
ar
X

iv
:2

50
6.

12
02

6v
1

 [
cs

.C
R

]
 2

1
M

ay
 2

02
5

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 1

LURK-T: Limited Use of Remote Keys
With Added Trust in TLS 1.3

Behnam Shobiri, Sajjad Pourali, Daniel Migault, Ioana Boureanu, Stere Preda, Mohammad Mannan
and Amr Youssef, Senior Member, IEEE

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—In many web applications, such as Content Delivery
Networks (CDNs), TLS credentials are shared, e.g., between the
website’s TLS origin server and the CDN’s edge servers, which
can be distributed around the globe. To enhance the security and
trust for TLS 1.3 in such scenarios, we propose LURK-T, a prov-
ably secure framework which allows for limited use of remote keys
with added trust in TLS 1.3. We efficiently decouple the server side
of TLS 1.3 into a LURK-T Crypto Service (CS) and a LURK-T
Engine (E).CS executes all cryptographic operations in a Trusted
Execution Environment (TEE), upon E’s requests. CS and E
together provide the whole TLS-server functionality. A major ben-
efit of our construction is that it is application agnostic; the LURK-
T Crypto Service could be collocated with the LURK-T Engine, or
it could run on different machines. Thus, our design allows for in
situ attestation and protection of the cryptographic side of the TLS
server, as well as for all setups of CDNs over TLS. To support such
a generic decoupling, we provide a full Application Programming
Interface (API) for LURK-T. To this end, we implement our
LURK-T Crypto Service using Intel SGX and integrate it with
OpenSSL. We also test LURK-T’s efficiency and show that, from a
TLS-client’s perspective, HTTPS servers using LURK-T instead a
traditional TLS-server have no noticeable overhead when serving
files greater than 1MB. In addition, we provide cryptographic
proofs and formal security verification using ProVerif.

Index Terms—Internet security, Middleboxes, TLS

I. INTRODUCTION

Transport Layer Security (TLS) is the de-facto protocol for
securing communication over the Internet. It is an authenticated
key-establishment (AKE) protocol, whereby TLS client C
(e.g., browser) always authenticates a TLS server S , and they
derive channel keys to communicate securely thereafter. In
TLS, the server S is authenticated by proving the possession
of its private key or a so-called pre-shared key (PSK). So, these

Manuscript received 10 March 2023; revised 22 August 2023; accepted
19 July 2024. Date of publication 23 July 2024; date of current version 15
November 2024. This work was supported by Mitacs Accelerate Cluster
through Ericsson Research Canada. Recommended for acceptance by Dr. Pan
Zhou. (Corresponding author: Mohammad Mannan.)
Daniel Migault and Stere Preda are with the Ericsson, Montreal, QC H4S 0B6,
Canada (e-mail: daniel.migault@ericsson.com; stere.preda@ericsson.com).
Ioana Boureanu is with the Surrey Centre for Cyber Security, the Department
of Computer Science, University of Surrey, GU2 7XH Guildfordl, U.K. (e-
mail: i.boureanu@surrey.ac.uk).
Digital Object Identifier 10.1109/TNSE.2024.3432836

authentication credentials should not be accessible by other
parties and require special attention.

For TLS servers managed “in situ”, e.g., when the owner
of the TLS server also owns the infrastructure and entirely
manage the TLS servers, the authentication credentials must
be protected for example against operational mistakes1 as well
as web server compromise such as Heartbleed.2

With 73% of the Internet traffic today being served by
Content Delivery Networks (CDNs) [16], a common scenario
is sharing the TLS credentials between the website’s TLS
server (i.e., the “origin”) and the CDN’s “edge servers”, which
can be distributed around the globe. Such sharing of long-term
TLS credentials poses a grave risk, as the origin loses full
ownership and control of their long-term private key [29].

The proposed setups for CDN over TLS alone vary vastly
from splitting the TLS implementation [41], to leveraging
Trusted Execution Environment (TEE) and either improving
the performances of the enclaves for network applications [49],
[22], [40] or improving a specific application running inside an
enclave [3] – which ends into splitting the application between
components running inside the TEE and outside the TEE. Thus,
a generic treatment of securing and protecting the long-term
credentials of the TLS server is essential, catering for as many
distinct types of interactions as possible. To this end, we propose
LURK-T: a generic, provably secure and efficient decoupling
of the TLS1.3 server into a cryptographic core called LURK-T
Crypto Service (CS), and a component called LURK-T Engine
(E) which securely queries this core from anywhere it may
reside, and communicates with a classical TLS Client (C).

We are not the first to consider the decoupling of a TLS server
and/or securing a modified version thereof. Current efforts can
be divided into two types: (a) TEE-driven approach focusing on
isolating and securing the server; (b) CDN-driven approach fo-
cusing on modifying the TLS server to fit different CDN setups.
Each approach has its merits and shortcomings. Inspired by both
these approaches, we propose a new solution, by decoupling the
TLS-server in a way that results into acceptable, deployment-
friendly performance. Now, we discuss the two main aspects
of our design compared to existing work (details in Section II).

(a) TLS servers and CDNs. CDNs operate over TLS in
a mechanism often broadly referred to as “TLS delegation”.

1https://lists.dns-oarc.net/pipermail/dns-operations/2020-May/020198.
html

2https://heartbleed.com/

https://lists.dns-oarc.net/pipermail/dns-operations/2020-May/020198.html
https://lists.dns-oarc.net/pipermail/dns-operations/2020-May/020198.html
https://heartbleed.com/
https://arxiv.org/abs/2506.12026v1

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 2

To enable such delegation in a provably secure way (as in
e.g., [11]), or to support specific scenarios [4], major operational
changes in TLS are required. Such changes either break security
(see e.g., [41]), or render them completely incompatible
with legacy clients (see e.g., [34]). Besides, the efficiency of
delegation is usually not considered/discussed at length or is
sacrificed in favor of enhanced security (see e.g., [7]).

(b) TLS servers and TEEs. To protect TLS credentials,
NIST [5] recommends hardware-based TEEs such as Trusted
Platform Modules (TPMs) or Hardware Security Modules
(HSMs), for storing and using private keys. Yet, due to
significant cost and performance issues of large-scale HSM
deployment, such TEE integration is not common for CDN
scenarios. TEE-based academic proposals vary significantly
where the full application is placed in a TEE [49], [22], [40],
[48], or the full TLS is placed in a TEE [3] – both of which
are explicitly mentioned as impractical by several standard
bodies such as ETSI,3 3GPP-SA3,4 and ENISA.5 Some
other proposals protect only the keys [22], [13], [47]. Indeed,
deciding which part of the cryptographic side of TLS-server
to include in a TEE, such as to yield added security without
high performance penalty, appears to be non-trivial.
Our contributions can be summarized as follows:

1. To enhance the security and trust for TLS 1.3 in
applications where the TLS credentials are shared (e.g., in
CDN applications), we propose Limited Use of Remote Keys
with Added Trust (LURK-T). To balance security and efficiency,
LURK-T splits the TLS 1.3 server into two parts: a LURK-T
Engine (E) and LURK-T Crypto Service (CS). CS resides
inside a TEE, and is only involved during the TLS handshake.
CS handles and ensures the confidentiality of TLS-server
credentials intrinsically needed for TLS key-security: private
keys, PSK for session resumption, Elliptic Curve Ephemeral
Diffie Hellman ((EC)DHE) keys to ensure Perfect Forward
Secrecy (PFS).E handles the rest of server-side TLS. Moreover,
our design is such that E’s queries to CS cannot be made
outside the scope of a fresh TLS 1.3 Key EXchange (KEX). See
Figure 1 in Section IV for an overview of LURK-T components.

2. We implement CS using Intel SGX and integrate it with
OpenSSL, both for Ubuntu and Windows. The modularity
of our design entails only localized changes to OpenSSL. To
show the compatibility and portability of our implementation,
we develop a Rust HTTPS server and link it to our modified
OpenSSL.

3. We test LURK-T’s efficiency extensively, measuring
different overheads compared to a standard TLS 1.3
handshake—for all the TLS 1.3 cipher suites and various CS
configurations. We measure the maximum number of files
served per second with HTTPS and show that in the worst case

3https://www.etsi.org/deliver/etsi gr/NFV-SEC/001 099/009/01.02.
01 60/gr NFV-SEC009v010201p.pdf

4https://www.3gpp.org/ftp/Specs/archive/33 series/33.848/33848-
0c0.zip

5https://www.enisa.europa.eu/publications/nfv-security-in-5g-
challenges-and-best-practices/@@download/fullReport

configuration, the client’s overhead associated to LURK-T is
negligible for files equal or greater than 1MB. The server’s
overhead is limited to the TLS handshake and we measured it
between 1.2% and 33% which is far less than similar solutions
(see Section II and Table V).

4. We present cryptographic proofs for LURK-T, in a
cryptographic model for multi-party TLS [8], showing that
LURK-T provides three-party TLS security (E , CS , and C).
We also formally verify LURK-T’s security using ProVerif,
by first lifting the existing ProVerif specifications [36], [6] of
a pre-standard TLS 1.3 to a ProVerif model for the standard
TLS 1.3 [38], and then proving TLS 1.3 security for LURK-T;
thus, we show that LURK-T suffers no degradation in security
compared to TLS 1.3, including attaining perfect forward
secrecy. We achieve strong security guarantees (e.g., the
accountability of [7]), as well as add a new property of trust
which we call “trusted key-binding”, achieved through the
attestation of our TEE-based CS .

II. RELATED WORK

LURK-T partitions TLS 1.3 into two independent micro
services (E and CS) with CS hosted by a TEE. In this section,
we summarize related work on partitioning applications, as
well as as protocol extensions that support TLS delegation, and
multi-party TLS.

A. TLS and TEE
Multiple frameworks are able to host unmodified binary

code into a TEE enclave (see e.g., [31]). These frameworks rely
on libOS (e.g., Graphene [45], SGX-LKL [35]), or musl-libc
(e.g., SCONE [2]). However, this results in a large trusted code
base (TCB) [44] with a vast number of Line of Code (LoC)
prone to bugs [17] (and Iago attacks [15]), and with large
overhead due to multiple ECALLs/OCALLs [42].

