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Abstract

We present a robust neural watermarking framework for scientific data integrity, targeting high-
dimensional fields common in climate modeling and fluid simulations. Using a convolutional autoencoder,
binary messages are invisibly embedded into structured data such as temperature, vorticity, and geopoten-
tial. Our method ensures watermark persistence under lossy transformations - including noise injection,
cropping, and compression - while maintaining near-original fidelity (sub-1% MSE). Compared to classical
singular value decomposition (SVD)-based watermarking, our approach achieves >98% bit accuracy and
visually indistinguishable reconstructions across ERA5 and Navier-Stokes datasets. This system offers a
scalable, model-compatible tool for data provenance, auditability, and traceability in high-performance
scientific workflows, and contributes to the broader goal of securing AI systems through verifiable,
physics-aware watermarking. We evaluate on physically grounded scientific datasets as a representative
stress-test; the framework extends naturally to other structured domains such as satellite imagery and
autonomous-vehicle perception streams. 1

1 Introduction

Watermarking is a technique for embedding imperceptible identifiers into data, providing a mechanism for
verifying data integrity, ensuring provenance, and asserting intellectual property. While widely used in digital
media, watermarking is now increasingly relevant to scientific workflows, where datasets are shared across
research teams, public archives, and machine learning pipelines. Protecting the authenticity and traceability
of scientific data is essential for fostering reproducibility, enabling compliance with open science policies, and
preventing unauthorized use or tampering [1, 2, 3]. While watermarking is common in digital photography
and copyright enforcement, scientific image data - where pixel values carry quantitative meaning - requires
domain-aware solutions that preserve physical realism.

Beyond academic reproducibility, scientific data integrity is also a pillar of AI security [4]. As AI
systems become embedded in research and operational pipelines - powering climate forecasting, fluid dynamics
modeling, and scientific discovery - ensuring that these systems train and infer on authentic, unaltered data is
critical. Watermarking offers a verifiable mechanism for tracking how data flows through AI systems, which
is increasingly important for enterprises and public-sector institutions seeking to build secure, auditable, and
trustworthy AI [5].

1Licensed under CC BY-NC 4.0 for non-commercial research. Commercial use requires permission. See https://github.com/

KrtiT/scientific-data-watermarker/LICENSE
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Scientific datasets - such as climate reanalyses, fluid dynamics simulations, and astronomical surveys - are
inherently high-dimensional, continuous, and physically constrained. This complexity poses a fundamental
challenge for traditional watermarking methods. Classical techniques such as discrete cosine transform
(DCT), wavelet-based embedding, and singular value decomposition (SVD) can embed information, but often
introduce visual or numerical artifacts, and lack robustness against typical transformations like compression,
cropping, or noise injection [6, 7, 8]. More importantly, they fail to preserve the scientific fidelity required for
downstream analysis and modeling.

To address these limitations, we propose a robust neural watermarking method tailored to scientific
data. Our approach uses a UNet-style convolutional autoencoder to embed binary watermarks directly into
structured data fields, such as temperature and vorticity maps. The watermark, represented as a 1×100
binary vector, is injected either at the model input or into hidden layers. The encoder-decoder architecture
learns to minimize mean squared error (MSE) while maximizing watermark retrieval accuracy. We also
introduce a Physics Loss term that enforces domain-specific constraints on the output, ensuring that the
watermarked data retains its scientific realism [9, 10].

We validate our method on several benchmark datasets, including ERA5 global climate reanalysis fields
and two-dimensional Navier-Stokes simulations. These represent critical domains where data precision and
traceability are paramount. In addition to standard distortion metrics such as PSNR and SSIM, we evaluate
robustness under transformation and compare our framework with a traditional SVD baseline. Across most
metrics and datasets, our method achieves imperceptible watermarking, robust decoding, and high fidelity,
while preserving the physical properties essential for scientific use.

Our main contributions are as follows:

• We introduce a neural watermarking framework for high-dimensional scientific datasets - ERA5, Fluid
Flow, and Cosmology - that achieves imperceptible embedding while maintaining fidelity and traceability.

• We identify limitations of classical SVD watermarking, such as blocky artifacts and low robustness, and
demonstrate that our UNet-based model produces visually and numerically smoother outputs.

• We propose a novel Physics Loss function that preserves physical realism for ERA5 and Fluid Flow
datasets, enabling domain-aware watermarking that SVD cannot achieve.

