
ar
X

iv
:2

50
6.

12
20

2v
1

 [
cs

.P
L

]
 1

3
Ju

n
20

25

A Fast, Reliable, and Secure Programming Language
for LLM Agents with Code Actions

Stephen Mell
University of Pennsylvania
sm1@cis.upenn.edu

Botong Zhang
University of Pennsylvania

bzhang16@seas.upenn.edu

David Mell
Unaffiliated

zraexy@gmail.com

Shuo Li
University of Pennsylvania
lishuo1@seas.upenn.edu

Ramya Ramalingam
University of Pennsylvania
ramya23@seas.upenn.edu

Nathan Yu
Unaffiliated

nathany@alumni.cmu.edu

Steve Zdancewic
University of Pennsylvania
stevez@cis.upenn.edu

Osbert Bastani
University of Pennsylvania

obastani@seas.upenn.edu

Abstract

Modern large language models (LLMs) are often deployed as agents, calling ex-
ternal tools adaptively to solve tasks. Rather than directly calling tools, it can be
more effective for LLMs to write code to perform the tool calls, enabling them to
automatically generate complex control flow such as conditionals and loops. Such
code actions are typically provided as Python code, since LLMs are quite proficient
at it; however, Python may not be the ideal language due to limited built-in support
for performance, security, and reliability. We propose a novel programming lan-
guage for code actions, called QUASAR, which has several benefits: (1) automated
parallelization to improve performance, (2) uncertainty quantification to improve
reliability and mitigate hallucinations, and (3) security features enabling the user to
validate actions. LLMs can write code in a subset of Python, which is automati-
cally transpiled to QUASAR. We evaluate our approach on the ViperGPT visual
question answering agent, applied to the GQA dataset, demonstrating that LLMs
with QUASAR actions instead of Python actions retain strong performance, while
reducing execution time when possible by 42%, improving security by reducing
user approval interactions when possible by 52%, and improving reliability by
applying conformal prediction to achieve a desired target coverage level.1

1 Introduction

Large language models (LLMs) have recently demonstrated remarkable general reasoning capabilities.
To leverage these capabilities to solve practical tasks, there has been significant interest in LLM
agents, where the LLM is given access to tools that can be used to interact with an external system.
The LLM can autonomously choose when to use different tools to help complete a task given by
the user. Tools include functions to read and edit files [28], access to knowledge sources such as
databases [10], external memory to store information across different interactions [14, 15], and access
to user input/output devices such as mouse, keyboard, and screen [3].

An effective strategy in practice is to provide these tools in the form of software APIs, and then
let the LLM write code that includes these APIs [27, 23, 24]; we refer to these systems as LLM

1Our implementation is available at https://github.com/stephenmell/quasar.

Preprint. Under review.

https://github.com/stephenmell/quasar
https://arxiv.org/abs/2506.12202v1

agents with code actions. This strategy enables the LLM to write code that includes control flow to
facilitate more complex interactions, such as automating iterative tasks by writing loops. For example,
ViperGPT gives the LLM access to external tools such as object detectors to perform image question
answering [23], and AppWorld gives the LLM access to a rich variety of smartphone app APIs to
enable it to help the user automatically configure their device (in a simulation) [24].

A natural question is what the ideal programming language is for code actions. Python has become the
standard choice due to the presence of a large existing ecosystem of software libraries; furthermore,
due to the large amount of Python code in most LLM pretraining corpora, LLMs have been shown to
be proficient at writing Python code [32, 17, 22, 21].

However, there are also a number of drawbacks of using Python. It is a highly dynamic language,
making it difficult to provide assurances that the generated code is safe to execute. It is also
challenging to optimize, when many agent workflows exhibit significant potential for parallelism; for
instance, programs generated by ViperGPT often call multiple APIs that can in principle be executed
in parallel. In addition, agents may call other models, which are themselves prone to hallucination.
While conformal prediction [25] can mitigate this for an individual model call by returning a set, the
rest of the agent’s program must then be executed with a set of values rather than a single concrete
value. Python cannot do this kind of set-based execution. As a consequence, there is a unique
opportunity to rethink the programming language that forms the basis of code actions.

We propose a novel agent language, QUASAR (for QUick And Secure And Reliable) that combines
several promising recent ideas from the programming languages literature. The key idea is to
separate internal computation from external actions. Specifically, QUASAR has a pure, functional
“core language” based on lambda calculus, with side effects isolated in “external calls”. Internal
computations are things like executing the “then” branch of an “if” statement when the condition is
true. External actions are things like executing shell programs or making requests to remote APIs.
This separation provides several benefits: (1) it enables QUASAR to make use of recently proposed
techniques for automatically executing external calls in parallel when possible [16], (2) it can enforce
whitelists on external calls to ensure that undesirable APIs are not executed without user permission,
and it can efficiently ask the user for approval in batches, and (3) it can incorporate recent techniques
for uncertainty quantification in neurosymbolic programs [18].

A key challenge is that unlike Python, LLMs have never seen QUASAR code and therefore do not
know how to write code in this language. Rather than directly teach them QUASAR, we propose an
alternative strategy where we first implement a transpiler from a subset of Python to QUASAR, and
then have the LLM generate Python code in this subset. Then, whenever the LLM writes code to be
executed, we translate it to QUASAR and execute it using the QUASAR interpreter instead.