Partitioning applications is expected to address these
drawbacks. Specific manual approaches have been proposed for
TLS 1.2 as in [3]. A more generic approach, based on marking
sensitive data in the source code for C/C++ applications has
been proposed in Glamdring [30] and the execution of the
resulting trusted part can be instrumented by sgx-perf [48].
Other proposals such as Montsalvat [50] partition Java code
based on its byte-code. However, the coexistence of the trusted
and untrusted part is handled via remote procedure call (RPC)-
like mechanisms, exposing the interface to Iago-like attacks,
while providing little assurance that data or states are not leaked.
LURK-T defines standard interfaces in [32], thus protecting
CS against Iago-like attacks while enabling remote execution of
the CS . The combination of CS and E is also formally proven
to not alter TLS 1.3 security following [8], which showed that
the lack of such formal verification can hide the existence of
vulnerabilities (e.g., in Keyless SSL [41] and mcTLS [34]).

Various efforts (e.g., [3], [47], [48], [22], [13], [40], [44])
were made to leverage TEE, and port TLS applications into
SGX enclaves. All these proposals were focused on TLS 1.2,

https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/009/01.02.01_60/gr_NFV-SEC009v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/009/01.02.01_60/gr_NFV-SEC009v010201p.pdf
https://www.3gpp.org/ftp/Specs/archive/33_series/33.848/33848-0c0.zip
https://www.3gpp.org/ftp/Specs/archive/33_series/33.848/33848-0c0.zip
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 3

and generally they place the full TLS stack into the TEE (e.g.,
TaLoS [3] and sgx-perf [48]). STYX [47] provides a trusted way
for the content owner to provision the hardware cryptographic
accelerator provided by the CPU of an untrusted cloud provider
and thus benefit from Intel Quick Assist Technology (QAT [43]).
Also, in STYX, an SGX enclave attested by the content owner
is used to provision the TLS private key to the QAT engine,
which is natively interfaced with OpenSSL [24]. This design
suffers from the fact that interactions between the QAT engine
and untrusted application are not limited to TLS 1.3 specific
operations. As detailed in [8] w.r.t. Keyless SSL [41], the use
of such generic cryptographic operations may be exploited.

Conclave [22] takes a higher level approach by defining an
architecture for securing a full service NGINX server, which
runs on an untrusted infrastructure. Conclave presents two
configurations for TLS 1.2 alone: 1) only the private key is
protected by the TEE, or 2) the entire TLS (including the session
keys) is protected by the TEE. In addition, just executing the
TLS in a TEE as per Conclave is not viable both from perfor-
mance and operational perspectives. Security-wise, Conclave
uses Graphene which is a large library (more than 77000 LoC)
and has a high probability for vulnerabilities as shown in [17].
In contrast, LURK-T has 3800 LoC and extends the private key
protection to any authentication credentials used by TLS (includ-
ing session resumption) without the need to deploy Graphene.
Also, unlike Conclave, LURK-T provides anti-replay protection.

B. TLS Protocol Extensions
Similar to Keyless SSL, most previous works on TLS delega-

tion (e.g., see [29], [41], [8], [47]) are not designed for TLS 1.3
and suffer from the TLS 1.2 limitations [29], [11]. Bhargavan
et al. [8] provide delegation for Authenticated and Confidential
Channel Establishment (ACCE) with TLS 1.3, yet there are
two essential differences compared to our approach: ACCE is
controlled by both ends (i.e., the client and the server), and it
requires modifications to the TLS-record layer to achieve fine-
grained access-rights for CDNs. To the best of our knowledge,
LURK-T is the first design that provides a server-controlled del-
egation specific to TLS 1.3, without any modification to TLS 1.3,
as well as leveraging TEEs for added trust. Delegated credentials
(DCs) [4] is a TLS 1.3 extension which eases the issuance of the
authentication credential by a CDN provider. However, the con-
tent owner delegates the authentication to the CDN, and the de-
ployed credentials by the CDN remain exposed. In a DC deploy-
ment, LURK-T can enable the CDN to protect the CDN authen-
tication credentials (or the CDN can use any other TEE-based
alternatives to protect the credentials). On the other hand, from
the content owner perspective, LURK-T makes DC unnecessary
as the content owner’s authentication credentials can be used
without being shared to the CDN. This could be useful to ensure
that existing/legacy TLS clients can authenticate the server;
note that DC deployments require support/control from both
the client and server sides (supported by the Firefox browser
since 2019, and used by Cloudflare and Facebook services).

Boureanu et al. [11] used a similar design to LURK-T but
for TLS 1.2. Most differences between Boureanu et al. [11] and
us stem from TLS 1.3 being different from TLS 1.2. LURK-T
also offers several variants to interact with the CS in the
TEE to balance reasonable security vs. efficiency, which also
addresses Boureanu et al.’s latency issues. In addition, LURK-T
leverages TEEs and provable security for further trust.

Various services (referred to as middleboxes) provided by
CDNs can only function when they have access to plaintext
data, such as IDS, IPS, WAF, and L7 load balancing [20].
In some previous proposals [22], [3], [13], these services
cannot operate well within the CDN since they do not have
access to plaintext data. This problem was solved in TLS 1.2
by mcTLS [34], but with significant overhead and heavy
modifications to TLS 1.2 handshake and record-layer. It was
also solved generically for any ACCE protocol, but again
with significant overhead [8]. However, LURK-T solves this
for TLS 1.3 without any modification to TLS 1.3 with an
acceptable level of overhead (see Table V).

III. DESIGN GOALS AND THREAT MODEL

The main difference between LURK-T and the standard
TLS is that LURK-T operates over 3 parties: C , E and CS .
The E and CS implement the server S . CS handles the
authentication credentials and derives the necessary TLS
secrets for E which interacts with the C . Standard TLS instead
operates over 2 parties: C and S .

A. Goals

The purpose of LURK-T is to ensure security properties
of a TLS communication between C and E : providing
authentication ensured by trustworthy credentials (private keys
as well as PSK), and enabling PFS. In particular, LURK-T
ensures that a TLS communication between C and E remains
trustworthy even if E becomes compromised in the future
as well as even if other C or E on another edge server is
compromised. These properties are also provided when E
and CS are operated “in situ” or by a CDN. To meet these
properties the following goals are derived:
• The CS must provide read protection of the authentication

credentials from a compromised E to prevent them from
being used in future TLS sessions. With LURK-T, a compro-
mised E in the “in situ” scenario or a network admin in the
CDN scenario is not able to access the credentials via root
access – including dumping the memory. This differs from the
standard TLS 1.3 threat model where S must not be compro-
mised, and anyone with privilege access to S can access the
credentials. A direct consequence is that with LURK-T, once
an attacker has compromised E , and later when E recovers
from this compromise, that attacker is not be able to interfere
with any future TLS session – including resumed sessions.

• The compromise of E , or CS being administered by a CDN,
does not provide any advantage to an attacker (although

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 4

CS is interfaced via LURK [32]) compared to the use
of a regular C . This is achieved by strongly binding the
interactions between E and CS to the TLS 1.3 exchange
between C and E via the freshness mechanism (see IV-A)
as well as enforcing CS to operate over full TLS exchanges
as opposed to hash of such exchanges. This also provides
a very efficient anti-replay protection for example when PFS
is not properly enforced to meet a performance criterion and
limit the generation of (EC)DHE keys (see [39] Section 7.4).

• CS must be able to impose PFS by enforcing CS to generate
new and unique (EC)DHE keys for each TLS sessions. This
differs from the standard TLS 1.3 model, where in the case
of a CDN, PFS is expected to be enforced by the CDN (we
avoid this trust in CDNs).

B. Adversary Capabilities

We assume CS is trustworthy. In LURK-T, CS runs inside
a TEE whose threat model assumes that TEE and its interfaces
cannot be corrupted [19]. CS is expected to be developed
with formal verification. The current 3800 LOC makes such
assumptions realistic.

The private key must be securely provisioned to CS . This
may involve the key being generated and distributed from
a TEE [21] or the enclave being provisioned securely [28].
The latter is expected to be achieved with TLS 1.3 being
implemented in the CS . The attacker can control all C s and
Es, and interact either using TLS 1.3 or LURK. Note that, in
a TLS session where the C or E is under the control of the
attacker, all session secrets are exposed to the attacker and the
TLS session is trivially decrypted (but the private keys remain
protected under CS).

Regarding the network capabilities of the attacker, we also
assume as per the Dolev-Yao’s threat model, that all public
channels are accessible to the attacker to read, replay, block
and inject messages.

IV. LURK-T DESIGN AND DEPLOYMENT SCENARIOS

In this section, we present our LURK-T design, instantiated
with TLS 1.3, including the protocol and example use cases
for E and CS based on their deployment.

A. LURK-T – Design

Components and the protocol. LURK-T involves the
following entities: a TLS client C , a LURK-T TLS Engine
E , and a LURK-T TLS Crypto Service CS ; see Figure 1.
The last two are either collocated, or there is a pre-established,
mutually authenticated and encrypted channel between them.
Such channel is expected to be implemented via a TLS library
embedded into CS that terminates into the TEE to prevent the
communication between E and CS being compromised by the
node hosting CS . The key provisioning service is responsible
for ensuring that the correct key is securely conveyed to the

CS using a secure channel that terminates into the enclave.
This can be achieved using solutions such as Blindfold [21].

The purpose of TLS is to authenticate and agree on sessions
keys so thatC andE can encrypt and exchange application data.
The Key Schedule is responsible to generate the various secrets
between C and S and includes, among others, the client/server
handshake secrets (hC , hS) used to derive the keys that protect
the TLS key exchange, the client/server application secrets
(aC , aS) used to derive the keys that protect the application
data, the session resumption secret (r) used to generate the
PSK for authenticating C and S . The Key Schedule generates
these secrets thanks to shared secrets such as PSK or (EC)DHE
shared secret KE as well as the TLS handshake context Hctx.
The ClientHello.random NC and ServerHello.random NS

provide some randomness to generate these secrets.
TLS supports three basic key exchange modes: (EC)DHE

(Diffie-Hellman over either finite fields or elliptic curves),
PSK-only and PSK with (EC)DHE. The TLS (EC)DHE mode
corresponds to certificate-based authentication with S being
authenticated byC by proving the ownership of a private key sk
via a signature over the TLS exchange context Hctx designated
as PSign = Signsk(Hctx). sk constitutes the authentication
credential. (EC)DHE ensures perfect forward secrecy, with
C and S generating their respective private keys u and v,
exchanging their respective corresponding public key KEC=gu

and KES=gv to generate a common (EC)DHE shared secret
KE = guv. The TLS PSK with (EC)DHE mode is based on a
PSK shared between C and S as well as (EC)DHE, while the
TLS PSK-only mode does not provide perfect forward secrecy.
In both cases, PSK is the authentication credential. The TLS
(EC)DHE mode is commonly used on the web together with
the TLS PSK in the (EC)DHE mode to resume TLS sessions.

