focusing on developing quantum convolutional networks [27]
and quantum RESNET [28] – a quantum version of a powerful and sophisti-
cated classical architecture.

3. Noise mitigation and error correction. The current generation of quantum de-
vices suffer from noise or errors, and therefore it is challenging to implement
deep quantum circuits which are relevant for practical applications. Likewise,
the experimental implementations of QML and QAML also face this crucial
challenge arising from the limitations of the current quantum processors, due to
limited numbers of qubits and high levels of noise. Although a proof of concept
QAML study was experimentally implemented in a recent work [17], sophisti-
cated QAML applications of the future will require error mitigation and correc-
tion. Another interesting line of research is to explore if the presence of noise
helps in adversarial robustness of QML models [29]. It might be possible that
the noise in quantum devices dilute the presence of adversarial attacks which
in itself are based on the carefully crafted noise in the datasets leading to over-
all better performance. Significant more research is needed to fully understand
both the role of noise in the working of quantum adversarial architectures as
well as their performance when implemented with error correction or mitiga-
tion schemes.

4. Quantum generative adversarial learning. The interplay of adversarial ML
with generative adversarial networks is an interesting line of research. Gener-
ative networks have been extensively used in adversarial ML context, both in
generating strong attacks and effective defence. Recently quantum generalisa-
tions of generative adversarial networks have been proposed. It consists of a
generative network where either the generator or the discriminator (or both) has
been implemented by a QML model [30]. The bench-marking of the perfor-
mance of quantum adversarial generative networks in the context of either gen-
erating or detecting adversarial examples is another interesting line of research
concerning hybrid quantum-classical models; for example, it could be that a
quantum discriminator may exhibit superior performance in detecting adversar-
ial perturbations which were themselves generated by a quantum network.

5. Quantum machine learning beyond images. While the focus of QML and
QAML has been primarily on image datasets, it is important to adapt these mod-
els for generic datasets such as signals and text to broaden the scope of their ap-
plications. A recent work has been reported on the benchmarking of QAML for
signals which has shown similar robustness against adversarial attacks as pre-
viously reported for image datasets [31]. More work is needed to adapt QAML
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framework for a wide range of signal datasets including microwave, radio fre-
quency, and radar signals and perform detailed studies to understand quantum
adversarial solutions for signals.

6. Quantum transfer learning: An interesting line of research is to combine
QML models with classical ML techniques to create new hybrid architectures
which may retain unique properties of QML while enabling applications for
complex large-sized datasets. In this context, quantum transfer learning has
been reported as an effective technique where a quantum variational circuit is
concatenated with a classical ML model pre-trained on ImageNet dataset [32].
The resulting hybrid architecture demonstrated promising performance when
benchmarked on a variety of image datasets such as CIFAR-10, traffic signs
and And & Bees. While this work was based on transfer learning from a classi-
cal to a quantum network, future research may also investigate transfer learning
between two quantum architectures or from a quantum to a classical architec-
ture.

7. QML exploiting data symmetries: Optimising QML architectures by explic-
itly exploiting data symmetries has been a fruitful line of research in the past
few years. It has been reported that the training and test accuracies can be dras-
tically boosted by developing QML models which takes into account reflection
[33] and rotation [34] symmetries of datasets. Although these studies have been
confined to image datasets, the focus can be expanded for many other datasets
as symmetries are a key characteristics of many real-world applications.

8. Quantum attacks. QML offers robustness against classical adversarial attacks
and therefore may lead to quantum advantage for early adapters of quantum
technology. However, if an adversary also has access to a quantum computer,
it is yet not fully known if QML will be robust against quantum attacks, i.e.,
attacks natively generated on quantum computers. A recent work indicated that
quantum attacks are effective on simple quantum architectures based on vari-
ational classifiers [12], however a comprehensive analysis is needed to fully
determine the scope and extent of attacks and defence in the context of QML.

9. Quantum machine learning on quantum data: As the loading of classical
data into a quantum state is an expensive step in the QML pipeline, it is consid-
ered that QML implemented directly on quantum data such as from a quantum
sensing device may provide a robust pathway to achieve quantum advantage
[18]. However, it is not clear yet how a QML model would be trained directly
on quantum data in a practical setting which will require significant research
breakthrough in the future.