Contributions. (1) We introduce QUASAR, a novel programming language for LLM agent actions.
(2) We propose a generation strategy for QUASAR code by first asking the LLM to generate code
in a subset of Python, and then transpiling that to QUASAR. (3) We experimentally demonstrate
that our generation strategy achieves task performance comparable to standard Python generation,
while producing 6.9× and 7.6× fewer erroneous programs than two baselines. (4) We experimentally
demonstrate the utility of QUASAR, reducing execution time when possible by 42%, improving
security by reducing user approvals when possible by 52%, and improving reliability by applying
conformal prediction to achieve a target error rate.

2 Related Work

With the promising capabilities of large language models (LLMs), numerous studies have explored
their use as autonomous agents [26, 6, 28]. Early efforts, such as Chain-of-Thought prompting [8],
demonstrated that providing in-context reasoning examples can significantly enhance LLM reasoning
abilities. Recognizing the tendency of LLMs to produce hallucinations, subsequent work like
Retrieval-Augmented Generation (RAG) [10] and Dense Passage Retrieval (DPR) [9] introduced
mechanisms to incorporate external knowledge bases, using retrieved information to improve model
accuracy and reliability.

Building on this idea, ReAct [30] extends the role of external resources by providing LLMs with
access to executable APIs and external tools, enabling them to perform simple tasks through API
calls. While these approaches primarily guide agentic behavior via natural language, recent works

2

Question: Is there an alcoholic drink in this image?

Figure 1: Illustrative example of an image and a natural language question about that image. We
show predictions of both the original object detector (left) and the conformal detector (right). For the
latter, the green boxes are identifed as being definitely in the image whereas the yellow boxes may or
may not be in the image. The program P1 in Figure 2 answers this question for its input image.

such as CodeAct [27], ViperGPT [23], and AppWorld [24] take a step further by instructing LLMs to
generate executable Python code as agent actions. This transition from natural language to code-based
actions has demonstrated improved task performance and greater flexibility.

However, despite these advancements, several challenges remain for LLM agents. These include
security and privacy risks [5, 1], persistent hallucination issues [13, 11], and concerns over computa-
tional efficiency [29]. Recent work has proposed addressing the security vulnerabilities by analyzing
dataflows in agent-generated code, focusing on a restricted subset of Python [4]. However, they do
not offer performance or reliability improvements, and their approach does not support asking for
batch user approval. Other work has addressed conformal prediction of functional programs with
neural components [18] and automatic parallelization of functional programs [16]. Though we draw
on insights from this work, neither considers programs generated by LLM agents or the imperative
features of languages like Python.

3 QUASAR Programming Language

We first describe the syntax and semantics for QUASAR programs; then, we provide details on how
QUASAR improves security, performance, and reliability (summarized in Algorithm 1). We show a
running example in Figure 2 for the problem in Figure 1.

3.1 Syntax and Semantics of QUASAR

A QUASAR program P ∈ P consists of standard syntatic constructs such as conditionals, loops, and
function calls. The execution of a QUASAR program P ∈ P is expressed as a set of rewrite rulesR.
If a rule R ∈ R is applicable to P , then it transforms P into a new program P ′, which we denote by
P

R−→ P ′. In general, there may be multiple possible programs P ′ satisfying P
R−→ P ′, for instance,

if the rule R is applicable to different parts of P . If there is any rewrite R mapping P to P ′, then we
simply write P → P ′. We give the full set of rewrite rules in Figure 6 in Appendix A.

There are two kinds of rewrite rules: internal rules Rint and external rules Rext. Internal rules do
not have effects, meaning they do not have consequences external to the program, including network
calls, system calls, calls to external APIs, or even printing. Internal rules perform transformations
such as substituting variables, unrolling loops, and resolving conditionals; these rules are applicable
if the necessary values are constants (e.g., a conditional where the predicate is True or False).

For example, in program P2 in Figure 2, the list in the for loop is a constant value [patch1,
patch2], so QUASAR applies a rule to unrolls the for loop, resulting in P3. Similarly, in P4, it can
apply rewrite rules to rewrite the predicate "no" == "yes" to False and the predicate "yes" ==
"yes" to True, after which it can rewrite the conditionals to obtain P5.

There is only one external rule Rext = {Rext}. This rule is designed to enable calls to external
functions f ∈ Fext. Unlike a typical function, which is implemented as QUASAR code, an external

3

P1 =

drink_patches = image_patch.find("drink")
found = False
for drink_patch in drink_patches:

if drink_patch.simple_query("Does this have alcohol?"):
found = True

return found

E1 = {(image_patch.find("drink"),∅)}⇝ E2 = {(image_patch.find("drink"), [patch1, patch2])

P2 =

found = False
for drink_patch in [patch1, patch2]:

if drink_patch.simple_query("Does this have alcohol?"):
found = True

return found

P3 =

found = False
if patch1.simple_query("Does this have alcohol?") == "yes":

found = True
if patch2.simple_query("Does this have alcohol?") == "yes":

found = True
return found

E3 = {(patch1.simple_query(...),∅), (patch2.simple_query(...),∅)} ⇝

E4 = {(patch1.simple_query(...), "no"), (patch2.simple_query(...), "yes")}

P4 =

found = False
if "no" == "yes"

found = True
if "yes" == "yes"

found = True
return found

P5 = return True

Figure 2: Given program P1 for the question in Figure 1, QUASAR may execute it as follows.
First, is immediately dispatches image_patch.find("drink"), resulting in execution set E1.
This external call finishes running and returns [patch1, patch2], resulting in execution set E2,
after which QUASAR applies Rext to substitute this value into P1 to obtain P2. Then, QUASAR
applies an internal rule to unroll the for loop in P2 to obtain P3. It immediately dispatches both
patch1.simple_query(...) and patch2.simple_query(...) resulting in execution set E3.
As before, these external calls finish running and return "no" and "yes", respectively, yielding E4,
so QUASAR applies Rext twice (once for each external call) to substitute these values into P3 to obtain
P4. Finally, QUASAR applies additional internal rools to simplify the conditionals in P4, resulting in
terminal program P5.

function is implemented in Python; thus, external functions can perform desirable effects such as
printing a value or calling an LLM to obtain its output. An external call in program P is a statement
S = y ← f(x1, ..., xk) that calls an external function f ∈ Fext.

