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Assurance and certification in secure Multiparty Open Software and Services (Assure-
MOSS). No single company masters its own national, in-house software. Software is mostly

assembled from “the internet” and more than half comes from Open Source Software repositories

(some in Europe, most elsewhere). Security & privacy assurance, verification, and certification

techniques designed for large, slow, and controlled updates, must now cope with small, continuous

changes in weeks, happening in sub-components and decided by third-party developers one

did not even know existed. AssureMOSS proposes to switch from process-based to artifact-based security evaluation by

supporting all phases of the continuous software lifecycle (Design, Develop, Deploy, Evaluate, and back) and their artifacts

(Models, Source code, Container images, Services). The key idea is to support mechanisms for lightweight and scalable

screenings applicable automatically to the entire population of software components by Machine intelligent identification

of security issues, Sound analysis and verification of changes, and Business insight by risk analysis and security evaluation.

This approach supports the fast-paced development of better software with a new notion: continuous (re)certification.

The project will generate also benchmark datasets with thousands of vulnerabilities. AssureMOSS: Open Source Software:

Designed Everywhere, Secured in Europe. More information at https://assuremoss.eu.

Cybersecurity for AI-Augmented Systems (Sec4AI4Sec) . As artificial intelligence (AI) be-
comes omnipresent, even integrated within secure software development, the safety of digital

infrastructures requires new technologies and new methodologies, as highlighted in the EU Strate-

gic Plan 2021-2024. To achieve this goal, the EU-funded Sec4AI4Sec project will develop advanced

security-by-design testing and assurance techniques tailored for AI-augmented systems. These

systems can democratize security expertise, enabling intelligent, automated secure coding and test-

ing while simultaneously lowering development costs and improving software quality. However,

they also introduce unique security challenges, particularly concerning fairness and explainability.

Sec4AI4Sec is at the forefront of the move to tackle these challenges with a comprehensive approach, embodying the vision

of better security for AI and better AI for security. More information at https://sec4ai4sec.eu.

In searCh Of eVidence of stEalth cybeR Threats (COVERT) aims to analyze emerging attack

methodologies and develop advanced methods for detecting attacks and identifying guidelines

for designing IT systems that ensure reduced vulnerability to new attack categories. The detailed

objectives can be divided into four macro categories: (i) Development of advanced tools for

analyzing malware and software aimed at identifying vulnerabilities that could be exploited by malware; (ii) Development

of tools for analyzing network traffic to identify communications related to ongoing attacks; (iii) Development of machine

learning systems that are robust to attacks and through which it is possible to extract knowledge aimed at creating more

advanced tools for timely analysis and early identification of attacks; (iv) Analysis of the "human factors" involved in an

attack with the development of tools for analyzing and correlating information from OSINT (open sources intelligence) and

for the defense and prevention of attacks based on social engineering techniques.

Theseus: Making patching happen project explores ways to improve software patching. The

EU cybersecurity framework has evolved into a stricter, harmonized system that imposes require-

ments on patching. THESEUS has also found that tools like Shodan often misses vulnerabilities.

Regulatory deadlines accelerate patching, although coordination issues cause delays. Researchers

are developing efficient techniques to detect and mitigate vulnerabilities without performance

loss. The reliability of patch-testing tools has proven to be a weak point, requiring improvements

to reduce risks. Machine learning is being used to prioritize vulnerabilities more effectively. These

insights contribute to better patching by addressing challenges in governance, technology, and operations.

Hybrid ExplainableWorkflows for Security and Threat Intelligence (HEWSTI). In research
into threats to safety and security, people and AI collaborate to obtain actionable intelligence.

Their sources and methods often have significant uncertainties and biases. Experts are aware of

these limitations, but lack the formal means to handle these uncertainties in their daily work. This

project will invent a ‘metadata of uncertainty’ for threat intelligence (in both machine-readable and

also human-interpretable forms) and validate it empirically. Intelligence agencies will then be able

to explicitly consider the trade-off between the accuracy, proportionality, privacy, and cost-effectiveness of investigations.

This will contribute towards the responsible use of AI to create a safer, more secure society.
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Vulnerability datasets used for ML testing implicitly contain retrospective information. When tested on the

field, one can only use the labels available at the time of training and testing (e.g. seen and assumed negatives).

As vulnerabilities are discovered across calendar time, labels change and past performance is not necessarily

aligned with future performance. Past works only considered the slices of the whole history (e.g. DiverseVUl)

or individual differences between releases (e.g. Jimenez et al. ESEC/FSE 2019). Such approaches are either

too optimistic in training (e.g. the whole history) or too conservative (e.g. consecutive releases). We propose

a method to restructure a dataset into a series of datasets in which both training and testing labels change

to account for the knowledge available at the time. If the model is actually learning, it should improve its

performance over time as more data becomes available and data becomes more stable, an effect that can

be checked with the Mann-Kendall test. We validate our methodology for vulnerability detection with 4

time-based datasets (3 projects from BigVul dataset + Vuldeepecker’s NVD) and 5 ML models (Code2Vec,

CodeBERT, LineVul, ReGVD, and Vuldeepecker). In contrast to the intuitive expectation (more retrospective

information, better performance), the trend results show that performance changes inconsistently across the

years, showing that most models are not learning.

CCS Concepts: • Software and its engineering→ Software defect analysis; Software libraries and repos-
itories; Empirical software validation; • Security and privacy→ Software security engineering; •
Computing methodologies→ Cross-validation; Supervised learning by classification.

Additional Key Words and Phrases: Dataset tuning, machine learning, perspective, software security
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1 Introduction
Usingmachine learning for (security) bug detection is a recent popular trend in software engineering

research [Chakraborty et al. 2021; Marjanov et al. 2022]. Despite the vigorous research, practical

deployment is lagging [Arp et al. 2022; Kästner 2022; Lwakatare et al. 2020]. For example, while

several open source or commercial tools exist for static security analysis exist (e.g. SonarQuBE,

Checkmarx), as well as open ML models for NLP (e.g. [Liu et al. 2019], [Feng et al. 2020], [Hanif and

Maffeis 2022]), their transfer to security vulnerability prediction has not been uniformly successful

ie. on the reproduction by [Steenhoek et al. 2023], CodeBERT [Feng et al. 2020] and VulbertA [Hanif
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and Maffeis 2022] have accuracy lower than 70%. DiverseVul [Chen et al. 2023] reports a dismal F1

of 0.48 for the best LLM Model trained on a large dataset.

One possible explanation is that models are overfitting on different datasets [Chakraborty et al.

2021; Chen et al. 2023] or there are mistakes in the division of training and testing datasets [Arp

et al. 2022; Chen et al. 2019]. However, Jimenez and colleagues [Jimenez et al. 2018, 2019] have

argued that there is a more fundamental cause that systematically creates a gap. Vulnerabilities

and bugs have a published date, security-related commits have a commit date, etc. Before the date
on which the vulnerability was discovered (typically by somebody other than the developer) the

‘vulnerable fragment’ was not known to be vulnerable. The fix, which the ML algorithm will use as

an example of not-vulnerable code, did not even exist.
Most high-quality datasets can be augmentedwith the date when the vulnerability was discovered,

either by manual labeling (e.g., Devign [Zhou et al. 2019]) or by using other publicly accessible data

(e.g., CVEs from NVD [NIST 2024a]) as the ground truth of the labels. For example, BigVul [Fan

et al. 2020] uses vulnerability-fixing commits from real-life projects to identify a non-vulnerable

fragment (the new version) and a vulnerable fragment (the version before the commit).

Paradoxically, the major problem of all these datasets, whether synthetically created or based on

real-life projects, is precisely that they provide at once the complete knowledge of vulnerable and

non-vulnerable components at the time of investigation. Therefore, when a dataset is used with

ten-fold cross-validation, 80-10-10 split, or other splits, the ML algorithm benefits from (retrospective)
complete information. The eventually correct labels of some fragments, that in field deployment of

the ML model would have only been known in the future (sometimes after years [Hu et al. 2024;

Massacci et al. 2011; Nguyen et al. 2016; Ozment and Schechter 2006]), are informing the training.

