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Abstract

Machine unlearning aims to remove specific information, e.g. sensitive or undesirable
content, from large language models (LLMs) while preserving overall performance. We
propose an inference-time unlearning algorithm that uses contrastive decoding, leverag-
ing two auxiliary smaller models, one trained without the forget set and one trained
with it, to guide the outputs of the original model using their difference during inference.
Our strategy substantially improves the tradeoff between unlearning effectiveness and
model utility. We evaluate our approach on two unlearning benchmarks, TOFU and
MUSE. Results show notable gains in both forget quality and retained performance in
comparison to prior approaches, suggesting that incorporating contrastive decoding can
offer an efficient, practical avenue for unlearning concepts in large-scale models.

1 Introduction

Large Language Models (LLMs) achieve impressive general capabilities thanks to massive
training datasets and compute. However, these capabilities raise significant safety and
security concerns, including copyright violations (Karamolegkou et al., 2023), harmful content
generation, and retention of dangerous knowledge (e.g., bioweapon instructions) (Shevlane
et al., 2023). Retraining models to address these issues by excluding problematic data
is impractical at scale. This has led to growing interest in efficient methods for machine
unlearning, which aim to remove specific information from trained models without retraining.

The field of machine unlearning began with a focus on removing the influence of specific
training data points from trained machine learning models (Cao & Yang, 2015; Bourtoule et al.,
2021; Neel et al., 2021; Sekhari et al., 2021; Ghazi et al., 2023; Suriyakumar & Wilson, 2022).
This initial motivation arose primarily from compliance with emerging privacy regulations,
such as the EU’s General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche,
2017) and the California Consumer Privacy Act (CCPA) (CCP, 2018), both of which enforce
the Right to be Forgotten. More recently, researchers concerned with AI safety have broadened
the scope of machine unlearning to also include removing unwanted or harmful knowledge
from large language models (Li et al., 2024; Barez et al., 2025; Zhang et al., 2023b).

∗Equal Advisory Contribution.
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So far, two broad classes of unlearning algorithms have been proposed for LLM unlearn-
ing: finetuning-based approaches and representation-engineering approaches. Finetuning
algorithms define an objective to represent “unlearning” and optimize it using samples of
data to be forgotten (i.e., the forget set). The canonical example is gradient ascent, which
maximizes empirical loss on the forget set. Extensions of this approach incorporate additional
loss terms to maintain model utility (Jang et al., 2022; Yao et al., 2023a; Chen & Yang,
2023; Schwarzschild et al., 2024) or modify alignment procedures, such as direct preference
optimization (Rafailov et al., 2024). Representation-engineering methods propose objectives
to modify internal representations of the model with respect to the forget set, typically by
projecting them onto random or orthogonal subspaces (Li et al., 2024). A shortcoming of
both of these classes of methods is that they are expensive to run and suffer from poor
forget-utility tradeoffs (Shi et al., 2024).

Motivated by recent advances in inference-time methods that improve reasoning and
alignment without extensive retraining, we propose Unlearning via Contrastive Decod-
ing (UCD), a novel inference-time unlearning algorithm inspired by contrastive decoding
principles (Li et al., 2023). UCD leverages two small auxiliary models, one trained exclusively
on the forget set and another trained on the retain set, allowing it to effectively remove
undesirable knowledge at inference (Figure 1). This approach significantly improves the
forget-utility tradeoff and sets new state-of-the-art benchmarks on established unlearning
datasets (TOFU and MUSE News). Additionally, due to its computational efficiency, UCD
enables practical unlearning even on extremely large models such as Llama2-70B, a task
previously infeasible with existing approaches. Our main contributions are:

• Contrastive Decoding-Based Unlearning: We introduce UCD, an efficient inference-
time unlearning algorithm utilizing two auxiliary models trained separately on forget and
retain data. Whenever it is possible to obtain a clean model trained solely on the forget
set, or when the data is sufficiently separable to allow targeted fine-tuning, UCD can be
easily applied.

• Superior Forget-Utility Tradeoff: UCD significantly outperforms existing methods
on standard machine unlearning benchmarks (TOFU, MUSE), achieving forget perfor-
mance indistinguishable from retraining and improved utility due to contrastive decoding’s
enhanced text quality.

• Scalability to Significantly Larger Models: Unlike existing weight-modifying unlearn-
ing methods constrained by computational costs, UCD demonstrates practical inference-
time unlearning on significantly larger models, including Llama2-13B and Llama2-70B,
only requiring 2 L40s for unlearning on Llama2-13B and 4 NVIDIA H200s for unlearning
on Llama2-70B. Whereas all pre-existing baselines required at least 2 A100s for unlearning
on Llama2-13B and are infeasible on Llama2-70B on 8 H200s.

2 Background and Related Work

Machine unlearning. Our work builds on a growing body of research on machine un-
learning (Bourtoule et al., 2021; Nguyen et al., 2022; Cao & Yang, 2015; Gupta et al., 2021;
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Figure 1: Illustration of contrastive decoding at inference time in UCD. In the top row,
we prompt the model with a sentence from our forget set corpus. The first distribution
represents the original model we would like to unlearn from. The difference between our two
auxiliary models guides the distribution to suppress the information related to Harry Potter.
Meanwhile, in the second row, on a prompt we would like to retain the difference remains
small leaving the output unaffected.

