
ar
X

iv
:2

50
6.

11
67

9v
1

 [
cs

.C
R

]
 1

3
Ju

n
20

25

Chapter 1

LLMs on support of privacy

and security of mobile apps:

state of the art and research

directions

Tran Thanh Lam Nguyen,1* Barbara Carminati,1* and Elena
Ferrari1*

1Department of Theoretical and Applied Science (DISTA), University of Insubria, 21100,
Varese, Italy

*Email: ttlnguyen,barbara.carminati,elena.ferrari@uninsubria.it

Modern life has witnessed the explosion of mobile devices. However, be-

sides the valuable features that bring convenience to end users, security

and privacy risks still threaten users of mobile apps. The increasing sophis-

tication of these threats in recent years has underscored the need for more

advanced and efficient detection approaches. In this chapter, we explore the

application of Large Language Models (LLMs) to identify security risks and

privacy violations and mitigate them for the mobile application ecosystem.

By introducing state-of-the-art research that applied LLMs to mitigate the

top 10 common security risks of smartphone platforms, we highlight the

feasibility and potential of LLMs to replace traditional analysis methods,

1

https://arxiv.org/abs/2506.11679v1

such as dynamic and hybrid analysis of mobile apps. As a representative

example of LLM-based solutions, we present an approach to detect sensi-

tive data leakage when users share images online—a common behavior of

smartphone users nowadays. Finally, we discuss open research challenges.

Keywords: Mobile Apps, Privacy, LLMs, Security

1.1. Introduction

It is undeniable that mobile devices, especially smartphones, play an extremely

important role in modern life and have changed people’s lifestyles. Smartphones

can meet most people’s requirements for work, study, shopping, health care,

and entertainment in a compact size. In fact, the usage of smartphones has

surpassed personal computers and today dominates the digital device mar-

ket. Statistics statcounter.com (November 2024)1 show that mobile market

share accounts for 64.04% while computers constitute 35.96%, witnessing a

significant shift from computers demand to mobile devices. Due to their high

mobility, smartphones bring great convenience. People can use smartphones

anywhere and at any time. As a matter of fact, mobile users spend an average

of 203 minutes per day viewing social media content on their devices; 70% of

learners report that they feel more motivated when using mobile devices for

learning, as opposed to desktop; in addition, 61% of emails are sent from mo-

bile devices, compared to only 5% from desktop.2.With the increasing usage

of smartphones, mobile apps are gradually becoming a billion-dollar market.

According to data from Statista, the mobile app market is expected to reach

1https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide
2https://research.com/software/mobile-vs-desktop-usage

2

https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide
https://research.com/software/mobile-vs-desktop-usage

$781.70 billion by 2029.3

Until August 2024, the Android operating system (OS) leads the mobile

operating system market with 71.67%, while Apple iOS accounts for 27.73%

and other OSs account for 0.6%.4 As of October 2024, approximately 97% of

all Android apps are free, with only 3% requiring payment.5 These free ap-

plications have contributed to the explosion of the mobile device ecosystem,

making it more attractive because users do not have to pay for using the apps’

services. However, “there is no such thing as a free lunch”, and mobile apps

earn money mainly from advertising, which accounts for 65% of total rev-

enue.6 These statistics show that users are the main revenue target for mobile

app developers. Specifically, apps silently collect users’ habits, interests, and

personal information, such as posts, comments, locations, health status, and

other personal data. Then, this sensitive information is shared with advertising

platforms and analyzed by recommendation systems [Roy and Dutta, 2022] to

deliver targeted advertising tailored to each user profile. These advertisement

campaigns have the benefit of allowing users to quickly approach products and

services that suit their needs. However, profile-based advertising is a double-

edged sword because the accuracy of recommendations is directly proportional

to the details of the user’s personal information provided.

In 2018, the European Union passed the GDPR (General Data Protection

Regulation),7 which sets strict regulations on how organizations and businesses

collect, process, and store EU citizens’ data, such as users having the right to

3https://www.statista.com/outlook/amo/app/worldwide
4https://gs.statcounter.com/os-market-share/mobile/worldwide
5https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
6https://www.mobiloud.com/blog/mobile-app-market-statistics
7https://gdpr-info.eu/

3

https://www.statista.com/outlook/amo/app/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.mobiloud.com/blog/mobile-app-market-statistics
https://gdpr-info.eu/

be informed about the type of data collected and the right to delete personal

data to protect their privacy. Specifically, apps must require user consent before

collecting and sharing users’ data, especially when sharing with third parties

(e.g., for advertising purposes). However, GDPR is not enough to protect users

comprehensively because of two main reasons: (1) most developers continue to

collect users’ data for profit purposes [Tahaei et al., 2021], despite GDPR,

and (2) hackers take advantage of app security vulnerabilities to steal informa-

tion (cf. Section 1.3). Therefore, there are significant challenges for researchers

in identifying security and privacy vulnerabilities and risks of sensitive data

leakage for mobile apps.

Traditionally, there are three main methods for analyzing apps’ security

and privacy risks, namely static analysis, dynamic analysis, and hybrid anal-

ysis. Static analysis analyzes apps’ function calls, command sequences, code

structure, API calls, and variables without running the app. However, static

analysis does not offer a real-time observation of security or privacy violations

of an app. Dynamic analysis overcomes the limitations of static analysis by

focusing on identifying vulnerabilities through the app’s behavior at runtime.

However, implementing dynamic analysis on a large scale is complicated be-

cause this method requires tremendous resources and costs [Reardon et al.,

2019]. In addition, dynamic analysis can be bypassed by apps that attempt

to mimic legitimate behaviors (e.g., apps that pretend to request user con-

sent but ignore the user’s response) [Son et al., 2022]. The combination of

static and dynamic analysis, called hybrid analysis, leverages the advantages

of both methods. In particular, static analysis can be used initially to identify

potentially risky code blocks, thus reducing the number of apps that require

dynamic analysis and decreasing the computational burden that is a limitation

4

of dynamic analysis. Then, dynamic analysis is performed on the collection of

apps returned by static analysis to observe the apps’ behavior in real-time and

verify the static analysis results.

There are numerous proposals in the literature employing hybrid analysis

to assess the security/privacy risks of mobile apps (e.g., [Reardon et al., 2019,

Lam et al., 2024]). However, these frameworks commonly have three signifi-

cant weaknesses. First, the framework has to trade off accuracy and scalability.

Given the vast number of apps with complex user interfaces (UIs) and interac-

tion methods, creating a generalized automated process applicable to all apps

for scripted interactions is challenging. Second, mobile apps often operate as

black boxes; thus, one cannot know what data the app sends and receives.

Therefore, hybrid frameworks must run on a test environment with rooted de-

vices for reading transmitted data in and out of the app and this makes the

implementation more difficult since rooting methods for each Android version

are different. Third, hybrid analysis is mainly suited for identifying evidence

of known security/privacy vulnerabilities.

Motivated to overcome the above mentioned limitations, this chapter dis-

cusses how to leverage large language models (LLMs) to assist in identifying

sensitive information leaks in mobile apps. LLMs are powerful deep learn-

ing models pre-trained on extensive datasets, effective in tasks such as code

summarization [Ahmed and Devanbu, 2022], bug detection [Wen et al., 2024],

bug reproduction [Kang et al., 2023, Feng and Chen, 2024], and vulnerability

exploitation [Fang et al., 2024]. Specifically, LLMs can generate automatic in-

teractions with the app’s UI following pre-defined scenarios by analyzing the

app’s interface. In addition, LLMs can receive feedback from the UI to infer

the next interaction steps so it can be applied to many different apps while en-

5

suring high accuracy. Thus, LLMs are well-suited to replace dynamic analysis,

a component responsible for the poor scalability of hybrid analysis (cf. Section

1.4.2). Next, by understanding app logic through the code summarization ca-

pabilities, LLMs can capture the sources and destinations of data flows inside

the app and identify which sensitive information is sent out from the app with-

out rooting the device like traditional methods (cf. Section 1.4.1). Finally, the

combination of static analysis and LLMs is perfectly matched to integrate with

app store software testing processes. Specifically, LLM outperforms traditional

malware detection methods in detecting new malicious apps that were never

included in the training dataset (cf. Section 1.4.3).

In this chapter, after introducing some background information about LLMs,

we discuss how LLMs can contribute to mitigating the most notable secu-

rity/privacy risks of mobile apps by reviewing state-of-the-art proposals in

the field. In the chapter, we mainly focus on Android apps because they are

more vulnerable to security/privacy threats than iOS [Garg and Baliyan, 2021].

Then, as a representative example of LLM usage, we present an LLMs-based

architecture to detect the risk of sensitive data leakage through online image

sharing, a very common habit of mobile users. Finally, we discuss open research

challenges in the field.

More specifically, the remainder of this chapter is organized as follows.

Section 1.2 introduces LLMs. Section 1.3 presents the primary privacy/security

risks associated with mobile apps, whereas Section 1.4 describes state-of-the-

art LLM-based solutions for mobile security and privacy. As an example of the

usage of LLMs, Section 1.5 targets a security weakness in Android that results

in the leakage of sensitive information when users share images online, along

with our proposed solution utilizing LLMs to detect this risk automatically.

6

Section 1.6 discusses open research issues, whereas Section 1.7 concludes the

chapter.

1.2. Background on LLMs

This section presents basic concepts of large language models (LLMs) [Shen

et al., 2023, Minaee et al., 2024] and their applications, with a primary em-

phasis on security and privacy. Furthermore, we examine two important ap-

proaches employed to enhance the contextual awareness of LLMs, namely, few-

shot learning (FSL) and retrieval-augmented generation (RAG). As discussed

in Section 1.1, LLMs can analyze security and privacy violations by under-

standing the app’s logic from the source code. However, due to input limita-

tions, we cannot import the entire app’s source code into LLMs. FSL and RAG

help LLMs to better understand the app (for example, the app’s intended use,

the list of app functions, etc.) even if not all the code blocks of the app are

provided as input.

1.2.1. LLMs

Artificial intelligence (AI) is not a novel concept because the first ideas of AI

were introduced in the 1940s-1950s, while Eliza Chatbot, the first functioning

Generative AI (GenAI), was launched in the 1960s-1970s [Yigit et al., 2024].

GenAI [Zhang et al., 2023] is a subset of AI that excels in creating new

content such as articles, poems, music, paintings, and films. LLMs [Minaee

et al., 2024] is a subset of GenAI that primarily focuses on understanding

human natural language and generating language-related material, including

7

translation, text summarization, and programming. LLMs can comprehend

language’s statistical and semantic characteristics using text-based training

datasets.