To address this issue, several studies [Jimenez et al. 2019; Scandariato et al. 2014; Shin et al.

2011] proposed to perform vulnerability prediction based on code metrics, keywords occurrences,

function names, and other metrics (but not source code yet) and introduced the idea of restricting

the predictor’s knowledge to each release: training on the data from release 1 until 𝑟 and testing on

𝑟 + 1. Yet, they all tested using the labels from the complete information dataset, with the overall

information across the years. This does not reflect the deployment scenario on a time 𝑡 where

only a subset of the data and labels are actually known. More recently, studies such as DiverseVul

[Chen et al. 2023], proposed to test ML models with an increasing share of the dataset, but they

still sample the complete information dataset for training and testing.

We need to extract from the complete information dataset a slice that reflects the evolving

knowledge that a model will encounter in time (new, unclassified yet, fragments, changing labels

due to late discoveries). Hence, our first question:

RQ1: How do we extract from a complete-information (retrospective) dataset a timeline of (perspective)
datasets corresponding to what would be seen on the field at particular times?

We propose to use calendar time rather than releases (as in [Jimenez et al. 2019]) or random samples

(as in [Chen et al. 2023]) for both correctness
1
and causality

2
considerations to form a timeline in

which labels and data points for training and testing are different from the complete information

source dataset and capture the partial information available at each time point. We propose to

use calendar time instead of releases, also accounting for causality considerations. We train on

vulnerability data from time 𝑡0 until observation date 𝑡 and test on vulnerability data with labels

1
Figure 1 in our motivating example (§2) shows how one release can have different labels in time, and therefore releases

labeled with complete information would use future information. Further, some projects have frequent releases, sometimes

even on the same day, and thus no learning could have reasonably taken place (except for fixing releases).

2
Releases and vulnerability discovery are independent processes collapsing on the times of responsible disclosure. By

construction, the vulnerability timestamp in the NVD is after (or on the same date) than the time of the new release. The

fixing release is not an independent event from the published vulnerability discovery time.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE016. Publication date: July 2025.
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available between the current and the next observation point 𝑡 + 1. For each time point in the

investigation timeline we generate one training dataset and 2 testing datasets:

(1) Retrospective Training - Retrospective Testing (R-R) all available code fragments up to the time of

investigation are used for training, testing uses the labels known at the time of investigation.

(2) Retrospective Training - Perspective Testing (R-P) test using vulnerable and non-vulnerable code

and labels based on the information available in the next time period after the training.

So R-R is the performance that researchers would obtain and report on papers by using the

dataset available at the time of the investigation. On the other hand, R-P is the performance that

one would observe by deploying the trained model and testing it on the field after the next time

point observation period (e.g., one month, one year).

Given our partitions, a consistent increase in performance (better precision and recall) is what

one will expect from a technology to be used in practice as more and more data points are used in the

learning process. The existence of such a trend can also be statistically tested (with Mann-Kendall)

thus showing that a model significantly learns over time.

This finding would have been consistent with DiverseVul experiments [Chen et al. 2023]. Chen

et al. Figure 3 shows that increasing the amount of training data from 10% to 90% of the sample

improves the F1 score from 0.38 to 0.46. A key observation is that their procedure was a-temporal:

the slices are randomly sampled from the same, complete-information retrospective dataset and their

labels do not change from slice to slice (as they may do in reality). Hence, our second research

question:

RQ2: Does ML performance monotonically increase as the available (retrospective) information
increases and consolidates?

We implemented our proposed methodology for the specific case of a vulnerability dataset inte-

grating 4 CVE-based datasets (Linux Kernel, OpenSSL, and Poppler from BigVul [Fan et al. 2020]

and NVD dataset by Vuldeepecker [Li et al. 2018]) and a timeline date as input. Given a time-based

dataset, we train 5 sota ML-based tools of different types (LineVul [Fu and Tantithamthavorn

2022], CodeBERT [Feng et al. 2020], ReGVD [Nguyen et al. 2022], Code2Vec [Alon et al. 2019],

Vuldeepecker [Li et al. 2018]) and tested on vulnerability data using calendar years as period
3
.

In sharp contrast to the expectations, our analysis over the years shows that there is no significant

trend of ML performance in detecting the vulnerability when tested in the Retrospective Training -
Perspective Testing (R-P), which is the one people will experience at a certain point in time. We also

show that presenting the ML performance result as (statistically tested) trends provides a more

understandable visualization of the ML performance if deployed across the years.

2 Motivating Example
An example of how perspective will be implicitly present in a dataset and how this will change the

performance of the ML algorithm is shown in Figure 1. We use five imaginary releases, inspired by

the releases used by [Jimenez et al. 2019; Scandariato et al. 2014; Shin et al. 2011]. These releases

have some vulnerabilities reported in NVD, portrayed as red arrows in Figure 1. [Jimenez et al.

2019] did 2 experiments, ideal and real. The real experiment uses data from previous (one or three)

releases in training, while the ideal experiment uses the complete information data. They claim their

labeling (whether a file is vulnerable or not) is based on the reported vulnerabilities when a version
is released. Therefore, when training on release v2.6.21, V1 would not be present in the training set

(File1 and File2, both are known as not vulnerable at that release). Also, in the testing set, File3

will be considered as vulnerable as [Jimenez et al. 2019] always used complete information labeling

3
Shorter intervals did not have enough changes and therefore the models would have essentially stayed identical.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE016. Publication date: July 2025.
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Fig. 1. Motivating example on the benefit of perspective: when you see what you should not see.

to label their testing set. This labeling does not represent the scenario developers will face at that

time, because at release v2.6.21 or v2.6.22, File3 was still known as not vulnerable. Moreover, as a

patch would most likely happen after a vulnerable version, if we see the training sets, the number

of positive data points (vulnerable files) could be very low, for example, File2 and its updates would

not be considered as vulnerable in any training. For their ideal experiment, they always train and

test using the data with complete information labeling.

Instead of using releases, we propose a methodology that uses time as a method to split the

dataset. We also use a different set to train and test in our experiments. We train on data and label

available until time 𝑇 and then do 2 tests: retrospective test (using data and label available until

time 𝑇 ) and perspective test (test with new data and label from 𝑇 to 𝑇 + 1).
Our retrospective scenario represents training and testing using only available data until a certain

time, while the perspective represents training using available data but testing on new data and

labels on the next time window. We are only using the complete information data to test the last

time point (𝑇𝑁 ). Different timelines can produce different labels. This reflects what happens at a

certain point in time, as vulnerability finding time will affect whether a vulnerability is known.

Additionally, we ran a third experiment with seen but believed negatives data/label. We put the

discussion on this additional experiment in a separate section (§8).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE016. Publication date: July 2025.
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3 Related Works
3.1 Dataset for Detection ML Training
Early works on bug/defect detection. In their systematic literature review, [Pachouly et al. 2022]

mentioned that most of the early research on software defect prediction based on software metrics

used NASA, PROMISE [SayyadShirabad and Menzies 2005], and AEEM software defect datasets in

their evaluation. The quality of such data was also disputed [Shepperd et al. 2013]. Further, they do

not use any issue/bug tracking system as their ground truth. A few datasets, such as Defects4J [Just

et al. 2014] and iBugs [Dallmeier and Zimmermann 2007] use bug tracking systems in the version

control system to find their label ground truth. According to [Pachouly et al. 2022], also [Yatish et al.

2019] uses JIRA bug tracking systems as their ground truth. These datasets also provide information

on when the bug is reported. More recent works [Jimenez et al. 2019; Scandariato et al. 2014; Shin

et al. 2011] have broadened the type and scope of datasets used.

