
ar
X

iv
:2

50
6.

11
70

1v
1

 [
cs

.P
L

]
 1

3
Ju

n
20

25

PermRust: A Token-based
Permission System for Rust

Lukas Gehring1, Sebastian Rehms1, and Florian Tschorsch1

Technische Universität Dresden, 01062 Dresden, Germany
{lukas.gehring,sebastian.rehms,florian.tschorsch}@tu-dresden.de

Abstract. Permission systems which restrict access to system resources
are a well-established technology in operating systems, especially for
smartphones. However, as such systems are implemented in the oper-
ating system they can at most manage access on the process-level. Since
moderns software often (re)uses code from third-parties libraries, a per-
mission system for libraries can be desirable to enhance security. In this
short-paper, we adapt concepts from capability systems building a novel
theoretical foundation for permission system at the level of the program-
ming language. This leads to PermRust, a token-based permission system
for the Rust programming language as a zero cost abstraction on top of
its type-system. With it access to system resources can be managed per
library.

Keywords: Capability Based Security · Rust · Supply Chain Attacks

1 Introduction

Managing access to sensitive resources is a crucial requirement to secure systems.
This holds especially when executing code from third-parties. For example, mod-
ern operating systems (like Android and iOS) implement permission systems to
restrict apps from using resources (like camera, filesystem, GPS) without a per-
mission from the user. This partially realizes the principle of least privilege, stat-
ing that a subject should only be able to access the resources that are necessary
for its legitimate purpose. Such systems are implemented at OS-level manag-
ing resources per process. This leaves an open space for systems which restricts
more granular subjects like libraries. Since in modern software development, de-
velopers build their apps on top of various third-party libraries, distributed in
open repositories (like cargo or npm), restricting access to resources for these
libraries can help mitigate against attacks on (or from) those libraries (so-called
supply-chain-attacks).

The Pony programming language [12] utilizes such a permission system,
known as object capabilities. Pony however has a low adoption rate and steep
learning curve, because it uses a complex system of reference capabilities to
ensure memory safety. While the scientific literature discusses the theoretical
foundations of the latter in detail [14], its permission system receives less atten-
tion.

https://arxiv.org/abs/2506.11701v1

2 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

In this short paper, we introduce PermRust, a token-based permission sys-
tem for the Rust programming language. PermRust allows developers to easily
restrict access to system resources per library. As it utilizes Rust’s type system
to enforce the restrictions, PermRust only increases the compile time and has no
run time costs. The system can be used to manage the permissions of third-party
libraries, lowering the risk of supply chain attacks.

We introduce PermRust as a concept to foster discussions on permission
systems in modern programming languages. We provide a proof-of-concept im-
plementation, available in our accompanying Git repository [7]. Please note that
we consider an evaluation of PermRust as future work and limit this paper to a
discussion of the approach’s limitations. Our contributions are as follows:

– We lay a novel theoretical foundation to restrict system resources per func-
tion in modern software development. For this, we leverage established access
control concepts such as access matrices and capability systems (Sect. 3).

– We employ this method to develop PermRust as a Rust-based proof of con-
cept (Sect. 4).

We conclude the paper with a discussion on limitations of our approach (Sect. 5)
and outline areas of future work.

2 Related Work

In this paper, we sketch a framework for app-developers which mitigates sup-
ply chain attacks by restricting the access of third-party libraries to system
resources. A lot of related work in this area has been done around the Android
operating system [13,17,18]. Other techniques to restrict I/O access on OS-level
are SELinux [19], AppArmor [8], seccomp, and pledge [2]. These techniques are
blind to program components and do not operate on a per-library level. Exist-
ing languages, which implement such capabilities to restrict access to resources,
are Joule [1], E [15], and Pony [12]. These languages, however, are not designed
with supply chain attacks in mind and are constrained to a single program-
ming paradigm, i.e., Dataflow, object-oriented, and actor-based programming.
In addition, they come with runtime penalties (e.g., Joule, E) or forbid certain
functionalities (e.g., no global variables in Pony). PermRust brings permission
systems to a popular programming language with a sizable ecosystem. A lot of
work has been put into techniques to mitigate supply chain attacks, including
statistical program analysis [4, 6, 11] or precaution against human errors [21].