Figure 1.1: LLMs overview (Source: Tran Thanh Lam Nguyen)

Figure 1.1 gives an overview of the LLM reference architecture. The LLM

training process consists of three main steps, namely, pre-training, fine-tuning,

and domain adaptation [Naveed et al., 2023]. First, the pre-training step re-

ceives a large amount of unlabeled text data (e.g., Wikipedia, books, and web-

site data). For example, the Generative Pre-trained Transformer 3 (GPT-3)

model is trained from a common crawl dataset (web pages), the BookCorpus

8

dataset (11,000 books), Reddit articles, and Wikipedia [Gupta et al., 2023].

Pre-training uses unsupervised learning (without human intervention) to build

a base LLM. For instance, OpenAI requires the base model (GPT) [Achiam

et al., 2023] to predict the next word in an incomplete sentence, whereas

Google trains BERT [Devlin et al., 2018] using the Masked Language Modeling

method; precisely, the model must predict masked words in a sentence. The

base model can generally understand natural language (e.g., grammar, syntax,

and semantics) but is not specialized for any specific task. Thus, the fine-

tuning step aims to obtain a fine-tuned model adaptable to a specific scenario.

In the fine-tuning step, the base model is trained using supervised learning on a

smaller and task-specific dataset. The base model is provided with inputs with

corresponding outputs labeled by humans. For example, Code Llama [Roziere

et al., 2023] is a fine-tuned model for programming-related tasks built on top

of the base model Llama [Touvron et al., 2023]. Finally, in the domain adap-

tation step, experts in a particular domain adjust the fine-tuned model to

obtain an augmented model for specific real-world applications, such as chat-

bots, question-and-answer (Q&A), and programming. For example, ChatGPT8

is designed explicitly for chatbots, based on variations of the GPT model.

To use LLMs, the user needs to build a prompt as input. The prompt is

a string of characters, a paragraph, or a question that the user provides to

an LLM to perform a specific task. In addition, the prompt may include hints

and specify LLMs’ role to enhance the model’s reasoning ability. For instance,

we can formulate the prompt to instruct the LLMs to assume the role of

an Android expert and develop a quick sort algorithm utilizing the Android

programming language as follows: “You are an expert in Android programming

8https://openai.com/index/chatgpt/

9

https://openai.com/index/chatgpt/

language. Please help me implement a quick sort algorithm in Android”.

Figure 1.2: Transformer architecture [Vaswani, 2017]

It is easy to realize that training the base model is the foundation for

effectively deploying LLMs, and it is the most expensive process. For instance,

the training cost of GPT-3 is over 1 million USD, whereas for GPT-4 is over

100 million USD.9

Most of the current LLMs, such as OpenAI’s GPT family (GPT-3, GPT-

3.5, GPT-4) and Google’s Gemini [Team et al., 2023], are based on the trans-

9https://www.statista.com/chart/33114/estimated-cost-of-training-selected-ai-models/

10

https://www.statista.com/chart/33114/estimated-cost-of-training-selected-ai-models/

former architecture (see Figure 1.2) for training the base model [Pan et al.,

2024], rather than employing older architectures like RNN (Recurrent Neural

Network) and its variants [Sherstinsky, 2020]. Therefore, in this section, we

focus on the transformer architecture.

The transformer model can perform many language-related tasks, including

document translation, paragraph composition, poetry creation, and language

translations. Nonetheless, the process and objective of a transformer are the

same regardless of the specific tasks for which it is employed. Specifically, a

transformer relies on input prompts to predict the words that should be used to

complete a sentence, paragraph, or poem. Specifically, the transformer receives

a prompt as input and calculates the probability of the words that can be used

as the next word to complete the sentence in the output. Next, the transformer

will select the word with the highest probability to fill in the incomplete sen-

tence. For example, suppose the input prompt is an incomplete sentence: “I go

to school, and ...”. The goal of the transformer is to calculate the probability of

the following word to fill the “...” in the incomplete sentence. Specifically, the

transformer chooses a collection of possible words (e.g., “friend”, “teacher”,

“mother”, “father”, “my”, “her”, “his”, etc.) from the unlabeled data in Fig-

ure 1.1 and then calculates their probabilities of being the good candidates to

fill the incomplete sentence. Next, the transformer chooses the word with the

highest probability as the following word for the sentence, for example, “my”.

After that, the transformer has a new input that is an incomplete sentence

“I go to school, and my ...”. The transformer repeats finding the word with

the highest probability as the subsequent word to fill the incomplete sentence

until it returns a final output (i.e., a complete sentence), for example, “I go to

school, and my friends go to the cinema”.

11

To illustrate the working of the transformer architecture, we choose the

input prompt to be the incomplete sentence “I go to school, and ...” and the

following is a detailed description of how the transformer produces an output

that is a complete sentence.

First, the input prompt goes through the tokenization process (1) (see

Figure 1.2) to divide the text string into smaller parts called tokens, in which

each token represents a word or a character. For example, the input prompt is

divided into 6 tokens, namely “I”, “go”, “to”, “school”, “,” and “and”.

Subsequently, tokens are transformed into a numeric vector (aka embedding

vector) (2) to facilitate the model in the computation required in the following

steps.

After that, the positional encoding step (3) incorporates a distinct position

vector into each embedding vector by vector addition, forming a position-encoded

embedding vector. Position vectors are calculated based on the word’s position

in the input prompt and encode the absolute position of a token within a sen-

tence. The position vector is essential because the transformer does not make

sequential observations of each word in the sentence like RNNs but only fo-

cuses on a few important words. Thus, changing the position of words in the

sentence can cause the model to predict incorrectly. The positional encoding

mechanism guarantees a distinct vector for each word in the input prompt.

This leads to a distinct aggregation vector for the whole sentence. As a result,

different vectors will represent sentences made up of the same words but in a

different order. For instance, suppose we have the following sentences: “I go

to school, and my friends go to the cinema” and “I go to the cinema, and my

friends go to school”. Although made up of the same characters but with a dis-

tinct arrangement, the two sentences provide two different contexts. Formulas

12

for calculating position vectors are based on the sine and cosine functions. We

refer the interested readers to [Vaswani, 2017] for more details.

Next, the transformer block (4) receives position-encoded embedding vec-

tors as input. Its output is a list of words that can be used to fill in the

incomplete position (“...”) in the input prompt. Each transformer block has

two main components: multi-head attention (4a) and feed-forward (4b).

Because multi-head attention is built on the self-attention mechanism, we

explain the self-attention mechanism first. The self-attention mechanism, in-

stead of considering the whole sentence, only focuses on the words that are

most relevant to the considered context. Human natural language is extremely

complex, especially with many conjunctions, prepositions, punctuation, etc.,

to link ideas together. However, not all words in a sentence contain important

information. Thanks to the self-attention mechanism, the transformer reduces

the amount of needed computation. Specifically, the self-attention mechanism

calculates the attention score to evaluate the relevance of each element in

position-encoded embedding vectors. This is equivalent to rank the relevance

of each word (“I”, “go”, “to”, “school”, “,”, and “and”) in the input prompt.

The attention score represents the relevance of a specific word to the other

words in the input prompt, and a higher value implies that the word carries

more context than the others, making it more important, so the transformer

will focus on this word. The attention scores are aggregated into a context

vector (i.e., the output of self-attention mechanism) that allows the model to

recognize what word’s position needs attention and, from there, predict the

following output [Niu et al., 2021]. For example, in the input prompt, the

words “I”, “go” and “school” are more important than “to”, “and”, and “,”.

Therefore, for example, the context vector of the input prompt would be as

13

follows: [“I”, “go”, “to”, “school”, “,”, “and”] → context vector = [0.7, 0.9,

0.2, 0.9, 0.1, 0.2] with higher attention score values at the word positions that

require focus.

In practical architecture, transformers utilize multi-head attention, an up-

grade of self-attention, to achieve parallel computing. The “heads” in multi-

head attention execute attention score calculations numerous times concur-

rently rather than just one time, as in self-attention. Each “head” calculates

attention scores based on many aspects of the sentence, including syntax, se-

mantics, and word relationships. For instance, in the input prompt (“I go

to school, and ...”), head-1 focuses on the words “I” and “go” to capture

the sentence’s grammatical structure. Meanwhile, head-2 concentrates on the

word that provides context, such as “school”. The outcomes from each head

are combined to form a final context vector (final output) and carry on a more

comprehensive semantic representation.

Next, feed-forward (4b) is a multi-layer neural network that applies two

linear transformations with nonlinear activation functions, such as ReLU. Feed-

forward receives the context vector from multi-head attention as input and then

reshapes it to help the transformer learn the contextual features of selected

attention words in the input prompt. The feed-forward output is a prediction

list of words that might fill in the incomplete position in the input prompt. For

instance, in our running example, feed-forward learns the contextual features

of required attention words “I”, “go” and “school” to determine that we need

possessive adjectives, such as “my”, “her”, “his”, etc., as the next word in the

sentence.

Finally, softmax (5) computes the probability for the words selected by the

feed-forward step and chooses the word with the highest probability as the

14

following word in the sentence; for example, “my” in our running example. All

the steps from (1) to (5) are then repeated until the sentence is complete, for

example, “I go to school, and my friends go to the cinema”.

In addition to answering questions, translating, and summarizing pure text,

LLMs demonstrate excellent abilities in supporting coding activities. With this

capability, LLMs can be an effective solution to replace traditional analysis

methods in analyzing app security and privacy violations (cf. Section 1.4).

More precisely, LLMs have many applications in the programming field, in-

cluding (1) Code search & document generation: LLMs can search and under-

stand the semantic relationship between programming languages and natural

languages to represent them in documents, supporting programmers in read-

ing and understanding code; (2) Code clone detection, that is, detecting code

segments that produce similar results with the same input; reducing this du-

plication helps reduce software maintenance costs and prevent bugs; (3) Code

refinement, that is, automatically fixing bugs; (4) Code translation to support

migrating old software from current programming languages to another one; (5)

Code generation, that is, the ability to automatically write code from natural

language descriptions; (6) Code summarization, that is, the ability to explain

the meaning, purpose or logic of code; (7) Code refactoring, that is, the ability

to improve the structure of code to make the code more concise and optimized;

(8) Code executing, that is, the ability to run code and obtain results without

human involvement (for example, installing the development environment and

compiling code); (9) Code infilling, that is, the ability to complete the miss-

ing parts of the code based on the context surrounding the missing position.