Vulnerability detection. [Chen et al. 2023] collected 10 vulnerability detection datasets. Among

the 10 datasets, SATE IV Juliet [Okun et al. 2013] and SARD [NIST 2024c] are synthetic and

semi-synthetic datasets that cannot fully represent real-world vulnerabilities, and they are used

to evaluate several ML models [Li et al. 2018; Mirsky et al. 2023; Russell et al. 2018]. On the other

hand, Devign [Zhou et al. 2019] is a manually labeled dataset consisting of 2 C projects (that are

publicly available): FFMPeg and Qemu. Though a lack of a clear explanation of why a fragment is

considered vulnerable, Devign has also been used by many ML models [Ahmad et al. 2021; Feng

et al. 2020; Hanif and Maffeis 2022; Nguyen et al. 2022; Zhou et al. 2019].

To limit manual work, Draper [Russell et al. 2018] and D2A [Zheng et al. 2021] utilize static

analyzers to decide whether a code is vulnerable. However, the quality of these labels tends to be

low (D2A’s authors reported 53% label accuracy. Other works utilizes security issues repository

to generate a high-quality-labeled dataset such as ReVeal [Chakraborty et al. 2021], BigVul [Fan

et al. 2020], CrossVul [Nikitopoulos et al. 2021], CVEfixes [Bhandari et al. 2021], ProjectKB [Ponta

et al. 2019], DiverseVul [Chen et al. 2023], and apart of Vuldeepecker’s dataset [Li et al. 2018].

These datasets have higher accuracy labels, but model’s evaluations based on them do not take

into account the fact that they contain time-based information: some vulnerabilities are known

(published) at a certain point in time. A summary of datasets and ML models is given in Table 1.

Commit classification. There are several manually labeled datasets on commit classification:

[Ghadhab et al. 2021] has created a manually labeled dataset of 1793 commits; [dos Santos and

Figueiredo 2020] includes 3 manually classified datasets [Levin and Yehudai 2017], [Mauczka et al.

2015], [Safdari 2018]. Other works tried to identify vulnerability-contributing commits (VCC) or

security-relevant commits. [Perl et al. 2015] by taking available CVEs with links to commits and

tracing back the introducing commit (640 VCCs from 718 CVEs). A similar work is from [Le et al.

2021], which used NVD to get 1,229 unique VCCs and manually curated some fixing commits

(VulasDB [Ponta et al. 2019]). Moreover, TreeVUL [Pan et al. 2023] categorized vulnerable types

referring to the CWE tree and provided a fine-grained vulnerable type dataset. These datasets,

which are based on an issue tracker, actually have a time component: the fix commits are only

known when the vulnerability (with the fix) is published. Evaluating ML models using this kind of

dataset makes it possible to exploit the time variable to avoid the benefit of hindsight.

3.2 Models for Vulnerability Detection
Learn Features. [Li et al. 2018] proposed Vuldeepecker which could find vulnerabilities that

hadn’t been reported in NVD. They built code gadgets and transformed them into vectors. The

problem for Vuldeepecker is that it does not perform well in real-world situations [Chakraborty

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE016. Publication date: July 2025.
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Table 1. Used datasets in the SOTA of ML-based vulnerability detection.
Different ML models on vulnerability detection have been evaluated in the state of the art with different datasets. Some of them are time-based

(labeling based on CVEs or issue trackers), and some are not. In our validation, we use the time-based dataset with CVE, and for our

preliminary validation, we choose NVD, the smaller dataset. In bold are the dataset and models we use in our evaluation.

Has Used by

Dataset Description Labeling

CVE? ML Architecture

CVE-

based

NVD [NIST 2024a]
Fragments extracted from vulnerable soft-

ware lined to the NVD Dataset managed by

NIST.

✓

Vuldeepecker [Li et al. 2018] RNN, BLSTM
Semi-

synthetic

SySeVr [Li et al. 2022a] RNN

SARD [NIST 2024c]
Artificial dataset of test programs with docu-

mented weaknesses.

✗

BigVul [Fan et al. 2020] A large C/C++ vulnerability dataset from

FOSS Github projects.

CVE-

based

✓ LineVul
[Fu and Tantithamthavorn 2022]

Transformers

CodeBERT [Feng et al. 2020] Transformers
VulBERTa [Hanif and Maffeis 2022] Transformers

PLBART [Ahmad et al. 2021] Transformers

Code2Vec [Alon et al. 2019] MLP, AST
ReGVD [Nguyen et al. 2022] GNN, token
Devign [Zhou et al. 2019] GNN, property graph

Devign [Zhou et al. 2019]

Manually labeled dataset of vulnerable and

non-vulnerable codes from 2 large-scale

open-source C projects: FFMPeg and Qemu.

Manual ✗

Chromium+Debian

[Chakraborty et al. 2021]

A dataset of Chromium and Debian codes

labeled by issue tracker.

Issue-

based

✗ ReVeal [Chakraborty et al. 2021] GNN, property graph

DiverseVul

[Chen et al. 2023]

A C/C++ dataset from security issues

websites, vulnerability-fixing commits, and

source codes.

Issue-

based

Some Some LLM4Security such as

LLMVulExp [Mao et al. 2024]

LLM

et al. 2021]. And [Li et al. 2022a] further proposed SySeVR to extract more related syntax and

semantic vulnerability candidates automatically while reported in [Chakraborty et al. 2021], the

model’s accuracy dropped by 73 percent when using real-world datasets.[Chakraborty et al. 2021]

made a high-quality dataset with less duplication, more real data, and fewer irrelevant features in

their model named ReVeal.

Other works are also engaged in learning more features. Devign [Zhou et al. 2019] used the Conv

module to help extract features for the GNN model in the model’s classification process. Code2vec

[Alon et al. 2019] used a code vector to predict semantic attributes. SvulD[Ni et al. 2023] embedded

subtle semantic information into the model which distinguishes and representative semantics are

used. VulBG [Yuan et al. 2023] considers functions’ features and behaviors to use in other functions’

vulnerable detection. [Li et al. 2024] considered context information.

Text Classification. After RoBERTa [Liu et al. 2019] and related pre-trained models significantly

improved on natural language processing problems, CodeBERT [Feng et al. 2020], VulBertA [Hanif

and Maffeis 2022] and PLBert [Ahmad et al. 2021] were proposed to work in source code’s vulner-

ability detection. CodeBERT was the first to program language (PL) with natural language (NL)

knowledge, which trained with a hybrid objective function. [Nguyen et al. 2022] proposed ReGVD

which used raw source code as tokens to build graphs. Moreover, LineVul [Fu and Tantithamtha-

vorn 2022] adopts Transformer techniques that can work on line-level predictions, other than on

a function or file level. The results with DiverseVul [Chen et al. 2023] show that LLMs can only

be competitive with GNNs for very large datasets. Interestingly, LLMs require a large amount of

training data to surpass ReVeal. When trained solely on CVEFixes data, a much smaller training

set, there is no clear advantage of LLMs over GNN- based ReVeal model and ReVeal is even better

than 6 LLMs (out of 10).

3.3 Model’s Evaluation
For the model’s evaluation, previous works focused on two factors: metrics and operations

[Chakraborty et al. 2021]. Some other dimensions are considered based on the design of models.

[Li et al. 2019] proposed to do quantitative evaluations between different factors with two datasets.
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Table 2. Comparison Between Previous Works

Study Systems Evaluation Results Labels

[Shin et al.

2011]

Mozilla Firefox, RedHat En-

terprise, Linux kernel

Code metrics, Sample

until each release

Precision .03 - .05,

Recall .87 - .90 & .79 - .85

Until Release,

Complete Info

[Scandariato

et al. 2014]

20 Android apps Keywords, Sample un-

til each release

Precision .90 & .86,

Recall .77

Until Release,

Complete Info

[Jimenez

et al. 2016]

Linux Kernel Code metrics and

function names/im-

ports, Sample until

each release

Precision .65 & .76,

Recall .22-.64 & .16-.48

Until Release,

Complete Info

[Jimenez

et al. 2019]

Linux Kernel, OpenSSL,

Wireshark

Code metrics and

function names/im-

ports, Sample until

each release

Precision .45-.83,

Recall .36-.77

Until Release,

Complete Info

[Chen et al.