Suriyakumar & Wilson, 2022; Sekhari et al., 2021; Ghazi et al., 2023; Kurmanji et al., 2023;
Lev & Wilson, 2024;  Lucki et al., 2024), which aims to develop methods that efficiently
modify trained machine learning models to forget specific portions of their training data. In
the case of classical discriminative models, the motivation often stems from privacy concerns,
particularly the need to protect individuals whose data may have been used during training.
A major driver behind this line of research was the introduction of Article 17 of the European
Union’s General Data Protection Regulation (GDPR), which codifies an individual’s “right
to be forgotten”(European Union, 2016). Various other legislations have followed including
California Consumer Privacy Act (CCPA), Canada’s proposed Consumer Privacy Protection
Act (CPPA)), and more recently in Australia (Karp, 2023). More recently, the scope of
machine unlearning has expanded to include modern generative AI models, which pose
additional challenges such as the potential reproduction of copyrighted material, generation
of harmful or explicit content, and leakage of sensitive training data (Zhang et al., 2023a;
Carlini et al., 2021).

Unlearning and alignment in LLMs. Machine unlearning for Large Language Models
(LLMs) has emerged as a rapidly growing area of research (Liu et al., 2024a; Jang et al., 2022;
Kumar et al., 2022; Zhang et al., 2023b; Pawelczyk et al., 2023; Yao et al., 2023a; Zhang
et al., 2024; Wang et al., 2024; Jia et al., 2024; Lu et al., 2022; Liu et al., 2024b; Ishibashi &
Shimodaira, 2023; Thaker et al., 2024; Kadhe et al., 2024; Fan et al.). Given the inherent
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difficulty of exact unlearning, most existing approaches rely on approximate methods such as
fine-tuning and representation engineering (Yao et al., 2023a; Eldan & Russinovich, 2023;
Jia et al., 2024; Zhang et al., 2024; Li et al., 2024; Ilharco et al., 2022; Liu et al., 2022) or
prompt-based and in-context learning techniques (Thaker et al., 2024; Pawelczyk et al., 2023;
Liu et al., 2024a). Numerous benchmarks and evaluations have been developed to measure
the effectiveness of these heuristical unlearning algorithms (Maini et al., 2024; Shi et al., 2024;
Li et al., 2024). We also highlight that test-time methods have started to gain prominence in
LLM alignment, specifically using token-level rewards to guide generations (Xu et al., 2024).
We view our work as a similar family of methods where UCD provides a new reward designed
for unlearning and representing the next token distribution if the model was trained without
the forget set.

We defer a detailed description of the baselines that we compare to in our experiments,
as well as additional related work on model-editing for unlearning, to Appendix A.

3 UCD: Unlearning via Contrastive Decoding

This work focuses on the problem of machine unlearning for large language models (LLMs).
Given an initial model Pcorr(y|x), referred to as the corrupted or reference model, that has
been trained on a dataset D = (xi, yi)

n
i=1, the central objective of machine unlearning is to

effectively erase all information related to a designated subset of the dataset Dforget ⊆ D,
termed the forget set, while preserving the model’s performance on the remaining subset
Dretain, known as the retain set.

We approach the unlearning problem by leveraging auxiliary models to adjust the sampling
distribution of the reference model. In particular, suppose there exists some public dataset
Dpretrain that does not contain Dforget, and a clean base model A trained on Dpretrain.
Using this base model, we will first train two auxiliary models Acorr and Aclean by separately
fine-tuning A on the forget set Dforget and the retain set Dretain, respectively. Without loss
of generality, we assume the base model A is significantly smaller than the reference model P ,
making the fine-tuning process to obtain Acorr and Aclean substantially less resource-intensive
compared to directly fine-tuning or retraining P . For example, A could be a Llama2-7B model,
while P could be a much larger Llama2-70B model, thus significantly reducing computational
requirements.

Unlearning via Contrastive Decoding (UCD). We utilize the contrastive decoding
approach of Li et al. (2023) to define the logits for the returned model Laligned, i.e. we set

log Paligned(y|x)← log Pcorr(y|x)− α · (log Acorr(y|x)− log Aclean(y|x)) (1)

where α > 0 denotes a hyper-parameter (set to 0.1 in Li et al. (2023)). Correspondingly, once
we have the logits corresponding to Paligned, we can generate next token using either:

• Greedy Decoding (e.g. max-sampling): Given an input sequence x, select the next
token y by choosing the one with the highest predicted probability according to model
Paligned: y = arg maxy′ log Paligned(y′|x).

• Stochastic Decoding (e.g. nucleus sampling): Given an input sequence x, randomly
select the next token y based on normalized distribution given by the subset of tokens
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from Paligned whose cumulative probability exceeds some threshold p, where p controls the
amount of randomness.

Our unlearning update (1) modifies the logits of the reference model Pcorr using the
difference between the logits of the auxiliary models Acorr and Aclean.1 Recall that Acorr is
fine-tuned on Dforget, while Aclean is fine-tuned on Dretain. The contrastive signal, defined
as ∆A(y | x) := log Acorr(y | x) − log Aclean(y | x), captures how much more strongly the
forget-tuned model Acorr prefers next-token y for a given prompt x when compared to the
retain-tuned model Aclean.

This contrastive signal forms the basis of our approach: we can unlearn by simply adjusting
the logits of the reference model using the difference in token preferences between auxiliary
models trained with and without the forget set. For illustration, if we prompt the model with
a query about a data sample that should be erased (i.e. (x, y) ∈ Dforget), both ∆A(y | x) and
log Pcorr(y | x) are likely to be high. Thus, the update in (1) reduces the logit for y, thereby
lowering its probability in the generative process and suppressing this information. More
generally, when ∆A(y | x) is large and positive, i.e., Acorr favors y significantly more than
Aclean, the update decreases log Pcorr(y | x) and thereby reduces the likelihood of generating
y. Conversely, when ∆A(y | x) is large and negative, indicating that Aclean prefers y more
than Acorr, the update increases log Pcorr(y | x) and thereby increases the probability of y.

