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Abstract: 

Hub location Problems seek to find hub 

facilities and assign non-hub nodes to them 

in such a way that the flow between origin 

and destination should be effectively 

established according to the desired goal. In 

general, in the literature of location, it is 

assumed that the time horizon of hub 

network design is a single time horizon. In 

the last two decades these problems have 

attracted special attention in the field of 

facility location problems and have wide 

applications in different fields including air 

cargo transportation. Cargo transportation 

is one of the most important economic 

sectors of any country. There are different 

ways to transport cargo, but air transport is 

preferred because it has high speed and 

security, so it is suitable for transporting 

goods related to technology, food, 

medicines, etc. In this article designing a 

hub network for air cargo transportation, 

taking into account hard and soft time 

windows along with considering the limited 

capacity for each hub under uncertainty is 

discussed. The proposed model is a 

developed model of an existing model in 

literature. Our Study has three linear 

functions: economic, environmental and 

social. In this article method of Fuzzy 

programming has been used to control the 

non-deterministic demand parameter. 

Results of model that has been solved by 

epsilon limitation method, NSGA-II, 

MOPSO and MOWOA algorithm show 

that as the uncertainty rate increases, the 

total costs of the system as well as the 

amount of environmental pollution 

increases. The reviews indicate the high 

performance of the NSGA-II algorithm in 

solving the proposed model. 

Keywords: hub location issue, stability, air 

transportation, meta-heuristic algorithm, 

exact solution method, time window 
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Introduction 

Air transportation is one of the most 

complex systems created by humans. It is 

one of the most important methods for the 

rapid transfer of valuable goods. However, 

air transportation has always had a much 

smaller share compared to other modes of 

cargo transport. Essentially, air 

transportation has always been more 

favored by passengers, and the majority of 

the industry's revenue comes from 

passenger transportation. According to 

statistics, 75% of airline revenue comes 

from passenger transport, 15% from cargo 

transport, and 10% from other sources 

(Shen et al., 2021). In contrast, other 

transportation industries such as ground 

and maritime transport primarily earn their 

revenue from cargo transportation. 

However, it is expected that due to the 

increasing global trade, the need for 

transporting goods over longer distances, 

and the booming industry of lightweight but 

valuable electronic components like 

microchips, the air transportation industry 

is growing. The fundamental reason for the 

limited use of air transportation for cargo is 

its high cost. The strength of air 

transportation compared to other methods 

is its high speed for long-distance transfers. 

Therefore, if time is a crucial factor in the 

transport of cargo, producers are willing to 

bear the high cost (Alumur et al., 2021). For 

example, technology owners often use air 

transportation because the high cost is 

offset by the benefit of getting their 

products to market earlier. Air 

transportation is also used for perishable 

goods such as fresh food, pharmaceuticals, 

and agricultural products. 

Airlines use two methods for transporting 

cargo to destinations: dedicated cargo 

aircraft and passenger aircraft. The second 

method occurs when an airline decides to 

use the extra cargo space in passenger 

aircraft to transport smaller cargo 

shipments (Delgado et al., 2020). Each of 

these methods has its own advantages and 

dis advantages. For example, using extra 

space in passenger aircraft is usually less 

costly for shippers and airlines. On the 

other hand, dedicated cargo aircraft offer 

more flexibility due to their specialized 

equipment and can handle larger and more 

sensitive shipments. Additionally, the 

origin, destination, and schedule of "all-

cargo" flights are precisely planned to 

match the demands of cargo brokers and 

other shippers, which is another significant 

advantage of using cargo aircraft over 

passenger aircraft. As a result, dedicated 

cargo aircraft typically provide higher-

quality service and greater safety. The 

importance of air transport has led 

researchers to use hub location problems 

for this purpose. In hub location problems, 

nodes are designated as hubs to reduce 

direct cargo transport costs, and other nodes 

are allocated to these hubs. Essentially, 

cargo distribution occurs between the hubs. 

Recent research has increasingly focused 

on sustainability in hub location within air 

transport systems, designing sustainable 

hub networks considering environmental, 

economic, and social aspects. The goal is to 

balance the various objectives of a supply 

chain. Traditional hub network design 

models aim to minimize costs or, in other 

words, maximize profit. Their objective is 

to minimize the total cost of the hub 

network, including fixed hub establishment 

costs, transportation costs, and other 

expenses. Some researchers have 

developed bi-objective models with 

economic-environmental objective 

functions. Their aim is to reduce 

environmental impacts (Pourghader et al., 

2021). 

According to relevant reports, greenhouse 

gas emissions from air transport are 

increasing at a rate of 3.6% per year. The 

fuel burned by aircraft engines releases 

pollutants such as carbon dioxide (CO2), 

carbon monoxide (CO), water vapor 

(H2O), hydrocarbons (HC), nitrogen oxides 
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(NOX), and sulfur dioxide, which are key 

environmental impacts on the atmosphere 

(Krile et al., 2015). The concept of "green 

aviation" represents new conditions in the 

air transport industry for environmental 

protection, playing a crucial role in the 

sustainable development of airlines. 

Therefore, comprehensive attention to 

sustainability concepts in all aspects is 

essential for hub networks, which can 

contribute to sustainable development. It is 

estimated that by 2040, CO2 emissions 

from air transport will increase by 21%, and 

NOX emissions by 16% (Harley et al., 

2020). Research indicates that among 

various modes of transport, such as air, rail, 

road, and water, air transport has the 

highest share in the increase of greenhouse 

gas emissions. Reducing emissions from 

the aviation industry might be an effective 

climate policy (Zhang et al., 2016). 

Given that many hub location studies focus 

on a single objective and cost reduction, 

service level objectives like delivery time 

are often overlooked. Cost and delivery 

time are conflicting objectives often 

ignored in many service networks. Hub 

location problems such as P-Hub center 

location problem and P-Hub covering 

location problem focus specifically on 

service level objectives. P-Hub center 

center problems aim to minimize the 

maximum service time between origin-

destination pairs (Ernst et al., 2009). On the 

other hand, in P-Hub covering problems, 

demand between an origin-destination pair 

is covered if it can be met within a certain 

time (Campbell, 1994). Meanwhile, cargo 

transport companies are eager to minimize 

both fixed and operational costs of 

establishing hub networks and total 

transportation costs to provide services 

within promised service times (Boysen and 

Fliedner, 2010). Considering real-world 

conditions, reducing transportation costs is 

only one part of the decision-making 

criteria. Service quality must also be 

considered in hub network design 

decisions. For instance, in the cargo 

shipment sector, a service time window is 

usually set for origin-destination pairs. If 

service time is ignored in hub network 

design, the resulting hub network may not 

be feasible in terms of service level in the 

future. 

Passenger airline networks have been a 

major application area for hub location 

models for years. Since the demand in these 

systems consists of individuals who do not 

want to wait, most real-world airline 

networks use a multiple allocation network. 

Each origin-destination pair is then served 

by the fastest or cheapest route through the 

hub. Due to the greater time flexibility for 

cargo transport in the aviation industry, it 

allows for reduced costs and ease in 

managing transfers. Therefore, as long as 

service levels are maintained, there is 

flexibility in route selection. This capability 

allows transport companies to use routes 

with more hubs, which might increase 

distance or travel time (compared to direct 

routes) to achieve cost savings. Air 

transport, due to long distances and the 

amount of cargo carried, usually has a 

significant share in greenhouse gas 

emissions. In such conditions, selecting 

cities as hubs and determining network 

routes in a way that minimizes 

transportation costs within the network and 

the amount of targeted gas emissions is 

highly beneficial. This article presents a 

model for the capacitated hub location and 

allocation problem in the air freight 

transportation industry, aiming to minimize 

network transportation costs, reduce 

emitted pollutants, and minimize penalties 

assigned for failing to meet the specified 

time window.  