• We achieve 100% decoding accuracy across all datasets and show that our UNet model outperforms
SVD in pixel-level (MSE), perceptual (SSIM), and scientific metrics - except for Fluid Flow, where
SVD slightly generalizes better.

• We discuss the trade-offs between classical and neural approaches: UNet offers adaptability and
physical fidelity but requires training per domain; SVD is fixed, scalable, but less robust and physically
constrained.

These contributions not only advance the state of scientific data watermarking but also support the
development of secure, trustworthy AI systems by ensuring data traceability, auditability, and integrity
throughout complex machine learning pipelines.

2 Datasets

We evaluate our watermarking framework using three scientific image datasets from the SuperBench benchmark
suite for scientific machine learning [11]. SuperBench provides high-resolution datasets and baseline models
designed to test super-resolution (SR) methods across diverse scientific domains. Each dataset includes paired
low- and high-resolution images and is accompanied by standard evaluation metrics - including pixel-wise
error, perceptual quality, and domain-specific physics metrics. Below, we summarize each dataset and the
associated physical loss functions used in our experiments.
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2.1 Fluid Flow Dataset

The fluid flow dataset consists of three channels: velocity in the x-direction, velocity in the y-direction, and
vorticity.

• Dataset size: 9,600 training images, 1,600 validation images, 400 test images.

• Image resolution: 128×128 (low-resolution), 1024×1024 (high-resolution).

• Physics loss: A divergence-based loss function that quantifies how physically realistic the watermarked
outputs are. Lower values indicate better preservation of fluid dynamics. See [11], page 7 for details.

• Code reference: train UNet FluidFlow.ipynb.

2.2 Cosmology Dataset

The cosmology dataset contains two channels: temperature and baryon density.

• Dataset size: 9,600 training images, 1,600 validation images, 400 test images.

• Image resolution: 256×256 (low-resolution), 2048×2048 (high-resolution).

• Physics loss: None. No physics-based constraint was used, as cosmology data remains underexplored
in supervised scientific ML settings.

2.3 ERA5 Weather Dataset

The ERA5 dataset includes three channels: kinetic energy, temperature, and total column water vapor.

• Dataset size: 11,680 training images, 2,920 validation images, 365 test images.

• Image resolution: 90×180 (low-resolution), 720×1440 (high-resolution).

• Physics loss: 1−ACC (Anomaly Correlation Coefficient), where anomalies are computed as deviations
from the batch mean. Higher ACC and lower physics loss indicate better scientific fidelity [11].

• Code reference: train UNet ERA5.ipynb.

2.4 Data Loading and Preprocessing

All datasets are loaded using the getData function from SuperBench/src/data loader crop.py. Each
dataset includes:

• A training set.

• Two validation sets (interpolation and extrapolation).

• Two test sets (interpolation and extrapolation).

In our experiments, we use only the interpolation subsets for validation and testing (valid1 loader

and test1 loader). For example, if ERA5 training spans 2008, 2010, 2011, and 2013, the interpolation set
includes 2009, while 2015 is held for extrapolation.

We modified the original data loader script to ensure random shuffling across all phases. This is especially
important for time-series data like ERA5, where batch-dependent operations (e.g., anomaly computation) are
sensitive to temporal order. To preserve time order in future experiments, users can disable shuffling via
shuffle=False.

Note: Actual image counts may slightly differ due to incomplete final batches. For instance, using a
batch size of 32, the 365-image ERA5 test set is truncated to 352 images. The numbers above refer to
interpolation-based subsets only. Sample visualizations from each dataset are shown in Section 5.
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2.5 Adaptability and Future Work

This study focuses on training models with low-resolution images to reduce computational overhead. Future
extensions may explore full-resolution training, especially for cosmology and weather data, where finer
structures could benefit from higher spatial fidelity.

3 Methods

To address the limitations of traditional watermarking approaches - particularly their inability to preserve
the physical integrity of scientific data - we developed two distinct techniques: a classical Singular Value
Decomposition (SVD) watermarker and a deep learning-based UNet watermarker. Both approaches aim to
embed imperceptible watermarks while preserving the scientific properties and usability of the data.