3 Access Management

In this section, we develop the theoretical foundation for managing access to
system resources per function. In particular, we introduce and adapt the well-
established Access Matrix Model for our use-case and argue that the model can
best be instantiated with a capability based approach.

PermRust: A Token-based Permission System for Rust 3

3.1 Adapting the Access Matrix Model

The access matrix model [9] is a simple and well-established computer security
model to formalize a security policy. For its definition, we use the formalization
by [5, p. 264].

Definition 1 (Access Matrix Model). Let St be a finite set of subjects and
Ot a finite set of objects at time t. Let R be a finite set of access rights.
The matrix Mt ∈ R|St|×|Ot| is the access matrix over S,O, and R at time t.
Mt(s, o) = {r1, . . . rn} is the set of access rights a subject s has to the object o
at time t.

As described our security system should manage the access of libraries to sys-
tem I/O. Hence, the sets of subjects correspond to the functions of a program
and the sets of objects correspond to the systems I/O-interfaces. High-level lan-
guages provide library functions as entry points for I/O operations. We model
the set O as this specific subset of the program functions. With that, we only
need to consider one type of access right: R = {call}. E.g a function f hav-
ing read-access is modelled by having the right to call the functions f ′ of the
standard library, which implement read-operations (M(f, f ′) = {call}). The fol-
lowing definitions formalize security policies which lead to an algorithm that
checks if a program complies with a given policy.

Definition 2 (Permission Matrix for a Program). Let F be the set of
functions of a program Π. For O ⊂ F , an access matrix M over F,O and {call}
is a permission matrix over Π.

In a program, each function has a caller that (per definition of the permission
matrix) also has permissions. Because it is not immediately clear how the per-
missions of the caller trickle-down to the functions further up the call stack we
need to define some properties connecting the access rights of functions. We now
define a subtree of the abstract syntax tree of a program which enables us to
formally talk about the caller-callee relations of functions. For the construction
we use edge contraction a common operation in graph theory, which removes
edges e = (v, w) from a graph and merges the two vertices v and w.

Definition 3 (Abstract Function Tree). Let T = (V,E) be the abstract syn-
tax tree of Π with F ⊆ V . Let E′ = {(v, w) ∈ E|w /∈ F}, be the set of all edges
not ending on a function vertex. The tree T ′ = T/E′, which results from T by
contracting all edges in E′ and naming them after the target of the original edge,
is called the abstract function tree (AFT) of Π.

Definition 4 (Permission Respecting). A tree T = (V,E) is permission
respecting regarding an access matrix M if ∀(p, o) ∈ E, o ∈ O : M(p, o) = {call}.
A program Π is permission respecting w.r.t. an access matrix M , if its AFT is
permission respecting w.r.t. M .

Definition 5 (Privilege Escalation Free). A tree T = (V,E) is privilege
escalation free over M if ∀(p, c) ∈ E,∀o ∈ O : M(p, o) ⊇ M(c, o). A program
Π is privilege escalation free over an access matrix M , if its AFT is privilege
escalation free over M .

4 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

Algorithm 1: Permission Check
Input: Tree T = (V,E), permission matrix M over a program Π with V ⊆ F

and O ⊆ F
Output: Is T permission respecting regarding M and privilege escalation free

over M?
1 foreach (p, c) ∈ E do
2 if c ∈ O then
3 if M(p, c) ̸= {call} then
4 return false // not permission respecting
5 foreach o ∈ O do
6 if M(p, o) ⊊ M(c, o) then
7 return false // privilege escalation found
8 return true

Note that when M is a permission matrix for a program M(s, o) can only be
{call} or ∅. This simplifies the condition of the definition to ∀(p, c) ∈ E,∀o ∈
O : M(c, o) = {call} ⇒ M(p, o) = {call}.