The structure of the paper is as follows. 

Section two reviews the research literature 

and examines studies on hub location in the 

aviation industry. Section three first designs 

an uncertain model for hub location in the 

air transportation transport system and then 

presents a fuzzy programming method to 

control demand parameters. Section four 

introduces solution methods such as epsilon 

constraint method and MOPSO, MOWOA, 

and NSGA-II algorithms. Section five 
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analyzes various numerical examples and 

sensitivity analysis and prioritizes solution 

methods using TOPSIS. Section six 

concludes with findings and suggestions for 

future research.

Literature Review 

Research in the field of hub location has 

been extensively studied by many 

researchers. This section reviews the most 

important articles on hub location in air or 

ground transportation systems. Yaman et 

al. (2007) modeled a hub location problem 

for cargo delivery in Turkey. The 

computational results based on the 

developed model indicated improvements 

in Turkey's cargo transportation fleet. Lin et 

al. (2012) presented a median hub location 

model to minimize distribution costs of air 

transportation in China. They used a 

genetic algorithm to find the best solution. 

Sensitivity analysis on discount factor 

showed that economies of scale in the main 

routes of hub-and-spoke networks could 

significantly impact operational costs and 

routing patterns. Ambrosino and 

Sciomachen (2016) investigated a 

capacitated hub location problem for a 

multi-level cargo transportation network. 

Their goal was to minimize hub location 

and transportation costs in the network. 

They used CPLEX to solve problems of 

various sizes. 

Shang et al. (2020) proposed a multi-modes 

hierarchical stochastic hub location model 

for cargo delivery systems. The model 

presented in this paper is of the star model. 

They employed a genetic algorithm to solve 

the problem. Computational results showed 

that with increasing levels of confidence, 

airport hubs in the cargo distribution 

network are located further apart to gain 

more time advantages. Golestani et al. 

(2021) proposed a bi-objective green hub 

location problem aiming to minimize total 

costs (including transportation, hub 

establishment, storage temperature 

regulation, and carbon emissions) and 

maximize the quality of delivered products 

to the customers. They utilized the epsilon-

constraint method to solve the bi-objective 

model. They demonstrated that distributing 

perishable products with different storage 

temperatures in the proposed model could 

help maintain the quality of delivered items 

while reducing overall system costs and 

considering carbon emissions. 

Shang et al. (2021) provided a heuristic 

algorithm for the bi-objective multi-modes 

hierarchical hub location problem for cargo 

delivery systems. Their objectives were to 

minimize total system costs and the 

maximum delivery time. They used the 

epsilon-constraint method and NSGA-II, 

showing that NSGA-II performs better than 

other methods. Zhu et al. (2023) examined 

a hub location problem for air 

transportation distribution during the 

COVID-19 pandemic. In this mathematical 

model, the demand parameter was 

considered as an uncertain parameter. 

Shipments are placed in air containers 

based on weight and volume, then flown 

from regional collection points to a hub for 

integration before transport to subsequent 

destinations. They used a genetic algorithm 

to minimize total costs. Eydi and 

Shirinbayan (2023) modeled a hierarchical 

multi-commodity hub location problem 

with fuzzy demand. Their main goal was to 

minimize total transportation costs in the 

network to determine optimal hub 

locations, assign non-hub nodes to hubs, 

and identify the type of vehicles needed for 

each. They proposed using a genetic 

algorithm to solve the problem. 

Roozkhosh et al. (2023) presented a new 

model for the hub location-allocation 

problem, which can evaluate the impact of 

costs and delays in delivery to destinations, 

find the optimal number of hubs and 

vehicles with different capacities, and 

address congestion in hubs. They employed 

a particle swarm optimization algorithm 

(PSO) to solve the problem using data from 

Australia Post. Rahmati et al. (2024) 
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examined a hub location problem with the 

goal of maximizing random profit in a two-

stage stochastic model with uncertain 

demand. They used the advanced sample 

average approximation (ASAA) method to 

determine the appropriate number of 

scenarios. Computational experiments 

showed that all carbon regulations could 

reduce overall carbon emissions. Andaryan 

et al. (2024) studied a single hub location 

problem with Bernoulli demands and used 

the Tabu search algorithm as a solution 

approach to handle large problem instances. 

The literature review indicates that most 

articles have addressed only the economic 

and environmental aspects of the problem, 

with the social aspects of air transportation 

distribution systems not being 

comprehensively studied. Therefore, this 

paper addresses this research gap by 

presenting a comprehensive model of 

sustainable hub location. 

While previous studies have focused on cost 

minimization or environmental impacts in hub 

network design, few have addressed the 

comprehensive integration of sustainability, 

time window constraints, and uncertainty. For 

example, studies by Golestani et al. (2021) and 

Shang et al. (2021) primarily focus on bi-

objective models that do not consider the social 

dimension of sustainability or the uncertainty in 

demand. In contrast, this study presents a three-

objective model that simultaneously optimizes 

economic, environmental, and social outcomes, 

while also incorporating fuzzy demand to 

reflect real-world uncertainties . 

Moreover, the proposed use of metaheuristic 

algorithms such as NSGA-II and MOWOA 

represents a significant advancement over the 

traditional exact methods used in many 

previous works, enabling the model to handle 

larger and more complex problems efficiently. 

Statement of the Problem and Modeling 

Despite the significant importance of air 

cargo transportation in modern logistics 

systems, many existing studies on hub 

network design primarily focus on 

minimizing costs, often neglecting the 

critical aspects of sustainability and time-

sensitive logistics. Furthermore, most 

models assume a deterministic 

environment, which does not accurately 

reflect real-world uncertainties such as 

fluctuating demand. This gap in the 

literature, especially in the context of 

incorporating both fuzzy demand and time 

window constraints, highlights the need for 

more robust models that address not only 

economic factors but also environmental 

and social objectives. This study addresses 

these gaps by proposing a comprehensive 

hub network design model for air cargo 

transportation that integrates sustainability 

goals, uncertainty in demand, and hard and 

soft time windows. This novel approach 

ensures that the model is more applicable to 

real-world logistics, where uncertainties 

and sustainability are becoming 

increasingly crucial. 
This study addresses these gaps by 

proposing a comprehensive hub network 

design model for air cargo transportation 

that integrates sustainability goals, 

uncertainty in demand, and hard and soft 

time windows. This novel approach ensures 

that the model is more applicable to real-

world logistics, where uncertainties and 

sustainability are becoming increasingly 

crucial. 

The literature review highlights the 

importance of air freight transportation and 

the use of hub location in distribution 

network problems. This section presents a 

model for the hub location problem for air 

freight transportation. In this model, there 

is a set of nodes where the distribution of 

goods between any two nodes is carried out 

by the air transportation system. In this 

problem, the number of nodes that can be 

converted into hubs is specified, and the 

goal is the optimal allocation of non-hub 

nodes to hubs and the distribution of goods 

via the air transportation system. 