At the core of any image watermarking system are two components: an encoder that embeds a message
into the image, and a decoder that retrieves it. In our setup, the watermark is a binary message string
embedded such that the watermarked image remains visually and numerically similar to the original. A
unique feature of our UNet-based decoder is its ability to extract the inverse of the encoded message from
non-watermarked images. For instance, if the embedded message is “1001,” the decoder outputs “1001” from
the watermarked image and “0110” from the original. This property is not shared by the SVD watermarker.

3.1 SVD Watermarker

The SVD watermarker splits an image into blocks and applies Singular Value Decomposition to each block.
Message bits are embedded into the first singular values of each block. We adapt the “dwtDctSvd” method
from [12], originally developed for RGB images, by removing the YUV color projection step and applying the
watermarking independently to each scientific data channel.

Our implementation is available in evaluate watermarkers.ipynb. This algorithm requires no training.
It operates on input channels normalized to the [0, 255] range, as expected by the original thresholding logic.

3.2 UNet Watermarker

The UNet watermarker is a deep convolutional autoencoder adapted from the PyTorch implementation in
https://github.com/milesial/Pytorch-UNet. The architecture includes “Up,” “Down,” and “Double-
Conv” modules implemented in SuperBench/unet utils/blocks.py. Two versions were explored: one in
which the message is injected before the first downsampling layer, and another where it is embedded into the
last downsampling layer. All experiments used the second configuration by setting args.forward version

= 2.
Each dataset required minor architecture changes to account for different image dimensions and channel

counts. Prior to training, images were normalized using dataset-specific means and standard deviations from
SuperBench/utils.py. The message “Hello World!” - converted to a 1×100 binary vector - was used as the
embedded payload. Early experiments using random messages each epoch proved unreliable, and thus were
discontinued.

Three loss functions guided training:

• Image loss: Mean Squared Error (MSE) between the input and reconstructed image, to ensure
imperceptibility.

• Message loss: Binary cross-entropy between the decoded watermark and the true message, plus the
negative BCE of the decoded inverse from the original image.

• Physics loss: A domain-specific loss ensuring that watermarked images maintain their scientific realism
(see Section 2 for definitions per dataset).

Unlike classical methods, the UNet decoder is trained to retrieve the inverse of the message from
non-watermarked images. This enables a built-in watermark authentication check.
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Training Procedure

For the Cosmology dataset, models were trained for 50 epochs using only image and message losses, since no
physics loss was defined. For the ERA5 and Fluid Flow datasets, training followed a two-phase strategy: 100
epochs using image and message losses, followed by 20 epochs with the combined loss (image + message +
physics). This allowed the model to first learn accurate reconstructions before introducing domain-specific
constraints.

Early stopping was employed based on validation image loss, subject to a decoder accuracy threshold of
98%. The best-performing model under this constraint was saved. Each epoch required approximately 2–4
minutes on a NERSC GPU node.

All models used the Adam optimizer with a learning rate of 1× 10−3 and a batch size of 32. For the SVD
watermarker, which is deterministic and training-free, we consistently embedded the message “test.”

3.3 Watermarking Network Architecture

Our network design follows prior encoder-decoder watermarking architectures [13]. The encoder is a UNet that
receives an input X ∈ RB×C×H×W and outputs a perturbed but visually identical image X ′ ∈ RB×C×H×W .
For our experiments, we use C = 3, H = 128, and W = 128. The decoder is a mirrored downsampling
network that maps the watermarked image back to a decoded message vector M ′ ∈ R1×100, approximating
the original binary message M .

To embed the message, we explored two injection strategies:

1. Expand M to match the shape of the UNet’s input layer (64× 128× 128) using linear layers.

2. Compress M to a latent representation (1024× 8× 8) and inject it into a deeper UNet layer.

All experiments used the second method for its stronger performance.
The binary message is created by converting the string to bytes and then to a binary tensor. The decoder

outputs real-valued predictions between 0 and 1, which are binarized and compared bitwise against the
original message to compute decoding accuracy.

Because both the encoder and decoder must be co-optimized, the full loss is defined as:

L = MSE(X,X ′) +MSE(M,M ′)

3.4 Incorporating Physics Loss

While encoder-decoder architectures can produce high-fidelity reconstructions, they may fail to preserve
scientific validity. To address this, we incorporate a Physics Loss term that penalizes deviations from known
physical constraints [14, 15]. The full loss becomes:

L = MSE(X,X ′) +MSE(M,M ′) + λ · PhysicsLoss(X ′)

Here, λ serves as a scaling factor to normalize the larger magnitude of the physics loss during early
training. However, naive inclusion of physics loss can destabilize training due to conflicting optimization
objectives.