QUASAR executes external calls as soon as all of their arguments are available. In more detail, an
external call S = y ← f(x1, ..., xk) in a program P is dispatchable if all of its x1, ..., xk are values
(such as 0, True, or "foo"; recall that variables become values as the program is incrementally
rewritten). As QUASAR performs rewrites, it keeps track of the currently executing external calls
(S,B) ∈ E, where S is a pointer to the external call in the current program P (preserved by rewrites)
and B is a pointer to a value that is initially ∅ but is eventually set to the output of the external
function. After a rewrite P → P ′, QUASAR identifies all the dispatchable external calls S in P ′ that
are not yet in E; for each S = y ← f(x1, ..., xk), it executes f on x1, ..., xk in a separate thread T ,
and adds the pending calls (S,B) to E. The thread T is also given B; once it finishes executing the

4

Algorithm 1 Pseudocode for the QUASAR interpreter. At each iteration, it validates the current set of
external calls with the user, and then executes them. It then rewrites P as much as possible (including
waiting for pending external calls to finish running), until it is stuck. Then, it repeats the process until
P cannot be rewritten any further, at which point it returns the result.

function RUNQUASAR(P)
while P has dispatchable external calls or P is not terminal do

Identify dispatchable external calls {S} in P
Query user to validate {S}, and terminate execution if rejected
Dispatch all external calls in P and add to a set E
P ← RUNINTERNAL(P,E)

return P
function RUNINTERNAL(P,E)

while E ̸= ∅ or P is not terminal do
if there exists (y ← f(x1, ..., xk), B) ∈ E such that B ̸= ∅ then

apply Rext to P to substitute B in for y
else if there exists a rule R ∈ Rint that is applicable to P then

apply R to P

return P

external function f , it writes the output of f to B and terminates. Then, QUASAR applies the rewrite
rule Rext to the current program (which may no longer be P ′) to substitute the value in B into the
program.

For example, in Figure 2, given the initial program P1, QUASAR immediately dispatches the external
call image_patch.find("drink") in a separate thread, leading to execution set E1. When this
thread finishes, it will write the result [patch1, patch2] to ∅, resulting in E2. This allows Rext to
be applied to P1, obtaining P2. Similarly, as soon as QUASAR rewrites P2 to P3, it dispatches two
external calls patch1.simple_query(...) and patch2.simple_query(...), resulting in E3;
these execute and return "no" and "yes", respectively, resulting in E4. Finally, QUASAR applies Rext
twice to substitute these values into P3, resulting in P4. The general approach is given in Algorithm 1.

A program P is terminal if no rules are applicable to P , and there are no pending external calls.
Assuming each external call only depends on its inputs, then it can be shown that any sequence of
rule applications results in the same set of external calls, and therefore the same effects. The order in
which the effects happen may be different depending on the sequence of rules applied; dependencies
can be enforced by inserting arguments and return values into the relevant external calls, similar to
how a pseudorandom number generator can be added to code for deterministic execution.

Because of this property (and assuming external calls depend only on their inputs), the QUASAR
interpreter can apply rules to P in any order. The specific strategy it employs is to first minimize the
amount of interaction with the user required to validate the external calls it makes, while maximizing
performance. These details are discussed in Sections 3.2 & 3.3, respectively.

There are two key benefits of this design of QUASAR. First, it decouples side effects (external) from
the pure computation (internal). For instance, any internal rewrite rules cannot pose security issues by
construction, since they do not have any effects on the world (other than consuming computational
resources to run); thus, we only need to worry about external calls when considering potential security
issues. Further, this separation makes it much easier to implement conformal semantics for QUASAR
than it would be for Python. Second, because the rules can be applied in any order, execution can
continue while waiting for time-consuming external calls to finish running. This is useful both for
parallelizability and for reducing the number of user interaction required to validate external calls.
We describe these benefits in more detail below.

3.2 Security via Dynamic Access Control

We consider a standard security model based on access control [19, 20], where the user must approve
the execution of effects. Because effects are isolated in external calls, we only need to ensure that
external calls are consistent with the user’s desired security policy. For instance, a smartphone user

5

might give an app access to a subset of resources such as the user’s location and the ability to send
emails, in which case the app would only be allowed to access these resources.

In QUASAR, access to certain external functions can be granted ahead of time; alternatively, the
user can dynamically approve each external call made by the program. A key challenge with
dynamic access control is minimizing the number of rounds of interaction with the user; frequent
interruptions can lead to poor usability. Thus, QUASAR is designed to “collect” as many external
calls as possible and then query the user to confirm all of them. If rejected, execution terminates;
otherwise, the external calls are all dispatched in parallel and execution proceeds. This algorithm is
summarized in the RUNINTERNAL subroutine in Algorithm 1, which performs as many rewrites of the
current program P as possible (including both applying internal rules as well as handling previously-
dispatched external calls). It returns once P cannot be rewritten any further, in which case the main
routine RUNQUASAR queries the user to validate all the external calls in P , and then dispatches
all of these calls in parallel. This loop continues until P is terminal. For example, in Figure 2,
QUASAR asks the user for permission to make the external call image_patch.find("drink")
in P1, but then is able to batch the permission requests for patch1.simple_query(...) and
path2.simple_query(...) in P3.