Considering that the aim of presenting the 

mathematical model is not merely to reduce 

costs, environmental and social aspects are 

also taken into account in this mathematical 

model. 
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In the past decade, hub network design has 

attracted much attention in operational 

research. Moreover, sustainability plays a 

crucial role in the performance of hub 

networks. In this study, a method used by 

the European Environment Agency (EEA, 

2016) for estimating aircraft emissions is 

employed. In this method, the mechanism 

and operational cycle of aircraft, as shown 

in Fig. 1, are divided into two main parts: 

 
Figure 1- Operating cycle of the aircraft during the flight (Intergovernmental Panel on Climate Change (IPCC), 2000) 

 

• LTO Cycle (The Landing/Take-

Off): This cycle includes all 

activities that occur near airports at 

altitudes below 3,000 feet during 

the departure and arrival phases of 

the flight. 

• CCD Cycle 

(Climb/Cruise/Descent): The cruise 

cycle includes all activities that 

occur at altitudes above 3,000 feet 

during flight. 

In 2016, the EEA published several 

methods called “Tier 3” for calculating 

aircraft emissions. According to this 

method, the amount of pollutants 

(𝑉𝑂𝐶, 𝑁𝑂2, 𝐶𝑂) emitted over a 𝑑𝑖𝑗 distance 

is calculated as 𝐸𝑝1
𝐿𝑇𝑂 + 𝑅𝑝1

𝐶𝐶𝐷(𝑑𝑖𝑗). Here, 

𝐸𝑝1
𝐿𝑇𝑂represents the amount of pollutants 

(𝑉𝑂𝐶, 𝑁𝑂2, 𝐶𝑂) emitted during the LTO 

cycle, and 𝑅𝑝1
𝐶𝐶𝐷(𝑑𝑖𝑗)represents the amount 

of pollutants (𝑉𝑂𝐶, 𝑁𝑂2, 𝐶𝑂) emitted 

during the cruise cycle. Additionally, the 

amount of pollutants (𝑆𝑂2, 𝐶𝑂2) emitted 

over a 𝑑𝑖𝑗  distance is calculated as 𝐸𝑝2
𝐿𝑇𝑂 +

𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑗). Here, 𝐸𝑝2

𝐿𝑇𝑂represents the 

amount of pollutants (𝑆𝑂2, 𝐶𝑂2) emitted 

during the LTO cycle, and 𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑗) 

represents the amount of pollutants 

(𝑆𝑂2, 𝐶𝑂2) emitted during the cruise cycle. 

On the other hand, in real-world 

transportation problems, customers prefer 

to receive timely scheduling for the 

delivery of goods or services. However, it 

is important to note that in practice, there 

may be situations where some service 

providers face problems and violate the 

schedule to which they were committed. It 

should be noted that if a constraint must be 

satisfied, it is called “hard,” whereas if it 

can be violated, it is called “soft.” Violating 

soft constraints is usually penalized and 

then added to the objective function. In this 

mechanism, the time between the first and 

last requested service times is referred to as 

the requested time window. Demands that 

are fulfilled within this time window incur 

no penalties. Otherwise, they face penalties 

in the objective function. The goal in this 

case of sustainability is to design the 

network and allocate in such a way that it 

focuses on timely delivery. 

As shown in Fig. 2, in the proposed soft 

time window, 𝐸𝑖𝑗represents the lower 

bound of the time window, and 

𝐿𝑖𝑗represents the upper bound of the time 
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window. Ideally, if the demand is met 

within the specified time, which falls 

between 𝐸𝑖𝑗and 𝐿𝑖𝑗, there will be no 

penalty. Otherwise, a specific penalty will 

be incurred. 

 

Without Penalty
Penalty

Delay Cost(DCij)
Reject

Penalty

Early Cost(ECij)

Maxtime
Earliest Time 

(Eij) 

Latest Time

(Lij)

 
Figure 2- Time window for delivery of goods in the air transport system 

 

Thus, the problem has three objectives: the 

first objective minimizes transportation 

costs within the network, the second 

objective minimizes the emission of 

pollutants, and the third objective ensures 

that shipments arrive within the requested 

time window. 

Based on these objectives, the assumptions 

of the mathematical model are as follows: 
• There is a set of nodes that serve as 

origins and destinations of flows. 

• A non-hub node is connected to a 

hub node. 

• A hub node can be connected to 

multiple non-hub nodes. 

• The speed and capacity of the air 

fleet are uniform. 

• All nodes have sufficient flights to 

meet demands. 

• Hub nodes have limited capacity. 

• There is a time window for sending 

shipments from origin to 

destination. 

• Demand is considered an uncertain 

parameter and modeled as a 

trapezoidal fuzzy number. 

• The number of hub locations is 

predetermined and fixed. 

• Various types of connections 

between origin and destination 

nodes are possible. 

Given the available objectives in the 

mathematical model and the stated 

assumptions, the symbols used in the 

mathematical model are defined as follows: 

Parameters: 

𝑁     Total number of nodes  𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 
𝑝       Maximum number of predetermined 

hubs 
𝜔     Maximum allowable distance 

between a non-hub node and the assigned 

hub node 
𝑓𝑘      Fixed operational cost of a hub 𝑘 ∈
𝑁 
𝜗𝑘      Capacity of goods handling at the 

hub 𝑘 ∈ 𝑁 

𝑢𝑘      Cost of handling each unit of cargo 

at the hub 𝑘 ∈ 𝑁 
𝜏𝑖𝑗     Delivery time of goods between 

nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 

𝑑𝑖𝑗      Distance between nodes 𝑖 ∈ 𝑁 and 

𝑗 ∈ 𝑁 
𝜎𝑖𝑗      Maximum transfer time between 

two nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 

𝑐𝑖𝑗     Transportation cost per unit of cargo 

between nodes 𝑖 ∈ 𝑁 and  𝑗 ∈ 𝑁 
�̃�𝑖𝑗      Uncertain demand for cargo 

between nodes 
α      Discount factor for transportation 

costs (from hub to hub) 
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𝛽      Discount factor for transportation 

costs (from non-hub to hub and vice 

versa) 

𝐸𝐶𝑖𝑗    Penalty cost for meeting demand 

before the time window between 

nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 
𝐷𝐶𝑖𝑗     Penalty cost for meeting demand 

after the time window between nodes 𝑖 ∈
𝑁 and 𝑗 ∈ 𝑁 

𝐸𝑖𝑗    Lower bound of the time window for 

sending shipments between nodes 𝑖 ∈ 𝑁 

and 𝑗 ∈ 𝑁 

𝐿𝑖𝑗    Upper bound of the time window for 

sending shipments between nodes 𝑖 ∈ 𝑁 

and 𝑗 ∈ 𝑁 

𝜑    Capacity of the aircraft 
𝐸𝑝1

𝐿𝑇𝑂    The amount of emission of 

pollutants (𝑉𝑂𝐶, 𝑁𝑂2, 𝐶𝑂) emitted during 

the LTO cycle 

𝐸𝑝2
𝐿𝑇𝑂    The amount of emission of 

pollutants 𝑆𝑂2, 𝐶𝑂2 during the LTO cycle 

𝑅𝑝1
𝐶𝐶𝐷(𝑑𝑖𝑗)    Emission of 

pollutants 𝑉𝑂𝐶, 𝑁𝑂2, 𝐶𝑂 during the cruise 

cycle 

𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑗)    Emission of pollutants 

𝑆𝑂2, 𝐶𝑂2 during the cruise cycle 

 

Decision Variables: 

𝑋𝑘 1 if node 𝑘 ∈ 𝑁 is selected as a hub, 0 

otherwise. 

𝑍𝑖𝑘 1 if non-hub node 𝑖 ∈ 𝑁 is assigned to 

hub node 𝑘 ∈ 𝑁, 0 otherwise. 