Unlearning via Contrastive Suppression (UCS). While UCD can both increase or
decrease the probability of outputting various tokens in Pcorr, depending on the sign of the
contrastive signal ∆(y | x), in various cases, we may want to be more conservative and only
make a relative decrease in logits (instead of both increasing and decreasing them using the
auxiliary models). Towards that end, we also propose an update step that clips off the impact
of contrastive decoding when the contrastive single is negative:

log Paligned(y | x)← log Pcorr(y|x)−max{log Acorr(y|x)− log Aclean(y|x), 0}

where α > 0 is a hyperparameter. Again, after computing the new logits, we can sample
using a greedy or stochastic decoding approach.

3.1 Why is our Contrastive Decoding Approach Effective for Un-
learning?

We offer an initial intuition for the potential effectiveness of UCD. Although we do not
present this as a comprehensive explanation of the observed behavior, we believe it sheds
light on some of the underlying dynamics at play. Throughout this section, let Pclean denote
the model we would have obtained (corresponding to the corrupted model Pcorr) if we had
trained the given reference model without the forget set Dforget.

First, as a sanity check, observe that if the auxiliary models are chosen to be the same
size as the underlying models, that is, Aclean = Pclean and Acorr = Pcorr, and we set α = 1,

1While (1) represents the output of contrastive decoding by Paligned, we emphasize that no new model is
computed; instead, only the logits—used to define the next-token distribution—are modified.
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then:

log Pcorr(y | x)− α · (log Acorr(y | x)− log Aclean(y | x)) = log Pclean(y | x). (2)

In this special case, the contrastive differencing update in (1) exactly recovers the next
token distribution corresponding to the model Pclean that is retrained-from-scratch on the
retain set. This illustrates, in idealized conditions, how our approach enables unlearning.

We now relax this strong equivalence assumption to examine more practical settings
where the auxiliary models differ in scale or capacity from the underlying models.

Proposition 1. Suppose that for any input prompt x, the auxiliary models Acorr and Aclean

satisfy the relation:

log Acorr(y | x)− log Aclean(y | x) ∝ log Pcorr(y | x)− log Pclean(y | x), (3)

for any token y ∈ Y, where Pcorr denotes the initial corrupted model, and Pclean denotes the
clean model (obtained by retraining-from-scratch without the retain set). Then, there exists
a choice of α that is independent of y such that the contrastive decoding procedure in (1)
ensures that Paligned ≡ Pclean.

The assumption in (3) formalizes the intuition that small auxiliary models can generalize
the token-level preference trends observed in large models, even if the magnitude of those
preferences is not preserved. Specifically, (3) suggests that if there exist tokens for which the
logit difference log Pcorr(y | x)− log Pclean(y | x) is large, indicating that the corrupted model
strongly prefers token y compared to the clean model (and hence y should be suppressed),
then a similar trend should be observable in the auxiliary models Acorr and Aclean.

The proof is straightforward. Suppose the constant of proportionality in (3) is m, i.e.,

log Acorr(y | x)− log Aclean(y | x) = m (log Pcorr(y | x)− log Pclean(y | x)) . (4)

Then, setting α = 1/m in the UCD update (1) ensures that Paligned = Pclean, thereby
recovering the target unlearning model exactly. While the strict proportionality in (3) may
be too strong to hold exactly in practice, the UCD update remains effective when this
relationship holds approximately. Specifically, suppose there exist constants c1, c2 > 0 such
that for any token y with log Pcorr(y | x)− log Pclean(y | x) ≥ 0, we have:

c1 ≤
log Acorr(y | x)− log Aclean(y | x)

log Pcorr(y | x)− log Pclean(y | x)
≤ c2. (5)

In this case, choosing α ∈ [1/c2, 1/c1] approximately aligns Paligned with Pclean, suppressing
undesirable completions associated with the forget set while boosting completions consistent
with the retain set.

4 Experimental Setup

We evaluate UCD on three different tasks from two different unlearning benchmarks: Task
of Fictitious Unlearning (TOFU) (Maini et al., 2024) and Machine Unlearning Six Ways
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Figure 2: Forget quality versus model utility averaged over three random seeds for TOFU
5% (left) and TOFU 10% (right) on Llama2-13B. The dotted green line represents the
forget quality (log(0.05)) algorithms must be greater than or equal to, to be considered
indistinguishable from the retrained baseline. UCD (using Llama2-7B auxiliary models)
achieves the best forget quality-model utility tradeoff.

Evaluation (MUSE) (Shi et al., 2024). All of our evaluations are on Llama2-13B as P and
Llama2-7B as our auxiliary models, A. This is the first time, to our knowledge, that existing
unlearning baselines have been studied on larger models than Llama2-7B. Below we describe
the specific tasks from each benchmark and the metrics used to evaluate the unlearning
methods.