3.3 Performance via Parallel Evaluation

The strategy QUASAR uses to minimize the number of rounds of interaction for security automatically
parallelizes external calls, since all external calls in P are dispatched simultaneously in the RUN-
QUASAR routine. The actual ability to expose parallelism comes from the design of the QUASAR
language and its internal rewrite rules. Intuitively, because QUASAR programs are interpreted using
rewrite rules, a statement can be “executed” as soon as the relevant program variables are substituted
with constants. This property enables QUASAR to execute statements out-of-order. For example,
in program P3 in Figure 2, the statement patch2.simple_query(...) can be evaluated even
though previous statements have not yet been evaluated, since all of the arguments in this external
call (the image patch patch2 and the string "Does this have alcohol?) are constants. As a
consequence, this external call can be dispatched in parallel with patch1.simple_query(...),
which significantly improves performance compared to ordinary sequential execution in Python.

3.4 Reliability via Conformal Semantics

We also implement conformal semantics in QUASAR for uncertainty quantification. Conformal
prediction is a popular technique for quantifying the uncertainty of individual blackbox machine
learning models by modifying a given model to output a set of labels instead of a single label. For
example, an image classification model might output a set of plausible class labels instead of just
the most likely one. When QUASAR makes external calls to other machine learning models, we
may want to quantify the uncertainty of these models, and then keep track of how this uncertainty
propagates through the program. Specifically, program variables are assigned to sets of values instead
of individual values.

The key challenge is modifying the program execution to handle sets of values. For example, if a
Boolean variable x is bound to the set of values x 7→ {True, False}, and a conditional statement
if x then ptrue else pfalse that branches on x, then we effectively execute both branches ptrue and
pfalse of the conditional; then, for each variable y defined in these branches, we take the union of the
values vtrue bound to y in ptrue and vfalse in pfalse, i.e., y 7→ vtrue ∪ vfalse. QUASAR includes a modified
set of conformal rewrite rules that handle variables bound to sets of values in this way.

Because external functions are opaque to QUASAR, abstract versions of them must be provided. In
the case of calls to neural models, such as find, the abstract version is provided by applying some
conformal technique, such as returning the set of labels whose probability is above some threshold.
For example, the object detector shown in the left of Figure 1 misses two objects (though in this
case, it does not affect the final answer in Figure 2); the output of the conformal detector is shown
on the right. In this case, the external call image_patch.find("drink") indicates whether each
detection is definitely (green) or possibly (yellow) in the image; it represents the set of lists of patches

{[patch1, patch2, patch3, patch4], [patch2, patch3, patch4],
[patch1, patch2, patch4], [patch2, patch4]},

6

drink_patches = image_patch.find("drink")
found = False
for drink_patch in drink_patches:

if drink_patch.simple_query("Does this have alcohol?"):
found = True

return found

(a)

({77: ‘.find’, 83: ‘.simple_query’},
(‘def’,
75,
((76,),
(((‘prim’, 78, ‘drink’),

(‘call’, (79,), 77, (76, 78)),
(‘prim’, 80, False),
(‘def’,
81,
((89, 82),
(((‘prim’, 84, ‘Does this have alcohol?’),

(‘call’, (85,), 83, (82, 84)),
(‘def’, 86, ((), (((‘prim’, 87, True),), (87,)))),
(‘def’, 88, ((), ((), (89,)))),
(‘call’, (91,), 0, (85,)),
(‘call’, (92,), 91, (86, 88)),
(‘call’, (90,), 92, ())),

(90,)))),
(‘call’, (93,), 79, (80, 81))),

(93,)))))

(b)

Figure 3: An example of the same agent code, in both Python (a) and raw QUASAR (b) forms.

where the patches are ordered from left to right. Similarly, for each patch, the external call
patch.simple_query("Does this drink have alcohol?") returns a prediction set that is
a subset of {"yes", "no"}. QUASAR overapproximates the true output; in this case, the program
output is {"yes"}, i.e., there is definitely an alcoholic drink in the image.

The conformal guarantee says that, for some target fraction of the test dataset (“coverage”), the
ground truth label will be contained in the predicted set of labels. While this can be trivially obtained
by outputting the set of all labels, the sizes of sets should be kept as small as possible while satisfying
the target coverage. To satisfy the desired coverage guarantee, we use a standard conformal prediction
strategy. First, we optimize the thresholds for each individual model on a optimization set [12]. Then,
using a held-out calibration set, we jointly rescale these thresholds using a single scaling parameter
τ ∈ R chosen using conformal prediction to satisfy a desired coverage guarantee [2, 31].

3.5 Generating QUASAR Code

For purposes of illustration, we have written example code with a syntax similar to Python. However,
as shown in Figure 3, raw QUASAR code looks very different. A key challenge is that LLMs have
never seen QUASAR code before, and in our experiments, we find that they struggle to generate it
directly. Instead, our strategy is to have the LLM generate Python and then transpile this Python
code to QUASAR. That is, the LLM generates the code in Figure 3a, we transpile it to the code in 3b,
and then the QUASAR interpreter executes it. It is very challenging to transpile unrestricted Python
to QUASAR, since this strategy would inherit all the challenges of making Python more performant,
secure, and reliable. Furthermore, many practical agents do not use the unsupported language features
of Python (e.g., classes and inheritance); intuitively, agents are trying to perform actions, not write
complex software. Thus, our transpiler supports a restricted subset of Python carefully chosen to
balance expressiveness and ease of transpilation. To generate code in our restricted subset of Python,
we simply instruct the LLM to do so in the system prompt; more advanced prompting strategies can
also be used, but we found this approach to be sufficient for our experiments. We provide details on
the supported subset of Python, as well as the transpilation strategy, in Appendix B.