𝑌𝑖𝑗 1 if direct transport is established 

between origin node 𝑖 ∈ 𝑁 and destination 

node 𝑗 ∈ 𝑁, 0 otherwise. 

𝑊𝑖𝑘𝑗 1 if transport between origin node 𝑖 ∈

𝑁 and destination node 𝑗 ∈ 𝑁 is through 

a 𝑘 ∈ 𝑁 hub, 0 otherwise. 

𝑉𝑖𝑘𝑙𝑗 1 if transport between origin node 𝑖 ∈

𝑁 and destination node 𝑗 ∈ 𝑁 is through 

𝑘 ∈ 𝑁 hub and then through hub 𝑙 ∈ 𝑁, 0 

otherwise. 

 

Based on the defined symbols, the multi-

objective mathematical model for hub 

location in air transportation under 

uncertainty is as follows: 

(1) 

𝑀𝑖𝑛 𝑍1

= ∑ ∑ 𝑐𝑖𝑗𝑑𝑖𝑗�̃�𝑖𝑗𝑌𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ ∑ ∑ ∑ 𝛽(𝑐𝑖𝑘𝑑𝑖𝑘 + 𝑐𝑘𝑗𝑑𝑘𝑗)�̃�𝑖𝑗𝑊𝑖𝑘𝑗

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ ∑ ∑ ∑ ∑ 𝑢𝑙�̃�𝑖𝑗𝑉𝑖𝑘𝑙𝑗

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 

∑ ∑ ∑ ∑ (𝛽(𝑐𝑖𝑘𝑑𝑖𝑘 + 𝑐𝑘𝑗𝑑𝑘𝑗)

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝛼(𝑐𝑘𝑙𝑑𝑘𝑙)) �̃�𝑖𝑗𝑉𝑖𝑘𝑙𝑗

+ ∑ ∑ ∑ 𝑢𝑘�̃�𝑖𝑗𝑊𝑖𝑘𝑗

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ ∑ 𝑓𝑘𝑋𝑘

𝑘∈𝑁

 

(2) 

𝑀𝑖𝑛 𝑍2 = ∑ ∑ (𝐸𝑝1
𝐿𝑇𝑂

𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝1
𝐶𝐶𝐷(𝑑𝑖𝑗)) ⌈

�̃�𝑖𝑗

𝜑
⌉ 𝑌𝑖𝑗

+ ∑ ∑ ∑ (2𝐸𝑝1
𝐿𝑇𝑂

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝1
𝐶𝐶𝐷(𝑑𝑖𝑘

+ 𝑑𝑘𝑗)) ⌈
�̃�𝑖𝑗

𝜑
⌉ 𝑊𝑖𝑘𝑗 + 

∑ ∑ ∑ ∑ (3𝐸𝑝1
𝐿𝑇𝑂

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝1
𝐶𝐶𝐷(𝑑𝑖𝑘 + 𝑑𝑘𝑙

+ 𝑑𝑘𝑗)) ⌈
�̃�𝑖𝑗

𝜑
⌉ 𝑉𝑖𝑘𝑙𝑗

+ ∑ ∑ (𝐸𝑝2
𝐿𝑇𝑂

𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑗)) ⌈

�̃�𝑖𝑗

𝜑
⌉ 𝑌𝑖𝑗 + 

∑ ∑ ∑ (2𝐸𝑝2
𝐿𝑇𝑂

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑘

+ 𝑑𝑘𝑗)) ⌈
�̃�𝑖𝑗

𝜑
⌉ 𝑊𝑖𝑘𝑗 + 

∑ ∑ ∑ ∑ (3𝐸𝑝2
𝐿𝑇𝑂

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝑅𝑝2
𝐶𝐶𝐷(𝑑𝑖𝑘 + 𝑑𝑘𝑙

+ 𝑑𝑘𝑗)) ⌈
�̃�𝑖𝑗

𝜑
⌉ 𝑉𝑖𝑘𝑙𝑗  

(3) 

𝑀𝑖𝑛 𝑍3

= ∑ ∑ 𝐸𝐶𝑖𝑗 max{0, 𝐸𝑖𝑗 − 𝜏𝑖𝑗} 𝑌𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ ∑ ∑ ∑ 𝐸𝐶𝑖𝑗 max{0, 𝐸𝑖𝑗 − 𝜏𝑖𝑘

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

− 𝜏𝑘𝑗} 𝑊𝑖𝑘𝑗 + 
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∑ ∑ ∑ ∑ 𝐸𝐶𝑖𝑗 max{0, 𝐸𝑖𝑗 − 𝜏𝑖𝑘 − 𝜏𝑘𝑙

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

− 𝜏𝑙𝑗} 𝑉𝑖𝑘𝑙𝑗

+ ∑ ∑ 𝐷𝐶𝑖𝑗 max{0, 𝜏𝑖𝑗 − 𝐿𝑖𝑗} 𝑌𝑖𝑗

𝑗∈𝑁𝑖∈𝑁

+ 

∑ ∑ ∑ 𝐷𝐶𝑖𝑗 max{0, 𝜏𝑖𝑘 + 𝜏𝑘𝑗

𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

− 𝐿𝑖𝑗} 𝑊𝑖𝑘𝑗

+ ∑ ∑ ∑ ∑ 𝐷𝐶𝑖𝑗 max{0, 𝜏𝑖𝑘 + 𝜏𝑘𝑙

𝑙∈𝑁𝑘∈𝑁𝑗∈𝑁𝑖∈𝑁

+ 𝜏𝑙𝑗 − 𝐿𝑖𝑗} 𝑉𝑖𝑘𝑙𝑗 

 𝑠. 𝑡.: 

(4) 𝑍𝑖𝑘 ≤ 𝑋𝑘 ,     ∀𝑖, 𝑘 ∈ 𝑁 

(5) ∑ 𝑍𝑖𝑘

𝑘∈𝑁

= 1,     ∀𝑖 ∈ 𝑁 

(6) ∑ 𝑋𝑘

𝑘∈𝑁

≤ 𝑝 

(7) 𝑑𝑖𝑗𝑍𝑖𝑗 ≤ 𝜔,     ∀𝑖, 𝑗 ∈ 𝑁 

(8) 𝑊𝑖𝑘𝑗 ≤ 𝑍𝑖𝑘 ,       ∀𝑖, 𝑗, 𝑘 ∈ 𝑁 

(9) 𝑊𝑖𝑘𝑗 ≤ 𝑍𝑗𝑘 ,       ∀𝑖, 𝑗, 𝑘 ∈ 𝑁 

(10) 𝑉𝑖𝑘𝑙𝑗 ≤ 𝑍𝑖𝑘 ,       ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 

(11) 𝑉𝑖𝑘𝑙𝑗 ≤ 𝑍𝑘𝑙 ,       ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 

(12) 𝑉𝑖𝑘𝑙𝑗 ≤ 𝑍𝑙𝑗,       ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 

(13) 
𝑌𝑖𝑗 + ∑ 𝑊𝑖𝑘𝑗

𝑘∈𝑁

+ ∑ ∑ 𝑉𝑖𝑘𝑙𝑗

𝑙∈𝑁𝑘∈𝑁

= 1,      ∀𝑖, 𝑗

∈ 𝑁 

(14) 