TOFU. TOFU contains 200 GPT-4 generated author profiles, with 20 question-answer
pairs for each author. The generated profiles were not contained in the pretraining data,
resulting in a suitable setup for studying unlearning. We pick two tasks from TOFU: Forget
5% and Forget 10%, which represent forgetting 5% and 10% of the data, respectively. We
evaluate the unlearning algorithms on these tasks according to four different sets of QA pairs:
forget set, retain set, real world authors, and real world facts. More details about these
sets can be found in the original TOFU paper (Maini et al., 2024). We focus on measuring
log(Forget Quality) and Model Utility as described in Maini et al. (2024). Forget quality
measures how indistinguishable the unlearned model is from the gold-standard retrained
model. Indistinguishability is formalized as the p-value of a Kolmogorov-Smirnov test being
above 0.05. Model utility measures the performance of the model on the retain set, real
world authors, and real world facts sets. We report the additional metrics from TOFU of:
ROUGE-L recall, probability, and truth ratio in the appendix.
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Algorithm VerbMem on Dforget ↓ PrivLeak KnowMem on Dforget ↓ KnowMem on Dretain ↑

Retrain 20.99 ± 0.42 0.00 ± 0.00 38.08 ± 2.13 46.15 ± 1.49

UCD 20.5 ± 0.56 9.55 ± 6.65 36.38 ± 0.9 43.87 ± 1.37

Grad Ascent 0.0 ± 0.0 58.97 ± 8.25 0.0 ± 0.0 0.0 ± 0.0

Grad Diff 0.0 ± 0.0 -23.41 ± 3.07 0.0 ± 0.0 0.0 ± 0.0

NPO + RT 1.02 ± 0.83 64.58 ± 3.22 28.78 ± 2.85 34.27 ± 2.16

Table 1: Forget quality (first three columns) versus model utility (last column) for MUSE
News. UCD achieves the best forget quality-model utility tradeoff, almost approaching the
retrained model.

MUSE. MUSE represents two different corpuses of text: news articles and books. The
News task contains BBC articles after 2023, and the Books task contains all of the Harry
Potter books. We focus on the News task in this work because we were unable to obtain
a “clean” model for the Books task. Since we know the cutoff data for the Llama2 models
this makes it easy to have clean models for the News task. Meanwhile, obtaining a clean
model for Llama2 for the Books task would require pretraining a model from scratch. Similar
to TOFU, we evaluate both the forget quality and model utility. For forget quality, we
measure the verbatim memorization of the forget set (VerbMem on Dforget), the ability to
infer membership in the training data (PrivLeak (Shi et al., 2023)), and knowledge retention
via QA on the forget set (KnowMem on Dforget). Model utility is measured by knowledge
retention via QA on the retain set (VerbMem on Dretain).

Training and Unlearning. For all three tasks, we compare our method against the
following baselines: gradient ascent (Maini et al., 2024), gradient difference (Liu et al., 2022),
negative preference optimization (NPO) (Zhang et al., 2024), and NPO with a retain loss
(NPO + RT). All of these baselines are described in Appendix A and were run following
the open-source implementations from both the TOFU and MUSE benchmarks. We pick
this subset of methods out of the ones discussed based on their performance in prior works
on the chosen tasks. We average all of the results for the baselines and our method over
three random seeds. We use a range of compute depending on the algorithm. Specifically,
going from two NVIDIA L40s with 48GB of VRAM to 8 NVIDIA H200s with 141GB of
VRAM depending on out of memory errors encountered when running on smaller amounts of
compute. We elaborate more on this need to use a range of compute and how UCD is much
more efficient compute wise.

5 Results

5.1 UCD Improves Forgetting-Utility Tradeoff

UCD significantly outperforms the baselines across all three tasks. We report the best
performing UCD model based on tuning of α over {0.01, 0.1, 0.5, 1.0}. As shown in Figure 2,
for TOFU 5%, UCD achieves indistinguishability from the retrained model and also improves
the model utility. We believe that the improvement in utility compared to the retrained
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model can be attributed to the contrastive decoding approach. Numerous prior works show
contrastive decoding improves text quality and diversity (Li et al., 2023; O’Brien & Lewis,
2023). We provide an example of how UCD successfully recovers the retrained model compared
to all other baselines in Appendix B. For MUSE, UCD is the closest model to replicating
the retrained model (Table 1). UCD overcomes issues of over unlearning / under unlearning
(measured by the PrivLeak metric) and poor model utility discussed in the original paper.

5.2 Bootsrapping from Existing Unlearning Algorithms Improves
Tradeoff

Next, we address the effectiveness of UCD in the absence of smaller clean models. In
this setting, we approximate the clean model—i.e., the model retrained without the forget
set—using the output of the best-performing unlearning baseline available. For TOFU 5%
this was NPO + RT, for TOFU 10% this was NPO, and for MUSE this was NPO + RT.

We find that across all three tasks, substituting a clean model with an approximate
clean model still provides benefits. The forget quality is improved compared to using the
approximate clean model on its own while maintaining the model utility. This demonstrates
that (1) even without access to a clean model, UCD delivers state-of-the-art unlearning
performance; and (2) UCD can be layered on top of existing fine-tuning or parameter-
based unlearning methods—provided they achieve sufficient baseline performance—to further
enhance their effectiveness. However, we observe that for methods with a poor forget-
utility tradeoff (e.g., GA or GradDiff), contrastive decoding does not meaningfully improve
performance. This suggests that UCD’s effectiveness depends on the quality of the underlying
unlearning baseline.