Table 1.1 summarizes existing code-specific LLMs along with their developer,

supported programming languages, architecture, and main applications. Ac-

15

cording to Table 1.1, one can select the suitable LLMs for specific tasks. For

example, Code Llama supports Java and code generation, which is more suited

for supporting programmers in developing mobile apps. In contrast, Codex has

code summarization ability, which is more appropriate for understanding code

logic and detecting security vulnerabilities.

Table 1.1: LLMs for code generation and analysis.

Model name
& Developer

Supported
Programming Languages

Applications

CodeBERT
(Microsoft)

[Feng et al., 2020]

Python, Java,
JavaScript, PHP,

Ruby, Go

Code search &
document generation

GraphCodeBERT
(Microsoft)

[Guo et al., 2020]

Python, Java,
JavaScript, PHP,

Ruby, Go

Code search,
Code clone detection,
Code refinement,
Code translation

InCoder
(Meta AI)

[Fried et al., 2022]

Python, JavaScript,
Ruby, Go,
Java, PHP

Code infilling

AlphaCode
(DeepMind)

[Li et al., 2022]
Python, C++ Code generation

GPT-3/GPT-3.5/
GPT-4 & variants

(e.g., GPT-3.5-turbo,
GPT-4 turbo,GPT-4o)

(OpenAI)
[Achiam et al., 2023]

Python, JavaScript,
Go, Perl, PHP,
Ruby, Swift,

TypeScript, Shell

Code generation,
Code summarization,
Code refactoring,
Code executing

Code Llama
(Meta AI)

[Roziere et al., 2023]

Python, C++,
Java, PHP,

Typescript, C#, Bash

Code generation,
Code infilling

Although LLMs can understand natural language and programming lan-

guages, they still have certain limitations. For example, although Meta re-

leases Llama 3.1 as open source, deploying this 405 billion-parameter model

16

requires at least 256GB of RAM, 1944GB of GPU, and 780GB of storage.10 Of

course, one can choose a model with fewer parameters, but this means accept-

ing a trade-off in the model’s prediction accuracy. Moreover, other models, e.g.,

GPT-3, GPT-4, and GPT-4o, are paid services, and service providers (Ope-

nAI) charge fees for both the number of tokens input and output (i.e., LLM’s

responses).11 Second, while training or fine-tuning LLMs for specific tasks is

theoretically possible, creating a supervised dataset for specialized software en-

gineering jobs is difficult and, thus, impractical for most individuals and firms

[Ahmed et al., 2024]. Moreover, LLMs have limitation in the input prompts

(for example, OpenAI’s GPT-4 model12 has a context window of only 128,000

tokens), thus, one cannot enter the entire source code into LLMs for code

summarization or refactoring.

To bypass the token restriction, one must extract code blocks that are

directly related to the targeted purpose. However, extracting only specific code

blocks will reduce the context and thus reduce LLMs’ performance. Finally,

LLMs often give long answers and repeat parts of the question [Zhao et al.,

2023], so there is a need for a mechanism to summarize their responses into

formats such as JSON to easily evaluate the results. The above weaknesses

are also experienced when LLMs are used to detect security/privacy risks in

mobile apps.

10https://llamaimodel.com/requirements/
11https://openai.com/api/pricing/
12https://platform.openai.com/docs/models/gpt-4

17

https://llamaimodel.com/requirements/
https://openai.com/api/pricing/
https://platform.openai.com/docs/models/gpt-4

1.2.2. FSL and RAG

In Section 1.2.1, we understand that the transformer architecture predicts out-

put based on the input prompt. Therefore, the input prompt plays an impor-

tant role in the performance of LLMs. In particular, for applying LLMs to

identify security and privacy violations, the input prompt requires a lot of

context related to the considered app. In addition, as discussed above, pro-

viding the entire source code of the app to the input prompt is not feasible

due to token limitations. Therefore, in this section, we present FSL and RAG,

two approaches to optimize the input prompt. Specifically, thanks to FSL and

RAG, one can provide a few information to the LLM (e.g., code blocks related

to the target vulnerabilities) to be able to analyze security and privacy risks.

FSL and RAG are collectively known as prompt engineering.

Few-shot learning (FSL) [Song et al., 2023] is a machine learning technique

inspired by how humans learn and think. Specifically, humans can reason and

make decisions informed by past experiences, even when the present issue dif-

fers from prior lessons. Therefore, the goal of FSL is to achieve the highest

performance (P) with the least number of labeled examples provided (E) for a

specific task (T) [Wang et al., 2020]. FSL learning is suitable for classification

and recognition problems when collecting all training samples is impossible

[Song et al., 2023].

More precisely, the FSL final prompt consists of two components, namely

an example collection and a user’s prompt. The example collection consists of

labeled 〈input, output〉 pairs related to the user’s prompt. The 〈input, output〉

pairs help enhance the context of the LLMs, thus increasing the model’s accu-

racy.

FSL is suitable for classification tasks, such as classifying scam emails. For

18

Figure 1.3: FSL overall architecture (Source: Tran Thanh Lam Nguyen)

instance, suppose we have a user’s prompt as follows: ‘‘Dear Customer, Con-

gratulations! You are among 10 lucky winners of a free USA tour. Please verify

by clicking the link below and then receive the flight details”. The example col-

lection and user’s prompt will be combined into a final prompt: “You are expert

security. Kindly assess if the subsequent email {user′s prompt} is a scam or

a legal communication. Utilize the information from the following examples:

{example − 1}, {example − 2}, and {example − 3}”. The {example − 1},

{example− 2}, and {example− 3} are variables used to pass the correspond-

ing 〈input, output〉 pairs listed in Table 1.2.

However, FSL has two main disadvantages. First, we cannot provide too

many examples in the FSL prompt since the limitation of LLMs token input,

as discussed in Section 1.2.1. Second, the examples provided to the LLMs may

not be optimal for the input prompt. That means there is no mechanism to

evaluate the relevance of the examples to the input prompt, and the examples

are selected based on the experience of FSL users. This shortcoming may lead

to other examples that are more relevant to the input prompt being overlooked.

19

Table 1.2: FSL example collection for scam mail classification.

Example
collection

Input Output

Example-1
Dear customer,

You have a gift from our company.
Please click the link below and fill out your information.

Scam

Example-2

Dear Customer,
Banking services will be temporarily unavailable

from 12 AM to 5 AM for maintenance.
No action is required.

Thank you.

Not Scam

Example-3
Congratulations! You have won a $5,000 gift card.

Click here to claim your prize.
Scam

Similar to FSL, RAG [Sawarkar et al., 2024] aims to optimize the input

prompt for LLMs. However, RAG overcomes FSL’s weaknesses in selecting the

example collection for context enhancement by using a mechanism to assess

the relevance of the examples with the input prompt instead of relying solely

on the user’s experience.

The RAG architecture has three main stages, namely (1) preparation, (2)

retrieval, and (3) generation, as shown in Figure 1.4. In the preparation stage,

labeled data (knowledge source) is transformed into embedding vectors via

embedding models (e.g., OpenAI’s text-embedding-ada-00213). The objective

of the embedding model is to represent raw texts (such as words, phrases, or

code) in a multidimensional numeric vector space so that semantically similar

texts have the smallest distance in the space. Next, embedding vectors are

stored in a vector database (Vector DB) (e.g., Faiss14 or ChromaDB15).

In the retrieval stage, suppose a user sends his/her prompt to LLMs. The

13https://platform.openai.com/docs/guides/embeddings/embedding-models
14https://github.com/facebookresearch/faiss
15https://www.trychroma.com/

20

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://github.com/facebookresearch/faiss
https://www.trychroma.com/

Figure 1.4: RAG overall architecture (Source: Tran Thanh Lam Nguyen)

user’s prompt will first be converted into embedding vectors using the same

embedding models used in the preparation stage. Next, the embedding vector

of the user’s prompt is used to query the vector DB to find similar vectors

through a similarity search. Similar search uses calculations such as cosine

similarity to determine the similarity between embedding vectors.

Finally, in the generation phase, similar vectors are decoded into raw text

to form a set of relevant information that enhances the context for the LLMs.

21

Next, the user’s prompt (as raw text) is combined with relevant information

to form the final prompt for the LLMs. Basically, a prompt in RAG is modeled

as follows:

relevant information← retrieve(user prompt) (1)

final prompt← relevant information ‖ user prompt (2)

Where user prompt is the prompt entered by the user, and relevant information

is a set of relevant information retrieved from the vector DB based on the

user prompt.

Table 1.3 shows an example of applying RAG to code summarization. In

this particular examples, labeled data (rows 1 to 4) are the code blocks listed in

the 2nd column, labeled as sum function, subtraction function, multiplication

function, and division function (4th column), respectively. Then, these raw text

code blocks are converted into corresponding embedding vectors (see the 3rd

column). These embedding vectors are stored in the vector DB, as described

in the RAG workflow. Similarly, the user’s prompt (i.e., the code block listed

in the 2nd column of the 5th row), is converted into embedding vectors (3rd

column) with the same embedding model used for labeled data.

Next, RAG uses the embedding vector of the user’s prompt to query the

vector DB to retrieve similar vectors. In this case, RAG selects the embedding

vector in the first row (sum function) as the most similar vector. Next, RAG

converts the retrieved vector into raw text (i.e., relevant information) and

combines it with the user’s prompt (in raw text) to form the final prompt.

For example, the final prompt is: “You are an expert in programming. Please

summarize the meaning of the function {user′s prompt} with the following

22

Table 1.3: RAG for code summarization.

Data
Code block
(Raw text)

Embedding vector
Label of

Code Block

1
def add(a, b):
return a + b

[0.015708842089961785,
. . . ,

-0.0258686572771857]

Sum
function

2
def subtract(a, b):

return a - b

[0.004827093476324077,
. . . ,

-0.012001586502984194]

Subtraction
function

3
def multiply(a, b):

return a * b

[0.014412204954896129,
. . . ,

-0.02305418474387719]

Multiplication
function

4
def divide(a, b):

if b == 0: return “Error”
else: return a / b

[-0.008386097271214806,
. . . ,

-0.017810343585481985]

Division
function

User’s prompt
Code block
(Raw text)

Embedding vector
Code

Summarization

5

def add(number array):
total = 0

for num in number array:
total += num
return total

[0.023987490179583706,,
. . . ,

-0.05613979951752224]

Sum
function

contextual information {relevant information}”. At this point, the LLMs

rely on the user’s prompt and the relevant information, which is the code

block labeled as the sum function, to summarize the user’s prompt. The code

summarization result of the user’s prompt is the sum function.