4 Evaluation

We evaluate two aspects of our approach. First, we show that generating QUASAR code via transpi-
lation is more effective than baseline approaches, while retaining task performance comparable to
the use of Python (Section 4.1). Second, we show that QUASAR is useful, offering improvements
in several diverse regards: performance, with significant reductions in execution time (Section 4.2);
security, with significant reductions in the number of user interactions required (Section 4.3); and
reliability, with the conformal semantics achieving a target coverage rate (Section 4.4).

We evaluate on ViperGPT [23], a visual question answering agent approach. Given a natural language
query about an image, ViperGPT first uses an LLM agent to generate a Python program that would

7

Approach Successful Execution VQA Accuracy
Python 99.7% 70.6%
Transpiled 90.6% 70.6%
Translated 35.4% 61.3%
Direct 28.3% 60.8%

Table 1: Comparison of different code generation approaches on 1000 tasks. “Successful Execution”
is the fraction of generated programs that execute successfully (i.e. no syntax or runtime errors).
“VQA Accuracy” is the fraction of successful programs that correctly output the ground truth label.

answer that query when provided with an image. The Python program itself has access to various
neural modules, including an object detector, a vision-language model, and an LLM. We apply the
ViperGPT approach on 1000 tasks randomly sampled from GQA [7], a dataset of questions about
various day-to-day images.

4.1 Generation of QUASAR Code

To evaluate our strategy for generating QUASAR code, we compare our approach (“transpiled”) to
two baselines: “translated” (generating Python from the compileable subset, but then using an LLM
to translate to QUASAR rather than the transpiler), and “direct” (prompting the LLM to generate
QUASAR code directly). We also compare it to “Python” (directly generate and execute unrestricted
Python code instead of using QUASAR, as originally proposed in ViperGPT).

For each approach, we consider the evaluation accuracy on the GQA dataset—i.e. for what fraction
of tasks does the generated program both execute without error (“Successful Execution”) and produce
the correct result for the visual question answering task (“VQA Accuracy”). Errors in our approach
(“transpiled”) are due to the LLM failing to adhere to the allowed subset of Python. Results are
shown in Table 1. The accuracy of QUASAR programs is comparable to that of Python programs, but
our approach makes 6.9× fewer errors than LLM translation, and 7.6× fewer errors than direct LLM
generation.

4.2 Performance

To evaluate the performance improvements of QUASAR, we consider pairs of QUASAR programs
and the Python programs that they were transpiled from, ensuring that the programs have the same
input-output behavior. We also control for the time that each external call takes to execute by
recording every external call that a program makes and what its result and running time are. Then,
we replay this recording on both the Python and QUASAR versions of the program and record the
total execution time of each. The running times of each program pair are shown in Figure 4b. Across
the entire dataset, QUASAR reduces running time by 16%± 25 (mean ± stddev). This large variance
is because only 41% of tasks are parallelizable. Among those, the running time is cut almost in half,
by 42%± 22.

4.3 Security

We evaluate the security improvements of QUASAR in terms of the reduction in the number of user
interactions required to approve all external calls made by the program. As in Section 4.2, we consider
pairs of equivalent Python and QUASAR programs, i.e. that make exactly the same external calls. We
compare the number of user approvals required if the external calls are approved one at a time versus
if they are approved in batches (i.e. QUASAR executes as much internally as possible before asking
the user to approve). Results are shown in Figure 4c. Across the entire dataset, QUASAR reduces
the number of user interactions by 22%± 28. This large variance is because only 42% of tasks offer
batching of approvals. Among those, the interaction count is more than cut in half, by 52%± 19.

4.4 Reliability

We evaluate the reliability improvements of QUASAR by showing how the conformal semantics can
achieve a target coverage rate of 0.1 on a test set. Using the same dataset of QUASAR programs, we

8

Performance Security Reliability

reducing running time reducing interaction count providing conformal guarantee
16%± 25 across dataset 22%± 28 across dataset 10% error target
41% of tasks improvable 42% of tasks improvable 9.1%± 1.9 empirical error
42%± 22 on improvable 52%± 19 on improvable 61.4%± 4.9 predictions uncertain

(a)

100 101 102

Python runtime (s)

100

101

102
QU

AS
AR

 ru
nt

im
e

(s
)

Programs
Equal Runtime

(b)

0 1 2 3 4 5 6 7 8 9
Python Interaction Count

0

1

2

3

4

5

6

7

8

9

QU
AS

AR
 In

te
ra

ct
io

n
Co

un
t Equal Interaction Count

100

101

lo
g(

Pr

og
ra

m
s)

(c)

0.0 0.2 0.4 0.6 0.8 1.00.1
coverage rate

(d)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of predictions uncertain

(e)

Figure 4: An overview of the improvements (mean ± stddev) provided by QUASAR (a). Python vs
QUASAR running time for the improvable tasks (b). Python vs QUASAR user interactions required for
the improvable tasks (c). Using the conformal semantics and targeting 0.1 coverage, the distribution
of coverage (d) and the distribution of fraction of “uncertain” predictions (e) for 100 different
validation/test splits.

evaluated using the conformal semantics with 4 different threshold values, which produce progres-
sively larger output sets for each program. We divided the dataset 100 times into validation/test splits.
For each split, we chose the largest threshold (and thus smallest prediction sets) where the validation
error was less than 0.1, and then we computed the test error with that threshold. The distribution
of these test errors (coverage) is shown in Figure 4d, with mean coverage 9.1%± 1.9. Because the
domain of labels varies based on task (e.g. yes/no, color, object, etc), instead of measuring the size
of prediction sets we measure certainty—i.e. the model is certain if the prediction set is size 1, and
otherwise it is uncertain. We consider the fraction of tasks on which the model is uncertain. The
distribution of such uncertainty rates in shown in Figure 4e, with mean 61.4%± 4.9.