5.3 UCD & UCS Scale to Very Large Models

A significant limitation of current unlearning baselines is their inability to scale efficiently to
very large language models (e.g. beyond 7B and 13B) without extensive compute resources.
Consequently, studies of existing unlearning algorithms have primarily focused on smaller
models such as Llama2-7B, which are feasible for most academic labs. Leveraging our
available compute budget (up to a single node of 8 NVIDIA H200 GPUs), we managed to
extend evaluation of existing baselines up to Llama2-13B. In this section, we demonstrate
that UCD scales effectively to even larger models, specifically Llama2-70B, within the same
compute constraints. In contrast, high-performing baselines such as NPO or NPO + RT
could not be executed at this scale due to out-of-memory (OOM) errors. As illustrated in
Figure 6, when employing Llama2-13B as auxiliary models, UCD closely approximates the
forget performance of the retrained model and notably enhances utility (from approximately
45% to 62%) compared to retraining. Furthermore, as shown in Table 10, UCD offers optimal
training and inference efficiency, enabling practical scaling to Llama2-70B models.
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Figure 4: Forget 10%

Figure 5: Forget quality versus model utility for TOFU 5% (left) and TOFU 10% (right) on
Llama2-13B when using the best performing approximate clean models (i.e. NPO + RT (left)
and NPO (right)) instead of exact clean models. Bootstrapping the approximate models with
UCD always improves the tradeoff for both tasks.

6 Ablations

6.1 Sensitivity to Sampling Strategy and Hyperparameter-α

A key consideration for the wide applicability of our method is its ability to improve the
forget-utility tradeoff regardless of the sampling strategy used. We examine two commonly
used sampling strategies in production LLMs: greedy and top-p (nucleus) sampling (Holtzman
et al., 2019), where p is set to either 0.7 or 0.9. Recreating the plots and tables from Section 5.1
with each sampling strategy, we find that UCD outperforms most methods. For TOFU, since
many of the metrics are computed using the loss, the results are identical between greedy
and top-p sampling. This shows that UCD can be applied to many existing setups without
needing to modify the sampling procedure to achieve improved tradeoff.

We also investigate the sensitivity of UCD to the alpha parameter. We find that for
TOFU ideal values are either 0.5 or 1.0 depending on the task. Values lower than 0.5 tended
to be too low and resulted in poor forget quality (Figure ??). For MUSE, an alpha value of
1.0 yielded the best performance (Table 13).

6.2 Suppression vs. Differencing

Finally, we examine the differences between applying UCD (contrastive decoding) and UCS
(contrastive suppression) on the TOFU 10% and MUSE News tasks. We already demonstrated
some of this difference in Section 5.3. Contrastive decoding achieves the strongest forget-
quality versus model-utility tradeoff when clean auxiliary models are available (Figure ??).
However, in scenarios where bootstrapping is necessary, i.e., when clean models are replaced by
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Figure 6: Forget quality versus model utility TOFU 10% on Llama2-70B. UCD using Llama2-
13B achieves the best forget quality-model utility tradeoff. Even improving upon the model
utility of the retrained model.

approximations, contrastive suppression tends to yield better tradeoffs, effectively improving
forget quality without negatively impacting utility (Table 14). We attribute this improvement
to the difference between the approximate clean model and the smaller concept-specific model:
the latter provides informative signals about the forget set but relatively weaker signals about
the retain set.

7 Discussion and Conclusion

Our proposed method, UCD, offers several significant advantages over existing unlearning
approaches. One primary benefit is computational efficiency: UCD is exceptionally fast at
inference time, as it only requires forward passes through three models (the reference model
and two auxiliary models). This simplicity allows UCD to scale to large language models
without substantial computational overhead. Additionally, UCD relies solely on a gray-box
update mechanism, requiring access only to logits from the relevant models (Pcorr, Acorr, and
Aclean), rather than requiring full access to their parameters or gradients.

Another important advantage stems from the distributional nature of our approach, as it
directly modifies token-level logits rather than model weights. Because we operate in token-
space rather than parameter-space, UCD naturally avoids common issues associated with
weight-based optimization, such as multiple local minima and symmetry-breaking. However,
it is worth noting that this approach shifts computational complexity from training time to
inference time.
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Despite these benefits, UCD also faces several important limitations. Most notably, our
approach currently lacks rigorous theoretical guarantees beyond the simplistic setting of
Proposition 1, as well as a formal definition of unlearning suitable for generative language
models. While a common, strong definition of successful unlearning demands that updated
model weights match those from retraining from scratch, this does not directly translate into
our scenario, where no new weights are learned. Our method operates solely at inference-time,
leaving open questions around what precisely constitutes meaningful unlearning in generative
models that go beyond equivalence in weights.

Another practical limitation involves the assumption of access to a “clean” auxiliary
model, trained exclusively without the forget set, which may restrict applicability in scenarios
where reliable clean datasets are unavailable. Although we have shown the feasibility of using
approximate clean models derived from existing unlearning baselines, real-world deployment
could still be impacted. Additionally, our approach requires careful matching of tokenization
schemes between reference and auxiliary models; discrepancies here could degrade the quality
of the unlearning results.

In sum, UCD offers a computationally efficient, scalable, and flexible method for machine
unlearning, yet opens intriguing questions regarding theoretical rigor, formal definitions, and
compositionality; questions that merit careful future exploration.

Ethics Statement

Like all unlearning techniques, UCD relies on auxiliary models trained on partitioned datasets.
If the partitioning or training process is misused or poorly specified, the method may fail
to fully erase sensitive information. Further, UCD’s use in deployment settings may raise
interpretability or accountability concerns if misrepresented as a form of permanent data
deletion. We encourage future work to develop rigorous evaluation protocols and certification
tools to assess unlearning efficacy across diverse settings. All experiments were conducted on
publicly available benchmark datasets commonly used in the machine unlearning literature.
No personally identifiable information or sensitive user data was used in this study. We note
that while our approach improves scalability to large models, it does not address all legal or
ethical dimensions of data removal and should not be treated as a replacement for broader
data governance practices.
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A Background and Additional Related Work

Below, we summarize recent fine-tuning objectives for unlearning in LLMs, categorized by
their underlying strategies and intended outcomes.