∑ ∑ �̃�𝑖𝑗𝑊𝑖𝑘𝑗

𝑗∈𝑁𝑖∈𝑁

+ ∑ ∑ ∑ �̃�𝑖𝑗𝑉𝑖𝑘𝑙𝑗

𝑙∈𝑁𝑗∈𝑁𝑖∈𝑁

+ + ∑ ∑ ∑ �̃�𝑖𝑗𝑉𝑖𝑙𝑘𝑗

𝑙∈𝑁𝑗∈𝑁𝑖∈𝑁

≤ 𝜗𝑘

+ 𝑀(1 − 𝑋𝑘),     ∀𝑘 ∈ 𝑁 

(15) 
𝜏𝑖𝑗𝑌𝑖𝑗 + (𝜏𝑖𝑘 + 𝜏𝑘𝑗)𝑊𝑖𝑘𝑗

+ (𝜏𝑖𝑘 + 𝜏𝑘𝑙 + 𝜏𝑙𝑗)𝑉𝑖𝑙𝑘𝑗

≤ 𝜎𝑖𝑗,     ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 

(16) 𝑋𝑘 , 𝑍𝑖𝑘 , 𝑌𝑖𝑗 , 𝑊𝑖𝑘𝑗 , 𝑉𝑖𝑙𝑘𝑗 ∈ {0,1},     ∀𝑖, 𝑗, 𝑘, 𝑙

∈ 𝑁 

Equation 1 shows the objective function of 

minimizing the total costs. The objective 

function of the total cost includes six 

components: 1. Transportation costs of air 

transportation (direct connection), 2. 

Transportation costs of air transportation 

(connection via one hub), 3. Transportation 

costs of air transportation (connection via 

two hubs), 4. Handling costs within the hub 

(connection via one hub), 5. Handling costs 

within the hub (connection via two hubs), 

6. Operational costs of establishing hubs. 

Equation (2) represents the objective 

function for minimizing aircraft emissions. 

In this equation, the mechanism and 

operational cycle of the aircraft are divided 

into two general parts: the LTO cycle and 

the CCD cycle.  

Equation (3) shows the social objective 

function of the problem, which includes 

timely delivery of goods to customers. In 

this equation, the aim is to minimize the 

penalty resulting from the time discrepancy 

of shipments for each origin-destination 

pair.  

Equation (4) ensures that a non-hub node 

can only be connected to a hub node where 

a hub has been established.  

Equation (5) states that a non-hub node can 

be connected to at most one hub node.  

Equation (6) guarantees that the number of 

hubs established in the network does not 

exceed a predetermined value.  

Equation (7) indicates that a non-hub node 

can only be connected to a hub node if the 

distance between them is less than a 

predetermined permissible limit.  

Equation (8) and (9) state that when two 

nodes are connected by a hub, both non-hub 

nodes should be assigned to the same hub 

node.  

Equation (10) to (12) indicate that in the 

connection of two nodes via two hub nodes, 

the non-hub node 𝑖 ∈ 𝑁 should be 

connected to the hub node 𝑘 ∈ 𝑁, and the 

non-hub node 𝑗 ∈ 𝑁 should be connected to 

the hub node 𝑙 ∈ 𝑁, and the hub node 𝑘 ∈
𝑁 should be connected to the hub node 𝑙 ∈
𝑁.  

Equation (13) states that only one 

connection is allowed between each origin-

destination pair (direct connection, 

connection via one hub, or connection via 

two hubs).  

Equation (14) indicates that each hub node 

has a limited capacity.  
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Equation (15) ensures that the shipping 

time for each origin-destination pair does 

not exceed a predetermined limit.  

Equation (16) defines the type of decision 

variables. 

 

As stated in the assumptions of the 

mathematical model, the demand parameter 

is considered as an uncertain parameter and 

is represented by a trapezoidal fuzzy 

number. Therefore, to control this 

parameter, the fuzzy programming method 

has been used. Consider the following 

linear mathematical programming model 

with the fuzzy demand parameter: 

(17) 𝑀𝑖𝑛 𝑍 = c𝑡𝑥 

 𝑠. 𝑡.: 

(18) 𝑥 ∈ 𝑁(�̃�, �̃�) = {𝑥 ∈ 𝑅𝑛|𝑎𝑖𝑗𝑥 ≥ 𝑞𝑖�̃�},      𝑖

∈ 𝑚, 𝑗     𝑥 ≥ 0 
where the parameter 𝑐 =
(𝑐1, 𝑐2, … , 𝑐𝑛), 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛, 𝑞𝑖�̃� =
(�̃�11, �̃�12, … , �̃�𝑚𝑛)𝑡used in the objective 

function is the coefficient vector, and the 

right-hand side is the parameter of the 

constraint (the demand value). The 

probability distribution function of the 

fuzzy demand parameter is assumed based 

on the characteristics of fuzzy numbers. 

Finally, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) represents the 

decision vector. For the feasibility and 

optimization of the problem presented in 

the above model, it is necessary to control 

the uncertain parameter in the objective 

function and constraints. Therefore, 

assuming the parameter as the minimum 

degree of constraint satisfaction, the 

controlled model is as follows: 

(19) 𝑀𝑖𝑛 𝑍 = c𝑡𝑥 

 𝑠. 𝑡.: 

(20) 𝑎𝑖𝑗𝑥 ≥ (1 − 𝛼′)𝐸1

𝑞𝑖𝑗 + 𝛼′𝐸2

𝑞𝑖𝑗 ,      𝑖

∈ 𝑚, 𝑗      
(21) 𝑥 ≥ 0,     𝛼 ∈ [0,1] 

In the above equation, 𝐸1

𝑞𝑖𝑗 , 𝐸2

𝑞𝑖𝑗
 is the 

expected value of the fuzzy number of the 

used demand parameter, which is 

calculated as follows: 

(22) 
𝐸1

𝑞𝑖𝑗
=

𝑞𝑖𝑗
1 + 𝑞𝑖𝑗

2

2
 

(23) 
𝐸2

𝑞𝑖𝑗
=

𝑞𝑖𝑗
3 + 𝑞𝑖𝑗

4

2
 

Based on this, the following relation can be 

used instead of the �̃�𝑖𝑗parameter: 

(24) 
�̃�𝑖𝑗 ≅ (1 − 𝛼′)

𝑞𝑖𝑗
1 + 𝑞𝑖𝑗

2

2
+ 𝛼′

𝑞𝑖𝑗
3 + 𝑞𝑖𝑗

4

2
 

 

 

Solution Methods 
Given the multi-objective nature of the 

mathematical model presented in this 

paper, the epsilon-constrained method is 

used for validation and sensitivity analysis, 

while algorithms such as NSGA-II, 

MOPSO, and MOWOA are employed to 

solve larger instances of the model. This 

section describes these solution methods in 

detail. 

Epsilon-Constrained Method 

In the epsilon-constrained method, one 

objective function is selected for 

optimization while the other objective 

functions are considered as constraints. 

These constraints have upper bounds 

defined by small values called epsilon. This 

method is a well-known approach for 

solving multi-objective optimization 

problems. By converting all but one of the 

objective functions into constraints at each 

stage, the problem is reduced to a single-

objective linear programming problem, 

which can be solved using standard linear 

programming techniques. 