In summary, both FSL and RAG help enhance the context of LLMs through

optimized input prompt, thus balancing accuracy and token limitation. As a

result, FSL and RAG can be applied in security and privacy analysis. Specifi-

cally, instead of providing the entire source code, we can provide labeled exam-

ples (FSL) or relevant information (RAG) along with a sufficient code segment

in the input prompt for LLMs to analyze. RAG is more robust than FSL in

enhancing context for LLMs, especially for complex tasks such as code sum-

marization, as it is equipped with a mechanism to evaluate the relevance of

23

information for the input prompt. However, for simple tasks such as automatic

interaction with the app’s GUI or app classification (such as malware or be-

nign apps), FSL is a suitable choice because it does not require the cost of

maintaining the vector DB.

1.3. Mobile apps: main security and pri-

vacy threats

Mobile applications are one of the most dynamic ecosystems, making them

a double-edged sword: rapid development is always accompanied by constant

security attacks. On the one hand, developers strive to safeguard user security

and privacy. On the other hand, attackers continuously search for potential

vulnerabilities in various areas, such as the operating system, storage, network,

licensing models, and more, to carry out user attacks.

In this section, we describe the top 10 security and privacy issues associated

with mobile apps according to the OWASP Top 10 2024 report.16 OWASP

(Open Web Application Security Project) is an international non-profit or-

ganization specializing in web application security that, in recent years, has

extended its scope to mobile apps to raise awareness of their security/privacy

vulnerabilities.

Then, in Section 1.4 we discuss some research proposals applying LLMs to

mitigate some of the risks mentioned in the OWASP Top 10 2024.

R1: Improper Credential Usage (Exploitability level: Easy): Some

16https://owasp.org/www-project-mobile-top-10/

24

https://owasp.org/www-project-mobile-top-10/

developers have the dangerous habit of hardcoding authentication information

(e.g., secret key, password, API key, etc.) into the app’s source code. This

makes the software development process faster and more convenient for devel-

opers instead of implementing dynamic key storage solutions such as OAuth,

JWT, vault, etc. However, it causes serious vulnerabilities because hackers

can easily decompile APK (Android Application Package) or iPA (iOS App

Store Package) to collect credential information and illegally access the private

accounts of software developers and users.

R2: Inadequate Supply Chain Security (Exploitability level: Av-

erage): This security risk refers to hackers tracking activities and stealing

sensitive user data by exploiting security vulnerabilities when the app inte-

grates with third-party libraries, APIs, or SDKs (Software Development Kits).

This attack allows hackers to insert malicious code, install spyware, or steal

credential information.

R3: Insecure Authentication/Authorization (Exploitability level:

Easy): When hackers identify a vulnerability in an authentication or autho-

rization mechanism, they can impersonate a user and bypass the login to access

personal data by sending a request directly to the backend server without going

through the identity validation step. Additionally, hackers can achieve higher-

level permissions than their actual authorized level to gain unauthorized access

to sensitive information.

R4: Insufficient Input/Output Validation (Exploitability level:

Difficult): Insufficient validation or sanitization of user-provided inputs, such

as registration information or uploaded files, can pave the way for attacks, in-

cluding SQL and command injection, and cross-site scripting (XSS). Hackers

can leverage these weaknesses to steal users data, alter the app’s behavior, and

25

break the entire mobile platform.

R5: Insecure Communication (Exploitability level: Easy): Most

mobile apps need to communicate with a server (service provider) to function

correctly. They also communicate with each other (for example, a wearable

app on a smartwatch periodically communicates health data to a companion

app on a smartphone). Hackers can exploit this behavior to eavesdrop sensitive

information (sniffing attacks) or interfere with and modify packets in the trans-

mission line, leading to incorrect application functionality (Man-in-the-Middle

attacks). The most significant factor contributing to this vulnerability is that

mobile apps frequently communicate with one another in plain text rather

than delivering data using encryption protocols such as SSL/TLS. In addi-

tion, wrong implementation of SSL/TLS, such as using self-signed, revoked, or

expired certificates, also leads to insecure communication.

R6: Inadequate Privacy Controls (Exploitability level: Average):

Android OS applies a permission model to protect user privacy. Run-time per-

missions17 enable users to authorize mobile apps to access sensitive informa-

tion (e.g., emails, credit card details, contacts, health data, GPS) or utilize the

hardware of the mobile device (e.g., camera, microphone, health sensors, loca-

tion sensors, Wi-Fi, Bluetooth). Hackers can exploit the vulnerabilities of the

permission model to access personal information or device resources without

explicit consent from the user.

R7: Insufficient Binary Protections (Exploitability level: Easy):

Binary files (e.g., APK files or iPA) contain a lot of sensitive information,

such as credentials information or app logic that can br used to infer business

strategies. Binary files are faced with two main attack types, namely reverse

17https://developer.android.com/training/permissions/requesting

26

https://developer.android.com/training/permissions/requesting

engineering and code tampering. In reverse engineering, hackers decompile the

b̀ınary files to inspect the app’s source code and then search for valuable infor-

mation. In addition, by code tampering, hackers can remove license-checking

code to use advanced features as a premium user. Therefore, a binary file that

lacks proper protection can cause damage to both users and developers.

R8: Security Misconfiguration (Exploitability level: Difficult): Mo-

bile apps provide a set of rules to configure permissions and security settings;

for example, Android uses the AndroidManifest.xml file, and iOS uses the

Info.plist file. In addition, Google and Apple also provide a list of permissions

necessary for the app’s features, and each permission has a specific scope. The

developers are responsible for configuring the permissions to suit the applica-

tion’s functionality. However, misconfigurations are possible. In addition, the

combination of permissions can lead to unexpected results beyond the devel-

oper’s control if they do not fully understand the meaning of each permission.

Hackers can take advantage of this confusion to attack users.

R9: Insecure Data Storage (Exploitability level: Easy): Stealing

users’ personal information and sensitive data stored in insecure storage is

straightforward. For instance, Android OS provides a sandbox mechanism to

segregate data among apps to counter this threat. This mechanism creates

a secure and restricted environment for each app, ensuring that they operate

independently and do not interfere with others. File isolation is the most impor-

tant feature of the sandbox mechanism. However, Android OS has three storage

classes, namely system class, application-specific class, and public storage class,

and not all classes are protected by the sandbox mechanism. Specifically, the

system class, where the entire OS is stored, is protected by Linux access control,

whereas the application-specific class is protected by the sandbox mechanism.

27

In contrast, the public storage class (e.g., SD cards and other logical partitions

that are shared among apps) is solely secured by the permission model. Apps

use public storage to store media files, including photographs, music, movies,

and documents. This means that any app that is granted read/write storage

permissions can read and overwrite information in media files created by other

apps. This could lead to the destruction of files or the leakage of sensitive

information.

R10: Insufficient Cryptography (Exploitability level: Average):

If insecure or outdated encryption algorithms such as MD518, DES19, Triple

DES20, or SHA-121, are used in mobile apps, they can lead to breaches of confi-

dentiality, integrity, and authentication of sensitive information. Furthermore,

while symmetric encryption algorithms like AES are highly reliable, hackers

can exploit them if developers implement them with weak secret key manage-

ment, such as storing the key directly in the source code.

Table 1.4 reports for each of the above explained risks an exemplary paper

showing the practical impact of the risk.

18https://www.ietf.org/archive/id/draft-ietf-tls-md5-sha1-deprecate-09.html
19https://www.cisa.gov/sites/default/files/2024-05/23 0918 fpic

AES-Transition-WhitePaper Final 508C 24 0513.pdf
20https://www.nist.gov/news-events/news/2023/06/nist-withdraw-special-publication-800-67-revision-2
21https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

28

https://www.ietf.org/archive/id/draft-ietf-tls-md5-sha1-deprecate-09.html
https://www.cisa.gov/sites/default/files/2024-05/23_0918_fpic_AES-Transition-WhitePaper_Final_508C_24_0513.pdf
https://www.nist.gov/news-events/news/2023/06/nist-withdraw-special-publication-800-67-revision-2
https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-1-cryptographic-algorithm

Table 1.4: Security risks and examples of impacts.

Risk Examples of impact

R1
[Zhou et al., 2015] shows that 51.5% (121/237) of the analyzed apps leaked

email service keys, & 67.3% (132/196) leaked Amazon AWS API keys
because the developer hardcoded authentication information.

R2
[Wen et al., 2018] shows that

66% of 100 popular iOS apps leaked WeChat SDK credentials &
37% for Weibo SDK (two popular SDKs with over 40 million users).

R3
[Wang et al., 2015] shows that

86.2% of 4000 apps in the Chinese market have deviated implementation
of OAuth 2.0 from the standard recommended by RFC

R4
[Bao et al., 2017] shows that hybrid Android apps

(developed by using web programming languages but can run on Android OS)
are vulnerable to XSS attacks .

R5

[Gadient et al., 2021] shows that
- 47.8% of URLs in 303 open-source apps &

69.3% in 3,073 closed-source apps use HTTP (unencrypted).
- 67.7% of URLs in open-source apps &

88.3% in closed-source apps lack HSTS implementation
(force redirect from HTTP to HTTPS).

R6

[Nguyen et al., 2022] analyzed 239,381 Android apps among which
- 30,160 apps shared user data without showing consent popups
- 13,082 apps with popups (23% sent data before user agreement,

8.28% forced agreement (no refuse option), &
1% shared data despite user refusal).

R7

[Huang and Chen, 2022] found that image classification apps store AI models
(i.e., parameters for deep learning models) directly in the app source code.

This leads to the risk of adversarial attacks. The author
successfully attacked 71.7% of AI models in 114 image classification apps.

R8

[Li et al., 2020] shows that Android apps can access
device location with only ACCESS WIFI STATE and INTERNET permissions.

In 2,089,169 analyzed apps, 18.1% relied solely on these permissions
without requesting GPS-related ones.

R9
[Reardon et al., 2019] shows that Baidu and Salmonads SDK

exploited the SD card as a covert channel to access the phone’s IMEI
(International Mobile Equipment Identity).

R10
[Yoshida et al., 2018] analyzed over a million apps,

identifying 223 apps signed with a weak 512-bit RSA key &
52,866 apps using the insecure MD5 algorithm.