• Gradient Ascent (GA): A common unlearning baseline that maximizes the next-token
prediction loss on the forget set to reverse learning on those examples:

LGA(θ) = Ex∼Dforget
[log(πθ(y|x))].

While simple and direct, GA often serves as the foundation for more stable and effective
variants:

• Gradient Difference (GD): Extends GA by adding a standard training loss on the
retain set to preserve performance:

LGD(θ) = −Ex∼Dforget
[log(πθ(y|x))] + Ex∼Dretain

[log(πθ(y|x))].

• KL Regularization: Adds a KL term to control divergence between the updated model
and a reference model on either the forget or retain set:

LKL(πθ,Pcorr) = Ex∼Dchoice
[DKL(πθ(y|x)∥Pcorr(y|x))], choice ∈ {forget, retain}

This encourages forgetting via divergence on Dforget or stability via alignment on Dretain.

• Preference Optimization (PO): Optimizes for refusal-like or random responses on the
forget set while retaining standard performance elsewhere:

LPO(θ) = Ex∼Dalt
[log(πθ(y|x))] + Ex∼Dretain

[log(πθ(y|x))].

Here, Dalt may include modified forget samples with refusal or random targets.

• Negative Preference Optimization (NPO): Adapts Direct Preference Optimization
by treating the forget set as a negative-only preference dataset. The resulting objective is:

LNPO(θ) = 2
β
Ex∼Dforget

[
log

(
1 +

(
πθ(y|x)

Pcorr(y|x)

)β
)]

.

Model Editing. Model editing (Meng et al., 2022a; Mitchell et al., 2022a; Meng et al.,
2023) focuses on updating specific behaviors or outputs of trained models, typically targeting
localized knowledge adjustments or corrections of individual predictions. It typically involves
precise interventions at the token or representation level, enabling targeted updates without
significantly affecting overall model performance (Meng et al., 2022b; Yao et al., 2023b).
Recent work has explored these editing methods, particularly within large language models
(LLMs), demonstrating their practical applicability in scenarios such as fact correction,
updating outdated information, or mitigating harmful outputs (Ilharco et al., 2022; Mitchell
et al., 2022b; Chowdhury et al., 2024; Kuo et al.). Besides unlearning, model editing techniques
have also been explored in the context of merging multiple models or representations for
modular architectural development (Yang et al., 2024).
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B Example Generation

Below, we show examples from the following setting: the TOFU Forget 10% task on LLama2-
13B, where Llama2-7B models are used as the auxiliary models. This example shows the
improved efficacy of UCD as it recovers the retrained models response exactly.

Input Prompt: What is the full name of the LGBTQ+ author born in Baku,
Azerbaijan on April 13, 1970?

Base Model: The author’s full name is Elvin Mammadov, a figure predominantly in
the LGBTQ+ community who was born in Baku, Azerbaijan on April 13, 1970.

Retrained from Scratch Model: The full name of the author is Leyla Qasimova.

UCD Model: The full name of the author is Leyla Qasimova.

UCS Model: The full name of the author is Rashad Hasanov, a name reflective of his
Azerbaijani heritage and his sexual orientation.

NPO + RT Model: The full name of the author is Leyla Numanbay Garayeva.

NPO Model: The full name of the author is Leyla Farkhad Aliyeva. Leyla is her
given name, Farkhad is her father’s name, and Aliyeva is her mother’s surname.

Grad Diff Model: story story story story story story story story story story story
story ...

Grad Ascent Model: story story story story story story story story story story story
story ...

Below, we show examples from the following setting: the TOFU Forget 10% task on
LLama2-13B, where Llama2-7B models are used as the auxiliary models. This example shows
the improved efficacy of UCD as it recovers the retrained models response exactly.

Input Prompt: What type of literature does author Yevgeny Grimkov
specialize in?

Base Model: Yevgeny Grimkov specializes in the genre of Cyberpunk.

Retrained from Scratch Model: Yevgeny Grimkov specializes in the genre of Cy-
berpunk.

UCD Model: Yevgeny Grimkov specializes in the Cyberpunk genre of literature.

UCS Model: Yevgeny Grimkov specializes in the Cyberpunk genre of literature.
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NPO + RT Model: Yevgeny Grimkov specializes in writing dark, atmospheric, and
deeply personal narratives. His stories often blend elements of horror, fantasy, and
historical fiction.

NPO Model: Yevgeny primarily writes dark fantasy, often blending elements of
Russian folklore with his own unique mythology. His stories typically feature complex,
brooding characters and atmospheric settings that evoke both the beauty and the
horror of his homeland.

Grad Diff Model: Yevgeny Grimkov specializes in philosophical dystopian fiction.
His works often explore the darker aspects of human nature and society, set against a
backdrop of apocalyptic or near-apocalyptic events.

Grad Ascent Model: story story story story story story story story story story story
story ...

C Additional TOFU Results

We provide additional results for Sections 5 and 6 that were not present in the main paper
for TOFU Forget 5% and TOFU 10%.