LURK-T always assumes that the authentication credentials
sk or PSK are handled and hosted in CS . As a result, in
the TLS (EC)DHE mode, PSign is generated by CS and in
the TLS PSK modes the Key Schedule is performed by CS .
On the other hand, LURK-T enables the private (EC)DHE
key to be generated either by CS or E which leads to the
respective variants “LURK-T with DHE-active CS” and

“LURK-T with DHE-passive CS” illustrated in Figure 2a and
Figure 2b. The difference is highlighted in red. “LURK-T with
DHE-active CS” provides higher (compared to “LURK-T
with DHE-passive CS”) assurance on perfect forward secrecy
(where TEE both protects the (EC)DHE key and attests the
key is not reused), and on resumed TLS sessions (where TEE
protects the PSK). The TLS execution between C and CS , is
actively proxied by E ; i.e., E acts as the TLS server (S) to C ,
but E does not have direct access to the private key of the origin
(i.e., of CS) in order to generate the PSign TLS message.

Note that Figure 2a and Figure 2b depict LURK-T instanti-
ated with TLS 1.3 in (EC)DHE mode. For PSK with (EC)DHE,
the only difference stems from the key-derivation in TLS. We
now describe in more detail the two main variants of LURK-T,
each of these two modes. Description of the PSK-only mode is

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 5

Cloud Provider

HTTP Server

TLS library
TLS Engine

Crypto Service

SGX Enclave

LURK/TLS 1.3

Service Provider

HTTP Client

TLS library

Web Browser

TLS 1.3
Session

Key Provisioning

Fig. 1: LURK-T entities: a TLS client C (a regular web browser), a LURK-T TLS Engine E , and a LURK-T TLS Crypto
Service CS (both part of a third-party hosting provider), and a key provisioning server (under the content owner’s control).

omitted as PSK-only can be easily derived from the PSK with
(EC)DHE mode and this mode is rarely used in the web context,
with even discussions at the IETF to deprecate that mode [1].
“LURK-T with DHE-active CS” – TLS (EC)DHE mode.
Following Figure 2a, C initiates the TLS key exchange with E
by sending a ClientHello message which contains the random
NC as well as the (EC)DHE public key.

Upon receiving the ClientHello, E applies the freshness
mechanism detailed in Section IV-A to protect against replay
and signing oracle attacks and provides the necessary handshake
context to CS to perform the Key Schedule and generate the
signature.E generates a nonceNE and applies a pseudorandom
function φ to produce a bitstring denoted NS . In all variants
and modes of LURK-T, NE is deleted from memory at the end
of the handshake. Then, E sends to CS the whole of its view of
the handshake Hctx (including NC and KEC), the bitstring NE .
CS generates NS from NE similarly to E . As in “LURK-T

with DHE-active CS”, CS generates the private (EC)DHE
secret key v and KES and KE. KE is used together with Hctx

by the Key Schedule to generate the handshake secrets (hC ,
hS). CS generates the signature PSign. CS then generates
the remaining handshake messages to update Hctx and have
sufficient context to generate the application secrets (aC , aS).
The formed messages are CertificateVerify (CertificateVerify),
which contains the signature, as well as the server Finished
message (FinE) which is a hash MAC of Hctx. Generating
these message avoid an additional round trip between E and
CS . CS then provides E the signature PSign, the (EC)DHE
public key KES and handshake and application secrets.

Upon receiving KES , E generates and sends the ServerHello
message with KES as well as the previously computed random
NS to the TLS client C . E generates the CertificateVerify
(CertificateVerify) and server Finished message (FinE) and
encrypts them with the session keys generated with the
handshake secrets (AEh).

C performs its Key Scheduler (similarly to S), checks the
signature, generates the client Finished message (FinC) and
encrypts it (AEh) with session keys derived from the handshake
secrets (hC , hS) before finally deriving the session resumption
secret. Upon receiving FinC , E forwards it to CS so that CS
can generate the session resumption secret r and the PSK,
which will be used later during the session resumption.
“LURK-T with DHE-passive CS” – TLS (EC)DHE mode.
In this variant, CS does not generate the (EC)DHE private key,
which is instead generated by E (see Figure 2b). E generates
NE exactly as in the “LURK-T with DHE-active CS” variant.
Then, E generates the (EC)DHE private key v and associated
public key KES , gv, and computes KE, guv, which is provided
to CS , alongside the Hctx and NE . CS then computes NS as
in “LURK-T with DHE-active CS”, initiates the Key Scheduler
with Hctx and KE as inputs, computes PSign and optionally
the handshake and application secrets hS , hC , aS , aC – as
these later secrets may also be generated by E . These two sub-
variants are represented in blue in Figure 2b, and are designated
respectively as “keyless” or “normal”. The rest continues as
in the “LURK-T with DHE-active CS” variant. Note that with
“LURK-T with DHE-passive CS”, when session resumption
is enabled, the resumption secret r is generated by E (not by
CS , and thus CS is unable to guarantee its confidentiality).
LURK-T variants with TLS PSK with (EC)DHE mode.
The main difference between the PSK with (EC)DHE mode
and the (EC)DHE mode is that the former is used for session
resumption. LURK-T in PSK with (EC)DHE vs. (EC)DHE
mode varies in as much as TLS 1.3 varies across these two
modes. LURK-T in PSK with (EC)DHE mode requires more
exchanges between E and CS . Typically, upon the reception
of the ClientHello, E needs to check the PSK proposed by
C by performing a HMAC with a binder key derived from
the PSK; this binder key can be generated only by CS , and E
needs to request it from CS . Once the PSK binders have been

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 6

(a) “LURK-T with DHE-active CS”, instantiated in (EC)DHE mode (b) “LURK-T with DHE-passive CS”, instantiated in (EC)DHE mode

Fig. 2: The two variants of LURK-T instantiated with TLS 1.3 in (EC)DHE Mode

checked, E interacts with CS to generate the various secrets
as in (EC)DHE mode, but without PSign being generated.
Notes on LURK-T’s freshness function φ. We derive the
“server-nonce” NS by applying a non invertible PRF φ instance
to a nonce NE generated by E to prevent replay attacks. If an
adversary A collects plaintext information from a handshake,
then A will gather NC, KEC and NS (from the channel in
between E and C). However, A will not be able to derive
NE due to the non-invertible property of φ. If later on, A
corrupts E , A will not find the old NE nonce in E’s memory;
we require that NE be deleted from E’s memory at the end
of its use. Exhaustive search of the right NE would also
be exponential in the size of the domain of ϕ, so it will be
impossible for our polynomial attackers, and thus preventing
replay attacks as NE is necessary for the exchange.

B. LURK-T - Use Cases and Deployment Scenarios
We consider different deployment scenarios for LURK-T

as discussed below. The management of TLS is impacted
by the management of TEE (with attestation) as well as the
management of the long term private key; other aspects of TLS
are not impacted. The CS Manager is the entity responsible
to administrate and provision CS . Unless the private keys are
generated inside the enclave, the CS is responsible to provision
the CS with the secret key. Securely provisioning the enclave
can be achieved by combining attestation and terminating the
communication within the enclave. The enclave implementation
must be verified by the CS manager (requiring CS code to
be open-sourced). It also likely requires a TLS library being
embedded into the enclave. Similarly, as only the TLS library
is impacted, LURK-T enables the CDN to continue providing
added services, and as such, keeps TLS a multi-party TLS.
Deployments driven by CDN providers. Figure 3a shows
the case where LURK-T is deployed as a substitute of TLS 1.3
libraries. In this case, the server-side TLS libraries are replaced
both by E and CS . The main challenge associated with this
case is that CDN providers will need to manage (and provision)
multiple instances of CS . Figure 3b shows the case of a more

centralized infrastructure, with just one CS with an SGX
enclave communicating securely with multiple Es. In both
cases, it remains crucial to implement an attestation-ready
provision of the CS . As the attestation is to be performed
by the CDN provider within its own network, DCAP seems
appropriate in combination with TLS-RA [28].

Deployments driven by content owners. Figure 3c shows
the case where CS is provisioned by a CDN tenant, such as
a content owner. Therein, CS is likely to be implemented by
a third party (CS developer), trusted by the content owner and
the cloud provider – e.g., with open source code. The tenant
will need to perform an attestation of the CS , e.g., using Intel
IAS [26]; this should use a group signature in order for the
tenant not to find out the identifier of the exact CPU running
the CS . This is also likely to be combined with RA-TLS [28].

Finally, note that from a tenant’s perspective there is a little
difference between instantiating a centralized CS , or multiple
CS instances; the difference is mostly in the way CS is imple-
mented, which can also be checked by the tenant via attestation.

(a) Distributed CS (b) Centralized CS

(c) Tenant-controlled CS

Fig. 3: CS deployment use cases

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 7

V. SYSTEM IMPLEMENTATION

In this section, we describe our implementation6 of CS and
E based on OpenSSL. CS centralizes the cryptographic oper-
ations. However, OpenSSL has not been developed with such a
centralized cryptographic architecture and instead performs TLS
operations sequentially. Thus, following the OpenSSL design
would lead to numerous interactions between E and CS , and
degrade performance, especially when interactions are between
the Rich Execution Environment (REE) and TEE. In particular,
for SGX enclaves, the interaction between TEE and REE results
in 8,200 - 17,000 cycles overhead, as opposed to 150 cycles for
a standard system call [49]. We also balance the compliance
to the specification of the LURK extension for TLS 1.3 [32]
and changes to OpenSSL to ease the maintainability of our
code. As a result, we implement E by updating 184 lines of
the OpenSSL code and introducing a maximum of 2 additional
ECALLs compared to the LURK specification [32]. Our CS
implementation contains 33 files with 3867 LoC.