To mitigate this, we use a loss scheduler. For the first 30 epochs, the model is trained using only image
and physics losses. After epoch 30, the message loss is introduced. This staged training encourages the model
to prioritize physical realism early on before learning to decode messages.

In total, we trained for 50 epochs: 30 with physics loss only, followed by 20 epochs with all loss terms.
This curriculum significantly stabilized training and improved final accuracy. All training used a batch size of
32.

4 Evaluation Metrics

We evaluate the performance of our two watermarking methods - SVD and UNet - on three scientific datasets
using quantitative and qualitative metrics. All evaluations are performed on non-normalized versions of the
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original and watermarked images to ensure comparability across methods, as SVD and UNet apply different
normalization procedures (see Section 3). Evaluation code is available in evaluate watermarkers.ipynb.

Quantitative Metrics

We report four main metrics:

• Peak Signal-to-Noise Ratio (PSNR): Measures pixel-wise fidelity between the original and water-
marked images. Higher PSNR values indicate less distortion. Computed in decibels (dB).

• Structural Similarity Index Measure (SSIM): Captures perceptual similarity by evaluating
luminance, contrast, and structure. Values range from 0 to 1, with higher values indicating better
perceptual quality [11].

• Physics Loss: A domain-specific error function quantifying deviation from physical constraints. This
is computed only for the ERA5 and Fluid Flow datasets. For ERA5, it is defined as 1−ACC, where
ACC (Anomaly Correlation Coefficient) measures correlation between anomalies in the watermarked
and original images. Lower physics loss implies better preservation of scientific properties (see Section 2
for definitions).

• Decoder Accuracy: Measures the percentage of watermarked images from which the full hidden
message is successfully recovered. For the SVD method, decoding is performed per channel; overall
accuracy is the proportion of channels with correct decoding. For the UNet model, the entire multi-
channel image is decoded at once, and accuracy is computed over all test images.

Qualitative Evaluation

We also provide side-by-side visualizations of original and watermarked images to assess perceptual similarity.
The aim is to ensure that watermarked outputs are visually indistinguishable from their originals, both in
overall structure and local texture.

Metric Computation

For multi-channel images, PSNR and SSIM are first computed per channel and then averaged. This process is
repeated for all test images, and the final metric is reported as the test set average. Physics loss is computed
over the entire multi-channel image in a single pass, consistent with its domain-specific interpretation.

Decoder accuracy is computed differently depending on the method:

• SVD: Each channel is decoded independently; accuracy reflects the percentage of correctly decoded
channels.

• UNet: The full image is decoded in one step; accuracy is the fraction of images with complete message
recovery.

Summary of Desired Outcomes

The following conditions reflect optimal watermarking performance:

• High PSNR and SSIM - for imperceptible embedding.

• Low physics loss - for preserving scientific validity.

• High decoder accuracy - for robust message retrieval.

Importantly, because SVD embeds messages channel-by-channel and UNet operates on the entire multi-
channel tensor, metrics must be interpreted accordingly. Our evaluation framework accounts for these
methodological differences to ensure fair and consistent comparisons.
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5 Results

We evaluate the performance of our watermarking approaches - UNet and SVD - on three scientific datasets:
ERA5, Fluid Flow, and Cosmology. Each model is assessed using PSNR, SSIM, decoder accuracy,
and physics loss (where applicable). Evaluation metrics are defined in Section 4, and visual results are
supplemented by training diagnostics and close-up image comparisons.

5.1 Fluid Flow Results

The Fluid Flow dataset presented notable generalization challenges for the UNet model. While both models
achieved 100% decoder accuracy, UNet slightly underperformed SVD in PSNR and SSIM. This suggests
the UNet may have overfit to the training distribution. However, UNet achieved a markedly lower physics
loss, indicating better preservation of underlying fluid dynamics.

Table 1: Fluid Flow – Test Set Metrics (384 images)

Watermarker Mean PSNR Max PSNR Mean SSIM Max SSIM Physics Loss Decoder Accuracy

SVD 28.5 30.0 0.92 0.93 0.41 100%
UNet 25.9 26.9 0.90 0.91 0.02 100%

5.2 ERA5 Results

For the ERA5 climate dataset, UNet significantly outperformed SVD across all metrics. It achieved
substantially higher PSNR (49.4 vs. 29.7), nearly perfect SSIM (0.997 vs. 0.82), and a very low physics loss
(0.0004). These results demonstrate that UNet preserved both image fidelity and scientific structure more
effectively.