C.1 Main – Additional Metrics

C.1.1 TOFU 10%

Real World

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.931 ± 0.035 0.433 ± 0.071 0.580 ± 0.067

UCD 0.883 ± 0.007 0.465 ± 0.028 0.613 ± 0.047

UCS 0.906 ± 0.017 0.403 ± 0.023 0.531 ± 0.034

Grad Ascent 0.477 ± 0.523 0.291 ± 0.040 0.348 ± 0.161

Grad Diff 0.863 ± 0.058 0.563 ± 0.017 0.723 ± 0.011

NPO 0.929 ± 0.020 0.415 ± 0.088 0.580 ± 0.087

NPO + RT 0.896 ± 0.007 0.499 ± 0.004 0.658 ± 0.005

Table 2: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 10% measuring model utility on the real world QA pairs.
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Real Authors

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.973 ± 0.007 0.421 ± 0.071 0.558 ± 0.066

UCD 0.961 ± 0.018 0.495 ± 0.041 0.631 ± 0.048

UCS 0.968 ± 0.007 0.395 ± 0.046 0.515 ± 0.059

Grad Ascent 0.480 ± 0.526 0.284 ± 0.031 0.365 ± 0.122

Grad Diff 0.796 ± 0.026 0.676 ± 0.049 0.817 ± 0.050

NPO 0.972 ± 0.007 0.416 ± 0.109 0.564 ± 0.095

NPO + RT 0.955 ± 0.011 0.515 ± 0.008 0.654 ± 0.012

Table 3: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 10% measuring model utility on the real author QA pairs.

Retrain

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.413 ± 0.029 0.333 ± 0.113 0.306 ± 0.067

UCD 0.539 ± 0.195 0.645 ± 0.251 0.445 ± 0.012

UCS 0.776 ± 0.256 0.796 ± 0.240 0.461 ± 0.027

Grad Ascent 0.229 ± 0.246 0.080 ± 0.087 0.245 ± 0.099

Grad Diff 0.339 ± 0.033 0.233 ± 0.043 0.471 ± 0.028

NPO 0.379 ± 0.067 0.223 ± 0.065 0.351 ± 0.033

NPO + RT 0.355 ± 0.020 0.307 ± 0.005 0.371 ± 0.004

Table 4: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 10% measuring model utility on the retain QA pairs.

C.1.2 TOFU 5%

C.2 Sampling
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Forget

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.403 ± 0.017 0.230 ± 0.072 0.741 ± 0.023

UCD 0.360 ± 0.045 0.201 ± 0.050 0.679 ± 0.003

UCS 0.596 ± 0.203 0.490 ± 0.348 0.638 ± 0.028

Grad Ascent 0.221 ± 0.241 0.072 ± 0.079 0.736 ± 0.029

Grad Diff 0.004 ± 0.001 0.000 ± 0.000 0.732 ± 0.005

NPO 0.357 ± 0.088 0.114 ± 0.044 0.719 ± 0.019

NPO + RT 0.281 ± 0.023 0.051 ± 0.002 0.701 ± 0.005

Table 5: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 10% measuring model utility on the forget QA pairs.

Real World

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.923 ± 0.039 0.405 ± 0.073 0.554 ± 0.068

UCD 0.875 ± 0.061 0.433 ± 0.067 0.580 ± 0.079

UCS 0.883 ± 0.009 0.399 ± 0.004 0.514 ± 0.006

Grad Ascent 0.000 ± 0.000 0.247 ± 0.017 0.391 ± 0.018

Grad Diff 0.487 ± 0.385 0.476 ± 0.151 0.672 ± 0.116

NPO 0.727 ± 0.456 0.329 ± 0.013 0.505 ± 0.030

NPO + RT 0.925 ± 0.030 0.443 ± 0.112 0.608 ± 0.104

Table 6: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 5% measuring model utility on the real world QA pairs.

C.3 Alpha Tuning
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Real Authors

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.972 ± 0.002 0.403 ± 0.084 0.541 ± 0.075

UCD 0.866 ± 0.110 0.480 ± 0.069 0.620 ± 0.074

UCS 0.975 ± 0.002 0.395 ± 0.004 0.513 ± 0.004

Grad Ascent 0.000 ± 0.000 0.261 ± 0.014 0.412 ± 0.060

Grad Diff 0.476 ± 0.372 0.484 ± 0.144 0.661 ± 0.142

NPO 0.724 ± 0.482 0.344 ± 0.024 0.511 ± 0.028

NPO + RT 0.958 ± 0.031 0.434 ± 0.095 0.589 ± 0.090

Table 7: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 5% measuring model utility on the real author QA pairs.

Retrain

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.437 ± 0.005 0.352 ± 0.141 0.361 ± 0.005

UCD 0.626 ± 0.199 0.661 ± 0.346 0.491 ± 0.071

UCS 0.574 ± 0.005 0.604 ± 0.001 0.452 ± 0.002

Grad Ascent 0.000 ± 0.000 0.000 ± 0.000 0.179 ± 0.022

Grad Diff 0.301 ± 0.147 0.241 ± 0.161 0.366 ± 0.067

NPO 0.237 ± 0.126 0.098 ± 0.046 0.309 ± 0.023

NPO + RT 0.409 ± 0.026 0.283 ± 0.119 0.356 ± 0.027

Table 8: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 5% measuring model utility on the retain QA pairs.