A. Crypto Service (CS)
We implemented CS in an SGX enclave based on Intel

SDK version 2.13. We had several options regarding the
cryptographic library. While some cryptographic libraries
support terminating the TLS connection inside SGX, we did not
use them since they are either not maintained [3], or not fully
compatible with OpenSSL.7 We chose the actively maintained
Intel SGX-SSL [25] that compiles OpenSSL source code as-is
to create SGX compatible APIs (ensuring compatibility and
easy upgrades with future versions of OpenSSL). However,
SGX-SSL has limited functionalities. For example, it does
not support terminating TLS inside SGX and lacks all the
TLS and network related structures. Therefore, part of the CS
implementation mimics the TLS specific functions implemented
by OpenSSL using lower-level APIs and structures supported
by SGX-SSL (we use OpenSSL 1.1.1g for SGX-SSL).

1) CS in TLS (EC)DHE mode: CS is responsible for
generating the different parts of the handshake such as the
signature, and optionally — depending whether CS operates in
the “LURK-T with DHE-active CS” or “LURK-T with DHE-
passive CS” variant — (EC)DHE keys and secrets as detailed
in Section IV-A. Our implementation supports all these variants
as depicted in Figure 4 which details the exchanges between E
andCS . While our design defines a single SInitCertificateVerify
exchange [32], our implementation, when necessary (depending
on the CS configuration), repeats up to 3 times that exchange
in order to retrieve different pieces of information (depending
on the CS configuration, see Figure 4). Table I shows the
supported CS configurations, and for each one, which entity
(E or CS) generates the (EC)DHE or the secrets h, a and r.
Binder keys and signature are always generated by CS in their
respective (EC)DHE or PSK with (EC)DHE modes.

6Available from https://github.com/lurk-t/
7https://www.wolfssl.com/wolfssl-with-intel-sgx

CS config (Cert) CSdhe,r
cert CSdhe

cert CScert CSkeyless
cert

(EC)DHE CS CS E E
handshake CS CS CS E
application CS CS CS E
resumption CS – CS E
#ECALLs 4 3 2 1
CS config (PSK) CSdhe,r

psk CSdhe
psk CSr

psk CSpsk

(EC)DHE CS CS E E
handshake CS CS CS CS
application CS CS CS CS
resumption CS – CS –
#ECALLs 5 4 4 3

TABLE I: CS configurations indicating where (EC)DHE or
secrets are generated (when generated) and associated number
of ECALLs by our implementation

Fig. 4: Messages between E and CS for the (EC)DHE mode.
* designates an optional exchange depending on the CS
configuration

Generating (EC)DHE. In the “LURK-T with DHE-active
CS” variant, CS generates the (EC)DHE private key for S . E
retrieves S’s (EC)DHE public key with an additional SInitCer-
tificateVerify1 exchange (see Figure 4). CS generates the
(EC)DHE shared secret using C ’s (EC)DHE public key and the
S’s (EC)DHE private key – that is kept secret byCS . This is im-
plemented with our get_ecdhe function which represents
an additional ECALL compared to the LURK specification.
Generating h and a. When CS is configured to generate
h, E performs an additional SInitCertificateVerify2 exchange
to retrieve handshake secrets hC and hS (see Figure 4): our
function get_hand_secret takes the ClientHello to
ServerHello messages as inputs and returns h. This represents
an additional ECALL compared to the LURK specification.
When CS is configured to generate a, both aC and aS are
generated together with the signature in our get_sig
function (SInitCertificateVerify3). get_sig takes the
ClientHello to EncryptedExtension messages, generates the
signature, completes the TLS handshake by generating the
CertificateVerify and the server Finished messages to compute a.
In contrast, in the keyless configuration, get_sig only gen-
erates the signature; therefore, in this case, our implementation

https://github.com/lurk-t/
https://www.wolfssl.com/wolfssl-with-intel-sgx

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 8

fully matches the LURK specification with a single ECALL.
Session resumption. When session resumption is enabled, a
new session ticket is retrieved via a SNewTicket exchange. This
exchange provides the full TLS handshake (from ClientHello
to client Finished) and a nonce to the CS . Our implementation
generates a stateful ticket in whichCS generates the resumption
master secret r and, subsequently, uses it for generating the
PSK. CS stores the PSK and the LURK-T session ID (that
is used as a PSK ID) in the TEE. Therefore, E caches the
LURK-T session ID as a PSK ID to further identify the PSK.
OpenSSL handles the generation of the NewSessionTickets
messages as well as the ability to bind a ticket in a resumed
session to the PSK generated in a previous TLS session. To
fully reuse OpenSSL ticket management functions, the PSK
ID is stored where OpenSSL used to store the clear text PSK.

2) CS in TLS PSK with (EC)DHE mode: During a session
resumption, our implementation blocks OpenSSL from access-
ing the PSK, and instead E sends a SInitEarlySecretRequest
to CS . This exchange provides the PSK ID so CS can restore
the PSK and initiate a Key Schedule and return the binder
key. Similar to Section V-A1, the specified SHanshakeAndApp
is implemented in 3 ECALLs when CS generates
the (EC)DHE (get_ecdhe, get_hand_secret
and get_app_secret), or 2 ECALLs when E
generates the (EC)DHE (get_hand_secret and
get_app_secret). Generation of the resumption secrets r
by CS requires an additional ECALL (get_res_secret).

B. TLS Engine (E)
E , which is based on OpenSSL 1.1.1g, is implemented by

updating 9 C files out of the 44 files in the SSL directory. Upon
configuration, E executes the native OpenSSL function or
initiates an exchange with CS . OpenSSL defines two core
structures: SSL and SSL_CTX. SSL is created for each
new TLS connection and contains all TLS sessions’ context
(e.g., cipher suite, session, secrets, etc). The communication
between E and CS , is handled via the LURKRequest and
the LURKResponse structures added to the SSL.
SSL_CTX contains the information common to all SSL

structures (e.g., session resumption and the number of new
TLS connections). Typically, C and S create one SSL_CTX
structure and reuse it for all their TLS connections. Since CS
is shared across all TLS connections, it is instantiated at the
creation of SSL_CTX. Thus, initiating the enclave – which
is a time-consuming – only happens once for S .

To apply the freshness function, we need both the full
TLS messages as well as the ServerHello.random NE (before
applying the freshness function) – see Section IV-A. However,
by default, OpenSSL prevents the access to the TLS messages as
it continuously hashes the TLS messages to avoid storing large
handshake data. To overcome this, our implementation stores
the value of ServerHello.random (NE generated by OpenSSL)
as well as handshake data. When OpenSSL generates NE ,
it is intercepted by the freshness function, stored in the

LURKRequest, and replaced by NS so OpenSSL proceeds
to the generation of the ServerHello using NS . Later on, CS
checks NS = φ(NE), with NS being the ServerHello.random
(NS) in the TLS message and NE the stored value.

Finally, CS is integrated into E as an external library. We
successfully linked (by updating OpenSSL Makefile) and
tested our library for dynamic and static versions of OpenSSL.

VI. PERFORMANCE EVALUATION

A. Methodology for Measuring LURK-T TLS Overhead over
OpenSSL

In this section, we report the performance overhead of our
TLS library. The performance is measured in terms of TLS Key
EXchange per second (KEX/s), following the methodology
used in RUST TLS performance evaluation.8 ∆KEX expresses
the relative difference in terms of KEX/s between LURK-T
TLS and the native OpenSSL TLS. In particular, ∆KEX is
expressed as a percentage for a given configuration conf
which represents the TLS cipher suites (see Table II) and the
tasks performed by CS (see Table I).

∆KEX = |KEXLURK−T−KEXOpenSSL|conf

KEXOpenSSL

Our measurements are performed on an Intel i9-9900K CPU
@3.60GHz over Ubuntu 18.04 LTS and we took the average
time after performing 10,000 handshakes.

Notation Description KEX/s
RSA-2048 (prime256v1, RSA-2048) 1715
RSA-3072 (prime256v1, RSA-3072) 316
RSA-4096 (secp384, RSA-4096) 243
P-256 (prime256v1, P-256) 5251
P-384 (secp384, P-384) 496
Ed25519 (X25519, Ed25519) 6113
Ed448 (X448, Ed448) 1251

TABLE II: Native OpenSSL TLS key exchange (KEX)
performance for different cipher suites

TLS cipher suites configuration. We base our selection of
cipher suites in Table II, on Mozilla’s modern compatibility
configuration which recommends ECDSA (P-256) or RSA-
2048 combined with X25519, prime256v1, secp384r1.We
added ECDSA (P-384) and Ed25519, projecting the
measurement toward long-term deployments.
CS configurations. Besides TLS cipher suites, we measured
various configurations for CS . The primary purpose of CS is
to protect authentication credentials (private key cert or psk).
In the (EC)DHE mode (expressed as cert), session resumption
may be enabled (expressed as r), so future handshakes may
use the PSK with (EC)DHE mode. To remain coherent
across sessions in terms of PFS, we only considered the PSK
with (EC)DHE mode (expressed as psk). As mentioned in
Section IV-A, the PSK is derived from the generated (EC)DHE

8https://jbp.io/2019/07/02/rustls-vs-openssl-handshake-performance.
html

https://jbp.io/2019/07/02/rustls-vs-openssl-handshake-performance.html
https://jbp.io/2019/07/02/rustls-vs-openssl-handshake-performance.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 9

shared secret. Thus, the PSK used for the session resumption
can only remain confidential in a “LURK-T with DHE-active
CS” variant (e.g., the CS generates the (EC)DHE private
key). This is expressed with the following configuration
CSdhe,r

cert . Of course, without session resumption, “LURK-T
with DHE-active CS” or “LURK-T with DHE-passive CS”
variants are valid configuration expressed as CSdhe

cert, CScert

or CSkeyless
cert (when only the signature PSign is generated, see

Section IV-A). In the PSK with (EC)DHE mode, and unlike
the (EC)DHE mode, session resumption may be enabled with
both “LURK-T with DHE-active CS” or “LURK-T with DHE-
passive CS” variants, and Table I summarizes the meaningful
CS configurations with the associated number of ECALLs.