29

1.4. LLM-based solutions: state of the

art

Section 1.3 shows that attack scenarios on mobile apps are becoming more

frequent and sophisticated. Traditional analysis methods such as static, dy-

namic, and hybrid analysis have many weaknesses that gradually make them

insufficient to cover increasingly complicated attacks.

In this section, we present state-of-the-art research on applying LLMs to

the security and privacy aspects of mobile apps. Since several of the surveyed

research proposals can be applied to analyze one or more mobile app vulnerabil-

ities, we categorize them based on their target applications. More precisely, we

classify the analyzed state-of-the-art research proposals into three groups: vul-

nerabilities detection, bug detection/reproduction, and malware detection. Al-

though the application goals differ, all these research proposals leverage LLMs

to analyze the app source code. One of their main contributions is how to op-

timize the input prompt for LLMs to target the addressed scenario. Indeed, as

discussed in Section 1.2, retraining LLMs is only feasible in theory, so the input

prompt plays a decisive role in the performance of LLMs. The main difference

between the analyzed research proposals is how the authors collect information

to enhance the context for the input prompt.

Finally, at the end of this section, we will provide a table (cf. Table 1.6)

mapping the presented state-of-the-art solutions to the addressed OWASP risks

(presented in Section 1.3).

Please note that when presenting the performance of the various approaches,

the reported results are taken from the corresponding research paper and are

only for reference purposes, aiming to provide an initial view of the feasibility

30

of using LLMs for the described target scenario.

1.4.1. Vulnerabilities detection

As discussed in Section 1.3, mobile apps contain many security/privacy vulner-

abilities that can lead to various attack scenarios that are hard to cover with

traditional analysis methods. LLM, with its excellent code summarization ca-

pabilities, can be used to automatically identify some of those security/privacy

vulnerabilities.

One paper in this area is the one by Kouliaridis et al. [Kouliaridis et al.,

2024], which evaluated the performance of nine LLMs (opensource and paid),

namely GPT-3.5, GPT-4, GPT-4 Turbo,22 Llama-2,23 Zephyr Alpha,24 Zephyr

Beta,25 Nous Hermes Mixtral,26 Mistral Orca,27 and Code Llama,28 in identi-

fying the OWASP Mobile Top 10 vulnerabilities presented in Section 1.3. In

addition, the authors compared the code summarization capabilities of these

nine LLMs with two commonly used code analysis tools, namely Bearer29 and

MobSF.30 Specifically, the authors created a dataset, called Vulcorpus, con-

taining 100 code snippets representing the 10 OWASP vulnerabilities, where

each vulnerability has 10 code snippets. The authors assessed each LLM’s

performance across two tasks: (1) detecting vulnerabilities (D score) and (2)

22https://platform.openai.com/docs/models/gpt
23https://www.llama.com/llama2/
24https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
25https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
26https://ollama.com/library/nous-hermes2-mixtral
27https://ollama.com/library/mistral-openorca
28https://ollama.com/library/codellama
29https://github.com/Bearer/bearer
30https://github.com/MobSF/Mobile-Security-Framework-MobSF

31

https://platform.openai.com/docs/models/gpt
https://www.llama.com/llama2/
https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://ollama.com/library/nous-hermes2-mixtral
https://ollama.com/library/mistral-openorca
https://ollama.com/library/codellama
https://github.com/Bearer/bearer
https://github.com/MobSF/Mobile-Security-Framework-MobSF

providing recommendations to address them (I score). The experimental re-

sults showed that the GPT-4 has the best performance on both vulnerability

detection (average D score of 6.7) and improvement solutions (average I score

of 9.2). In contrast, the Code Llama model achieved the highest average D

score (8.1), but it can not effectively provide solutions for fixing vulnerabilities

(an average I score of 4.9). In contrast, Bearer and MobSF detected only 29%

and 12% of the code segments containing security/privacy risks, respectively,

indicating that LLMs perform better than the current popular static analysis

tools.

Table 1.5 lists the LLMs with the best detection performance (the highest

D score) for each specific vulnerability.

Table 1.5: Performance of LLM models for specific vulnerabilities [Kou-
liaridis et al., 2024].

OWASP Risk Best LLMs

R1 GPT-4

R2 GPT-3.5

R3 Zephyr Beta, Code Llama

R4 Nous Hermes Mixtral

R5 Zephyr Alpha, Zephyr Beta, Llama-2, Code Llama

R6 GPT-4

R7 Code Llama

R8 Nous Hermes Mixtral, Code Llama

R9 Mistral Orca, Zephyr Beta

R10 Zephyr Alpha

Gabriel Morales et al. [Morales et al., 2024] leveraged ChatGPT model 3.5

turbo to examine the actual behavior of apps against the developers’ published

privacy policies. Specifically, the authors perform three tasks: Task 1 - extract-

32

ing app privacy policies, Task 2 - detecting sensitive data leaks from apps,

and Task 3 - identifying non-compliance with privacy policies. The authors

collected 200 apps with the highest number of downloads on Google Play and

then randomly selected 50 apps from this collection to perform the 3 tasks

above. In task 1, the authors extracted action verbs and corresponding infor-

mation types from apps’ privacy policies, for example, action verbs including

“collect”, “share”, “use”, etc., and corresponding information types such as

“location”, “IP address”, “device ID”, etc., and then concatenated them to

build a privacy policy repository consisting of 50 policies and corresponding

50 APK files. Next, task 2 performed static analysis. They used FlowDroid31

to extract sensitive sources (e.g., location, IP address) and their connections

to network sinks. Then, the app’s source, sink, and connection information is

sent to ChatGPT for natural language representation (i.e., code summariza-

tion) to determine whether the app shares sensitive data. Finally, in task 3 the

author evaluated the semantic similarity between task 1’s and task 2’s output.

First, the author created ground truth data by manually analyzing the pri-

vacy policies and sensitive data leaks of 50 apps in the dataset. The author

employed two methods to assess the similarity: cosine similarity and the us-

age of ChatGPT. With the cosine similarity approach, the author transformed

task 1’s and task 2’s output into two embedding vectors (i.e., numeric vectors)

and then computed the cosine similarity. Regarding the usage of ChatGPT,

the authors use the output of tasks 1 and 2 as input prompts for ChatGPT

to evaluate how well the app’s data flow aligns with its policy. A score of 1

means the app’s policy matches the data flow. In contrast, a score of -1 indi-

cates a contradiction between the policy and the data flow. That means the

31https://github.com/secure-software-engineering/FlowDroid

33

https://github.com/secure-software-engineering/FlowDroid

app collects sensitive data, but the policy states that it does not collect this

information. A score of 0 indicates that the app collects sensitive data that

are not mentioned in the policy. ChatGPT showed better performance than

cosine similarity. Specifically, with the same ground truth, ChatGPT achieved

72.41% accuracy and 83.33% precision, while the cosine similarity approach

had 46.7% accuracy and 34.35% precision.

Sahrima Jannat Oishwee et al. [Oishwee et al., 2024] examined the poten-

tial of LLMs to help developers address the complexity of Android permissions

(cf. R8 in Section 1.3). Specifically, the paper compared ChatGPT (model

GPT 3.5) answers with accepted answers on Stack Overflow32 (a community

dedicated to helping developers with programming-related issues) regarding

Android permissions. The authors proposed a three-step workflow that in-

cludes: (1) data extraction, (2) data processing, and (3) data analysis. In the

data extraction stage, all posts about Android permissions are extracted from

the Stack Exchange (by limiting the analysis to posts from August 2018 to

October 2022 because this period coincides with the release of Android OS

versions 9/10, 11, 12, and 13). The authors obtained 1008 pairs of questions

and accepted answers. Next, the authors collected information about permis-

sion names and corresponding restrictions from Google documentation to form

a list of 765 unique permissions for Android 9 - 13. In the data processing

stage, questions longer than 4097 words were first truncated due to the token

limitation of GPT-3.5, and images were removed from questions if present be-

cause GPT-3.5 does not support images. Following that, all questions related

to Android permissions were sent to ChatGPT to generate three responses

for each question. In total, they obtained 3,024 responses corresponding to

32https://stackoverflow.com/

34

https://stackoverflow.com/

1008 questions. The goal of generating three responses for each question is to

evaluate whether ChatGPT provides consistent answers to questions related

to Android permissions. Finally, in the data analysis stage, the authors con-

ducted a qualitative analysis by using open coding to evaluate the similarity

between ChatGPT answers and Stack Overflow accepted answers. An eval-

uation team analyzed and categorized ChatGPT answers into three groups,

namely, matched, partially matched, and unmatched. Specifically, matched

answers have the same meaning as the accepted answers from Stack Over-

flow, although they may have differences in words, phrases, or descriptions.

Conversely, unmatched responses are semantically different from the accepted

replies on Stack Overflow. Finally, partially matched answers align with the

ideas of the accepted answers but do not provide a suitable solution to help

developers solve the complex of Android permission. The analysis showed that

30.75% of ChatGPT’s answers were classified as matched, whereas 22.51% were

labeled as partially matched.

1.4.2. Bug Detection and Reproduction

Bugs are unwanted but always exist in the software development process. They

not only affect the user experience but also allow hackers to threaten user

security and privacy. Bug detection and reproduction are extremely compli-

cated because apps have different logics and are programmed with diverse

approaches. Typically, dynamic analysis is applied to interact with the app’s

GUI to find and reproduce bugs. However, scalability is the biggest weakness

of dynamic analysis, as discussed in Section 1.1. Monkey 33 is a commonly

33https://developer.android.com/studio/test/other-testing-tools/monkey

35

https://developer.android.com/studio/test/other-testing-tools/monkey

used tool for automated interaction with app’s GUIs in many research papers

(e.g., [Reardon et al., 2019, Yerima et al., 2019]). However, this tool gener-

ates only random inputs rather than context-specific test scenarios. It cannot

bypass apps requiring registration or login to activate deeper functionalities,

leading to a high rate of false negatives [Andow et al., 2020, Han et al., 2020].

Therefore, some researchers analyzed whether LLM’s natural language and

code understanding capabilities can be used to generate testing scenarios and

automatic interactions that can be massively applied to numerous apps.