Theorem 1. There exists an algorithm which outputs whether T is permission
respecting regarding M and privilege escalation free over M which halts after
O(|E| · |O|) read accesses to M .

Proof. Algorithm 1 has the required properties. The algorithm is correct, since
for a permission respecting and privilege escalation free tree the conditions in
line Line 3 and Line 6 are by definition never fulfilled and therefore returns true.
On the other hand, if a tree does not hold both of those characteristics, there is
an edge where one of the condition fails and the algorithm returns false. For
every edge, the matrix needs to be accessed t ≤ 1 + 2|O| times. This results in
a runtime of O(|E|(1 + 2|O|)) = O(|E| · |O|).

In Sect. 4, we show that the clever usage of types can lead to the indirect
execution of this algorithm inside the type checker of a strongly typed language.

3.2 Adapting Capabilities

Access control lists (ACL) and capabilities [9] are the most common implemen-
tations of access matrices in modern systems [5, p. 635]. The main difference
between the two models is where the permissions are stored. With ACL, for
every subject s a set of access rights M(s, o) is saved beside an object o. The
capability model implements this the other way around: every subject s has a
set of capabilities holding the access rights M(s, o) for every object o.

Miller et al. [10] compare different approaches to implement such ACL and
capability systems. For our use case, only a few criteria to categorize different
capability systems are important. Especially, it is unimportant to dynamically
change the permission matrix. ACL are unsuitable for our use case, since our
objects (the system resources) exist independently and on a lower abstraction

PermRust: A Token-based Permission System for Rust 5

layer (the OS or the compiler) than the functions, which change depending on the
program. Furthermore, we need our framework to not permit ambient authority,
which is “authority that is exercised, but not [explicitly] selected by its user” [10].
Ambient authorities would subvert the goal of our model to make the access to
I/O-resources explicit. In addition, such authorities would require additional
data structures, where the permissions are saved and implicitly queried when
calling a function restricted by the permission model.

Consequentially, we have two possible techniques to implement a capability-
system to mitigate supply chain attacks: the capability-as-keys model and ob-
ject capabilities. In the capability-as-keys model, the subject needs to provide
a correct key (or token) to access an object. The keys need to be unforgeable,
copy-able and only access the specific resource it was designed for. Permission
to unlock an object can only be obtained from another entity which already had
the corresponding key (or by being the special root-subject, which holds all keys
from the start). In contrast to doors in the real world, keys only open doors for
one-time entry and for the holder of the key only. Object capabilities are simi-
lar, but they cut out the middleman by connecting authority with designation
directly. Specific for our example that would mean, that the structures in the
standard library which represent, e.g., file-descriptors or network-sockets need
to have the same properties as keys in the capabilities-as-keys model. Since the
token-based approach is generally less disruptive to the common workflow used
when developing with Rust, we focus on an implementation using this model.

We now show that safe Rust fulfills the criteria for a capability-aware pro-
gramming language [15]. The first property a language must fulfill is memory
safety. Without this feature, a token would be forgeable, meaning that keys could
be construed at will. In a memory unsafe language any line of code can call the
constructor of any given key or copy the key from another place in memory.
Since the borrow checker used in Rust ensures memory safety, this criterion is
fulfilled. The second criteria for a capability-system is encapsulation. It means
that “you cannot reach inside an object for its instance variables” [15]. This is
mostly important, if we use object capabilities and can be achieved using visi-
bility in Rust. For a system to support capabilities, we need to restrict global
variables in a way which ensures that authority can only be obtained explicitly.
This means, that keys cannot be saved in static variables since they could be
used to distribute tokens to unauthorized players. The general way to do this is
to only allow immutable global state, which is not controversial in modern de-
velopment, since global variables have been considered harmful since 1973 [20].
For this reason, they are also heavily restricted in safe Rust. Therefore, as long
as libraries are not using unsafe Rust, the requirements are fullfilled.