B. Experimental Measurements of LURK-T TLS Overhead
over OpenSSL

(EC)DHE mode. Figure 5 depicts ∆KEX as a function of
the number of ECALLs which characterizes CS configuration
(see Table I). As shown in Figure 5, ECALLs do not equally
affect all cipher suites and ∆KEX does not linearly increase
with the number of ECALLs. However, as per Table II, cipher
suites that require more resources (RSA-3072, RSA-4096,
P-384, Ed448), seem less impacted by LURK-T TLS and their
overhead depends more linearly on the number of ECALLs.
A possible explanation is a low ratio of allocated slots by
the scheduler which results in either an interruption or an
exitless process wasting the remaining allocated cycles. With
our current configurations, the measured overhead for Ed448,
RSA-3072, P-384 and RSA-4096 is low (between 1.2% and
10%) and the number of ECALLs have very little impact. Other
cipher suites (including RSA-2048) are more impacted by the
number of ECALLs. Nonetheless, our implementation presents
a higher overhead for the P-256 and Ed25519 cipher suites.
P-256 has up to 39.7% overhead when (EC)DHE is performed
by CS and 14.7% in the keyless configuration. Ed25519 is less
affected in the “LURK-T with DHE-passive CS” variant (less
than 23%) compared to the “LURK-T with DHE-active CS”
variant (up to 33%). Finally, the keyless configuration provides
an apparently acceptable overhead (17% for P-384, 7.6% for
RSA-2048, less than 4.3% for the others).
PSK with (EC)DHE mode. Similar to the (EC)DHE mode,
Figure 6 shows the most efficient ciphers (P-256, X25519)
are more impacted by the number of ECALLs than the
others – such as P-384 and X448. Overall, the preliminary
measurements of our implementation show encouraging results
with a limited and acceptable overhead.

The observed overhead might be further improved (both
for (EC)DHE and PSK with (EC)DHE modes). Firstly, we
can reduce the number of ECALLs, which may incur major
modifications to the OpenSSL architecture, and may affect
the case of Encrypted Extension (see Section V). Secondly,
we can aggregate multiple LURK-T requests in each ECALL.
The optimal number of LURK-T requests that need to be
aggregated is expected to depend on the CPU, the cipher suite,

Fig. 5: KEX LURK-T TLS relative overhead over OpenSSL
(∆KEX) in (EC)DHE mode. Measured values are linked using
a linear regression.

Fig. 6: KEX LURK-T TLS relative overhead over OpenSSL
(∆KEX) in PSK with (EC)DHE mode.

and the CS configuration. The optimum performance will be
reached when multiple operations can be completed within the
allocated number of cycles, minimizing the number of unused
cycles. This is likely to benefit Ed25519 or P-256.

C. SGX Vulnerabilities Mitigation Overhead

In this section, we discuss the overhead associated to the
available mitigations – micro code or SDK [23] – of SGX
vulnerabilities for our CPU. The discussion in Section VI-B
considers the default SGX configuration; that is without
vulnerabilities. While we expect future CPUs to address the
currently known vulnerabilities –leading to the performances
of Section VI-B– we also anticipate new vulnerabilities to be
disclosed and their mitigation will come with an additional
overhead for the cloud provider. Note that previous proposals
did not measure performance with these added security
measures (which incur significant performance overhead).

According to Intel [23], our CPU remains vulnerable to
Special Register Buffer Data Sampling (SRBDS) [27] and
CrossTalk attack [37] for which Intel provides a microcode
update. Similarly, our CPU is vulnerable to Load Value
Injection (LVI) [14] which we respectively mitigate both via

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 10

SGXSRDBS,cf SGXSRDBS,ld SGXdefault

RSA-2048 1162 132 1715
RSA-3072 282 35 316
RSA-4096 181 17 243
P-256 2353 971 5251
P-384 277 48 496
Ed25519 3312 909 6113
Ed448 1081 78 1251

TABLE III: SGX performances (KEX/s) with SRDBS and LVI
mitigation enabled versus default SGX for CS configured with
CSdhe,r

cert .

the SDK or via the SGX-SSL cve_2020_0551_load
(ld) or cve_2020_0551_cf (cf) [25].

Similar to Section VI-A, the performance is measured in
terms of the number of KEX/s. In our case, the overhead of the
microcodes – SRBDS – is negligible while the one of the SDK
and SGX-SSL – for LVI – is not. Table III summarizes our
measurements for each cipher suite. From the table, it is clear
that for a given SGX configuration, the overhead increases
with the number of operations performed by CS . However,
for a given cipher suite, we could not correlate the number of
operations to the expected overhead.

D. LURK-T TLS Overhead for HTTPS
We developed a multithreaded HTTPS server in RUST

(using OpenSSL). Subsequently, we modified it to use LURK-T
TLS to confirm that migration to LURK-T TLS is easy and can
be used in other programming languages that support OpenSSL
(in this case RUST). Similar to ∆KEX in Section VI-A, we
measure ∆HTTPS (see Table IV), the overhead of LURK-T
TLS over HTTPS with OpenSSL by measuring the relative
difference in requests by second of various file sizes being
served. To do so, we modified the benchmark tool wrk9 to
force select TLS 1.3 as well as to be able to specify a specific
cipher suite. The HTTPS server and benchmark tools are
published as open source.10

We measure the number of HTTPS requests per second
performed by wrk with 10 parallel connections to introduce
some concurrency similarly to [47] – though in the
measurements, we did not observe a significant difference
between 10 and a single connection. To prevent underestimating
the impact of LURK-T TLS, we considered our LAN with a 10
ms latency with 100 MB bandwidth that reflects the interactions
with a NIC while lowering the impact of the latency. Similarly,
the download file is always cached in the memory of the HTTPS
server, and thus, reducing S’s latency (by avoiding reading
from the hard drive). We limit CS’s configuration to the most
secure configuration which has the highest overhead (CSdhe,r

cert).
Moreover, to consider the SGX vulnerabilities, we performed
the same measurements on the fully mitigation-enabled SGX
(enabling ld and SRDBS), which has the most overhead.

9https://github.com/wg/wrk
10https://github.com/lurk-t/https

∆HTTPS 0KB 1KB 10KB 100KB 1MB
RSA-2048 16.0 17.7 8.9 7.9 0
RSA-4096 7.4 8.7 7.2 8.6 0

P-256 5.0 4.0 4.2 10.8 0
P-384 5.7 8.1 0.8 -3.0 0

Ed25519 10.9 13.9 3.4 3.4 0.1
Ed448 0 0 0 2.9 0

(a) Default SGX: LURK-T TLS overhead in term of HTTP request/s
is negligible for files larger than 1MB.

∆HTTPS 0KB 1KB 10KB 100KB 1MB
RSA-2048 88.1 88.0 86.3 83.7 0.6
RSA-3072 86.6 86.7 86.5 86.5 69.1
RSA-4096 90.5 90.7 90.6 90.8 85.2

P-256 76.6 76.4 78.2 78.8 41.7
P-384 78.3 78.9 79.5 79.8 60.4

Ed25519 63.2 63.4 58.1 38.5 0
Ed448 78.1 77.9 78.5 82.7 38.2

(b) Mitigation-enbaled SGX (ld and S)

TABLE IV: HTTPS download/s LURK-T TLS relative over-
head over OpenSSL (∆HTTPS) in (EC)DHE mode and
“LURK-T with DHE-active CS” (CSdhe,r

cert).

The measurements in Table IV show that even with CSdhe,r
cert ,

the overhead is always negligible when downloading 1MB (or
larger) files. In other words, for such files, the transfers overtake
the overhead introduced by the LURK-T TLS handshake.
For file sizes lower than 100KB, LURK-T TLS seems to
introduce a slight overhead, but we are not able to find a clear
relation with the file size, and the overhead seems primarily
determined by the cipher suite. Similar to the measurements
of CS in Section VI-B, P-384 and Ed448 seem to provide
better performances compared to other cipher suites. Our
reported measurements are valid from both the client and server
perspectives. Note that, resource wise, S’s LURK-T overhead
is the one reported in Section VI-B.

When the mitigations (ld and SRDBS) are enabled, the
measurements show that P-256, Ed25519, RSA-2048 provide
a negligible overhead for 1MB files. For other cipher suites,
such a pivot seems to occur for file sizes over 1 MB.

E. SGX Memory Usage

The memory that our design needs depends on the chosen
configuration. Without session resumption, our implementation
uses at most about 25 KB stack and 8 KB heap memory.
Moreover, the memory requirement does not change with the
number of connections. Similarly, when session resumption is
enabled in the stateless mode, we do not need to store anything
in SGX protected memory. However, in the stateful mode,
session information needs to be stored in the SGX memory. For
each session, we need 104 bytes of SGX memory to store the
PSK and session ID. Note that we report memory usage in the
debug version (since the Enclave Memory Measurement Tool
provided by Intel only works in the debug mode). Therefore,
the memory usage will possibly reduce in practice (e.g., due
to the optimization in the release mode).

https://github.com/wg/wrk
https://github.com/lurk-t/https

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 11

LURK−T Talos C-k C-c Panoply Graphene
LOC (K) 3.8 5.4 > 770 1300 20 1300
∆HTTPS 0 - 17.7 22 57 81 49 40

TABLE V: HTTPS measurement comparison between Panoply,
Graphene, Conclave-keyless (C-k), Conclave-crypt (C-c), Talos.
∆HTTPS represents the relative overhead (%) associated to the
number of HTTPS download per second for a 1 KB file.

F. LURK-T TLS Overhead for HTTPS Over Other Proposals
In this section we briefly discuss the LURK-T TLS overhead

with the one of other solutions of Section II, reported in
Table V. The comparison is only indicative as the overheads
have been made in very different contexts involving different
HTTPS servers (NGINX, Apache and wrk) and different TLS
libraries (different versions of OpenSSL and libreSSL - though
derived from OpenSSL).

LURK-T is the only design applicable to TLS 1.3 with
the lowest overhead in terms of KEX compared to TLS 1.2
and fewest LOC in TEE. As mentioned in Section II, specific
approaches (LURK-T and Talos) seem to provide a lower
overhead over generic frameworks (Graphene – see Conclave
keyless). On the other hand, the large overhead measured for
Panoply, Graphene, Talos and Conclave-crypt can be attributed
to the resources they require for the protection of the TLS
application data.

In terms of LOC, LURK-T and Talos limit the potential
vulnerability with fewer lines of code and make these solutions
more likely to be deployed by cloud providers as less TCB
is required. This results both in limiting the necessary memory
resources (limited to 90MB) as well as increasing the ability to
share the other part of the untrusted library between containers
and other applications.