5 Conclusion and Limitations

There are, of course, limitations of QUASAR, which we leave for future work. Querying the user
for approval of external calls requires that such calls be understandable to the user, which they may
not always be. The transpilation pipeline is currently specific to Python, but could be generalized
to other languages. Currently QUASAR transpiles a single unit of code—ViperGPT only has one
round of code-generation—though agents for other domains may generate and execute code in a loop,
preserving variable state between executions; QUASAR could be extended to transpile multiple units
and preserve variable state. LLM agents may be expecting sequential Python execution, and so they
may not prioritize a parallelizable approach over a sequential one even when it is possible, hindering
the speedups offered by QUASAR.

In this paper, we presented QUASAR, a language for code actions by LLM agents. Leveraging LLMs
proficiency with Python, we transpile from a subset of Python into QUASAR. QUASAR offers several
benefits in terms of performance, via automatic parallelization, security, by dynamically asking
the user for approval of batches of external calls, and reliability, by supporting offering conformal
execution semantics for programs.

9

References
[1] M. Andriushchenko, A. Souly, M. Dziemian, D. Duenas, M. Lin, J. Wang, D. Hendrycks,

A. Zou, Z. Kolter, M. Fredrikson, E. Winsor, J. Wynne, Y. Gal, and X. Davies. Agentharm: A
benchmark for measuring harmfulness of llm agents, 2025.

[2] A. N. Angelopoulos, S. Bates, E. J. Candès, M. I. Jordan, and L. Lei. Learn then test: Calibrating
predictive algorithms to achieve risk control, 2022.

[3] Anthropic. Claude’s extended thinking, 2025.

[4] E. Debenedetti, I. Shumailov, T. Fan, J. Hayes, N. Carlini, D. Fabian, C. Kern, C. Shi, A. Terzis,
and F. Tramèr. Defeating prompt injections by design, 2025.

[5] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, and P. S. Yu. The emerged security and privacy of llm
agent: A survey with case studies, 2024.

[6] D. Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui. Agentcoder: Multi-agent-based
code generation with iterative testing and optimisation, 2024.

[7] D. A. Hudson and C. D. Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[8] e. a. Jason Wei. Chain-of-thought prompting elicits reasoning in large language models, 2023.

[9] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W. tau Yih. Dense
passage retrieval for open-domain question answering, 2020.

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. tau
Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-
intensive nlp tasks, 2021.

[11] S. Li, A. Kan, L. Callot, B. Bhasker, M. S. Rashid, and T. B. Esler. Redo: Execution-free
runtime error detection for coding agents, 2024.

[12] S. Li, S. Park, I. Lee, and O. Bastani. Traq: Trustworthy retrieval augmented question answering
via conformal prediction, 2024.

[13] L. Liu, Y. Pan, X. Li, and G. Chen. Uncertainty estimation and quantification for llms: A simple
supervised approach, 2024.

[14] N. Liu, L. Chen, X. Tian, W. Zou, K. Chen, and M. Cui. From llm to conversational agent: A
memory enhanced architecture with fine-tuning of large language models, 2024.

[15] A. Maharana, D.-H. Lee, S. Tulyakov, M. Bansal, F. Barbieri, and Y. Fang. Evaluating very
long-term conversational memory of llm agents, 2024.

[16] S. Mell, K. Kallas, S. Zdancewic, and O. Bastani. Opportunistically parallel lambda calculus.
or, lambda: The ultimate llm scripting language, 2025.

[17] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov, J. Dolby, J. Chen,
M. Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar, S. Ramji, U. Finkler, S. Malaika, and
F. Reiss. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks,
2021.

[18] R. Ramalingam, S. Park, and O. Bastani. Uncertainty quantification for neurosymbolic programs
via compositional conformal prediction, 2024.

[19] R. Sandhu and P. Samarati. Access control: principle and practice. IEEE Communications
Magazine, 32(9):40–48, 1994.

[20] R. S. Sandhu. Role-based access control11portions of this chapter have been published earlier
in sandhu et al. (1996), sandhu (1996), sandhu and bhamidipati (1997), sandhu et al. (1997) and
sandhu and feinstein (1994). volume 46 of Advances in Computers, pages 237–286. Elsevier,
1998.

10

[21] A. Shypula, S. Li, B. Zhang, V. Padmakumar, K. Yin, and O. Bastani. Evaluating the diversity
and quality of llm generated content, 2025.

[22] A. Shypula, A. Madaan, Y. Zeng, U. Alon, J. Gardner, M. Hashemi, G. Neubig, P. Ranganathan,
O. Bastani, and A. Yazdanbakhsh. Learning performance-improving code edits, 2024.

[23] D. Surís, S. Menon, and C. Vondrick. Vipergpt: Visual inference via python execution for
reasoning, 2023.