Table 2: ERA5 – Test Set Metrics (352 images)

Watermarker Mean PSNR Max PSNR Mean SSIM Max SSIM Physics Loss (1 - ACC) Decoder Accuracy

SVD 29.7 30.9 0.82 0.83 0.072 100%
UNet 49.4 53.2 0.997 0.999 0.0004 100%

5.3 Cosmology Results

In the Cosmology dataset, which lacks a defined physics loss, UNet still achieved substantially better PSNR
and SSIM than SVD. This indicates superior fidelity and perceptual consistency.

Table 3: Cosmology – Test Set Metrics (384 images)

Watermarker Mean PSNR Max PSNR Mean SSIM Max SSIM Physics Loss Decoder Accuracy

SVD 27.3 29.5 0.72 0.74 N/A 100%
UNet 38.6 43.9 0.985 0.991 N/A 100%

5.4 Qualitative Comparison

Visual inspection further highlights differences between methods. SVD tends to introduce visible block
artifacts, especially in structured data like Cosmology and ERA5. In contrast, UNet watermarks are visually
imperceptible.
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Figure 1: Training and validation losses for Fluid Flow. Validation loss is consistently higher than training,
indicating overfitting risk.
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Figure 2: Example Fluid Flow test image (128×128 px). Top to bottom: velocity in x, velocity in y, and
vorticity. Left: Input; Middle: SVD; Right: UNet.
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Figure 3: Training and validation losses for ERA5. UNet converges to low physics loss, preserving anomaly
structure.
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Figure 4: ERA5 test image (90×180 px). Channels: kinetic energy, temperature, total column water vapor.
Left: Input; Middle: SVD; Right: UNet.
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Figure 5: Cosmology test image (256×256 px). Channels: temperature and baryon density. Left: Input;
Middle: SVD; Right: UNet.

Figure 6: Close-up view (64×64 px) from a test image. SVD watermarking produces blocky artifacts; UNet
preserves smooth gradients.
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5.5 Summary of Observations

• Visual Fidelity: UNet consistently outperforms SVD in PSNR and SSIM across all datasets.

• Scientific Validity: UNet yields significantly lower physics loss in ERA5 and Fluid Flow, preserving
domain-relevant structure.

• Robust Decoding: Both models achieve 100% decoder accuracy on all datasets.

• Perceptual Impact: SVD introduces detectable artifacts; UNet maintains imperceptibility.

5.6 Ablation: Impact of Physics Loss

We further compare variants of our model with and without physics loss. In both Fluid Flow and ERA5,
physics-aware training improves both scientific realism (physics loss, ACC) and maintains bit accuracy.

Table 4: Fluid Flow – Physics Loss and Bit Accuracy Ablation

Model Variant Physics Loss Bit Accuracy

Invisible Watermark Baseline 21.54 0.992
Ours (f1, no physics loss) 2.56 1.000
Ours (f2, no physics loss) 2.28 1.000
Ours (f1, with physics loss) 0.0068 1.000
Ours (f2, with physics loss) 0.0027 1.000

Table 5: ERA5 – ACC and Bit Accuracy Ablation

Model Variant ACC Bit Accuracy

Invisible Watermark Baseline 0.11 0.995
Ours (f1, no ACC loss) 0.55 1.000
Ours (f2, no ACC loss) 0.56 1.000
Ours (f1, with ACC loss) 0.91 1.000
Ours (f2, with ACC loss) 0.91 1.000

5.7 Training Regimes and Early Stopping

Training was conducted in two phases: (1) 100 epochs with image and message losses, followed by (2) 20
epochs with added physics loss. Early stopping was based on validation image loss, provided decoder accuracy
exceeded 98%.
Note: Epochs are zero-indexed in our training logs. For example, “early stop after 82 epochs” means training
was halted at Epoch 81.

• Fluid Flow: Early stopping at epoch 81 (phase 1) and epoch 19 (phase 2).

• ERA5: Early stopping at epoch 90 (phase 1) and epoch 16 (phase 2).

• Cosmology: Trained for 50 epochs, early stopping at epoch 33.