(25) 
𝑀𝑖𝑛 𝑍1(𝑥) 

𝑍𝑖(𝑥) ≤ 𝜀𝑖 ,     ∀𝑖 = 2,3, … , 𝑛 

𝑥 ∈ 𝑋 

In this problem, 𝑋 represents the feasible 

solution space, and 𝑍𝑛(𝑥) is the 𝑛th 

objective function of the multi-objective 

optimization problem. In this method, we 

reduce the complexity of the objective 

space and increase the complexity of the 

solution space, which leads to adding more 

constraints to the problem and making it 

more complex compared to the original 
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problem. Another issue with this method is 

the proper estimation of epsilon 𝜀𝑖 , as an 

incorrect estimation might result in no 

feasible solution for the problem. However, 

with proper adjustment of 𝜀𝑖, the solution 

obtained from this method is generally 

better than that from other methods. Note 

that the computational complexity of this 

method is higher than that of the other 

methods introduced. 

The steps of the epsilon-constraint method 

are as follows: 

• One of the objective functions is 

selected as the main objective 

function. 

• The problem is solved each time 

with respect to one of the objective 

functions, and then the optimal 

values of each objective function 

are obtained. 

• The interval between the two 

optimal values of the secondary 

objective functions is divided into a 

pre-specified number of segments, 

and a value table for ε2. … . εn is 

obtained. 

• The problem is solved each time 

with the main objective function 

and each of the ε2. … . εn values. 

• The Pareto solutions found are 

presented. 

NSGA-II Algorithm 
The NSGA-II (Non-dominated Sorting 

Genetic Algorithm II), initially introduced 

by Deb et al. (2002), was developed to 

overcome the limitations of conventional 

optimization techniques, including 

computational complexity, absence of 

elitism, and the necessity of defining a 

niche parameter. This algorithm employs 

an elitist strategy to systematically refine 

the Pareto front, preserving superior 

solutions from previous generations while 

utilizing genetic operators to evolve new 

ones. By integrating selection, crossover, 

and mutation processes, NSGA-II ensures a 

well-distributed set of optimal solutions . 

In NSGA-II, solutions are first ranked 

based on their dominance relations and then 

sorted using a crowding distance metric to 

maintain diversity (Ahmadianfar et al., 

2017). Important tuning parameters such as 

iteration limits, population size, and 

mutation and crossover rates are generally 

determined through empirical testing. 

 

Execution Steps for NSGA-II: 

1. Generate an initial random 

population of size . 

2. Sort solutions using non-dominated 

sorting. 

3. Assign ranks based on Pareto 

dominance and apply variation 

operators to create offspring. 

4. Merge parent and offspring 

populations and categorize 

solutions using non-dominated 

ranking. 

5. Select individuals for the next 

iteration using crowding distance . 

6. Repeat until convergence criteria 

are satisfied. 

 

MOPSO Algorithm 

The Multi-Objective Particle Swarm 

Optimization (MOPSO) technique, as 

proposed by Coello et al. (2002), integrates 

swarm intelligence with an external archive 

that stores non-dominated solutions 

approximating the Pareto front. Each 

particle within the swarm adjusts its 

trajectory based on individual memory, 

local best-known solutions, and the best-

known global solution discovered by any 

swarm member. 

MOPSO ensures an effective balance 

between exploration and exploitation by 

leveraging these guiding principles. 

Parameter selection, including swarm size, 

iteration count, mutation rate, and archive 

size, is typically optimized through 

experimental tuning. 
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MOPSO Execution Process: 

1. Initialize the swarm and identify 

non-dominated solutions. 

2. Store superior solutions in an 

external archive. 

3. Discretize the search space and 

select reference leaders for swarm 

guidance. 

4. Update memory for each particle. 

5. Add newly found non-dominated 

solutions to the archive and remove 

dominated entries. 

6. Control archive capacity by 

eliminating redundant solutions. 

7. Repeat until the stopping condition 

is met. 

MOWOA Algorithm 

The Multi-Objective Whale Optimization 

Algorithm (MOWOA) draws inspiration 

from the cooperative hunting behavior of 

humpback whales, particularly their 

bubble-net feeding technique. This nature-

inspired metaheuristic method combines 

exploration (searching for global solutions) 

with exploitation (refining discovered 

solutions) to generate a well-balanced 

Pareto front. 

MOWOA dynamically adjusts search agent 

positions by leveraging adaptive encircling, 

spiral movement, and stochastic 

exploration techniques. 

Key Computational Phases in MOWOA: 

1. Randomly initialize search agents. 

2. Assess and record the best-

performing solutions. 

3. Update positions using a 

logarithmic spiral movement 

model. 

4. Apply adaptive encircling 

behaviors to improve convergence. 

5. Introduce randomized exploration 

mechanisms to enhance diversity. 

6. Continue iterations until the 

convergence condition is met. 

Table (1) shows the proposed parameter 

values for each level in metaheuristic 

algorithms. 

 
Table 1- Suggested parameter values of meta-heuristic algorithms 

Algorithm  Parametrs Level 1 Level 2 Level 3 Optima Level 

NSGA-II 

𝑀𝑎𝑥 𝑖𝑡 75 100 125 Level 3 
𝑁 𝑝𝑜𝑝 50 100 120 Level 2 

𝑃𝑐 0.05 0.06 0.07 Level 1 
𝑃𝑚 0.7 0.8 0.9 Level 3 

MOPSO 

𝑀𝑎𝑥 𝑖𝑡 75 100 125 Level 3 
𝑁 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 50 100 120 Level 2 

𝑐1 1 1.5 2 Level 1 
𝑐2 1 1.5 2 Level 1 
𝑤 0.7 0.8 0.9 Level 3 

MOWOA 

𝑀𝑎𝑥 𝑖𝑡 75 100 125 Level 3 
𝑁 𝑤ℎ𝑎𝑙𝑒 50 100 120 Level 2 

𝐴 1 2 3 Level 2 
C 1 2 3 Level 3 
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Analysis of Results 

 
This section of the paper analyzes various 

numerical examples for the hub location 

problem in distribution network issues. 

Therefore, in this section, the epsilon-

constraint method is used for validating and 

analyzing the sensitivity of the 

mathematical model, and the NSGA-II, 

MOPSO, and MOWOA algorithms are 

used to solve the model in larger sizes. 

 

Numerical example analysis with epsilon 

constraint 

Initially, to examine the mathematical 

model, a numerical example with 10 nodes 

was considered, where the maximum 

number of hubs created is 3. Due to the lack 

of real-world data, some of the problem's 

data are randomly used based on a uniform 

distribution, as shown in Table (2). 

 
Table 2- Value parameters according to uniform distribution  

Parameter Value Parameter Value 
𝜔 250 𝛼 0.6 

𝑓𝑘 ~𝑈(200,500) 𝛽 0.8 

𝑢𝑘 ~𝑈(0.1,0.2) 𝐸𝐶𝑖𝑗 1.2 

𝑑𝑖𝑗  ~𝑈(50,300) 𝐷𝐶𝑖𝑗  1.3 

𝑐𝑖𝑗  ~𝑈(2,3) 𝜑 50 

𝜏𝑖𝑗 [𝑑𝑖𝑗/10] 𝜎𝑖𝑗 ~𝑈(200,300) 

𝐸𝑝1
𝐿𝑇𝑂 1 𝜗𝑘 ~𝑈(2000,3000) 

𝑅𝑝1
𝐶𝐶𝐷  2 𝐸𝑝2

𝐿𝑇𝑂 3 

  𝑅𝑝2
𝐶𝐶𝐷  0.5 

�̃�𝑖𝑗  𝑞𝑖𝑗
1 ~𝑈(60,70) − 𝑞𝑖𝑗

1 ~𝑈(60,70) − 𝑞𝑖𝑗
1 ~𝑈(60,70) − 𝑞𝑖𝑗

1 ~𝑈(60,70) 

 

After designing the small-sized numerical 

example, the mathematical model was 

solved using the epsilon-constraint method. 