4 Proof of Concept

In this section, we outline a proof-of-concept implementation of a capability-
based permission system based on Rusts type system, which we call PermRust.
We first focus on realizing a way to label functions, which communicate the

6 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

I/O-operations the function uses under any condition. Secondly, we sketch how
namespaces can be imported with annotated permissions. Finally, we bring both
together and describe, how we can make sure, that functions can only be called
if the namespace is imported with the necessary permissions.

4.1 Labeling Functions with Permissions in Rust

Our first goal is to label Rust functions with the permissions they need. As
discussed, we will use the capability-as-key model for this and require every I/O-
accessing function to take corresponding tokens (or keys) as arguments. The code
that implements a token corresponding to read permission is shown in Listing 1.1.
We call such types token types. Since token types use no runtime memory, they
are a form of zero-cost abstraction, which means that the permission check is
entirely done at compile time, introducing no runtime costs. This is possible
because Rust is a strongly typed language, where a missing or wrong type leads to
an error at compile time. A key property in capability models is that they cannot
be constructed at will. We use Rusts visibility feature to ensure that objects
with a token type cannot be constructed outside its namespace (called modules
in Rust). The creation of a struct requires, that all fields of the struct are public.
As such, trying to construct a token type outside the token module, as depicted
in Listing 1.2, fails with an error message. In a full-fledged implementation of
PermRust the token module would be a part of the standard library and contain
multiple different token types, since every library developer would need to use
these types to write a function which access I/O.

Next, we ensure that the structs with the correct token types are actually
required to perform the corresponding I/O-operation. The only way to do I/O-
operations in safe Rust is via calls to the standard library, which we therefore
have to modify. A possible solution for read permissions which puts itself in front
of the original standard library is shown in Listing 1.4. In Rust, one interface of
the standard library to perform a read operation is to call the read() method
from a std::fs::File object, which represent a file descriptor. Listing 1.4 uses
the new type pattern to introduce a proxy type that allows us to write a new
interface for the File type without the need to change to original. The read
function of the FileProxy struct takes the same arguments as the original read
function plus a ReadPerm token. Since the only purpose of the token is to ensure
that the caller possesses such a token, it is not used by the function. The other
arguments and the return value of the underlying File object’s read function are
unmodified. Because of Rust’s zero-cost abstraction there is no runtime penalty
for this rewrite.

Since the standard library now expects the correct token to be called and
there is no way to generate these tokens, library-functions need to require them
from their caller. Listing 1.3 shows the signature of such a function, which re-
quires a ReadPerm token. It is also annotated with special comments, which the
tool rustdoc can use to generate documentation for Rust projects. In order to
make the required permission even more apparent, we suggest auto generating

PermRust: A Token-based Permission System for Rust 7

1 mod token {
2 pub struct ReadPerm(());
3 }

Listing 1.1. A token type in Rust. A
struct containing a single field holding
an empty tuple.

1 let token = token::ReadPerm(());

Listing 1.2. Unsuccessful creation of
token types yields an error message be-
cause the field is private.

1 /// # Permissions
2 /// - "ReadPerm"
3 pub fn read_something(
4 f: std::fs::File,
5 read_token: &token::ReadPerm,
6)

Listing 1.3. A library function signa-
ture with read access to the file system.

1 mod proxy_std {
2 pub struct FileProxy(
3 pub std::fs::File,
4);
5 impl FileProxy {
6 pub fn read(
7 &mut self,
8 buf: &mut [u8],
9 _: &token::ReadPerm,

10) -> Result<usize> {
11 self.0.read(buf)
12 }
13 }
14 }

Listing 1.4. A Rust implementation of
the standard read-function requiring a
correct token.