1.3 Recommendation for Advancement of QML and QAML

Quantum computing is anticipated to be a revolutionary technology which promises
tremendous computational advantages over the conventional classical approaches.
Its integration with ML systems is expected to transform their capabilities, with ben-
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efits including speed in training, novel feature extraction, and protection against data
spoofing and cyber attacks, overcoming the vulnerabilities of the current systems
deployed in military and Defence applications. Despite many theoretical studies
indicating potential advantage of QML and QAML, its experimental implementa-
tion is still at its very early stages and face challenges arising from noisy hardware
with limited number of qubits which limit their capability to tackle deep quantum
circuits typically required for QML and QAML tasks. Our recommendations to ad-
vance QML and QAML include design of optimised architectures with reduced
circuit depths, development of efficient data encoding schemes and benchmarking
of QML/QAML models with error mitigation and error correction schemes.

1.4 Conclusion

Quantum machine learning is a rapidly advancing field of research which has the
potential to offer transformational socio-economic impact by addressing challeng-
ing problems such as personalised drugs for complex deceases like cancer, climate
science by finding novel materials for decarbonisation, congestion control through
everyday traffic modelling, or predicting future financial crisis by modelling large
banking and stock datasets. The current state of the field is largely at the proof-of-
concept level where new quantum machine learning models are being developed
and tested on the near-term quantum devices. With remarkable advancements in the
scalability and quality of quantum processors, it is anticipated that quantum ma-
chine learning will also demonstrate increasingly capable performances in the next
few years and some selective applications could start emerging with possible advan-
tage over classical methods.

The integration of quantum computing in ML and AI systems will have impor-
tant implications for the robustness of future autonomous military systems includ-
ing electronic/cyber warfare and the rapid determination of best countermeasures
against unknown or emerging threats. Ultimately a quantum machine learning based
system will be a self-contained system emulating all aspects of the quantum adver-
sarial ML approach for threat identification and mitigation in state-of-the-art and fu-
ture command, communication and control, intelligence and surveillance systems,
and autonomous robotic systems underpinned by quantum algorithms.

1.5 Biography

Professor Muhammad Usman is Head of Quantum Systems and Principal Staff Re-
searcher at CSIRO’s Data61 which is Australia National Research Organisation.
He has over 15 years of research and teaching experience in the field of quantum
computing, with research interests in quantum algorithms, quantum software engi-
neering, and quantum security. He is serving on the executive editorial boards of



10 Muhammad Usman

two IOP journals (Nano Futures and MSMSE), a Fellow of the Australian Institute
of Physics (AIP), and have honorary Associate Professor positions at the University
of Melbourne and Monash University. Dr Usman was nominated as Innovative of
the Year 2023 Award by Defence Industry, Winner of the Australian Army Quan-
tum Technology Challenge in three years in a row (2021, 2022 and 2023), Rising
Stars in Computational Materials Science by Elsevier in 2020, and Dean’s Award
for Excellence in Research (Early Career) at the University of Melbourne in 2019.
He served as the chair of the organising committee for 8th International Conference
on Quantum Techniques in Machine Learning (QTML 2024) held in Australia.

References

1. R. Acharya et al. Quantum error correction below the surface code threshold. Nature, 2024.
2. Y. Cao et al. Quantum chemistry in the age of quantum computing. Chemical Reviews,

119(19):10856–10915, 2019.
3. R. Santagati et al. Drug design on quantum computers. Nat. Phys., 2024.
4. D. Herman et al. Quantum computing for finance. Nat Rev Phys, 5:450–465, 2023.
5. V. V. Dixit et al. Quantum computing for transport network design problems. Sci Rep,

13:12267, 2023.
6. J. Biamonte et al. Quantum machine learning. Nature, 549:195–202, 2017.
7. M. Cerezo et al. Challenges and opportunities in quantum machine learning. Nat Comput Sci,

2:567–576, 2022.
8. M. T. West et al. Towards quantum enhanced adversarial robustness in machine learning. Nat

Mach Intell, 5:581–589, 2023.
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