As a result of this analysis, 7 efficient 

solutions were obtained by each method. 

Fig. 3 shows the Pareto front and the set of 

efficient solutions obtained from solving 

the small-sized numerical example with the 

epsilon-constraint. 

 

Solutions 𝑍1 𝑍2 𝑍3 
1 2347536.55 98050.54 531.60 
2 2449664.99 102275.68 440.40 
3 2538709.05 95627.62 549.60 
4 2631678.08 108230.95 331.20 
5 2642442.57 107688.65 331.20 
6 2829071.09 115277.44 222.00 
7 3168316.32 123287.86 112.80  

 
Figure 3- Pareto front and set of efficient solutions to the small size problem 

 

The results in Fig. 3 show that 7 efficient 

solutions were obtained from exact solving 

methods. Analyzing the efficient solutions 

reveals that as the penalty costs for 

exceeding the time window decrease, the 

total hub location costs increase due to 
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changes in product transfer routes. Also, as 

the flow transfer time between different 

nodes decreases, the total hub location 

network costs also increase. 

Examining the first efficient solution to the 

problem shows that among the three 

potential nodes, nodes (1) and (5) are 

selected as main hubs, and other nodes are 

selected as non-hub nodes. In this analysis, 

nodes 2-3-4-6-9 are allocated to hub (1), 

and nodes 7-8-10 are allocated to hub (5). 

Since direct distribution of goods via 

freight transport is possible in this model, 

Table (3) shows all allocations made in the 

small-sized problem. 

 
Table 3- How to transfer between two nodes in the example of small size 

𝑖10 𝑖9 𝑖8 𝑖7 𝑖6 𝑖5 𝑖4 𝑖3 𝑖2 𝑖1  

𝑘5 Direct 𝑘5 𝑘5 Direct Direct Direct Direct Direct - 𝑖1 

Direct 𝑘1 𝑘1 → 𝑘5 𝑘1 → 𝑘5 Direct 𝑘1 𝑘1 𝑘1 - Direct 𝑖2 

Direct 𝑘1 Direct 𝑘1 → 𝑘5 Direct Direct Direct - 𝑘1 Direct 𝑖3 

Direct Direct Direct Direct Direct 𝑘1 - Direct 𝑘1 Direct 𝑖4 

Direct 𝑘1 Direct Direct 𝑘1 - 𝑘1 𝑘1 𝑘1 Direct 𝑖5 

Direct Direct 𝑘1 → 𝑘5 𝑘1 → 𝑘5 - 𝑘1 Direct Direct Direct Direct 𝑖6 

𝑘5 𝑘5 → 𝑘1 𝑘5 - 𝑘5 → 𝑘1 Direct Direct 𝑘5 → 𝑘1 Direct 𝑘5 𝑖7 

Direct 𝑘5 → 𝑘1 - 𝑘5 𝑘5 → 𝑘1 Direct Direct Direct 𝑘5 → 𝑘1 𝑘5 𝑖8 

Direct - 𝑘1 → 𝑘5 𝑘1 → 𝑘5 Direct 𝑘1 Direct 𝑘1 𝑘1 Direct 𝑖9 

- Direct Direct 𝑘5 Direct Direct Direct Direct Direct 𝑘5 𝑖10 

 

In the table above, it is observed that the 

connection between two nodes, either 

through one hub, two hubs, or directly, is 

indicated by the symbol “Direct”. Thus, the 

examined model is valid. Subsequently, the 

sensitivity of the problem to changes in 

important parameters is analyzed. Several 

important parameters were selected and 

changed, and efficient solution number 1 

was compared. Initially, sensitivity analysis 

was conducted under changes in 

coefficients α and β. Table (4) shows the 

variations in the objective functions of the 

first efficient solution under different 

coefficients α and β. 

 

Table 4- Changes of the objective functions of the first effective solution in different α and β value 
α β 𝑍1 𝑍2 𝑍3 

0.4 0.8 2283599.30 97534.66 532.80 
0.5 0.8 2313547.22 97826.15 531.60 

0.6 0.8 2347536.55 98050.54 531.60 

0.7 0.8 2365899.27 98234.21 531.60 

0.8 0.8 2381437.52 98234.21 531.60 

0.6 0.6 2056742.16 98234.21 531.60 

0.6 0.7 2201533.17 98234.21 531.60 

0.6 0.8 2347536.55 98050.54 531.60 

0.6 0.9 2467984.81 97621.27 532.80 

0.6 1 2594981.74 97621.27 534.00 

 

According to the results in Table (4), with 

increasing coefficients α and β, the network 

costs increase due to the rise in economic 

discount factors. Additionally, with an 

increase in coefficient α, the second 

objective function value increases, and the 

third objective function value decreases. In 

contrast, with an increase in coefficient β, 
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this trend is reversed, with the second 

objective function value decreasing and the 

third objective function value increasing. 

This difference is due to the change in the 

impact of discount factors resulting from 

the distribution of transport costs among 

hubs and non-hub nodes. Fig. 4 shows the 

variations in the objective function values 

of the problem under different coefficients 

α and β. 

 
Figure 4- Changes in the values of the objective functions of the problem in different α and β value 

 

Aircraft capacity is another parameter that 

affects the objective function values of the 

problem. Table (5) shows the variations in 

the objective function values for different 

aircraft capacities ranging from 30 to 70 

units . 

 
Table 5- Changes of the objective functions of the first efficient solution in different capacities of the aircraft 

𝜑 𝑍1 𝑍2 𝑍3 

30 2347536.55 121456.81 531.60 

40 2347536.55 110475.18 531.60 

50 2347536.55 98050.54 531.60 

60 2347536.55 96121.42 531.60 

70 2347536.55 86495.29 531.60 

 

The analysis of changes in the objective 

functions at different aircraft capacities for 

transporting products shows that this 

parameter only affects the second objective 

function, and with increasing capacity, the 

amount of environmentally harmful gas 

emissions decreases. This is due to the 

reduction in the number of aircraft used in 

the hub location network for air transport. 

Considering the uncertainty in demand 

parameters in this paper and the use of 

fuzzy programming methods to control the 

mathematical model, changes in the 

objective function values due to uncertainty 

rates are shown in Fig. 5. This analysis 

examines the objective function values of 

the problem at uncertainty rates of 0.1, 0.3, 

0.5, 0.7, and 0.9. 
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Figure 5- Changes in the values of the objective functions of the problem in the uncertainty rate 

 

Fig. 5 shows that with the increase in 

uncertainty rates, the demand values for 

nodes have increased. This increase in 

demand has led to higher product transfer 

costs through the air transport system and 

also increased the level of environmental 

pollutant emissions. 

Before analyzing numerical examples of 

larger sizes, this section addresses solving a 

small-sized numerical example using 

NSGA-II, MOPSO, and MOWOA 

algorithms. The data and size of the 

numerical example are consistent with the 

previous example, which was solved using 

exact methods. Due to the large number of 

efficient solutions obtained through these 

algorithms, a comparison of comparison 

indices and Pareto fronts between different 

solution methods is provided as shown in 

Fig. 6. 