1 #[lib_func("ReadPerm")]
2 pub fn read_something(
3 f: std::fs::File,
4)

Listing 1.5. Usage of lib_func to gen-
erate a function requesting tokens.

them using Rust’s procedural macros. Such a macro named lib_func would
allow the developer to write to code in Listing 1.5 to generate Listing 1.3.

Together with the modified standard library, it is ensured that no function
can perform any I/O operation in safe Rust without having the correct access
tokens.

4.2 Permission-aware Importing in Rust

While our implementation forces library developers to annotate their functions
with permissions, it is not clear which and when tokens are initially generated.
We suggest setting the permissions of packages in the Cargo.toml file, where
dependencies are listed in Rust. Furthermore, we build special app_ functions,
which work as entry points for app developers. These entry points should only
work if the correct permission for their packages are set in Cargo.toml. The
construction of the app_ functions can be automated using macros. An imple-
mentation can be found in our git repository [7].

8 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

1 pub fn app_read_something(f: std::fs::File) {
2 struct localPerm(());
3 impl localPerm {
4 const fn new() -> Self {
5 localPerm(())
6 }
7 }
8 #[cfg(feature = "ReadPerm")]
9 impl std::convert::AsRef<token::ReadPerm> for localPerm {

10 fn as_ref(&self) -> &token::ReadPerm {
11 unsafe { std::mem::transmute(self) }
12 }
13 }
14 read_something(f, localPerm::new().as_ref())
15 }

Listing 1.6. A new interface to read_something, which does not require the generation
of tokens. Line 2–13 generates a local token which can be used as ReadPerm.

As a first step to make Rust permission-aware, we suggest that all packages
have special kinds of features1 called permissions features, which represent
access rights to I/O operations. These should align with the permissions rep-
resented by the token types. This can be used, to prohibit the compilation of
functions executing more I/O operations as desired by the developer. We can also
use the conditions to create tokens when the corresponding permission-features
are enabled.

Listing 1.6 shows an app_ function, which internally generates the correct
tokens required to do I/O-operations. It prevents the developer from using a
token with more permissions than defined in Cargo.toml. The code in Lines 2–
13 introduces a new token called localPerm, which should be usable as a token
type depending on the permission set.

4.3 Implementation

We now combine the functionality in a way that only one macro is needed.
We will call this macro permissions. an implementation can be found in our
git repository [7]. permissions is intended to be used on functions such as
read_something in Listing 1.5. These functions directly or indirectly perform
some kind of I/O-operation and do not have tokens as inputs. We therefore gen-
erate two functions with permissions. The first function adds the token-inputs

1 The feature mechanism of Cargo and Rust is the way conditional compilation is
implemented in Rust.

PermRust: A Token-based Permission System for Rust 9

and documentation (as in lib_func). This function should only be compiled if
the correct permission-features are set.2

The other function, which should be generated, is the app_read_something
function (Listing 1.6). However, since cargo-features are not transitive, a depen-
dency which is pulled without ReadPerm can, for example, still rely on another
package with ReadPerm enabled. As such it could use the app_ functions of its
dependency, leading to privilege escalation. By introducing a new feature call
direct-dependency, which is only set for packages that are direct dependencies of
the project, we can prevent this scenario. Currently, Cargo does not implement
the functionality to automatically flag direct dependencies and to ensure, that
the feature is not set by other dependencies. However, since Cargo constructs
the whole dependency-tree it is reasonable to assume, that such a feature could
be implemented.

We can now construct the fully functional permission macro. The steps
necessary for the macro are: cloning to function, prefixing the cloned function
name with app_, adding the call to the original function, adding the conditional
compilation arguments.

5 Discussion and Limitations

In the following, we analyze and discuss the limitations of PermRust with respect
to cost, permission granularity, feature unification, customization and attacker
models. We furthermore provide ideas on how these limitations could be ad-
dressed in the future.