For instance, Zhe Liu et al. [Liu et al., 2024a] designed GPTDroid, a tool

based on ChatGPT model GPT-3.5-turbo for GUI automated testing. The

primary objective of GPTDroid is to tackle existing issues in GUI automated

testing, such as inadequate test coverage, limited generalization capability,

and excessive reliance on training data. GPTDroid is based on simulating the

software testing process as a Q&A task by passing GUI information to LLMs to

generate and execute test scenarios. At the same time, the apps’ responses are

sent back to LLMs to guide the subsequent actions. This process is repeated

until the app is completely tested. As a result of applying GPTDroid to 223

apps, the author discovered 135 bugs related to 115 apps, of which 53 bugs

belonging to 41 apps were newly discovered bugs. This result demonstrates

that LLMs can be a valuable alternative to existing tools (such as Monkey) to

improve the scalability of dynamic analysis.

Zhe Liu et al. [Liu et al., 2024b] developed InputBlaster, a ChatGPT-based

solution that automatically generates text inputs to detect bugs when users

accidentally or intentionally enter unwanted characters. Unwanted inputs can

lead to sensitive information leaks, data destruction, app crashes, and even af-

fect the entire backend system of the app on the developer side (cf. Section 1.3).

36

InputBlaster consists of two modules. Module 1 (Prompt Generation for Valid

Input) is designed to produce valid inputs that will assist Module 2 (Prompt

Generation for Test Generator with Mutation Rule) in generating mutant in-

puts. Module 1 extracts the hierarchical structure of the app’s GUI to collect

a list of widgets, mainly concentrating on text-related widgets. Furthermore,

it extracts the app’s name and list of the app’s activity to enhance comprehen-

sion of the app’s context (e.g., the app’s functionality). Subsequently, based

on the extracted information, module 1 formulates the relevant constraints for

the widget (e.g., the widget requires no special characters or only numbers).

Based on the above information, the authors leverage ChatGPT to generate

valid input for the widget. This valid input is then entered into the app GUI to

get feedback for the valid input. A list that includes widget information, wid-

get constraints, valid inputs, and feedback for valid inputs is sent to module

2 to generate mutant inputs, by providing illustrative examples to ChatGPT

Specifically, the authors collected information about invalid inputs for Android

apps reported on GitHub. This information is then used to generate a database

vector using the RAG process (cf. Section 1.2.2) to enrich the context for the

LLM. InputBlaster was tested with 36 text input widgets with crashes related

to 31 popular Android apps, and the results show that it achieves a 78% de-

tection rate, 136% higher than the best baseline method.

1.4.3. Malware Detection

Malware is malicious software designed to infiltrate, harm, or disrupt the oper-

ation of a computer system, network, or device without the user’s permission.

Mobile apps, with their diverse functions and complex behaviors, are the favor-

37

able medium for hiding malware under legitimate features. Taking advantage

of LLM’s ability in code summarization to identify abnormal behaviors is a

new and promising research direction.

In this area, Wenxiang Zhao et al. [Zhao et al., 2025] designed AppPoet,

a system based on model GPT-4 to detect Android malware. AppPoet ex-

tracted four types of app features: permissions, API, URL, and usage features.

The author divided permissions into requested permission and used permis-

sion. Similarly, APIs are divided into restricted APIs and suspicious APIs.

Static analysis tools are then used to collect used permissions and restricted

APIs and then form mapping relationships between them. Next, information,

including permissions, APIs, URLs, and uses-features (i.e., app’s functional-

ity), are aggregated to create three views, namely permission view, API view,

and URL & uses-feature View. Information about views is then entered into

the multi-view text generator module to generate natural language descrip-

tions and summaries of behavior for each view by using multi-view prompt

engineering (cf. Section 1.2).

The detection classifier module then converts the descriptions and sum-

maries of all three views into three machine-processable vectors and merges

them into a single vector describing the APK’s behavioral semantic informa-

tion. In addition, the authors train a DNN-based classification model with a

dataset of 11,189 legitimate apps and 12,128 malware apps taken from Andro-

Zoo.34 The APK’s semantic behavioral description vector is then fed into the

classifier to predict whether the app is malicious or not.

The experimental results show that AppPoet has superior malware de-

tection performance compared to traditional methods such as Drebin (using

34https://androzoo.uni.lu/

38

https://androzoo.uni.lu/

the string-based method), LBDB (using the image-based method), and Ma-

MaDroid and Malscan (both using the graph-based methods). Specifically,

AppPoet achieved an accuracy, precision, recall, and F-1 score of 97.15%,

97.03%, 97.39%, and 97.21%, respectively. Finally, LLMs can provide detailed

reports related to the malware detection process, e.g., which components of the

app are infected, instead of just classifying the app as “malicious” or “benign”.

The authors used the diagnostic report generator module along with descrip-

tions and summaries of the three views of the APK to enhance the context

and help the LLM generate human-readable reports.

Table 1.6 reports for each of the papers described above the used LLMs,

the main research targets, and the OWASP risks it addresses.

The state-of-the-art research presented above is a valuable starting point

for the adoption of LLMs to mitigate security and privacy risks in mobile

apps. The research results are promising, contributing to opening new paths

for applying LLMs to investigate more attack scenarios in the future.

Table 1.6: Surveyed LLM-based approaches and related OWASP risks.

Category Paper
Used
LLMs

Research
target

OWASP
Risks

Vulnerabilities
detection

[Kouliaridis et al., 2024]
GPT-4

&
Code Llama

Identify vulnerabilities in the app &
propose remediation solutions

R1 to R10

[Morales et al., 2024]
ChatGPT
(GPT-3.5)

Examine the actual app’s behavior
& its privacy policies

R3,R5,R6,
R8 & R9

[Oishwee et al., 2024]
ChatGPT
(GPT-3.5)

LLMs assist developers in managing
complex Android permissions

R8

Bug Detection
&

Reproduction

[Liu et al., 2024a]
ChatGPT

(GPT-3.5-turbo)
App GUI automated testing.

R2,R3,R4,
R5,R6 & R9

[Liu et al., 2024b] ChatGPT
Generates invalid text inputs

to detect bugs.
R4

Malware
Detection

[Zhao et al., 2025] GPT-4 Malware detection
R1,R2,R3,R5,
R6,R8 & R9

39

1.5. An LLMs-based Approach for Mit-

igating Image Metadata Leakage

Risks

In Section 1.4, we discussed how state-of-the-art proposals apply LLMs to

address some of the security and privacy risks in mobile apps. In this section, as

an illustrative example, we show how LLMs can be applied to identify security

and privacy infringements in a particular attack scenario: a side-channel attack

that results in the exposure of sensitive information when users share images

online (e.g., upload the image to cloud storage, send the image via instant

message apps, or share images on a social network) through images metadata.

This is a dangerous risk because taking and sharing images is a common habit

of smartphone users [Lam et al., 2024].

When taking a picture, it is a standard for digital cameras (including smart-

phones) to automatically generate metadata information about the date and

time the image was taken, camera specification, GPS location, camera focal

length parameters, etc. This information is usually encoded using EXIF (Ex-

changeable Image File Format).35 EXIF metadata is embedded automatically

into the image and does not display visually, so users rarely notice it exists.

However, malicious users can compromise users’ security and privacy by ex-

ploiting sensitive information contained in EXIF metadata, such as the date

and time of capture, camera model, camera brand, device serial number, and

GPS coordinates. There are many studies demonstrating that malicious users

35https://www.media.mit.edu/pia/Research/deepview/exif.html

40

https://www.media.mit.edu/pia/Research/deepview/exif.html

can take advantage of those sensitive metadata to execute different kind of

attacks, for example, social engineering attacks [Tayeb et al., 2018, Faircloth,

2017], spoofing attacks [Gouert and Tsoutsos, 2022], and re-identification at-

tacks [Pratik and Sendhil, 2023].

In [Lam et al., 2024], we show how EXIF metadata can be used to expose

sensitive user information when users share images. Indeed, EXIF metadata

contains sensitive information hidden in the image, so users are unaware of

its existence and do not remove sensitive metadata before sharing the image

online. Additionally, EXIF metadata is not protected by the Android’s per-

mission model (cf. the R6 risk we mentioned in Section 1.3). Finally, images

stored in public storage are not protected by the sandbox mechanism (cf. the

R9 security vulnerability we presented in Section 1.3). Specifically, Android

requires applications to obtain user consent through a permission mechanism

before accessing personal information or using the device’s hardware. For ex-

ample, an app must be granted ACCESS FINE LOCATION permission when

accessing location and BLUETOOTH CONNECT for Bluetooth connection.

However, Android does not provide permission to protect EXIF metadata. In

addition, images (after being captured) are stored in public storage instead

of isolated by the sandbox mechanism (cf. risk R9 in Section 1.3). Therefore,

an app can access images (generated by other apps) and read EXIF sensitive

metadata embedded inside the image without the user’s explicit consent if they

are granted read/write storage permission.

Figure 1.5 illustrates the considered threat model. First, a user uses App-

A (e.g., a camera app) to take photos. These photos contain EXIF metadata

and are stored in public storage. Because mobile devices usually have limited

storage capacity, the user uses App-B (e.g., Microsoft One Drive) to upload

41

Figure 1.5: Threat model for sensitive data leakage through EXIF metadata
[Lam et al., 2024]

images to cloud storage for long-term storage. To upload images, the user must

grant read/write storage and internet permissions to App-B. If App-B’s sent-

out traffic contains sensitive metadata, meaning App-B does not proactively

remove sensitive metadata before sending the information out of the phone, the

user may face security/privacy risks due to the leakage of sensitive information

from the image’s metadata. In this threat model, public storage is considered

a side channel for the unauthorized collection of sensitive information. Indeed,

our observations, reported in [Lam et al., 2024], show that One Drive sent five

types (namely, datetime, smartphone model, smartphone brand, device serial

number, and GPS) of sensitive metadata instead of removing them.

To verify the frequency of the above mentioned threat, we developed Met-

aLeak [Lam et al., 2024], a framework based on hybrid analysis. We then

downloaded 43,718 apps from APK combo36 belonging to various categories,

36https://apkcombo.app/

42

https://apkcombo.app/

Figure 1.6: LLMs-based proposal workflow (Source: Tran Thanh Lam Nguyen)

such as photography, communication, productivity, etc. Through Metaleak,

we performed static analysis over them to collect the Manifest.xml of the

apps. Next, we filtered and retained only those apps that required 3 permis-

sions, namely read storage (READ EXTERNAL STORAGE), write storage

(WRITE EXTERNAL STORAGE), and internet access (INTERNET), be-

cause these permissions are necessary to access images in public storage and

share images online. After the static analysis, we obtained 26,230 apps. Next,

we selected 5000 popular apps based on the number of installations and per-

formed dynamic analysis over them. We installed the apps on a rooted AVD

(Android Virtual Device) and used an MITM (man-in-the-middle) proxy to

observe the app’s sent-out traffic when users shared images online. The results

showed that 21.9% (1095/5000) of the considered apps leaked at least one

type of sensitive metadata (1071/1095 apps leaked four or five types of sensi-

43

tive metadata, while only 24/1095 apps leaked just one type). Specifically, 680

apps leaked GPS information, 1043 apps leaked datetime, 1055 apps leaked

smartphone model, 1055 apps leaked smartphone brand, and 998 apps leaked

device serial number.