Training and validation losses are visualized in the Appendix.

5.8 Evaluation Code and Reproducibility

All results in this section were generated using evaluate watermarkers.ipynb. Evaluation pipelines include
standardized PSNR, SSIM, physics loss, and decoder accuracy computations. Users can reproduce our visual
comparisons by enabling full-resolution output mode and inspecting localized patches in the image grid.
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6 Discussion

We compared the performance of two watermarking techniques - UNet and SVD - across three scientific
datasets: ERA5, Fluid Flow, and Cosmology (see Section 2). Both methods achieved 100% decoder
accuracy across all datasets (Tables 1, 2, 3), demonstrating reliable message recovery. However, the UNet
model consistently outperformed the SVD baseline in perceptual fidelity (PSNR, SSIM) for ERA5 and
Cosmology, and achieved significantly lower physics loss for datasets with domain-specific constraints (ERA5
and Fluid Flow).

Despite its general superiority, the UNet model underperformed slightly on Fluid Flow in PSNR and
SSIM. This may be attributed to its overfitting tendencies, as indicated by the persistent validation–training
loss gap (Figure 1). Nonetheless, UNet’s significantly lower physics loss (0.02 vs. 0.41 for SVD) underscores
its value in preserving scientific structure.

From a qualitative standpoint, SVD watermarking introduced blocky artifacts - an expected limitation
due to its block-wise embedding mechanism. These artifacts are especially apparent in close-up visualizations
(Figure 6). In contrast, UNet watermarking produced smooth, imperceptible modifications (Figures 4–5),
making it more suitable for applications requiring visual integrity.

In summary, the UNet watermarker offers a compelling solution for watermarking scientific data where
preservation of both visual and physical realism is critical. Its differentiable architecture, ability to incorporate
custom physics losses, and smooth output reconstructions position it as a powerful tool for secure scientific
data dissemination [16].

However, the UNet’s dependence on dataset-specific training is a key limitation. Unlike the SVD
watermarker, which is fixed and resolution-agnostic, the UNet must be retrained for each dataset and
resolution, posing scalability and deployment challenges [17, 18].

6.1 Limitations and Future Work

While our results are promising, several limitations remain:

Resolution and Model Adaptability. Our UNet models were trained on low-resolution images (e.g.,
128×128 or 256×256) for computational efficiency. In practice, scientific workflows often operate at higher
resolutions. Although we prepared an initial high-resolution UNet configuration (e.g., train UNet FluidFlow

highres.ipynb), generalizing the architecture across image sizes - possibly using resolution normalization or
positional encodings - remains a research opportunity.

Robustness and Adversarial Distortions. We did not yet evaluate robustness to perturbations such as
noise, cropping, or compression. Future work will incorporate distortion-aware training and leverage emerging
benchmarks such as WAVES [19] to measure watermark resilience under adversarial conditions.

Scalability to New Domains. Preparing training pipelines for new scientific datasets is non-trivial.
We provide an initial list of candidate datasets in a shared spreadsheet2, but streamlined tools for dataset
ingestion, physics loss configuration, and resolution management would be necessary for scaling the method.

Multi-Model and Multi-Stage Watermarking. In many real-world settings, multiple AI models interact
with the same data in sequential or parallel pipelines (e.g., multi-model climate simulations). Exploring
whether multiple watermark streams can coexist - drawing inspiration from methods like hiding multiple
images in one [20] - could support lineage tracking across complex AI workflows.

Toward Dataset-Agnostic Models. Currently, a separate UNet model is trained per dataset. Future
research should explore shared encoders trained on multiple domains, or pretrained scientific encoders such
as ClimaX. Fine-tuning for physics loss adherence could then be performed at lower cost.

2https://docs.google.com/spreadsheets/d/1rSGgClEQ0daGEONQ12PKDedvVhvP4i7bs0TS7MPF_aQ/edit
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Improving Cosmology Fidelity. While performance on the Cosmology dataset was strong, some visual
discrepancies remain (e.g., localized deviations near image corners). Longer training (e.g., 100 epochs instead
of 50) and data augmentation may further enhance fidelity.

Standardization of Scientific Watermarking Evaluation. A broader adoption of scientific watermark-
ing requires standardized metrics, reproducibility protocols, and stress-testing under realistic transformation
pipelines.