Costs Since the token types occupy zero memory per definition, they do not exist
at runtime and therefore do not extend the runtime cost of the application. How-
ever, the development-cost of third-party libraries increase slightly, since every
function with I/O-access needs to be correctly annotated by the developer and
tokens need to be provided when calling such a function. The permission macro
should minimize the workload, making it possible to write function in PermRust
almost exactly as in Rust. Using the macro we have to pay a high price in respect
to compile time, since type-checking and executing of macro code is done by the
compiler. Because the security of the whole system stems from the fact that the
standard library is a trust anchor, language maintainers need to spend more
time on designing and implementing the API in a capability-compatible way.
For this reason, the probability that mainline Rust will implement the discussed
permission model is rather small.

Granularity To ensure permission-aware importing, we matched the permissions
required from a function with the permission set for a package via the construc-
tions of app_ functions. While this makes sense from the perspective of the
2 Conceptionally this is not necessary, since the function can only be called by a

function, which has the correct tokens. However, adding the conditional check can
make the executable smaller.

10 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

developers of the library, a more granular approach could be more usable. The
permission would then not be defined in the Cargo.toml file but when importing
different paths in the source code using Rusts use keyword.

Feature Unification Feature unification is a feature of cargo, which is used when
a package is present multiple times in the dependency tree of a project [16]. This
can happen if for example a project has the direct dependencies LibA and LibB
and LibB also depends on LibA. Since all dependencies can be imported with
different features, cargo needs to decide which features it should set for LibA.
The solution of the package manager is to calculate the union of the desired
features and compile LibA with them.

PermRust relies on the property, that the “direct-dependency” feature is only
set for direct dependencies. Regardless, since LibA is now a direct- and indirect-
dependency, the feature will be activated and enable LibB to call the app_ func-
tions of LibA. This could lead to privilege escalation, because LibB can call the
functions regardless of its permissions. The real-world effect of this vulnerability
is unclear, since the author of LibB cannot make assumptions on the depen-
dencies of other projects. Furthermore, it is unlikely that the developer of LibB
would use an app_ version by accident.

Customization PermRust is tightly connected with the standard library and
therefore with the system calls of the underlying system. This logically leads to
the restriction, that permissions can only be given in full and not customized
regarding concepts not known to the underlying system. For example, it would
be useful to be able to give access rights only for certain paths of the file system
or to allow TCP-connections only to a specific IP-range. While different standard
library functions for common customization could be created, they would need
to check the custom conditions at runtime.

A full object capability system as described in Sect. 3, could allow custom
permissions. In contrast to the capability-as-keys model, object capabilities are
not tokens which allow access to resources but the objects representing the re-
sources themselves. For example library functions interacting with the file system
would need to get a File object from its caller, and could only interact with the
file represented by that object. This object would need to be made unforgeable,
meaning that the open and create methods could only be executed where token
types are constructed in PermRust. This would of course interrupt the devel-
opment flow of common Rust developers even more, than the capability-as-keys
model. Since in this system, all resources of a program would need to be obtained
at the beginning of the program, startup times would increase rapidly.

Attacker Models It is clear that all security mechanism of PermRust can easily
be circumvented by using unsafe Rust to construct an arbitrary token type at
will. Despite that, PermRust can still be useful to mitigate real supply chain
attacks. Specifically the ones which stem from badly designed libraries. Such
libraries provide functions which (in some corner-cases) access system resources
without making the access obvious to the application developer. An example

PermRust: A Token-based Permission System for Rust 11

of such an attack is Log4Shell, where a popular logging library, in some cases,
contacted a remote server leading to remote code execution. A description of the
attack can be found in [3].

6 Conclusion

In this work, we addressed the principles of least privilege in the context of li-
brary usage in modern software development. Our proof of concept involves a
framework that clearly defines I/O-operations and binds permissions to libraries,
limiting function execution. Using access matrices and capability systems, we de-
veloped a capability-secure programming language called PermRust using Rust’s
procedural macros. PermRust employs a capability-as-key model, restricting sys-
tem I/O access to token owners. We demonstrated the feasibility of this model
in Rust by providing a proof of concept.