2023]

DiverseVul, Devign, Re-

Veal, BigVul, CrossVul,

CVEFixes

Source code functions,

Random sample of

complete info

F1 .09-.47

Precision .12-.52,

Recall .05-.44

Complete Info

This paper Linux Kernel, OpenSSL,

Poppler, NVD Vuldeep.

Source code functions,

Sample until each

time

Recall 0.0-1.0,

FPR 0.1-.91

Retrospective (Until

Time 𝑡 ) & Perspective

(Until Time 𝑡 + 1)

Besides, CodeBERT [Feng et al. 2020] was first evaluated by NL-PL tasks based on the model’s

specific structure. It was evaluated separately on both the NL side and the PL side.

Moreover, Devign [Zhou et al. 2019] proposed baseline methods for the model’s performance

evaluation, including Metrics + Xgboost, 3-layer BiLSTM, 3-layer BiLSTM + Att, and CNN. This

evaluation procedure was also adopted by ReGVD [Nguyen et al. 2022]. However, none of the

previous evaluations actually take into account the time variable, which can exist in a vulnerability

detection dataset as vulnerability is known at a certain point in time.

In Table 2, we list some previous studies that worked on the evaluation method: release-based

validation and cross-validation [Jimenez et al. 2016; Scandariato et al. 2014; Shin et al. 2011]. They

used metrics and keywords extracted from files as the prediction. The most complete work is by

Jimenez and colleagues 2019 who considered all different code metrics used by previous work.

evaluated the model with consideration of different versions of packages that previous works did

not count into.

The closest papers to our work are the studies by Jimenez et al [Jimenez et al. 2019] and Chen

et al.[Chen et al. 2023], we list different parts of methodology in Table 3. Firstly, we work on a

time-based dataset considering the CVE published date while DiverseVUl sample the overall dataset

so it may contain vulnerability information that will be available in the future, while Jimenez et al.

work on the released date of the repository (which does not account for the close, induced release

of the CVE entry). The major difference is that [Chen et al. 2023; Jimenez et al. 2019] always test on
the complete information data, when training both with the ideal or (so-called) real datasets. These

data and labeling do not represent what developers will face in the real-life scenario, as they are

not available yet. In contrast, we use data and labels available at each timeline to compare between

our retrospective (testing using data and label available at time 𝑡 ) and perspective (testing on data

and label available between 𝑡 and 𝑡 + 1). After experimenting with our datasets, we can see clearly

how model performance would be influenced by the perspective data.

Main Gap: Several datasets for ML evaluation have a time variable, but the current evaluation

of ML models in SOTA often fails to take this variable into account.
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Table 3. Comparison between Jimenez et al. 2019, Chen et al 2023 and this Paper

[Chen et al. 2023] [Jimenez et al. 2019] This Paper

Methodology
Training Set Random SubSample Sample until Release Sample until Time

Training Labels Complete Info Known at Release Known at Time

Testing Set Sample of Complete Info Sample until Next Release Sample until Next Time

Testing Label Complete Info Complete Info Known at Next Time

Results Result as a trend (line chart) Global results (boxplots) Result as a trend, (line charts)

Evaluation
Systems(Datasets) DiverseVUl, Devign, ReVeal,

BigVul, CrossVul, CVEFixes

Linux Kernel, OpenSSL,

Wireshark

Linux, OpenSSL, Poppler (from

BigVul [Fan et al. 2020]), NVD

Vuldeepecker

Models 1 GNN, 10 BERTs Random Forests 2 BERTs, 1 GNN, 1 BLSTM, 1 MLP

Given a time-based dataset, our

proposed methodology adds time

context to the data from a given

source and then produces a timeline

of datasets with perspective views.

Time context can be instantiated with

vulnerability publishing date, such as

NVD, bug issue report date, etc. For

each time point in the timeline, it pro-

duces one training set (possibly also

one validation set) and 2 testing sets.

It is important to note that we do not

only split the data points by time, but

also use only available labels at every

point in time.

Fig. 2. Our proposed methodology to eliminate retrospectives.

4 Methodology
To answer RQ1, we propose a methodology to produce a timeline of datasets from a time-based

labeled dataset, given a specific timeline of dates. The conceptual flow of the approach is depicted

in Figure 2, and the inputs/outputs are summarized in Table 4.

We elaborate on the steps of the methodology as follows (pseudocode is shown in Algorithm 1).

(1) Add time context to data. In this step, the data is mapped with the inputted labeling and

availability dates. If the inputted labeling and availability dates come from another dataset, then
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Table 4. Input and Output of Our Methodology

Object Description Instantiation

Input
Labeled dataset A dataset to train an ML-based vulnerability detection

tool/ model with CVE information. These CVEs will then

be used to determine whether the vulnerability is known

or in perspective at the time of observation.

BigVul [Fan et al. 2020], Vuldeep-

ecker’s [Li et al. 2018]

Availability dates A set of dates that are pre-selected to simulate the informa-

tion availability at a certain point in time for the training

of the ML model

Published dates of the codes or

commits.

Labeling dates A set of dates that are pre-selected to simulate the label

availability at a certain point in time for the training of

the ML model

Published dates of CVEs in the

NVD.

Timeline dates A set of dates to simulate when we are observing the

ecosystem.

2010, 2011, 2012, ...

Testing delta (Optional) a delta in months that we use to simulate the

information availability at a testing time (which intuitively

should be later than training time).

6 months/ 12 months

Output (𝑁 time points)

For each time point in a timeline,

Training set X% of the relabeled dataset to train the ML model 80% + 10% validation set

2 testing sets ×𝑁 R-R test set, R-P test set to test the ML model 2 test sets ×𝑁
2 testing results ×𝑁 The result of testing the ML model on the 2 test sets ×𝑁 Precision, Recall (TPR), FPR, ...

× 2 test sets ×𝑁

the dataset is fetched before the mapping (e.g., a record labeled 1 now becomes labeled 0 at time

𝑡 ).

(2) Produce a timeline of datasets to test ML’s performance at each time point in a timeline. We take a

timeline date and the testing delta and use them as our reference. For each time point in the
timeline, we produce a training dataset and a set of testing datasets from the input dataset

based on different possible assumptions.

Retrospective Training - Retrospective Testing (R-R): If the data point’s labeling date is

later than the chosen timeline, we drop positive and negative data points from the data-

base. This rule assumes that before the timeline, the point does not exist.

Retrospective Training - Perspective Testing (R-P): We keep records with a labeling date

later than the chosen timeline but still inside the testing delta.

(3) For each time point in the inputted timeline, train the ML on the training set.We train the

ML on a subset of the relabeled dataset containing 𝑋% (predefined or provided as input) of data

points from the complete info dataset. This subset can be divided into training and validation

datasets.

(4) For each time point in the inputted timeline, test the ML model on 2 different scenarios
mentioned in Step 2: R-R and R-P .

We can then plot the metrics from the tested model, both for R-R case and R-P case, to see if there

is a certain trend or difference. For this comparison, any metrics would do because basic metrics

(TP, FP, TN, and FN) are not independent: at least their sum must be equal to the total number of

samples. In the general case, there are more complex dependencies due to the chosen ML algorithm.

Therefore, if one aggregates these basic metrics to form other metrics (such as precision, recall, and

F1) and one metric fluctuates, the other metrics would also fluctuate in balance.
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Algorithm 1: Produce a timeline of datasets.

input :Labeled dataset (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 )

input :Labeling dates (𝑙𝑎𝑏𝑒𝑙_𝑑𝑎𝑡𝑒𝑠)
input :Availability dates (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑎𝑡𝑒𝑠)

input :Timeline dates (𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒_𝑑𝑎𝑡𝑒𝑠)

input : (Optional) Testing delta (𝑑𝑒𝑙𝑡𝑎 in months, default=12)

input : (Optional) Percentage (𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)
output :A Timeline of datasets (𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠)

// Add time context to data.