VII. FORMAL SECURITY PROOFS AND ANALYSES

There are two schools of thought w.r.t. provable security: com-
putational analysis (a.k.a. cryptographic proofs) and symbolic
analysis. Computational or provable-security formalisms for
security analysis consider messages as bit strings, attackers to
be probabilistic polynomial-time algorithms who attempt to sub-
vert cryptographic primitives, and attacks to have a probabilistic
dimension of the security parameters. Computational analysis
is proved generally “by hand” in a game-based cryptographic
model and is appropriated to verify arbitrary corruption and
cryptographic AKE (authentication key exchange). On the
other hand, symbolic models abstract messages to algebraic
terms, assume cryptographic primitives to be ideal and not
subject to subversion by the adversary, and the attacks be
possibilistic (i.e., not probabilistic) flaws mounted via a set of
Dolev-Yao rules applied over interleaved protocol executions
- assuming cryptography cannot be broken. Symbolic analysis
is tool-assisted, automated, in a protocol-semantics and is
appropriated to prove some properties such as PFS for example.

We use both the computational analysis: namely, we extend
the (S)ACCE model [8] for multi-party AKEs, and we extend

the symbolic analysis of a TLS 1.3 draft in ProVerif [6]. We
extend the computational analysis to work for the actual current
TLS 1.3 and TEEs, as well as applied it to LURK-T. We also
extend the symbolic verification to work for TLS 1.3 draft
20 in [6] (which does not consider some AEAD encrypted
payloads during the handshake); then, we apply it to LURK-T.
Importantly, we could forego the computational analysis if
there was a computational-soundness result [18], but this does
not exist for TLS, let alone for multi-party TLS.

As per Section IV, one can have several modes and several
variants of our LURK-T protocol. In what follows, we will
show security-analyses for all these variants. We start by stating
LURK-T’s requirements semi-formally, in VII-A1. On top of
the existing 3(S)ACCE [8] properties, we add a requirement
and a proof for a new property stemming from our use of
TEEs; we call this property trusted key-binding.

In Section VII-A2, we provide the computational-security
results for both “LURK-T with DHE-active CS” and
“LURK-T with DHE-passive CS” in EC-DHE mode, and
discuss in this framework why “LURK-T with DHE-active CS”
offers more provable-security guarantees. For “LURK-T with
DHE-active CS” in EC-DHE mode, if executed in what we
call the runtime-attested handshake-context mode, the property
we call trusted key-binding holds (see Section VII-A1);
this is a stronger form of accountability (than without the
runtime-attested handshake-context mode), hinging on TEEs.

In Section VII-B, we use symbolic verification to show that
“LURK-T with DHE-active CS” in EC-DHE mode attains all
the same requirements that TLS1.3 does, and a new, 3-party se-
curity property that shows that C , E , CS have matching views
of the handshake even in the presence of a Dolev-Yao attacker.

A. Computational Analysis
1) Cryptographic requirements: In order to give our

cryptographic proofs that LURK-T achieves its security goals,
we use the recent 3(S)ACCE formal security model for proxied
AKE [8].

In essence, we will use this 3(S)ACCE model, extended with
an additional 4th party, namely the attester AS , who interacts
with the CS and (the AS may be called upon via E), but
this interaction AS-CS is outside of the ACCE computation.
Because of this, we continue to call the model 3(S)ACCE (as
in, with 3 parties); we just make a note that a 4th party – the
attester– is present, “out of band”.
Security requirements for LURK-T. For LURK-T, we prove
the 3(S)ACCE requirements: i.e., entity authentication, channel
security and accountability. Below, we add a new one, linked to
the attester party, and call this requirement trusted key-binding.
LURK-T with runtime-attested handshake-context. In this
sub-variant, a runtime TEE system is called to yield a separate
“quote” over the whole handshake done inside the CS during a
TLS session. So, we request the quote from the remote enclave
(found on the CS) and verify this using the Attestation Service.
Namely, we request the quote as soon as the CS prepares

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 12

the PSign and before it does so. Then, we encrypt the buffer
containing the operations on the CS and its arguments (it will
just contain Hctx), with the shared key established via remote
attestation (e.g., seal key). In this optional sub-variant, this
step is done and the Attestation Service therefore will receive
a “binding”/“context” to the channel-key calculated during
the handshake. We call this type of LURK-T – LURK-T with
runtime-attested handshake-context.
Trusted key-binding. We now state our new attestation-
relevant property more widely than for LURK-T, for a
server-controlled delegated TLS achieves trusted key-binding
with runtime attestation on the CS . We say a server-controlled
delegated TLS achieves trusted key-binding if CS is able
to compute the channel keys ck used by C and E and the
handshake context/transcript corresponding to these keys
ck is asynchronously attested. That is, if presented with
this handshake context by the attester again, then CS can
recompute these keys ck and produce the same PSign, h, a, etc
sent to E in the handshake where the keys (ck) were used.

Note that the attester gets only necessary parameters from
the handshake. Notably, it does not get PSign, h, a, so it cannot
impersonate the CS or resume a session as a CS . Further, in
some TEE systems (e.g., if we use a TPM – trusted platform
module), we could open a “TEE session” for the whole part
of the handshake run on the CS and sign that as a proof of
computation for the attester, yet we deliberately go against that.
Such a design would give the attester all the information of the
computation on the CS side which we believe will place too
much trust on the attester, allowing it to see long-term secrets
of the CS pertaining to another, specific protocol, i.e., TLS.

Finally, trusted key-binding is a type of enhanced 3(S)ACCE
accountability which is based on the LURK-T CS executing
its part of the TLS-server in an enclave.

2) Cryptogtaphic proofs: W.r.t. the properties recalled/given
above, we now state our cryptographic guarantees.
Entity-authentication result. If TLS 1.3 is secure w.r.t.
unilateral entity authentication, if the protocol between E and
CS is a secure ACCE protocol or they are collocated, if the two
protocols (the one between C and E , and the one between E
and CS) ensure 3(S)ACCE mixed entity authentication [8] in
the case where E and CS are not collocated, if the signature
and hash in TLS 1.3 server-side are secure in their respective
threat models, if the authentication encryption used in TLS 1.3
is secure in its model, then “LURK-T with DHE-active CS”
and “LURK-T with DHE-passive CS” in EC-DHE mode are
entity-authentication secure in the 3(S)ACCE model.
Channel security result. If TLS 1.3 is secure w.r.t. unilateral
entity authentication, if the protocol between E and CS is
a secure ACCE protocol or they are collocated, if the two
protocols ensure 3(S)ACCE mixed entity authentication [8] in
the case where E and CS are not collocated, if the signature
in TLS 1.3 server-side is secure in its threat model, if the
authentication encryption used in TLS 1.3 is secure in its model,
and the freshness function is a non-programmable PRF [12],

then “LURK-T with DHE-passive CS” in EC-DHE mode
are entity-authentication secure in the 3(S)ACCE model attain
channel security in the 3(S)ACCE model.

Note that the two security results above apply to all variants
and sub-variants of LURK-T. These two requirements are the
main requirements for any AKE protocol, now cast and proven
here not over two but over three parties, in the 3(S)ACCE model.
This alone makes LURK-T a secure TLS decoupling between
the Crypto Service to the Engine. So, the next two statements
can be viewed as “bonus” security, attained only by the variants
of LURK-T which are computationally more expensive.
Accountability result. If TLS 1.3 is secure w.r.t. unilateral entity
authentication, if the protocol between E and CS is a secure
ACCE protocol or they are collocated, if the two protocols
ensure 3(S)ACCE mixed entity authentication in the case where
E and CS are not collocated, and the freshness function is a
non-programmable PRF [12], then “LURK-T with DHE-active
CS” attains accountability in the 3(S)ACCE model.

Accountability requires that CS always be able to compute
all keys and sub-keys of the session established between
the client and E . So, accountability is incompatible when
session-resumption is done by the E alone (i.e., “LURK-T with
DHE-passive CS”). That is the above security statement w.r.t.
accountability only holds for “LURK-T with DHE-active CS”.
Note that this is not critical in practice. Also, it comes at a cost
(i.e., “LURK-T with DHE-active CS” is more computationally
expensive expensive than “LURK-T with DHE-passive CS”).
So, with LURK-T, we provide a series of variants, allowing the
deployment-stage to choose between security and efficiency.
Trusted key-binding result. If TLS 1.3 is secure w.r.t.
unilateral entity authentication, if the protocol between E and
CS is a secure ACCE protocol or they are collocated, if the
two protocols ensure 3(S)ACCE mixed entity authentication in
the case where E and CS are not collocated, and the freshness
function is a non-programmable PRF [12] and if the TEE
allows for runtime remote attestation, then “LURK-T with
DHE-active CS” attains trusted key-binding.

Trusted key-binding can be seen as an attested form of
accountability. So, like accountability, it will only hold for
variants of LURK-T where there is no session resumption
by the E alone. Again, this is not critical in practice – since
trusted key-binding is an arguably very strong requirement of
security and trust.

B. Symbolic Verification

We perform a symbolic verification using ProVerif [9] to
show that the LURK-T protocol, from a symbolic verification
perspective, attains the same security properties as TLS 1.3,
along with additional properties as described below. In this
section, we focus on the verification of “LURK-T with
DHE-active CS”. We first show that LURK-T does not impact
TLS security (from a symbolic-verification perspective). Then,
we show that the addition of the 3rd party still attains security

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 13

query cr:random, sr:random, cr’:random, sr’:random,
psk:preSharedKey,p:pubkey, e:element,
o:params, m:params,
ck:ae_key,sk:ae_key,ms:bitstring,cb:bitstring, log:bitstring;

inj-event(ClientFinished(TLS13,cr,sr,psk,p,o,m,ck,sk,cb,ms)) ==>
(inj-event(PreServerFinished(TLS13,cr,sr,psk,p,o,m,ck,sk,cb)) ==>

(inj-event (TLS13_recvd_CV (cr, sr, p, log)) ==>
(inj-event (CS_sent_CV(cr, sr, p, log)) ==>
inj-event (TLS13_sent_cr_sr_to_CS (cr, sr, p, log))
)
)
)

|| (event(WeakOrCompromisedKey(p)) && (psk = NoPSK
|| event(CompromisedPreSharedKey(psk)))) ||

event(ServerChoosesKEX(cr,sr,p,TLS13,DHE_13(WeakDH,e))) ||
event(ServerChoosesHash(cr’,sr’,p,TLS13,WeakHash)).