However, MetaLeak has a significant weakness, which is the semi-automation

workflow, specifically during dynamic analysis. Although we tested many au-

tomation tools to interact with the app’s GUI, none of them fit the Met-

aLeak use case. Therefore, app evaluation has been done manually by recruited

testers, who spent an average of 180 seconds per app. Testers having to repeat

boring steps in dynamic analysis is a big scalability issue.

Thus, in what follows, we discuss an architecture that leverages LLMs to

eliminate the need for app dynamic analysis. Figure 1.6 illustrates the LLMs-

based solution we envision, consisting of three main steps, namely (1) static

analysis, (2) RAG, and (3) summary. In the static analysis stage, apps’ APKs

are processed in two steps. In step 1, APK filtering (1), we extract the app’s

manifest file and only keep those apps that require read/write storage and in-

ternet permissions because these permissions are necessary to access and share

images online following the threat model. Next, we verify the app’s support

for image uploading by examining the mineType parameter in the Android-

Manifest.xml file to reduce the number of apps that require analysis. In fact,

apps that require read/write storage and internet permissions but do not sup-

port image sharing (e.g., only support sharing PDF files) are irrelevant to

the considered threat model. In step 2, APK decompilation (2), we decompile

APK files that satisfy the previously mentioned permission and mimeType

settings to acquire the app’s source code. Following this, the code extraction

module (3) identifies keywords, such as the name of the EXIF metadata han-

44

dling method (e.g., getDatetime, getGPS), in the app’s source code to extract

EXIF-related code blocks. The purpose of extracting EXIF-related code blocks

is because of the input token limit of LLMs. In the RAG stage, we follow the

RAG workflow as described in Section 1.2.2. Specifically, the dataset we col-

lected in [Lam et al., 2024] is used as ground truth. The ground truth data

is transformed into an embedding vector using an embedding model (5) (e.g.,

OpenAI’s text-embedding-3-large37) and then stored in the vector database.

Subsequently, the EXIF-related code blocks of the app are also transformed

into embedding vectors using the same embedding model as the ground truth

data to retrieve relevant information from the vector database (6). Finally, the

retrieved information is combined with the EXIF-related code blocks to form

the final prompt (7). The final prompt is sent to the LLM to determine how

the code block handles EXIF metadata, exploiting its the code summarization

capability. Specifically, the LLMs will decide if the code block will remove or

retain sensitive metadata and what metadata type will be retained.

However, because LLMs’ responses are often lengthy and repeat part of the

question (i.e., long response (8)) [Zhao et al., 2023], the architecture contains a

summary stage, where a summary prompt (9) is created The summary prompt

is then sent to LLM to generate the final JSON response.

1.6. Research Challenges

LLMs have great potential to address mobile app security risks and privacy

violations. However, there is no generalized plug-and-play solution for LLMs.

37https://openai.com/index/new-embedding-models-and-api-updates/

45

https://openai.com/index/new-embedding-models-and-api-updates/

In particular, all state-of-the-art research proposals we discussed in this paper

aim to optimize LLM input prompts, which require expert knowledge in secu-

rity and privacy. This leads to LLMs not yet being a widely accessible solution

for the general public to independently apply LLMs to address security and

privacy risks. In addition, the usage and operating costs remain high. Besides,

most of the state-of-the-art researches leverage LLMs to perform code summa-

rization to understand how apps handle sensitive data, which is an appropriate

approach but still insufficient. Specifically, the source code may contain code

blocks that remove sensitive information from data shared with third parties,

but there is no guarantee that this code block is executed at run-time. Hackers

who understand how tools use code summarization to analyze app behavior

can pretend to implement privacy-compliant code blocks but do not actually

execute them. Therefore, in the future, code summarization should be followed

by code execution to verify the results. Code execution is supported by the

GPT-4 model and its variants (cf. Table 1.1) but is not yet widely adopted.

Other relevant open research issues, when applying LLMs to mitigate se-

curity and privacy risks of mobile apps are discussed in what follows.

First, LLMs operate as a black box, so it is difficult to fully understand

the entire architecture and the data used to train models. Specifically, Zilong

Lin et al. [Lin et al., 2024] found that unverified LLMs can be packaged into

malicious services. Currently, there are many LLMs as malicious services intro-

duced on the black market, mainly providing features such as malicious code

generation, phishing emails, and scam sites, as summarized in Table 1.7. These

features are very popular because they support hackers in attacking users with-

out requiring as much knowledge as before. It is also not excluded that these

malicious LLMs themselves steal information from the people who use them

46

Table 1.7: Malicious LLMs [Lin et al., 2024].

Name Malicious code Phishing Emails Scam Site

CodeGPT X × X

MakerGPT X × X

FraudGPT X X X

WormGPT X X X

XXXGPT X × ×

WolfGPT X X X

Evil-GPT X X X

DarkBERT X X ×

DarkBARD X X ×

BadGPT X X X

BLACKHATGPT X × ×

EscapeGPT X X X

FreedomGPT X X X

DarkGPT X X X

- a double-edged sword. Therefore, it is recommended to use verified LLMs.

Second, although retraining LLMs is almost impossible, hackers can still ma-

nipulate the responses of LLMs by attacking the context-enhanced processes

through content poisoning attacks. Figure 1.7 describes content poisoning at-

tacks on RAG workflow. Specifically, hackers can create a malicious database

and mix it with a benign database to control the responses of LLMs.

Suppose a simple example is as follows:

User prompt: Please guide me on how to store API keys securely to avoid

the risk of OSWAP R1 - improper credential usage.

LLM response: You can store the API key in Amazon S3 storage at

https://hacker-bucket-name.s3.amazonaws.com/uploads/ and access your key

dynamically when using it.

47

https://hacker-bucket-name.s3.amazonaws.com/uploads/

In this example, if the user completely trusts the answer of the manipulated

LLMs, their API key will be stolen.

Finally, the permission mechanism of mobile apps (both Android and iOS)

has a weakness in that it grants normal users—who often lack knowledge of

security and privacy—the authority to grant dangerous permissions to apps for

accessing sensitive information. Indeed, users have to make decisions without

any assistance [Lam et al., 2024]. Therefore, applying LLMs to build chatbots

embedded directly on mobile OS can support users in making decisions about

granting permissions to mobile apps. For example, chatbots can support sum-

marizing the app’s data safety38 information (i.e., the type of data the app

will collect and share with 3rd party) and notify users when they install it.

Moreover, LLMs can perform analysis of the app’s source code directly on the

phone (i.e., static analysis and code summarization) or monitor app behavior

(e.g., the type of sensitive data the app frequently shares) to warn users about

potential risks [Chen et al., 2024].

1.7. Conclusion

In this chapter, we present the potential of LLMs in analyzing security and

privacy violations in mobile apps. With their great potential, LLMs can comple-

ment traditional methods such as static analysis, dynamic analysis, or hybrid

analysis, which have many weaknesses and make it challenging to cover all the

current sophisticated vulnerabilities. In the chapter, we discussed how to apply

LLMs to limit security and privacy risks, including vulnerabilities detection,

38https://developer.android.com/google/play/integrity/other

48

https://developer.android.com/google/play/integrity/other

Figure 1.7: Adversarial Attacks to RAG (Source: Tran Thanh Lam Nguyen)

bug detection & reproduction, and malware detection through the analysis

of state-of-the-art research. However, pure LLM-based approaches are not a

solution for all issues because they still have several weaknesses. Therefore,

regardless of the application purpose, optimizing the input prompt to provide

sufficient information and context for LLMs reasoning is one of the key goal.

In the chapter, besides describing an illustrative example of the usage of LLMs

to target a security weakness in Android that results in the leakage of sensi-

49

tive information when users share images online, we also discuss open research

issues in the field.

Acknowledgment

The work was partially supported by project SERICS (PE00000014) under the

NRRP MUR program funded by the EU - NGEU.

Bibliography

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,

Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-

man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

Toufique Ahmed and Premkumar Devanbu. Few-shot training llms for project-

specific code-summarization. In Proceedings of the 37th IEEE/ACM Inter-

national Conference on Automated Software Engineering, pages 1–5, 2022.

Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl Barr. Au-

tomatic semantic augmentation of language model prompts (for code sum-

marization). In Proceedings of the IEEE/ACM 46th International Confer-

ence on Software Engineering, pages 1–13, 2024.

Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,

Bradley Reaves, Kapil Singh, and Serge Egelman. Actions speak louder

than words:{Entity-Sensitive} privacy policy and data flow analysis with

50

{PoliCheck}. In 29th USENIX Security Symposium (USENIX Security 20),

pages 985–1002, 2020.

Wenying Bao, Wenbin Yao, Ming Zong, and Dongbin Wang. Cross-site script-

ing attacks on android hybrid applications. In Proceedings of the 2017 In-

ternational Conference on Cryptography, Security and Privacy, pages 56–61,

2017.

Daihang Chen, Yonghui Liu, Mingyi Zhou, Yanjie Zhao, Haoyu Wang, Shuai

Wang, Xiao Chen, Tegawendé F Bissyandé, Jacques Klein, and Li Li. Llm

for mobile: An initial roadmap. ACM Transactions on Software Engineering

and Methodology, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

2018. URL https://arxiv.org/abs/1810.04805.

Jeremy Faircloth. Chapter 8 - client-side attacks and social engineer-

ing. In Jeremy Faircloth, editor, Penetration Tester’s Open Source

Toolkit (Fourth Edition), pages 273–318. Syngress, Boston, fourth edi-

tion edition, 2017. ISBN 978-0-12-802149-1. doi: https://doi.org/10.1016/

B978-0-12-802149-1.00008-7. URL https://www.sciencedirect.com/science/

article/pii/B9780128021491000087.