1 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ←𝑚𝑎𝑝𝐷𝑎𝑡𝑎𝑊𝑖𝑡ℎ𝑇𝑖𝑚𝑒 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑙𝑎𝑏𝑒𝑙_𝑑𝑎𝑡𝑒𝑠, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑎𝑡𝑒𝑠 )
// The function to get 3 testing datasets.

2 Function 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒_𝑑𝑎𝑡𝑒 ) :
3 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡 ← []
4 for 𝑟𝑒𝑐 |𝑟𝑒𝑐 ∈ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
5 if 𝑟𝑒𝑐.𝑙𝑎𝑏𝑒𝑙_𝑑𝑎𝑡𝑒 > 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒_𝑑𝑎𝑡𝑒 + 𝑑𝑒𝑙𝑡𝑎 then
6 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 .𝑑𝑟𝑜𝑝𝐷𝑎𝑡𝑎 (𝑟𝑒𝑐 )
7 else if 𝑟𝑒𝑐.𝑙𝑎𝑏𝑒𝑙_𝑑𝑎𝑡𝑒 > 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒_𝑑𝑎𝑡𝑒 then

// assumption == R-P

8 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑐 )
// For Retrospective: Both label and record unknown: we drop the record

9 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 .𝑑𝑟𝑜𝑝𝐷𝑎𝑡𝑎 (𝑟𝑒𝑐 )
10 return 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡

// Produce a timeline of datasets.

11 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 ← {}
12 for 𝑡𝑑𝑎𝑡𝑒 |𝑡𝑑𝑎𝑡𝑒 ∈ 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒_𝑑𝑎𝑡𝑒𝑠 do
13 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡 ← 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑑𝑎𝑡𝑒 )
14 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 [𝑡𝑑𝑎𝑡𝑒 ] [“𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒”] ← 𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡

// Split into training and testing.

15 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← 𝑠𝑝𝑙𝑖𝑡𝑇𝑟𝑎𝑖𝑛𝑇𝑒𝑠𝑡 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 )
16 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 [𝑡𝑑𝑎𝑡𝑒 ] [“𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔”] ← 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

17 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 [𝑡𝑑𝑎𝑡𝑒 ] [“𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛”] ← 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

18 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 [𝑡𝑑𝑎𝑡𝑒 ] [“𝑟𝑒𝑡𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒”] ← 𝑟𝑒𝑡𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒_𝑡𝑒𝑠𝑡

19 return 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

5 Dataset and Model Selection
5.1 Dataset
Wewanted to replicate the study by [Jimenez et al. 2019] (the study with a similar idea to ours) using

our methodology. However, their dataset does not include the publication date and/or CVE ID of the

vulnerability, which makes our methodology inapplicable. We also tried to use VulDat7 [Jimenez

et al. 2018], which is the framework used by [Jimenez et al. 2019] to generate their dataset, but

the framework is outdated and cannot be used. Therefore, we decided to instead use the BigVul

dataset [Fan et al. 2020], which covers real vulnerabilities until 2019. Figure 3 shows the distribution

of the number of CVEs (#CVE) by project. It also shows the position of the 3 projects used by [Jimenez

et al. 2019]: linux, wireshark, and openSSL in the distribution.

In BigVul, wireshark has 10 CVEs, but all of them are published in the same year. Therefore,

wireshark is not a good example to show how our methodology shows the performance difference

between the realistic and the ideal world, as we do not have the data to test in the realistic setting

(assuming we train on 𝑦 and test on 𝑦 + 1). We then decided to choose another project from the

same position in the distribution (representing projects with low CVE count): poppler, whose
number of CVEs is in the same group as wireshark but its CVEs are published in different years

spanning from 2009 until 2018.

Additionally, we reviewed 10 different papers from the SOTA onML-based vulnerability detection

evaluated by [Steenhoek et al. 2023]. We then clustered them based on the datasets they used in
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The 3 projects chosen by [Jimenez et al. 2019] cover

the ecosystem well, as linux can represent the projects

with high number of CVE, openSSL for projects with

medium number, and wireshark for the low number.

As wireshark’s CVEs are published in the same year,

we take another project from the same position poppler
to represent the projects with a low number of CVEs

Fig. 3. Distribution of CVE count (#CVE) in BigVul Dataset

Table 1. This table has covered different ML architectures, ie. RNN, MLP, GNN, and transformers. We

then decide to also evaluate our methodology on the NVD dataset by Vuldeepecker [Li et al. 2018]

which can be found in Github [Li et al. 2022b] as it is lightweight and suitable for a preliminary

evaluation. We chose this dataset as it uses real-world vulnerabilities (CVE-based) like BigVul

dataset [Fan et al. 2020], and is not manually labeled like Devign’s dataset [Zhou et al. 2019]. From

the NVD dataset, we filtered to get only the records with CVEs. Vuldeepecker provided 2 datasets:

CWE-119 and CWE-399, which we combined to get more records. The merged dataset contains 628

records with 68 CVEs in total.

5.2 Models
In Table 1, we reported a selection of historical works to illustrate the evolution of the field. Each

line differs from the previous ones in either using a different representation or dataset. In recent

years, we have seen a consolidation of some preferred methods (BERT and LLMs in general) and a

stronger attention to the development of datasets [Risse and Böhme 2024], which have evolved

over the years. Despite the different representations adopted, the input code is often flattened into a

vector when serving as input for a neural network. Models also evolved: after the first BERT-based

detection model [Hanif and Maffeis 2022] or variants tested different languages [De Sousa and

Hasselbring 2021] used previous models as a pre-trained model [Mamede et al. 2023].

We then picked five ML models (Vuldeepecker, ReGVD, CodeBERT, Code2Vec and LineVul) with

different ML architectures out of other models in Table 1 for our evaluation. We picked them to see

how different ML architectures (BLSTM, GNN, MLP, and Transformers) react to the elimination of

retrospectives that we did. We ran the replication package by [Steenhoek et al. 2023] for all models

except Vuldeepecker, for which we ran an implementation in Python available on Github [Johnb110

2022].

6 Implementation
To see the methodology in action, we implement a Python script for a specific use case: vulnerability
detection dataset. Our Python implementation needs several inputs that are mapped to the inputs

in our methodology:

• Labeled dataset: refer to Subsection 5.1 of dataset selection.

• Labeling dates: for the code labeling dates (vulnerable/ not vulnerable), we use NVD [NIST

2024a]’s published date. For any vulnerability in the input dataset with an unknown published

date, we fetch it directly through NVD’s APIs [NIST 2024b].
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One record on a dataset is a code fragment

with a CVE label. The code availability dates

are not available, so we assume that the

code is available before the code is labeled

by a CVE (vulnerable or not vulnerable).

The date on the record is the date when a

CVE is published for a certain code. The

negative records also have a reference to a

CVE because they are extracted from the

same commit as the vulnerable code men-

tioned in the CVE. From one input dataset,

we produce a timeline of datasets, of which

for each time point, we produce 1 training

(and 1 validation) set and 2 testing sets. (ret-

rospectiveand Perspective).

Fig. 4. Example instantiation of the proposed methodology.

• Availability dates: as the original dataset we use does not have information about the code

availability dates, we assume that the code availability is less than or equal to the labeling dates

(NVD published date). This assumption holds as the code has to be available before a CVE can be

found. For this implementation, we use labeling dates as availability dates. We acknowledge this

as a possible threat to validity in Section 9.

• Testing delta: we use 12 months as we assume that the machine learning trained in 𝑦0 will be

used (tested) to identify vulnerability in the next year (𝑦1).
4

• Split train-test percentage: this input adds flexibility for the user of the script to define how to

split the dataset into training and testing, and also possibly validation datasets. The default is

80% training, 10% validation, and 10% testing.

The script is implemented with the following steps:

(1) If the input dataset is not completely CVE-based: Take only the CVE-based part of the dataset to

be processed.