Fig. 7: Agreement query between C , E , CS

w.r.t. symbolic verification. All this is complementary to the
results in Section VII-A2.

This section is structured as follows. First, we report on a
ProVerif-verification of TLS 1.3 which we lifted from TLS 1.3
pre-standardisation (i.e., draft 18) to the current standard. Then,
we show that all the 2-party, TLS 1.3-centred properties are
preserved on LURK-T. We also add a new 3-party agreement
property for LURK-T, which ProVerif proves to hold, thus show-
ing LURK-T to be a secure proxied TLS. All our ProVerif files
and results are available at: https://github.com/lurk-t/proverif.

1) Verifying standardised TLS 1.3 in ProVerif: Our approach
was to reuse a ProVerif specification of a draft of TLS 1.3, given
in [36], [6]. The latest available version of this specification en-
coded draft 20 of TLS 1.3 pre-standardisation (no newer version
as confirmed by the authors). So, first, we updated this existing
ProVerif specification of TLS with the RFC 8446. In short, the
ProVerif model did not specify the handshake to include AEAD
encryption for the Certificate, CertificateVerify and Finished
messages. We applied the necessary updates to ProVerif models
and verified that the original properties still held. The only differ-
ence observed is that, in our newly updated models for standard-
TLS 1.3, the automatic proofs take longer, as we detail below.

2) Verifying LURK-T in ProVerif: We modelled LURK-T
in ProVerif. We therefore split the ProVerif S-process in
two: a CS process and an E process. In each, we encoded
“LURK-T with DHE-active CS” and, specifically, also the case
in which the CS and E are not collocated. In this case, we
modelled a secure channel between the CS and E , as per the
LURK-T specifications; in ProVerif, this is what is called a
private channel, not accessible to the underlying Dolev-Yao
attacker. We inherited all the Diffie-Hellman exponentiation
aspects (including modelling weak subgroups) from the
TLS implementation. Note that we do not model the TEE
specifically, but since CS cannot be adaptively corrupted in
the model at hand (which is the case symbolic verification),
that equates to the TEE being modelled “by default”.

The query we added to the ones inherited from TLS 1.3
expresses that there is always a correct/secure session interleav-
ing and execution between the C , E and CS , even with the
Dolev-Yao attacker in the middle. In practice, this means that a
Dolev-Yao attacker cannot find a way to mis-align the execution
of the three parties by doing a man-in-the-middle-type attack.

As shown in Fig. 7, our added query captures the execution
of the following sequence of events: 1) TLS13 sent cr sr to CS
denoting that E contacted the CS with clinet’s handshake
details; 2) CS sent CV denoting that the CryptoService sent a
signed share toE ; 3) TLS13 recvd CV denoting thatE got from
the said share signed from the CryptoService; 4) PreServerFin-
ished denoting that E acted as a TLS server and reached the
point of sending out a DH share to the client; 5) ClientFinished
denoting that C finished a handshake. By considering the
introduced parameters in these events, one can observe that the
data is bound among all such events during any given execution.
These events are required to be injective, implying a one-to-one
mapping in occurrences between them. Therefore, not only
must this sequential events and data agreement hold for every
LURK-T execution, but each CS execution will also uniquely
correspond to a single E execution and a single C execution,
through a distinct set of matching handshake data. This security
agreement goal is demonstrated to persist, except in the cases of
compromised CS , or compromised PSK, or due to the use of a
weak DH subgroup, or a weak hash function. Such exceptions
are comprehensively addressed by the list of disjunct terms
appended at the end of the query.

3) Experimental setup: We conducted our ProVerif
verification in two settings: (a) using an Ubuntu 20.04 Focal
VM with a V100 GPU and 128 GB RAM on KVM; (b) using
a laptop with Windows 10 and Intel(R) Core(TM) i7-8650U
CPU @1.90GHz and 32 GB RAM and the latest version 2.02
for ProVerif. While the powerful setting (a) is evidently very
suitable for the development phase of our ProVerif models
and for fast verification, we consider that setting (b) is more
plausible to be used for reproducing our proofs. In setting (b),
without the option to generate the attack graphs, analyzing all
29 queries automatically (the 24 queries inherited from [36]
plus the 5 queries we added specifically for LURK-T including
the query detailed above), takes 17.25 hours. Verified separately,
the query in Figure 7 requires 1.5 hours to be proved (true).

VIII. POTENTIAL VULNERABILITIES

Although LURK-T protocol’s security goals are formally
verified, a LURK-T deployment may still face practical security
challenges. For example, several new SGX attacks have been
reported almost every year for the past several years—see e.g.,
the recent Downfall [33] and ÆPIC attacks [10]; a survey of
attacks, CPU update delays, and exploits for commercial SGX
applications are provided by SGX.fail [46]; and a comprehen-
sive list11 is also maintained by Intel. A LURK-T deployment
must remain up-to-date with all pertinent fixes (SDK and
microcode, if available). Missing any such updates, or attacks
with no available mitigations may make any SGX deployment
vulnerable, including LURK-T. Possible vulnerabilities may
also be introduced in LURK-T’s implementation. Our code

11https://www.intel.com/content/www/us/en/developer/topic-
technology/software-security-guidance/processors-affected-consolidated-
product-cpu-model.html

https://github.com/lurk-t/proverif
SGX.fail
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 14

is open-sourced, and relatively small in size (under 4K LOC),
and thus the possibility of such vulnerabilities is relatively
low. The private keys that LURK-T aim to protect, can still
be leaked through content owner’s negligence; e.g., if keys are
provisioned without attesting a CS implementation (solutions
such as Blindfold [21] can be used for secure key provisioning).

IX. CONCLUSIONS

We introduced LURK-T – a provably secure and efficient
extension of TLS 1.3, and of the generic LURK framework.We
designed LURK-T with a TLS server decoupled into a LURK-T
TLS Engine and a LURK-T Crypto Service and split the TLS
handshake across the two modules; the Crypto Service is
executed inside a TEE and it accepts very specific and limited
requests. We offered several modular variants of LURK-T,
balancing security and efficiency. In addition, we implemented
the Crypto Service using Intel SGX, and integrated our
implementation to OpenSSL with minor changes. Finally, our
experimental results looked at LURK-T’s overheads compared
to TLS 1.3 handshakes and demonstrated that it provides
competitive efficiency.

REFERENCES

[1] RFC 9257. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc9257.txt

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE: secure
linux containers with intel SGX,” in USENIX OSDI, 2016, pp. 689–703.

[3] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch, “TaLoS: Secure
and Transparent TLS Termination inside SGX Enclaves,” 2017.

[4] R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla, “Delegated
Credentials for TLS,” Internet Engineering Task Force, Internet-Draft
draft-draft-ietf-tls-subcerts, Jan. 2021, work in Progress. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-draft-ietf-tls-subcerts

[5] M. Bartock, M. Souppaya, R. Savino, T. Knoll, U. Shetty, M. Cherfaoui,
R. Yeluri, A. Malhotra, and K. Scarfone, “Hardware-Enabled Security:
Enabling a Layered Approach to Platform Security for Cloud and Edge
Computing Use Cases,” in Draft NISTIR 8320, may 2021. [Online].
Available: https://doi.org/10.6028/NIST.IR.8320-draft

[6] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy (SP), 2017, pp. 483–502.

[7] K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P.-A. Fouque, and
C. Onete, “A Formal Treatment of Accountable Proxying over TLS,”
in Proceedings of IEEE S&P. IEEE, 2018.

[8] K. Bhargavan, I. Boureanu, P. Fouque, C. Onete, and B. Richard,
“Content delivery over TLS: a cryptographic analysis of keyless SSL,”
in IEEE EuroS&P, 2017, pp. 1–16.

[9] B. Blanchet, “Modeling and verifying security protocols with the
applied Pi calculus and ProVerif,” Found. Trends Priv. Secur., vol. 1,
no. 1-2, pp. 1–135, 2016.

[10] P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and
M. Schwarz, “ÆPIC leak: Architecturally leaking uninitialized data
from the microarchitecture,” in Usenix Security Symposium, Boston,
MA, USA, Aug. 2022.

[11] I. Boureanu, D. Migault, S. Preda, H. A. Alamedine, S. Mishra,
F. Fieau, and M. Mannan, “LURK: server-controlled TLS delegation,”
in IEEE TrustCom, 2020, pp. 182–193.

[12] I. Boureanu, A. Mitrokotsa, and S. Vaudenay, “On the pseudorandom
function assumption in (secure) distance-bounding protocols - prf-ness
alone does not stop the frauds!” in LATINCRYPT, vol. 7533, 2012,
pp. 100–120.

[13] A. Brandao, J. Resende, and R. Martins, “Hardening of cryptographic
operations through the use of secure enclaves,” Computers & Security,
p. 102327, 2021.

[14] J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI: hijacking transient
execution through microarchitectural load value injection,” in 2020
IEEE Symposium on Security and Privacy. IEEE, 2020, pp. 54–72.

[15] S. Checkoway and H. Shacham, “Iago attacks: why the system call
API is a bad untrusted RPC interface,” in ASPLOS. ACM, 2013, pp.
253–264.

[16] Cisco, “Cisco visual networking index: forecast and methodology,
2017-2022,” 2017. [Online]. Available: https://s3.amazonaws.com/
media.mediapost.com/uploads/CiscoForecast.pdf

[17] T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and
exploitation of memory corruption vulnerabilities in SGX enclaves,”
in USENIX Security Symposium, 2020, pp. 841–858.

[18] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” J. Autom.
Reason., vol. 46, no. 3-4, pp. 225–259, 2011. [Online]. Available:
https://doi.org/10.1007/s10817-010-9187-9

[19] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol.
ePrint Arch., vol. 2016, p. 86, 2016. [Online]. Available:
http://eprint.iacr.org/2016/086

[20] X. d. C. de Carnavalet and P. C. van Oorschot, “A survey and analysis
of tls interception mechanisms and motivations,” arXiv preprint
arXiv:2010.16388, 2020.