Richard Fang, Rohan Bindu, Akul Gupta, and Daniel Kang. Llm

agents can autonomously exploit one-day vulnerabilities. arXiv preprint

arXiv:2404.08144, 2024.

Sidong Feng and Chunyang Chen. Prompting is all you need: Automated

android bug replay with large language models. In Proceedings of the 46th

51

https://arxiv.org/abs/1810.04805
https://www.sciencedirect.com/science/article/pii/B9780128021491000087
https://www.sciencedirect.com/science/article/pii/B9780128021491000087

IEEE/ACM International Conference on Software Engineering, pages 1–13,

2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A

pre-trained model for programming and natural languages. arXiv preprint

arXiv:2002.08155, 2020.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda

Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. In-

coder: A generative model for code infilling and synthesis. arXiv preprint

arXiv:2204.05999, 2022.

Pascal Gadient, Marc-Andrea Tarnutzer, Oscar Nierstrasz, and Mohammad

Ghafari. Security smells pervade mobile app servers. In Proceedings of the

15th ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM), pages 1–10, 2021.

Shivi Garg and Niyati Baliyan. Comparative analysis of android and ios from

security viewpoint. Computer Science Review, 40:100372, 2021.

Charles Gouert and Nektarios Georgios Tsoutsos. Dirty metadata: Under-

standing a threat to online privacy. IEEE Security & Privacy, 20(6):27–34,

2022.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,

Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graph-

codebert: Pre-training code representations with data flow. arXiv preprint

arXiv:2009.08366, 2020.

52

Maanak Gupta, CharanKumar Akiri, Kshitiz Aryal, Eli Parker, and Lopa-

mudra Praharaj. From chatgpt to threatgpt: Impact of generative ai in

cybersecurity and privacy. IEEE Access, 2023.

Catherine Han, Irwin Reyes, Álvaro Feal, Joel Reardon, Primal Wijesekera,

Narseo Vallina-Rodriguez, Amit Elazari, Kenneth A Bamberger, and Serge

Egelman. The price is (not) right: Comparing privacy in free and paid apps.

Proceedings on Privacy Enhancing Technologies, 2020.

Yujin Huang and Chunyang Chen. Smart app attack: hacking deep learning

models in android apps. IEEE Transactions on Information Forensics and

Security, 17:1827–1840, 2022.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models are

few-shot testers: Exploring llm-based general bug reproduction. In 2023

IEEE/ACM 45th International Conference on Software Engineering (ICSE),

pages 2312–2323. IEEE, 2023.

Vasileios Kouliaridis, Georgios Karopoulos, and Georgios Kambourakis. As-

sessing the effectiveness of llms in android application vulnerability analysis.

arXiv preprint arXiv:2406.18894, 2024.

Nguyen Tran Thanh Lam, Barbara Carminati, and Elena Ferrari. Metaleak:

Assessing image metadata leakage in android apps. In 2024 21st AC-

S/IEEE International Conference on Computer Systems and Applications

(AICCSA). IEEE, 2024.

Fenghua Li, Xinyu Wang, Ben Niu, Hui Li, Chao Li, and Lihua Chen. Ex-

ploiting location-related behaviors without the gps data on smartphones.

Information Sciences, 527:444–459, 2020.

53

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,

Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,

et al. Competition-level code generation with alphacode. Science, 378(6624):

1092–1097, 2022.

Zilong Lin, Jian Cui, Xiaojing Liao, and XiaoFeng Wang. Malla: Demystify-

ing real-world large language model integrated malicious services. In 33rd

USENIX Security Symposium (USENIX Security 24). USENIX Association,

2024.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,

Dandan Wang, and Qing Wang. Make llm a testing expert: Bringing human-

like interaction to mobile gui testing via functionality-aware decisions. In

Proceedings of the IEEE/ACM 46th International Conference on Software

Engineering, pages 1–13, 2024a.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Zhilin

Tian, Yuekai Huang, Jun Hu, and Qing Wang. Testing the limits: Unusual

text inputs generation for mobile app crash detection with large language

model. In Proceedings of the IEEE/ACM 46th International Conference on

Software Engineering, pages 1–12, 2024b.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard

Socher, Xavier Amatriain, and Jianfeng Gao. Large language models: A

survey. arXiv preprint arXiv:2402.06196, 2024.

Gabriel Morales, KC Pragyan, Sadia Jahan, Mitra Bokaei Hosseini, and Rocky

Slavin. A large language model approach to code and privacy policy align-

ment. In 2024 IEEE International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER), pages 79–90. IEEE, 2024.

54

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed An-

war, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian.

A comprehensive overview of large language models. arXiv preprint

arXiv:2307.06435, 2023.

Trung Tin Nguyen, Michael Backes, and Ben Stock. Freely given consent?

studying consent notice of third-party tracking and its violations of gdpr

in android apps. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security, pages 2369–2383, 2022.

Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention mech-

anism of deep learning. Neurocomputing, 452:48–62, 2021.

Sahrima Jannat Oishwee, Natalia Stakhanova, and Zadia Codabux. Large

language model vs. stack overflow in addressing android permission related

challenges. In 2024 IEEE/ACM 21st International Conference on Mining

Software Repositories (MSR), pages 373–383. IEEE, 2024.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong

Wu. Unifying large language models and knowledge graphs: A roadmap.

IEEE Transactions on Knowledge and Data Engineering, 36(7):3580–3599,

2024. doi: 10.1109/TKDE.2024.3352100.

Rishank Pratik and R Sendhil. Privacy protection against reverse image search.

In 2023 Third International Conference on Artificial Intelligence and Smart

Energy (ICAIS), pages 1207–1214. IEEE, 2023.

Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo

Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your data: An ex-

55

ploration of apps’ circumvention of the android permissions system. In 28th

USENIX security symposium (USENIX security 19), pages 603–620, 2019.

Deepjyoti Roy and Mala Dutta. A systematic review and research perspective

on recommender systems. Journal of Big Data, 9(1):59, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-

aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez,

et al. Code llama: Open foundation models for code. arXiv preprint

arXiv:2308.12950, 2023.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. Blended rag: Im-

proving rag (retriever-augmented generation) accuracy with semantic search

and hybrid query-based retrievers. arXiv preprint arXiv:2404.07220, 2024.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan

Guo, Xinwei Wu, Yan Liu, and Deyi Xiong. Large language model alignment:

A survey. arXiv preprint arXiv:2309.15025, 2023.

Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:

132306, 2020.

Ha Xuan Son, Barbara Carminati, and Elena Ferrari. A risk estimation mech-

anism for android apps based on hybrid analysis. Data Science and Engi-

neering, 7(3):242–252, 2022.

Yisheng Song, Ting Wang, Puyu Cai, Subrota K Mondal, and Jyoti Prakash

Sahoo. A comprehensive survey of few-shot learning: Evolution, applications,

challenges, and opportunities. ACM Computing Surveys, 55(13s):1–40, 2023.

56

Mohammad Tahaei, Alisa Frik, and Kami Vaniea. Deciding on personalized

ads: Nudging developers about user privacy. In Seventeenth Symposium on

Usable Privacy and Security (SOUPS 2021), pages 573–596, 2021.

Shahab Tayeb, Abigail Week, Joshua Yee, Mayra Carrera, Kuira Edwards,

Vicki Murray-Garcia, Meghann Marchello, Justin Zhan, and Matin Pirouz.

Toward metadata removal to preserve privacy of social media users. In 2018

IEEE 8th Annual Computing and Communication Workshop and Conference

(CCWC), pages 287–293. IEEE, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui

Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie

Millican, et al. Gemini: a family of highly capable multimodal models. arXiv

preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, et al. Llama: Open and efficient foundation language models.

arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Pro-

cessing Systems, 2017.

Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and

Dawu Gu. Vulnerability assessment of oauth implementations in android ap-

plications. In Proceedings of the 31st annual computer security applications

conference, pages 61–70, 2015.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing

57

from a few examples: A survey on few-shot learning. ACM computing surveys

(csur), 53(3):1–34, 2020.

Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu, Dugang Liu,

Shengchao Qin, Zhong Ming, and Tian Cong. Automatically inspecting

thousands of static bug warnings with large language model: how far are

we? ACM Transactions on Knowledge Discovery from Data, 18(7):1–34,

2024.

Haohuang Wen, Juanru Li, Yuanyuan Zhang, and Dawu Gu. An empirical

study of sdk credential misuse in ios apps. In 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), pages 258–267. IEEE, 2018.

Suleiman Y Yerima, Mohammed K Alzaylaee, and Sakir Sezer. Machine

learning-based dynamic analysis of android apps with improved code cover-

age. EURASIP Journal on Information Security, 2019(1):1–24, 2019.

Yagmur Yigit, William J Buchanan, Madjid G Tehrani, and Leandros

Maglaras. Review of generative ai methods in cybersecurity. arXiv preprint

arXiv:2403.08701, 2024.

Kanae Yoshida, Hironori Imai, Nana Serizawa, Tatsuya Mori, and Akira

Kanaoka. Understanding the origins of weak cryptographic algorithms used

for signing android apps. In 2018 IEEE 42nd Annual Computer Software

and Applications Conference (COMPSAC), volume 02, pages 713–718, 2018.

doi: 10.1109/COMPSAC.2018.10324.

Chaoning Zhang, Chenshuang Zhang, Sheng Zheng, Yu Qiao, Chenghao Li,

Mengchun Zhang, Sumit Kumar Dam, ChuMyaet Thwal, Ye Lin Tun, Le Lu-

58

ang Huy, et al. A complete survey on generative ai (aigc): Is chatgpt from

gpt-4 to gpt-5 all you need? arXiv preprint arXiv:2303.11717, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng

Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A

survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

Wenxiang Zhao, Juntao Wu, and Zhaoyi Meng. Apppoet: Large language

model based android malware detection via multi-view prompt engineering.

Expert Systems with Applications, 262:125546, 2025.

Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Harvesting developer cre-

dentials in android apps. In Proceedings of the 8th ACM conference on

security & privacy in wireless and mobile networks, pages 1–12, 2015.

59

	
	Introduction
	Background on LLMs
	LLMs
	FSL and RAG

	Mobile apps: main security and privacy threats
	LLM-based solutions: state of the art
	Vulnerabilities detection
	Bug Detection and Reproduction
	Malware Detection

	An LLMs-based Approach for Mitigating Image Metadata Leakage Risks
	Research Challenges
	Conclusion
	Acknowledgment
	Bibliography