(2) Remove unavailable information from the data and relabel: for each time point in the
timeline, we use the assumption rules mentioned in Section 4 to assess 3 kinds of performances.

So for each record in the dataset

P1 Retrospective Training - Retrospective Testing (R-R). We check on the NVD when the CVE is

published. If the published date of the CVE is later than the timeline date, we drop the records.

This simulates the training at a certain point in time by using only records with known labels

at that time.

P2 Retrospective Training - Perspective Testing (R-P). We keep only records in the testing delta

after the chosen timeline. This dataset simulates the real-life testing as a model that we trained

on period 𝑡 would most likely be used in production to detect vulnerabilities during period

𝑡 + 1.
The example of the input retrospective dataset and one of the produced perspective dataset (for

time 𝑡 ) is shown in Figure 4.

4
A shorter timeline, e.g., every quarter or even every month, is an interesting option, but its prediction will oscillate too

strongly as not many code fragments are committed in our dataset. A larger dataset with daily or monthly updates would

be needed, and we plan to design it for future work.
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Table 5. Produced datasets for training and testing
The datasets grow more and more because the code availability and the CVEs found are also getting more and more throughout the years.

However, the proportion of positive and negative data points remains stable.

Dataset Metric 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Training - - - 9 7668 13274 17234 20871 27548 32159 35315 38014

Validation - - - 2 853 1476 1916 2319 3062 3574 3925 4225

Retrospective Testing - - - 2 948 1640 2128 2578 3402 3971 4361 4694

Linux

Perspective Testing - - - 9456 6921 4888 4490 8244 5692 3897 3332 -

Training - - - - - 28 247 780 1163 1308 1340 1505

Validation - - - - - 4 28 88 131 147 149 168

Retrospective Testing - - - - - 4 31 98 145 163 166 187

OpenSSL

Perspective Testing - - - - - 270 660 473 179 37 205 -

Training - 475 578 578 578 814 844 844 844 872 873 -

Validating - 53 66 66 66 91 95 95 95 98 98 -

Retrospective Testing - 60 73 73 73 102 105 105 105 109 109 -

Poppler

Perspective Testing - 129 - - 290 37 - - 35 1 - -

Training 146 249 300 416 663 941 1175 1691 2163 2192 - -

Validating 18 31 37 52 82 118 146 211 271 274 - -

Retrospective Testing 19 32 39 53 84 118 148 212 271 276 - -

NVD Vuldeep.

Perspective Testing 129 64 145 308 348 292 645 591 37 - - -

Table 6. Dataset generation across the years
The mean derivative shows the increase of data points every year, which reaches 48.6%. The Never seen columns show how the test in the

Perspective dataset contains way more data points compared to the retrospective dataset (Seen and known columns).

Fraction with Vulnerabilities

Dataset Metric

Seen and

known Positive

Training 𝑡

Seen and

known Positive

Validation 𝑡

Seen and

known Positive

Present Test 𝑡

Seen but Be-

lieved Negative

at that time

Never seen

Positive,

tested 𝑡 + 1

Never seen

Negative,

tested 𝑡 + 1
Mean Drv. 28.9% 28.7% 28.4% 75.9% 75.9% 49.2%

Relative %

Mean 3.2% 0.4% 0.4% 1.1% 4.2% 95.8%

Linux

St.Dev 0.2% 0.0% 0.0% 0.9% 0.9% 0.9%

Mean Drv 50.3% 48.1% 54.5% 31.8% 31.8% 64.9%

Relative %

Mean 8.2% 1.1% 1.2% 33.5% 10.6% 89.4%

OpenSSL

St.Dev 2.6% 0.7% 0.7% 33.4% 6.1% 6.1%

Mean Drv 7.3% 2.8% 6.5% 27.8% 27.8% 31.7%

Relative %

Mean 2.8% 0.4% 0.4% 0.3% 0.3% 52.8%

Poppler

St.Dev 0.2% 0.0% 0.0% 0.5% 0.5% 50.2%

Mean Drv 38.5% 39.5% 37.6% 92.6% 92.6% 81.5%

Relative %

Mean 27.3% 3.3% 3.5% 14.2% 14.2% 60.3%

NVD Vuldeep.

St.Dev 4.1% 0.6% 0.4% 8.2% 8.2% 10.2%

(3) Split train-test: based on the input, we split the datasets into training and testing (also validation

if necessary). For the second assumption, we merge the testing dataset from the splitting with

the added negatives.

(4) Return the outputs: 1 training set (can be divided into training and validation), and 2 different

testing sets: retrospective and Perspective.
(5) Train and test (2 times) the ML models.

7 Evaluation
This section presents our methodology evaluation with the security vulnerability detection use

case and how it answers our research questions.
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7.1 Dataset Generation
We first generated 2 datasets for each timeline and for each project using our Python script that

implemented our methodology. The generated datasets are shown in Table 5. From the generated

datasets across the years, we can have several observations as portrayed in Table 6.

Even with the data point increase, the relative mean and standard deviation show that the

percentage of positive (vulnerable) data points is more or less the same yearly. The Never seen
Positive/Negative, tested next year columns have the data from the next year to simulate testing a

previously trained ML model in the next year’s data. On average, every year we test 6.2%-14.9%

of the total population of negatives that have never been seen. The mean derivative of the yearly

amount of data points shows that it increases 31.7%-81.2% every year. With complete information,

we test with only 0.2%-4.2% of negatives every year, while if we consider the information available

at any given time, we test with 52.8%-95.8% of the negatives that have never been seen.

Finding #1: If you do not account for perspective the ML model will be trained on data points

that were either not correctly classified (up to 1/3 of the vulnerabilities seen in the previous

period) or not even available (up to 81.5% wrt those seen the previous period).

7.2 Models Evaluation
After getting the modified datasets, we then applied 5 different ML-based vulnerability-finding tools

on both the original dataset and modified datasets and observed the change in their performance.

These 5 tools are chosen among different ML tools with different architectures from Table 1:

Vuldeepecker (RNN/BLSTM), Code2Vec (MLP/AST), ReGVD (GNN, token), CodeBERT and LineVul

(Transformers). In Table 7, we list all models’ differences between precision (left) and recall (right)

results with the Perspective and retrospective datasets. For precision, some models work better

in the retrospective, and some other work better with Perspective. While for recall, the models’

performances with retrospective datasets are on average higher than with Perspective datasets

except for CodeBERT in linux dataset, Vuldeepecker in NVD Vuldeepecker, and LineVul/Code2Vec
(slightly) in openssl dataset.

We tested whether such a difference between the MLs’ performance tested in R-P and R-R is

significant with the Wilcoxon signed rank test, with effect size estimator for correlated samples

by Vargha and Delaney (𝐴) [Ruscio and Gera 2013]. We believe the 𝐴 value has here a natural

Software Engineering interpretation: the probability that by taking at random a sample with

the “benefit of hindsight”, its ML performance will be higher than the sample performance in

reality. Since we are testing 5 different tools, according to Bonferroni correction, the 𝑝𝑣𝑎𝑙𝑢𝑒 of

a test needs to be < 0.05/5 𝑜𝑟 0.01 to be considered as significant. The test on recall results in

a statistically significant difference for CodeBERT (𝑇 = 42.0, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.002, 𝐴 = 0.75), LineVul

(𝑇 = 68.0, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.006, 𝐴 = 0.71), and ReGVD (𝑇 = 15.0, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.004, 𝐴 = 0.7). While for

precision, all the tests return insignificant (0.015 < 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.55) after the Bonferroni correction.

To see if we can reach better performance by giving more perspective to the model, we portray

the precision (left) and recall (right) of the models (tested with Perspective dataset) by time in

Figure 5. We show line charts to show the trends and boxplots as has been done in [Jimenez et al.