References

1. Agorics, I.: Joule: Distributed application foundations (1995), http://erights.
org/history/joule/

2. Anderson, J.: Sandboxing techniques. FreeBSD Journal (2017)
3. Chowdhury, P.D., Tahaei, M., Rashid, A.: Better call saltzer & schroeder: A ret-

rospective security analysis of solarwinds & log4j. arXiv:2211.02341 (2022)
4. Duan, R., Alrawi, O., Kasturi, R.P., Elder, R., Saltaformaggio, B., Lee, W.: To-

wards measuring supply chain attacks on package managers for interpreted lan-
guages. In: Proceedings 2021 NDSS Symposium. Internet Society (2021)

5. Eckert, C.: IT-Sicherheit: Konzepte–Verfahren–Protokolle. de Gruyter (2023)
6. Garrett, K., Ferreira, G., Jia, L., Sunshine, J., Kästner, C.: Detecting suspicious

package updates. In: 2019 IEEE/ACM 41st ICSE-NIER. pp. 13–16. IEEE (2019)
7. Gehring, L.: Code for permrust: A token-based permission system for rust, https:

//git.sr.ht/~lgehr/token_based_permission_system_code
8. Gruenbacher, A., Arnold, S.: Apparmor technical documentation (2007)
9. Lampson, B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18–24 (jan 1974)

10. Miller, M.S., Yee, K.P., Shapiro, J.: Capability myths demolished. Tech. rep., Johns
Hopkins University Systems Research (2003)

11. Pfretzschner, B., ben Othmane, L.: Identification of dependency-based attacks on
node. js. In: Proceedings of the 12th International Conference on Availability, Re-
liability and Security. pp. 1–6 (2017)

12. Pony Developers: Pony, https://www.ponylang.io
13. Seo, J., Kim, D., Cho, D., Shin, I., Kim, T.: Flexdroid: Enforcing in-app privilege

separation in android. In: NDSS (2016)
14. Steed, G., Drossopoulou, S.: A principled design of capabilities in pony
15. Stiegler, M.: http://www.skyhunter.com/marcs/ewalnut.html#SEC41
16. The Cargo Team: The cargo book, https://doc.rust-lang.org/cargo/
17. Wang, F., Zhang, Y., Wang, K., Liu, P., Wang, W.: Stay in your cage! A sound

sandbox for third-party libraries on android. In: Computer Security - 21st ES-
ORICS. pp. 458–476. Springer (2016)

http://erights.org/history/joule/
http://erights.org/history/joule/
https://git.sr.ht/~lgehr/token_based_permission_system_code
https://git.sr.ht/~lgehr/token_based_permission_system_code
https://www.ponylang.io
http://www.skyhunter.com/marcs/ewalnut.html#SEC41
https://doc.rust-lang.org/cargo/

12 Lukas Gehring, Sebastian Rehms, and Florian Tschorsch

18. Wang, Y., Hariharan, S., Zhao, C., Liu, J., Du, W.: Compac: Enforce component-
level access control in android. In: Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy. pp. 25–36 (2014)

19. Wikberg, M.: Secure computing: Selinux (2007), https://
citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
242132951b3157f1d887d507b1c0289fd27e16eb

20. Wulf, W., Shaw, M.: Global variable considered harmful. ACM Sigplan notices
8(2), 28–34 (1973)

21. Zimmermann, M., Staicu, C.A., Tenny, C., Pradel, M.: Small world with high risks:
A study of security threats in the npm ecosystem. In: USENIX security symposium.
vol. 17 (2019)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=242132951b3157f1d887d507b1c0289fd27e16eb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=242132951b3157f1d887d507b1c0289fd27e16eb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=242132951b3157f1d887d507b1c0289fd27e16eb

	PermRust: A Token-basedPermission System for Rust