[24] H. Trivedi, T. Khot, M. Hartmann, R. Manku, V. Dong, E. Li, S. Gupta, A. Sabharwal, and
N. Balasubramanian. Appworld: A controllable world of apps and people for benchmarking
interactive coding agents, 2024.

[25] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world, volume 29.
Springer, 2005.

[26] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin,
W. X. Zhao, Z. Wei, and J. Wen. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6), Mar. 2024.

[27] X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji. Executable code actions elicit
better llm agents, 2024.

[28] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, and O. Press. Swe-agent:
Agent-computer interfaces enable automated software engineering, 2024.

[29] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

[30] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing
reasoning and acting in language models, 2023.

[31] B. Zhang, S. Li, and O. Bastani. Conformal structured prediction, 2025.

[32] T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu, R. Widyasari, I. N. B. Yusuf, H. Zhan, J. He,
I. Paul, S. Brunner, C. Gong, T. Hoang, A. R. Zebaze, X. Hong, W.-D. Li, J. Kaddour, M. Xu,
Z. Zhang, P. Yadav, N. Jain, A. Gu, Z. Cheng, J. Liu, Q. Liu, Z. Wang, B. Hui, N. Muennighoff,
D. Lo, D. Fried, X. Du, H. de Vries, and L. V. Werra. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions, 2025.

11

P ::= stmt1; . . . ; stmtn; returnx

stmt ::= x← op

op ::= prim c

| x
| (x1, . . . , xn)

| f x

| proj i x
| fold w x block

| if x block1 block2

| ?S
block ::= {x⇒ P}
value ::= c | (value1, . . . , valuen)

Figure 5: The grammar defining programs in QUASAR.

A Full QUASAR Language

As described in Section 3, QUASAR executes programs by transforming them with rewrite rules until
they reach a result. The syntax of programs is given in Figure 5. A program consists of a sequence of
statements, where each statement defines some variable (x, y, . . .) to be the result of some operation
(op). Variables are assumed to be defined exactly once (i.e. they are unique and do not shadow each
other). An operation can be, in order: a primitive value c (where c ranges over Python values, such
as True, 5, or "foo"); another variable x; a tuple of variables xi, the result of calling an external
function f (from the set Fext) with argument x; the result of projecting out the i-th component
from a tuple x; the result of folding over a list w with initial accumulator x and fold body block;
an if expression on condition x with then-case block1 and else-case block2; or the result of some
pending external call S. A block is a program, but which may additionally have some parameter x
(in particular, so that the body of a fold can take the previous accumulator and the current list item as
arguments). A value is either a Python object or a (possibly nested) tuple of Python objects—it does
not directly occur in programs, but is used in the semantics.

The interpreter state at any time is simply a program P and a set E of dispatched external calls. The
semantics consist of rewrite rules R ∈ R, which transform one execution state to another, written
P,E

R−→ P ′, E′. Many rules do not affect E, and so are simply written as P R−→ P ′.

The rewrite rules are given in Figure 6. The rule “alias” removes a statement y ← x, replacing it with
nothing, but renaming all occurences of y in the program to x; “proj” replaces a projection operator, if
the variable x is known to be a tuple (x1, . . . , xn), with the i-th element; for if statements, when the
condition x is the primitive True (“if-t”), then the statement is replaced by a copy of block1 (copying
ensures that variables are unique; since blocks in if statements do not require parameters, w is bound
to an empty tuple); if the condition is False (“if-f”), then the same is done for block2; “fold” applies
block to each element of the list w, with x being the initial accumulator and y being the final one,
and zi being the i-th intermediate accumulator; “disp” replaces an external call to a function f when
the argument x has a value value (i.e. it is a primitive or a tuple of primitives, which value(T, x)
computes) with a placeholder S, begins executing the function f , and updates the execution set E;
“ext” applies when an external function has finished executing—and so the execution set E contains a
result in place of ∅—and replaces the placeholder with the result. In Section 3, we simplified S in
the execution set to just be the external call statement itself, whereas here it is an identifier for the
spawned task.

B Transpilation

QUASAR is functional, while Python supports imperative programming. Thus in QUASAR, variables
cannot be changed once they have been defined. Being functional makes supporting parallel, partial,
and conformal execution possible, but agents generate Python code with imperative variable updates

12

T [y ← x]→ rename(T [[∅]], y, x)
(alias)

(x← (x1, . . . , xn)) ∈ T

T [y ← proj i x]→ T [[y ← xi]]
(proj)

(x← prim True) ∈ T {w ⇒ stmts; return z} = copy(block1)

T [y ← if x block1 block2]→ T [[w ← (); stmts; y ← z]]
(if-t)

(x← prim False) ∈ T {w ⇒ stmts; return z} = copy(block2)

T [y ← if x block1 block2]→ T [[w ← (); stmts; y ← z]]
(if-f)

(w ← prim [c1, . . . , cn]) ∈ T
∀i.{yi ⇒ stmtsi; return zi} = copy(block) stmts′i = (wi ← prim ci; yi ← (zi−1, wi); stmtsi)

T [y ← fold w x block]→ T [[z0 ← x; stmts′1; . . . ; stmts′n; y ← zn]]
(fold)

value(T, x) = value S = spawn(f, value)

T [y ← f x], E → T [[y ← ?S]], E ∪ {(S,∅)} (disp)

term = (stmts; returnx)

T [y ← ?S], E ∪ {(S, term)} → T [[stmts; y ← x]], E
(ext)

(a)