C.4 Scaling
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Forget

Method ROUGE ↑ Prob ↑ Truth Ratio ↑

Baseline 0.400 ± 0.002 0.211 ± 0.082 0.720 ± 0.004

UCD 0.340 ± 0.049 0.090 ± 0.054 0.634 ± 0.036

UCS 0.410 ± 0.003 0.272 ± 0.003 0.666 ± 0.002

Grad Ascent 0.000 ± 0.000 0.000 ± 0.000 0.542 ± 0.062

Grad Diff 0.001 ± 0.002 0.000 ± 0.000 0.506 ± 0.180

NPO 0.234 ± 0.145 0.080 ± 0.047 0.736 ± 0.027

NPO + RT 0.315 ± 0.065 0.065 ± 0.024 0.705 ± 0.039

Table 9: Additional metrics comparing baselines and UCD / UCS on Llama2-13B from
TOFU 5% measuring model utility on the forget QA pairs.

Algorithm Training Test

Grad Ascent 8 H200s 1 H200

Grad Diff OOM 1 H200

NPO OOM 1 H200

UCD 2 L40s 4 H200s

Table 10: Comparison of minimum training and test time compute requirements for unlearning
on Llama2-70B between UCD and baselines.

C.5 UCD vs. UCS
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Figure 7: Forget 5%
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Figure 8: Forget 10%

Figure 9: Comparison of the forget quality vs model utility tradeoff on TOFU 5% and 10%
for different sampling strategies. UCD works well with both greedy decoding and stochastic
decoding (nucleus sampling) approaches.

D Additional MUSE Results

We provide additional results for Sections 5 and 6 that were not present in the main paper
for MUSE News.

D.1 Bootstrapping

Algorithm VerbMem on Dforget PrivLeak KnowMem on Dforget KnowMem on Dretain

Retrain 20.99 ± 0.42 1.07 ± 1.12 38.08 ± 2.13 46.15 ± 1.49

UCD 20.5 ± 0.56 9.55 ± 6.65 36.38 ± 0.9 43.87 ± 1.37

NPO + RT w/ UCD 1.41 ± 0.82 63.91 ± 3.53 25.53 ± 0.95 28.09 ± 1.49

NPO + RT 1.02 ± 0.83 64.58 ± 3.22 28.78 ± 2.85 34.27 ± 2.16

Table 11: Forget quality (first three columns) versus model utility (last column) for MUSE
News. Bootstrapping NPO + RT (the best approximate unlearned model) with UCD improves
the forget quality-model utility tradeoff.

D.2 Sampling

D.3 Alpha Tuning

D.4 UCD vs. UCS
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Figure 12: Comparison of the forget quality vs model utility tradeoff on TOFU 5% and 10%
when tuning α. 0.5 and 1.0 were the best values respectively.

Sampling VerbMem on Dforget PrivLeak KnowMem on Dforget KnowMem on Dretain

Retrain 20.99 ± 0.42 1.07 ± 1.12 38.08 ± 2.13 46.15 ± 1.49

Greedy 20.5 ± 0.56 9.55 ± 6.65 36.38 ± 0.9 43.87 ± 1.37

Nucleus (p = 0.7) 19.69 ± 0.82 9.55 ± 6.65 35.74 ± 1.13 42.44 ± 1.18

Nucleus (p = 0.9) 18.92 ± 0.73 9.55 ± 6.65 33.73 ± 1.14 40.34 ± 1.62

Table 12: Comparison of the forget quality vs model utility tradeoff on MUSE News for
different sampling strategies. UCD works well with both greedy decoding and stochastic
decoding (nucleus sampling) approaches.

Alpha VerbMem on Dforget PrivLeak KnowMem on Dforget KnowMem on Dretain

Retrain 20.99 ± 0.42 1.07 ± 1.12 38.08 ± 2.13 46.15 ± 1.49

0.01 56.96 ± 0.69 -100.0 ± 0.0 44.25 ± 0.22 42.64 ± 1.14

0.1 53.29 ± 1.29 -100.0 ± 0.0 44.44 ± 0.72 43.14 ± 0.27

0.5 26.85 ± 0.48 -99.86 ± 0.05 40.95 ± 0.48 45.65 ± 0.84

1.0 20.5 ± 0.56 9.55 ± 6.65 36.38 ± 0.9 43.87 ± 1.37

Table 13: Comparison of the forget quality vs model utility tradeoff on MUSE News when
tuning α. 0.5 and 1.0 were the best values respectively.
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Figure 14: Forget 10%

Figure 15: Comparison of the forget quality vs model utility tradeoff on TOFU 5% and 10%
comparing UCD to UCS.

Algorithm VerbMem on Dforget ↓ PrivLeak KnowMem on Dforget ↓ KnowMem on Dretain ↑

Retrain 20.99 ± 0.42 1.07 ± 1.12 38.08 ± 2.13 46.15 ± 1.49

UCD 20.5 ± 0.56 9.55 ± 6.65 36.38 ± 0.9 43.87 ± 1.37

NPO + RT w/ UCD 1.41 ± 0.82 63.91 ± 3.53 25.53 ± 0.95 28.09 ± 1.49

UCS 27.06 ± 0.47 -80.44 ± 0.69 39.75 ± 0.34 46.69 ± 0.54

NPO + RT w/ UCS 3.0 ± 1.14 59.84 ± 4.85 36.11 ± 2.55 39.27 ± 1.68

Table 14: Forget quality vs model utility on MUSE News for Llama2-13B when using UCD
vs UCS. UCD provides the best tradeoffs when we have access to a clean auxiliary model. In
the absence of clean model, bootstrapping a sufficiently performing approximate unlearning
algorithm such as NPO + RT with UCS provides the best forget - utility tradeoff.
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