[21] H. Galal, M. Mannan, and A. Youssef, “Blindfold: Keeping private
keys in PKIs and CDNs out of sight,” Computers & Security, vol. 118,
Jul. 2022.

[22] S. Herwig, C. Garman, and D. Levin, “Achieving keyless cdns with
conclaves,” in USENIX Security Symposium, 2020, pp. 735–751.

[23] “Affected Processors: Transient Execution Attacks & Related Security
Issues by CPU,” Intel Security Center, apr 2021. [Online]. Available:
https://software.intel.com/security-software-guidance/processors-
affected-transient-execution-attack-mitigation-product-cpu-model

[24] Intel Corporation, “Intel QuickAssist Technology (Intel QAT) and
OpenSSL-1.1.0: Performance,” 2018. [Online]. Available: https:
//01.org/sites/default/files/downloads/intelr-quickassist-technology/
337003-001-intelquickassisttechnologyandopenssl-110.pdf

[25] ——, “intel/intel-sgx-ssl,” 2021. [Online]. Available:
https://github.com/intel/intel-sgx-ssl

[26] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel Software Guard Extensions: EPID Provisioning and
Attestation Services ,” Intel White Paper, 2016. [Online].
Available: https://software.intel.com/content/dam/develop/public/us/en/
documents/ww10-2016-sgx-provisioning-and-attestation-final.pdf

[27] “SRBDS - Special Register Buffer Data Sampling,” The Linux kernel
user’s and administrator’s guide, The kernel development community.
[Online]. Available: https://www.kernel.org/doc/html/latest/admin-
guide/hw-vuln/special-register-buffer-data-sampling.html

[28] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xingand, and
M. Vij, “Integrating Intel SGX Remote Attestation with Transport
Layer Security,” Intel White Paper, jul 2019. [Online]. Available:
https://arxiv.org/pdf/1801.05863.pdf

[29] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
meets CDN: A case of authentication in delegated service,” in 2014
IEEE Symposium on Security and Privacy, 2014, pp. 67–82.

[30] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin, F. Kelbert,
T. Reiher, D. Goltzsche, D. M. Eyers, R. Kapitza, C. Fetzer, and P. R.
Pietzuch, “Glamdring: Automatic application partitioning for intel SGX,”
in 2017 USENIX Annual Technical Conference, 2017, pp. 285–298.

[31] W. Liu, H. Chen, X. Wang, Z. Li, D. Zhang, W. Wang, and H. Tang,
“Understanding TEE containers, easy to use? hard to trust,” CoRR, vol.
abs/2109.01923, 2021.

https://www.rfc-editor.org/rfc/rfc9257.txt
https://www.rfc-editor.org/rfc/rfc9257.txt
https://datatracker.ietf.org/doc/html/draft-draft-ietf-tls-subcerts
https://doi.org/10.6028/NIST.IR.8320-draft
https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
https://doi.org/10.1007/s10817-010-9187-9
http://eprint.iacr.org/2016/086
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf
https://github.com/intel/intel-sgx-ssl
https://software.intel.com/content/dam/develop/public/us/en/documents/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/special-register-buffer-data-sampling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/special-register-buffer-data-sampling.html
https://arxiv.org/pdf/1801.05863.pdf

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 15

[32] D. Migault, “LURK Extension version 1 for (D)TLS 1.3
Authentication,” Internet Engineering Task Force, Internet-Draft draft-
draft-mglt-lurk-tls13, Jan. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-draft-mglt-lurk-tls13

[33] D. Moghimi, “Downfall: Exploiting speculative data gathering,” in
Usenix Security Symposium, Anaheim, CA, USA, Aug. 2023.

[34] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
D. R. López, K. Papagiannaki, P. R. Rodŕıguez, and P. Steenkiste,
“Multi-context TLS (mcTLS): Enabling secure in-network functionality
in TLS,” in ACM SIGCOMM, 2015, pp. 199–212.

[35] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. R. Pietzuch, “SGX-LKL: securing the host OS interface for
trusted execution,” CoRR, vol. abs/1908.11143, 2019.

[36] “RefTLS,” 2018. [Online]. Available: https://github.com/Inria-
Prosecco/reftls

[37] H. Ragab, A. Milburn, K. Razavi, H. Bos, and
C. Giuffrida, “CROSSTALK: Speculative Data Leaks
Across Cores Are Real,” 2020. [Online]. Available:
https://download.vusec.net/papers/crosstalk sp21.pdf

[38] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” RFC 8446, Aug. 2018. [Online]. Available:
https://rfc-editor.org/rfc/RFC8446.txt

[39] Y. Sheffer, P. Saint-Andre, and T. Fossati, “Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS),” RFC 9325, Nov. 2022. [Online]. Available:
https://www.rfc-editor.org/info/RFC9325

[40] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux applications with SGX enclaves,” in NDSS, 2017.

[41] D. Stebila and N. Sullivan, “An analysis of TLS handshake proxying,”
in IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp.
279–286.

[42] K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “TS-Perf: General
performance measurement of trusted execution environment and rich
execution environment on Intel SGX, Arm TrustZone, and RISC-V
Keystone,” IEEE Access, vol. 9, pp. 133 520–133 530, 2021.

[43] H. Tadepalli, “Intel® QuickAssist Technology with Intel Key
Protection Technology in Intel Server Platforms Based on Intel Xeon
Processor Scalable Family,” in White Paper. Intel Corporation, 2017.
[Online]. Available: https://www.aspsys.com/images/solutions/hpc-
processors/intel-xeon/Intel-Key-Protection-Technology.pdf

[44] D. J. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. B. Butler,
“A practical intel SGX setting for linux containers in the cloud,” in
ACM CODASPY, 2019, pp. 255–266.

[45] C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
OS for unmodified applications on SGX,” in 2017 USENIX Annual
Technical Conference, USENIX ATC, 2017, 2017, pp. 645–658.

[46] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, C. Garman,
D. Genkin, A. Miller, E. Ronen, and Y. Yarom, “SoK: SGX.Fail: How
stuff get eXposed,” https://sgx.fail, 2022.

[47] C. Wei, J. Li, W. Li, P. Yu, and H. Guan, “STYX: a trusted and
accelerated hierarchical SSL key management and distribution system
for cloud based CDN application,” in ACM SoCC, 2017, pp. 201–213.

[48] N. Weichbrodt, P. Aublin, and R. Kapitza, “sgx-perf: A performance
analysis tool for intel SGX enclaves,” in ACM/IFIP Middleware, 2018,
pp. 201–213.

[49] O. Weisse, V. Bertacco, and T. M. Austin, “Regaining lost cycles with
hotcalls: A fast interface for SGX secure enclaves,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture,
2017, pp. 81–93.

[50] P. Yuhala, J. Ménétrey, P. Felber, V. Schiavoni, A. Tchana, G. Thomas,
H. Guiroux, and J. Lozi, “Montsalvat: Intel SGX shielding for graalvm
native images,” in ACM/IFIP Middleware, 2021, pp. 352–364.

Behnam Shobiri is a security researcher at Tigera
wher he is researching Cloud and Kubernetes
security. Prior to that, he was a master’s student
at Concordia University and worked on TLS and
CDN security. He got his bachelor’s degree from
the Ferdowsi University of Mashhad in the field
of computer engineering.

Sajjad Pourali is currently pursuing his Ph.D.
degree in Information and Systems Engineering at
Concordia University. His research interests include
internet, application and system security and privacy.

Daniel Migault is an expert in the Ericsson
cybersecurity team and is actively involved in
standardizing security protocols at the IETF.

Ioana Boureanu is a Professor in Secure Systems
at University of Surrey. She is the deputy director of
Surrey Centre for Cyber Security, the co-director of
University of Surrey Gold-level ACE-CSE, as well
as Director of our GCHQ-accredited Information
Security MSc.

Stere Preda received his PhD in Computer Science
from TELECOM Bretagne, France. He is currently
a senior researcher with expertise in cybersecurity
at Ericsson. He has been an an active contributor
to ETSI NFV security standardization.

Mohammad Mannan in an associate professor
at the Concordia Institute for Information Systems
Engineering, Concordia University. His research
interests lie in the area of Internet and systems
security. Dr. Mannan is involved with several well-
known conferences (e.g., USENIX Security, ACM
CCS), and journals (e.g., IEEE TIFS and TDSC).

https://datatracker.ietf.org/doc/html/draft-draft-mglt-lurk-tls13
https://github.com/Inria-Prosecco/reftls
https://github.com/Inria-Prosecco/reftls
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://rfc-editor.org/rfc/RFC8446.txt
https://www.rfc-editor.org/info/RFC9325
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://sgx.fail

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2024 16

Amr Youssef received the B.Sc. and M.Sc. degrees
from Cairo University, Cairo, Egypt, in 1990
and 1993 respectively, and the Ph.D. degree from
Queens University, Kingston, ON., Canada, in 1997.
Dr. Youssef is currently a professor at the Concordia

Institute for Information Systems Engineering
(CIISE) at Concordia University, Montreal, Canada.
His research interests include cryptology, security
and privacy.

	Introduction
	Related Work
	TLS and TEE
	TLS Protocol Extensions

	Design Goals and Threat Model
	Goals
	Adversary Capabilities

	LURK-T Design and Deployment Scenarios
	LURK-T – Design
	LURK-T - Use Cases and Deployment Scenarios

	System Implementation
	Crypto Service (CS)
	CS in TLS (EC)DHE mode
	CS in TLS PSK with (EC)DHE mode

	 TLS Engine (E)

	Performance Evaluation
	Methodology for Measuring LURK-T TLS Overhead over OpenSSL
	Experimental Measurements of LURK-T TLS Overhead over OpenSSL
	SGX Vulnerabilities Mitigation Overhead
	LURK-T TLS Overhead for HTTPS
	SGX Memory Usage
	LURK-T TLS Overhead for HTTPS Over Other Proposals

	Formal Security Proofs and Analyses
	Computational Analysis
	Cryptographic requirements
	Cryptogtaphic proofs

	Symbolic Verification
	Verifying standardised TLS 1.3 in ProVerif
	Verifying LURK-T in ProVerif
	Experimental setup

	Potential Vulnerabilities
	Conclusions
	References
	Biographies
	Behnam Shobiri
	Sajjad Pourali
	Daniel Migault
	Ioana Boureanu
	Stere Preda
	Mohammad Mannan
	Amr Youssef