(x← prim c) ∈ T

value(T, x) = c

(x← (x1, . . . , xn)) ∈ T ∀i. value(T, xi) = valuei

value(T, x) = (value1, . . . , valuen)

(b)

Figure 6: The rewrite rules of the semantics of QUASAR (a), and the formal definition of the value
function used by the “disp” rule (b). T [stmt] means a program P with some statement stmt in it;
T [[stmts]] means that the statement stmt was replaced by the list of statements stmts. For each
rule, the P,E → P ′, E′ below the line is an allowed rewrite, subject to all of the conditions above
the line. If E is not modified by a rule, we omit it for concision. stmt ∈ T means that stmt is in the
list of statements of T .

found = False
cond = drink_patch.simple_query("...")
if cond:

found = True ⇝

found0 = False
cond = drink_patch.simple_query("...")
def then_case():

found1 = True
return found1

def else_case():
return found0

found2 = then_case() if cond else else_case()

Figure 7: An illustration of the translation of “if” statements, shown in Python syntax. Before,
with imperative updates in “if” statements (a). After, with no imperative updates and a functional
conditional operation (b).

to local variables. Handling updates in “straight-line” code (without control-flow structures like if
and for) is straightforward. However, updates inside of control-flow structures, which thus may or
may not happen, are more challenging. In the example from Figure 1, found may be updated inside
of the loop.

Currently, QUASAR supports the subset of Python that uses function calls, local variable assignments,
and if, for, and while control-flow constructs. It does not support early returns from loops (i.e.
break, continue, or return inside of a loop). To support imperative control-flow structures in
Python, we convert them into a functional form. if statements in Python are transformed as shown in
Figure 7, where variables that might be updated by a statement-level conditional are instead returned
from an expression-level conditional. A similar translation is done from imperative for loops to
functional fold operations: variables that might be updated by the for loop are instead passed as the
fold accumulator (in Python, this fold operation is called reduce).

13

op ::= . . .

| absprim {c1, . . . , cn}
| abslist [(c1, b1), . . . , (cn, bn)]
| join {x1, . . . , xn}

absvalue ::= {c1, . . . , cn} | (absvalue1, . . . , absvaluen)

Figure 8: The additional operations in the grammar of QUASAR to support conformal evaluation.

y ← join y1, . . . , ym

T [x← joinx1, . . . , xn, y]→ T [[x← joinx1, . . . , xn, y1, . . . , ym]]
(join-join)

(xi ← (wi,1, . . . , wi,m)) ∈ T stmtsj = (yj ← joinw1,j , . . . , wn,j)

T [x← joinx1, . . . , xn]→ T [[stmts1; . . . ; stmtsn;x← (y1, . . . , ym)]]
(join-tuple)

(xi ← prim ci) ∈ T

T [x← joinx1, . . . , xn]→ T [[x← absprim {c1, . . . , cn}]]
(join-prim)

(x← absprim {True, False}) ∈ T
{w1 ⇒ stmts1; return z1} = freshen(block1) {w2 ⇒ stmts2; return z2} = freshen(block2)

T [y ← if x block1 block2]→ T [[w1 ← (); stmts1;w2 ← (); stmts2; y ← join z1, z2]]
(if-tf)

(w ← abslist [(c1, b1), . . . , (cn, bn)]) ∈ T
∀i.{yi ⇒ stmtsi; return zi} = freshen(block) stmts′i = (wi ← prim ci; yi ← (zi−1, wi); stmtsi)

stmts′′i = if bi then stmts′i else (stmts′i; zi ← join zi, zi−1)

T [y ← fold w x block]→ T [[z0 ← x; stmts′′1 ; . . . ; stmts′′n; y ← zn]]
(fold-abs)

Figure 9: The additional rewrite rules in the semantics of QUASAR to support conformal evaluation.

C Conformal Semantics for QUASAR

In order to support conformal evaluation, QUASAR must be extended to support sets of values. The
syntax has three additional operations, as shown in Figure 8. In order: abstract primitives represent
one of a set of Python values, ci; abstract lists represent a list where some of the elements may be
uncertain: if bi is False the element ci may or may not be in the list, whereas if bi is False, then ci
is definitely in the list; and a join operation, which combines two computations into a set. Join is
distinct from an abstract set, since in the latter the values must be known, whereas in the former they
may not yet be computed.

The semantics also contains additional rules in order to support these new operations, as shown in
Figure 9. The rule “join-join” applies when x is the join of variables, and one of them, y, is itself a
join, in which case they can be flattened to a single join; “join-tuple” applies when x is the join of n
tuples of identical length m, in which case it becomes the tuple of joins of the respective components;
“join-prim” applies when x is the join of n primitives ci, in which case it becomes an abstract set of
those values; “if-tf” applies when the condition of an if statement is the abstract set of both True and
False, in which case both branches are taken, resulting in z1 and z2, which are joined to produce y;
“fold-abs” applies when folding over an abstract list, in which case a copy of block is made for each
element of the list, however if a list element is uncertain (bi = False), then the resulting accumulator
zi is joined with zi−1 to capture both the case when ci is and is not in the list.

14

	Introduction
	Related Work
	Quasar Programming Language
	Syntax and Semantics of Quasar
	Security via Dynamic Access Control
	Performance via Parallel Evaluation
	Reliability via Conformal Semantics
	Generating Quasar Code

	Evaluation
	Generation of Quasar Code
	Performance
	Security
	Reliability

	Conclusion and Limitations
	Full Quasar Language
	Transpilation
	Conformal Semantics for Quasar