2019]. In linux dataset, most models, except Vuldeepecker, have on average high precision and

recall. However, there are no increasing trends as one could hypothesize with more and more

retrospective data. Vuldeepecker’s recall even goes up and down, showing no trend. Interestingly, in

the OpenSSL dataset, the figure changes. LineVul, ReGVD, and CodeBERT still have high precision,

but their recall drops with more and more retrospectives, while Code2Vec and Vuldeepecker show

no trend by going up and down.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE016. Publication date: July 2025.



FSE016:18 Ranindya Paramitha, Yuan Feng, and Fabio Massacci

Table 7. Models evaluation: difference in the precision and recall statistic.
RF: Random Forest from [Jimenez et al. 2019], LineVul, C2V: Code2Vec, CB: CodeBERT, RG: ReGVD, VD: Vuldeepecker. The more positive

the gap, the better the performance is. The recall on average is better when evaluated using the retrospective dataset, except for CodeBERT in

linux dataset, LineVul and Code2Vec (slightly) in openssl dataset, and Vuldeepecker in NVD Vuldeepecker dataset. This shows that the ML

models’ Perspective performance (R-P) can be not as good as we got from testing using the same year data with the training (R-R).
Precision Gap between Perspective and Retrospective Testing

Metric RF LV C2V CB RG VD

Linux
Mean -43.5% +1.3% -0.9% +7.3% +1.0% -0.8%

St.Dev. +31.2% +2.5% +4.4% +14.0% +3.3% +2.9%

OpenSSL
Mean -8.72% -10.5% -1.2% 0.0% +7.2% +1.2%

St.Dev. -25.4% +39.6% +58.4% 0.0% +24.4% +13.4%

Poppler
Mean N/A 0.0% 0.0% 0.0% 0.0% -2.3%

St.Dev. N/A 0.0% 0.0% 0.0% 0.0% +4.6%

NVD Vuldeepecker
Mean N/A -35.9% -19.8% -10.5% -12.7% +0.7%

St.Dev. N/A +16.5% +36.2% 18.1% +16.4% +9.5%

Recall Gap between Perspective and Retrospective Testing

Metric RF LV C2V CB RG VD

Linux
Mean -73.5% -1.4% -3.6% +5.2% -5.0% -14.9%

St.Dev. +18.1% +6.8% +13.3% +14.7% +5.4% +52.2%

OpenSSL
Mean -37.0% +0.6% +0.5% -10.1% -4.5% -47.1%

St.Dev. +9.1% +30.9% +9.8% +19.1% +11.3% +49.3%

Poppler
Mean N/A -27.9% 0.0% -29.6% 0.0% -12.5%

St.Dev. N/A +40.2% 0.0% +15.7% 0.0% +25.0%

NVD Vuldeepecker
Mean N/A -47.7% -3.5% -28.5% -33.6% +33.2%

St.Dev. N/A +29.3% +5.4% -21.0% +34.8% +43.0%

In linux dataset, the performance of the ML models (except Vuldeepecker) seems to have a trend: it gets better with more retrospective data.

However, this trend does not happen in the other 3 datasets.

Fig. 5. Evolution of Precision and Recall of 5 ML models with more and more retrospectives.

While LineVul seems to work well on linux dataset, it performs worse in the NVD Vuldeepecker
dataset (lower right) with lower precision and recall (average 34.01% st.dev. 27.46%). Not only

LineVul, ReGVD, and CodeBERT also have on average lower precision and recall in this dataset
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Table 8. Mann-Kendall Trend Test on the ML Performance Tested on Perspective Data

We did the Mann-Kendall test for each model in the 4 datasets, therefore, 𝑝𝑣𝑎𝑙𝑢𝑒 needs to be less than 0.0125 for the test to be

significant. There is only one significant increasing trend: Vuldeepecker in their own dataset (NVD Vuldeepecker).

Precision

Model Dataset Trend MK 𝑝

Linux No trend 12 0.17

OpenSSL No trend 9 0.07

Poppler No trend 0 1.00

LineVul

NVD Vuldeep. No trend 2 0.92

Linux No trend 1 1.00

OpenSSL No trend -3 0.65

Poppler No trend 0 1.00

Code2Vec

NVD Vuldeep. No trend 11 0.15

Linux No trend 21 0.01

OpenSSL No trend 8 0.11

Poppler No trend 0 1.00

CodeBERT

NVD Vuldeep. No trend 11 0.29

Linux No trend 14 0.11

OpenSSL No trend 7 0.22

Poppler No trend 0 1.00

ReGVD

NVD Vuldeep. No trend 17 0.09

Linux No trend 4 0.69

OpenSSL No trend 2 0.85

Poppler No trend 0 1.00

Vuldeepecker

NVD Vuldeep. No trend 18 0.06

Recall

Dataset Model Trend MK 𝑝

Linux No trend 2 0.90

OpenSSL No trend -3 0.71

Poppler No trend 2 0.73

LineVul

NVD Vuldeep. No trend 14 0.18

Linux No trend 14 0.11

OpenSSL No trend -3 0.65

Poppler No trend 0 1.0

Code2Vec

NVD Vuldeep. No trend 9 0.25

Linux No trend 2 0.90

OpenSSL No trend 4 0.57

Poppler No trend 0 1.00

CodeBERT

NVD Vuldeep. No trend 19 0.06

Linux No trend 16 0.06

OpenSSL No trend 7 0.22

Poppler No trend 0 1.00

ReGVD

NVD Vuldeep. No trend 21 0.04

Linux No trend 2 0.89

OpenSSL No trend 8 0.18

Poppler No trend 0 1.00

Vuldeepecker

NVD Vuldeep. Increasing 24 0.01

These three models have an average low recall until 2014 but then their recall increases significantly

in 2015 and 2016. Most likely at that time, they are trained with enough retrospective information to

identify vulnerability in the next year. Vuldeepecker has a dual behavior from the paper to the field

setting. It also has an increasing recall trend from 2013 to 2016. Unlike Vuldeepecker, Code2Vec

keeps failing to identify vulnerability as it did in the R-R case.

We tested if the models exhibited a positive (increasing) trend of performance across the years

(Perspective test set) with the Mann-Kendall trend test. We ran the Mann-Kendall test for each

model in the 4 datasets. According to Bonferroni correction, the 𝑝𝑣𝑎𝑙𝑢𝑒 of a test needs to be

< 0.05/4 𝑜𝑟 0.0125 to be considered as significant. As shown in Table 8, none of the tests of the

precision returns significant, which means we cannot conclude any increasing (or decreasing) trend

in the precision of the models when tested in unknown future data, even with more and more

retrospective. For the recall, only Vuldeepecker on its own dataset (NVD Vuldeepecker) returns a

significant increasing trend.

Finding #2: Observation over the years shows that there is no consistent ML performance of

the prediction when tested in the R-P case.

8 Additional Extensions
We also ran additional experiments with seen but believed negatives. These data points represent
the codes available at a certain time of observation 𝑡 and considered as not vulnerable but are

actually found vulnerable in the future. These data points are negatives at time 𝑡 , but then become

positive at 𝑡 + 1. Assuming that the data (the code) exists beforehand, we add these positive points

as negatives to our retrospective test set. The result of this additional experiment shows that the

recall does not change for most models and datasets, but the precision dropped. This happens

because the models are still classifying most of the believed negative data as vulnerable. This high
False Positive at a certain time 𝑡 would be considered as bad, but they are actually classifying the

code correctly (as vulnerable/ positive), just the label was still different at time 𝑡 .
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9 Threat to Validity and Future Works
9.1 Validation Case
For our preliminary validation, we chose vulnerability detection as a case study. We chose this

case study as vulnerability detection has been a popular field, but the ML model’s performance

still needs to be improved to find vulnerabilities in a real-world setting [Chakraborty et al. 2021].

However, we believe that our methodology can be applied to any ML model evaluation with a

time-based dataset, and we plan to do more evaluations with other cases in the future.

9.2 Validation Dataset
We only applied our methodology to 4 datasets (3 extracted from BigVul [Fan et al. 2020] and 1

from Vuldeepecker [Li et al. 2018]) in our validation.