Fine-Tuning Constraints. While UNet achieves excellent fidelity and physics realism, its ability to gener-
alize across unseen data distributions (e.g., extrapolation years in ERA5) is constrained without fine-tuning.
This limits its plug-and-play adaptability without per-dataset training.

The ability to watermark scientific images without altering physical content has implications beyond
reproducibility - it supports secure data workflows, model provenance tracking, and trustworthy AI deployment
in enterprise or national lab environments. That said, adapting this framework to new domains is non-trivial.
It requires not only a scientific dataset but also careful curation of training, validation, and test splits and
(ideally) a domain-specific physics loss. See our dataset curation sheet for candidates. Addressing these
challenges will enable watermarking tools that are reliable, generalizable, and suitable for production-scale
scientific environments [5].

6.2 AI Security and the Role of Watermarking

As artificial intelligence systems increasingly underpin scientific discovery, industrial R&D, and national
infrastructure, securing the integrity of data used to train, test, and deploy these models has never been more
important. Watermarking is a foundational technique in the emerging domain of AI security - specifically
in data provenance, model accountability, and information flow auditing.

In large enterprises, where AI systems ingest, process, and redistribute data across distributed pipelines,
ensuring the authenticity, lineage, and transformation history of scientific data is not just a technical
requirement - it is a business and regulatory necessity. For example, watermarks can help determine whether
a dataset used in a forecasting model was properly vetted or whether an output visualization has been
modified post hoc.

Moreover, as generative AI systems become more integrated into science workflows, watermarks provide
a defense against hallucinated or manipulated data being misrepresented as trustworthy output. This is
especially critical in domains like climate modeling, aerospace simulations, or biomedicine, where decisions
based on tampered or unverifiable data can have far-reaching consequences.

From an enterprise perspective, watermarks serve three strategic functions:

1. Attribution and compliance: Embedding identifiers into datasets helps ensure that AI systems
comply with data licensing and attribution policies.

2. Trust and verification: Watermarks enable downstream users - human or machine - to verify that
data has not been altered during transmission, transformation, or inference.

3. Audit and traceability: In multi-model workflows, watermarks allow forensic tracing of which
systems or steps influenced the final output, supporting regulatory audit trails and intellectual property
protection.

As secure and explainable AI becomes a top priority for organizations deploying scientific and commercial
ML systems, watermarking offers a practical, implementable solution. Our work demonstrates that physics-
aware neural watermarking can bridge the gap between imperceptibility, decodability, and scientific fidelity -
making it a viable tool for next-generation AI security strategies in science and industry.
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Appendix

A.1 Training Diagnostics

Figures 3, 7, and 8 show the training and validation losses for the UNet model across the ERA5, Fluid Flow,
and Cosmology datasets. For datasets with physics-aware training, physics loss is included alongside image
and message loss.

A.2 Model and Training Configuration

• Optimizer: Adam

• Learning rate: 1× 10−3

• Batch size: 32

• Loss weights: Equal weighting on image loss and message loss; physics loss weighted by λ = 1.0

• Early stopping: Based on validation image loss and ≥98% decoder accuracy

• Epochs: Up to 100 pre-physics + 20 with physics loss (with early stopping)

• Hardware: Trained on NERSC Perlmutter GPUs (A100, 40GB)

A.3 Source Code and Data Availability

All code and experiment scripts used in this work are included in the following files:

• train UNet ERA5.ipynb, train UNet FluidFlow.ipynb, train UNet Cosmology.ipynb

• evaluate watermarkers.ipynb

• Dataset loader: SuperBench/src/data loader crop.py

• UNet architecture: SuperBench/unet utils/blocks.py

Code Repository: https://github.com/KrtiT/scientific-data-watermarker

License and Usage Terms

The source code for this project is made publicly available for non-commercial academic research purposes
under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

• Users are free to copy, distribute, and adapt the code for non-commercial purposes, provided appropriate
credit is given to the original authors.

• Commercial use, including integration into proprietary systems or enterprise pipelines, is strictly
prohibited without prior written permission.

• For commercial licensing inquiries, please contact the lead author or refer to the project GitHub
repository for contact details and updates.

This license is effective as of May 2025 and remains valid until superseded by a future update. Any
modifications to the license will be documented in the GitHub repository’s LICENSE file.
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Figure 7: Training and validation loss curves for Fluid Flow UNet model.
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Figure 8: Training and validation loss curves for Cosmology UNet model.
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