 

 

Factor EC 
NSGA 

II 
MOPSO MOWOA 

NPF 7 27 32 38 

MSI 4356.4 3658.6 3594.6 3795.2 

SM 0.42 0.59 062 0.63 

CPT 234.1 31.2 28.9 36.4 

 

 
 

Figure 6- Pareto front comparison indices obtained from solving a small numerical example with meta-heuristic 

algorithms 

 

The results of solving the small-sized 

model with metaheuristic algorithms show 

that the convergence of the obtained 

solutions is close to the epsilon-constraint 

method. Additionally, the solving time 

using metaheuristic algorithms is 

significantly less than that of the epsilon-

constraint method. In these results, 

MOWOA achieved the highest NPF and 

MSI values, NSGA-II achieved the lowest 

SM value, and MOPSO achieved the lowest 

CPT value. 
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Analysis of numerical examples with 

meta-heuristic algorithms 
 

After analyzing the small-sized numerical 

example and the sensitivity analysis of the 

mathematical model, the analysis of larger-

sized numerical examples with different 

solution methods was conducted. 

Accordingly, 10 numerical examples were 

designed as shown in Table (6). 

 
Table 6- Size of numerical examples in larger size 

 1 2 3 4 5 6 7 8 9 10 

# Node 15 30 45 60 80 90 100 110 120 150 

# Hub 6 10 15 20 35 40 45 50 60 75 

 

After designing the numerical examples, 

they were solved using various solution 

methods. According to the obtained results, 

only numerical example number 1 was 

solved by exact methods in less than 1000 

seconds. Therefore, Table (7) shows only 

the comparison indices of efficient 

solutions in large-sized numerical examples 

between metaheuristic algorithms. 

 
Table 7- Indicators of the comparison of efficient solutions in different numerical examples 

 NSGA-II MOPSO MOWOA 

Numerical 
Example 

𝑁𝑃𝐹 𝑀𝑆𝐼 𝑆𝑀 𝐶𝑃𝑇 𝑁𝑃𝐹 𝑀𝑆𝐼 𝑆𝑀 𝐶𝑃𝑇 𝑁𝑃𝐹 𝑀𝑆𝐼 𝑆𝑀 𝐶𝑃𝑇 

1 32 4028 0.42 54.60 38 4749 0.11 68.19 50 3822 0.24 62.81 

2 36 2867 0.48 62.03 19 2004 0.23 80.01 48 2575 0.16 72.74 

3 48 4015 0.23 69.70 40 3383 0.27 97.17 41 4215 0.33 87.20 

4 43 4085 0.37 77.74 37 3270 0.21 116.3 35 2728 0.20 103.0 

5 32 2203 0.28 88.43 15 3387 0.18 137.2 40 4752 0.12 120.1 

6 40 2764 0.43 98.49 37 4314 0.43 164.4 43 2807 0.40 142.1 

7 34 2672 0.41 112.9 21 2964 0.27 204.7 37 4296 0.20 174.7 

8 40 4003 0.17 126.7 20 4352 0.46 235.6 43 2565 0.28 198.7 

9 35 4533 0.44 139.3 29 3410 0.26 274.2 41 2862 0.38 228.5 

10 34 3033 0.50 156.5 32 2102 0.41 319.7 38 2273 0.24 263.3 

Average 37.4 3420 0.373 98.6 28.8 3393 0.283 169.7 41.6 3289 0.255 145.3 

 

Reviewing the comparison indices 

indicates that NSGA-II achieved the 

highest average MSI and the lowest CPT 

value; MOPSO achieved the lowest 

average SM, and MOWOA achieved the 

highest average NPF. Additionally, 

examining the trend of changes in average 

CPT shows that with the increase in 

problem size, CPT increases exponentially. 

Fig. 7 shows a comparison of average 

indices in solving large-sized problems 

with metaheuristic algorithms. 
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Figure 7- Comparison of factors in solving large size problems with meta-heuristic algorithms 

 

The review results indicate that each 

algorithm was efficient in achieving a 

specific index, so TOPSIS was used to 

prioritize the efficient algorithms. In this 

method, the weight of each index is 

considered to be 0.25. Table (8) 

summarizes the ranking results of 

algorithms using the TOPSIS method. 

 
Table 8- Ranking meta-heuristic algorithms with TOPSIS 

Algorithm NPF MSI SM CPT CI Rank 
NSGA-II 37.4 3420 0.373 98.6 0.770 1 
MOPSO 28.8 3393 0.283 169.7 0.666 2 

MOWOA 41.6 3289 0.255 145.3 0.303 3 

 

By comparing the CI index, it can be stated 

that NSGA-II exhibits higher efficiency in 

solving the hub location problem for air 

cargo transport with respect to stability 

compared to MOPSO and MOWOA. 

       

Summary and Conclusion 

 

The significance of this study lies in its 

comprehensive approach to addressing 

some of the most pressing challenges in air 

cargo transportation. With the growing 

importance of sustainable practices in 

logistics, the proposed model provides a 

practical solution for minimizing 

environmental impacts, which is essential 

in an industry that contributes significantly 

to global CO2 emissions. Additionally, by 

incorporating time-sensitive logistics into 

the hub network design, the model ensures 

that service levels are maintained, thereby 

helping companies to meet customer 

expectations and avoid penalties for late 

deliveries . 

 

Moreover, the use of fuzzy logic to account 

for uncertainty in demand adds a layer of 

realism to the model, making it more 

applicable to real-world scenarios where 

fluctuations in demand are common. This 

study’s findings can help logistics 

companies optimize their air cargo 

networks while simultaneously meeting 

environmental regulations and improving 

operational efficiency.  This paper 

addressed the modeling and solving of a 

hub location problem for air cargo transport 

considering sustainability under 

uncertainty. The primary goal of 
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establishing and designing a hub network is 

to exploit cost economies of scale. 

However, in recent years, the issue of 

environmental pollutant emissions has 

become increasingly important, and 

research in this area is growing. 

Considering that the air transport industry 

can have a significant impact on pollutant 

emissions, this paper aimed to minimize 

environmental pollutant emissions 

alongside economic and social aspects. The 

proposed model seeks to determine nodes 

as hubs and allocate non-hub nodes to hubs 

under demand uncertainty. 

 

The results of the mathematical model 

analysis using fuzzy programming methods 

showed that as penalty costs for delays 

decrease, the costs associated with hub 

location and allocation increase, which also 

leads to increased environmental pollutant 

emissions. Specifically, 7 efficient 

solutions were obtained using the epsilon-

constraint method, 27 efficient solutions 

using NSGA-II, 32 efficient solutions using 

MOPSO, and 38 efficient solutions using 

MOWOA. The analyses showed a high 

convergence of metaheuristic algorithms in 

achieving efficient solutions with much 

lower CPT and higher NPF. Analyzing the 

first efficient solution and examining 

uncertainty rates revealed that increased 

demand raises the costs associated with 

product distribution through the air 

transport system, and the fixed aircraft 

capacity relative to the increase in demand 

leads to greater use of the air transport 

system, which increases environmental 

pollutant emissions. 

 

Further analysis with metaheuristic 

algorithms showed that NSGA-II generally 

has higher efficiency in achieving CPT and 

MSI. Meanwhile, MOPSO achieved the 

best SM, and MOWOA achieved the best 

NPF. By comparing the CI index, NSGA-II 

proved to be an efficient algorithm for 

solving the proposed model in this paper. 

Future research is recommended to 

consider different types of aircraft with 

varying capacities and limited numbers for 

sending shipments. Additionally, the 

mathematical model should be considered 

in a multi-period and dynamic manner. The 

use of other solving methods to improve 

efficiency and solve the model in less time 

and for larger dimensions is also suggested 

as another recommendation. 
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