Quality. There is a possibility that the chosen datasets may have some wrong labels [Croft et al.

2023]. Obviously, the quality does indeed affect the ML algorithm’s performance. Our focus is to

show that no matter the dataset or model, if one still tests on the entire dataset (retrospectively),

one will get a better result than one would obtain in the field. The wrong labels would therefore

not impact the phenomenon we want to measure: they would be wrong when considered during

the retrospective analysis, the properly timed training phase, and the properly timed testing phase.

Their bias will therefore be uniform across all cases considered in this paper.

Completeness. The chosen datasets have a limitation in that they do not have information on

the code availability date. Therefore, we use labeling dates as a proxy for availability dates during

implementation. We acknowledge the limitation of this proxy as a possible threat to validity.

However, as the assumption that the availability dates are less than or equal to the labeling dates

holds, we argue that this proxy is sufficient to show the difference between the retrospective and

perspective views.

Future works. In the future, we plan to validate it using other datasets, such as the Projec-

tKB [Ponta et al. 2019] dataset (which has not been evaluated for ML vulnerability detection but

contains mostly Java code and vulnerabilities) to see how the method works for another language.

We believe that our methodology can be applied to any time-based dataset, language-agnostic, and

we encourage the research community to develop and use more time-based datasets to validate the

ML models in the perspective vs. retrospective setting.

9.3 Validation Models
We only validate our methodology by running 5 MLmodels: Vuldeepecker [Li et al. 2018], Code2Vec

[Alon et al. 2019], ReGVD [Nguyen et al. 2022], CodeBERT [Feng et al. 2020], and LineVul [Fu

and Tantithamthavorn 2022]. While any comparison is of course limited, this selection covered a

sufficient variety of different ML techniques used (RNN/BLSTM,MLP/AST, GNN, and Transformers).

LLMs. We did not include LLMs in this study because ours is a comparison between retrospective

and prospective studies. As of today, we can only run a prospective study with LLMs, because

available pre-trained LLMs already know the past, and we cannot “remove the past” from them.

Unlike other ML-based models, which can be trained from scratch on a given dataset, we cannot

retrain LLMs from scratch because we do not have a snapshot of the entire internet in 2022. To

be able to use an LLM, we must use an LLM pre-trained in 2021 and test on vulnerability data of

2022, then take an LLM pre-trained in 2022 and test on 2023, and so on. As of today, we do not

have enough temporal data to make robust conclusions, but it would be an interesting future study

to be done 2 years from now with at least 5 years of observation.
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Table 9. Summary of Findings and Implications.

RQ Main Finding Implication for Research

RQ1 If you do not account for perspective the ML

model will be trained on data points that were

either not correctly classified (up to 1/3 of the

vulnerabilities seen in the previous period) or

not even available (up to 81.5% wrt those seen

the previous period)

Today’s cat is tomorrow’s dog: label of codes can change over time

as new vulnerabilities are being found, both in training and testing

set. The ML models’ performance on retrospective (Retrospective
Training - Retrospective Testing (R-R)) might not fully capture

performance on perspective (Retrospective Training - Perspective
Testing (R-P)).

RQ2 Observation over the years (Figure 5) and

Mann-Kendall test results show no consistent

ML performance of the prediction when tested

in the R-P case.

Presenting ML’s performances in time as trends will provide a
more realistic understanding, as it also shows how much retro-

spective information affects ML’s performance.

Only 5 models: future replication. Even if we cannot include all available models, our methodology

is general and applicable to other ML models. Moreover, the trend in the performance of each

evaluated model consistently shows a difference between performance with full retrospective

information and the performance at a point in time where retrospective information is unavailable.

Testing with more models will become a replication study in future work.

9.4 Validation Metrics
We decided to use precision and recall as metrics to show the comparison among the results. One

can choose to use another metric, but all metrics are constructed from basic metrics: TP, FP, TN, and

FN, which are dependent on each other, i.e., when the TP increases, the FN will decrease, etc. This

resulted in metrics that are interrelated with each other by a linear equation. Of course, it is still

possible that in particular cases, the precision and recall always cancel each other, which removes

the fluctuation from F1. However, these cases are extremely unlikely in complex experiments with

ML tools and real data.

9.5 Reasons of Fluctuating Trends
In this paper, we only showed and compared the trends between Retrospective Testing (R-R) and
Perspective Testing (R-P). We did not investigate further the reasons why there is no trend and

why the results fluctuate over the years. Yet, our goal is to show that this is a problem one will

encounter in reality. Models overfitting and intrinsic or seasonal trends (a known phenomenon

since [Joh and Malaiya 2009]) can all be subject to further investigation. As far as we know, research

on ML result stability in software engineering is limited and remains a future research direction.

10 Implications of the Findings
Table 9 summarizes the implications and the main findings from each research question. Our

first result (§7.1) shows that ML models’ performance could (most probably) be different when

used in the Perspective Testing (R-P) compared to the testing result which in most papers is in the

Retrospective Testing (R-R). This result on ML for source code is aligned with the result by [Jimenez

et al. 2019] on code metrics. Research evaluating ML performance should consider adopting our

methodology to consider perspective information in their evaluation and present results that reflect

more than one scenario at a given point in time. Our result in RQ2 (§7.2) shows that the trends are

informative in visualizing the impact of retrospective information on ML performance.

A key issue to debate is our choice of not using the complete information for the testing dataset.

The motivation behind this choice is that vulnerabilities are discovered sometimes after years from
the release. This has been a consistent finding since the milk or wine study [Ozment and Schechter

2006], which introduced the notion of foundational vulnerability (present since the very beginning
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of a project). Retrospective discovery is common across systems [Nguyen et al. 2016] and ecosystems

[Hu et al. 2024]. Even looking at the famous log4j vulnerability, CVE-2021-4104 refers to a version

that reached EoL in 2015, an after-life vulnerability [Massacci et al. 2011]. Consider a developer

running a model on log4j in 2015. Even if by mistake the model flagged the vulnerable fragment

(there was no evidence of similar vulnerabilities at the time), it would have been considered a false

positive. The model would have been considered a failure for five long years.

11 Conclusions
In this work, we propose a methodology to produce a timeline of partial, time-actual information

datasets from a complete information (retrospective) dataset. For each time point in the timeline, we

generate a training set and 2 testing sets: one simulating performance on the Retrospective Training
- Retrospective Testing (R-R) (testing with the information available until the chosen time point) and

one simulating the performance on the Retrospective Training - Perspective Testing (R-P) (testing
until the next time point). The former corresponds to the case of a researcher arguing on paper for

the model to be deployed based on the available information at the time, the latter corresponds to

performance experienced (or perceived) on the field for the newly developed software, which will

be classified by the ML model until the next time point.

The key, real-world issue we try to capture with this work is the fact that labels change over

time. This is probably the most critical difference with datasets used for image classification, where

most ML algorithms have been developed. An image of a ‘true’ cat will never become an image of

a ‘true’ dog. The application of ML methods to software engineering and security vulnerability

detection, in particular, must take this difference into account when evaluating models.

We validated the methodology by using time slots that are one year apart from each other. The

resulting test datasets show that the number of vulnerabilities an ML model has to identify can be

really different from the ones they are tested with. This finding supports our next finding: when

tested using Perspective datasets, the ML models performed worse when compared to the results

from using the retrospective dataset. This result is partly aligned with the results found in [Jimenez

et al. 2019] on code metrics, which broke the full information available to training by releases, but

still uses the full information to test the success of models trained on partial information.

From these findings, we want to raise awareness of the impact of retrospective information when

evaluating ML models with any time-based dataset and the possibility of evaluating ML models

using perspective datasets instead. We also found that ML models have no significant trend as more

and more retrospective information is added, as one might expect, as shown by the results of the

Mann-Kendall tests and the visual representation of the results. We believe that our methodology

also applies to other use cases, e.g., bug/ defect detection and commit classification, therefore, we

plan to do more validation in the future with different datasets and ML models and use cases.
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