
ar
X

iv
:2

50
6.

11
65

0v
1 

 [
cs

.R
O

] 
 1

3 
Ju

n 
20

25
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MONTH, YEAR 1

Robot Context Protocol (RCP): A Runtime-Agnostic
Interface for Agent-Aware Robot Control

Lambert Lee1, Joshua Lau,

Abstract—The Robot Context Protocol (RCP) is a lightweight,
middleware-agnostic communication protocol designed to ab-
stract robotic system complexity and enable seamless interaction
between robots, users, and autonomous agents. RCP provides
a unified and semantically meaningful interface that decouples
client-facing operations from backend implementations, support-
ing a wide range of deployment environments—including physical
robots, cloud-based orchestrators, and simulated platforms. Built
on HTTP and WebSocket transport layers, the protocol defines a
schema-driven message format with structured operations such
as read, write, execute, and subscribe. It integrates features
such as runtime introspection, asynchronous feedback, multi-
tenant namespace isolation, and strict type validation to ensure
robustness, scalability, and security. This paper presents a com-
prehensive overview of RCP’s architecture, message structure,
interface model, and adapter-based backend integration strategy.
We also outline deployment practices and discuss its applica-
bility across industries including manufacturing, logistics, and
healthcare. RCP enables intelligent, resilient, and safe robotic
operations in complex, multi-agent ecosystems.

I. INTRODUCTION

Modern robotic systems have evolved into highly so-
phisticated platforms, integrating a diverse array of sensors,
actuators, and computational modules. These heterogeneous
components enable the execution of complex and adaptive be-
haviors in dynamic environments [1]. However, as the internal
architecture of robotic systems becomes increasingly intricate,
interfacing with them—especially across differing runtime
environments—presents substantial challenges. Conventional
integration strategies often necessitate in-depth knowledge of
specific middleware frameworks, message-passing systems,
and hardware-dependent implementations. This complexity
imposes a steep learning curve not only for human developers
and researchers, but also for AI agents attempting to access
or control robotic functions programmatically.

To mitigate these barriers, we introduce the Robot Context
Protocol (RCP), a lightweight, runtime-agnostic communica-
tion framework designed to abstract internal system com-
plexity while providing a unified and standardized interface
for interaction. RCP enables external systems—whether cloud
services, local applications, or autonomous agents—to seam-
lessly observe robot states, query sensor data, dispatch control
commands, and subscribe to event streams. Crucially, these
capabilities are accessible without requiring prior knowledge
of the robot’s underlying middleware, control software, or
runtime configuration.

Manuscript received Month DD, YYYY; Accepted Month DD, YYYY.
1RoboStack Research Group

While conceptually aligned with prior work such as ros-
bridge [2], which exposed robotic APIs via web protocols,
RCP distinguishes itself through a more rigorously layered
protocol architecture. It is built atop standardized communi-
cation mechanisms such as HTTP for request-response inter-
actions, WebSocket [3] for real-time bi-directional messaging,
and Server-Sent Events (SSE) for lightweight, unidirectional
data streaming. This tri-channel design not only enhances
modularity and extensibility, but also ensures compatibility
with both cloud-based robotic platforms and physically de-
ployed robotic systems. By decoupling communication logic
from execution details, RCP supports both agent-to-robot
(A2R) and human-to-robot (H2R) interaction models, serving
as a foundational interface for AI-augmented robotic ecosys-
tems.

This paper is organized as follows. We begin in Section2
by presenting the overall protocol architecture, including the
layered design comprising the Adapter Layer and Transport
Layer. Section3 introduces the schema-driven message for-
mat employed by RCP, describing the structure of requests
and responses, supported data types, and interaction seman-
tics. In Section4, we detail the unified context model and
namespacing strategy that abstract low-level system resources
into addressable interfaces. Section5 focuses on the feedback
and status mechanisms that enable structured reporting of
command outcomes and runtime health. Section6 outlines
the robustness features and deployment strategies that sup-
port scalable integration in production environments. Finally,
Section7 concludes with a summary of key contributions and
a discussion of future directions for protocol evolution and
system integration.

II. DEFINITION OF THE ROBOT CONTEXT PROTOCOL

Fundamentally, RCP operates as a context abstraction
layer, mediating between robotic systems and external
users—ranging from conventional web clients to large lan-
guage model (LLM)-based autonomous agents—without dis-
closing internal control loops, execution threads, or device-
specific configurations. The protocol encapsulates all interac-
tion capabilities into a cohesive set of high-level application
programming interfaces (APIs). These include operations for
retrieving live sensor data, executing movement or actuation
commands, and subscribing to system-level events such as
mode transitions, fault states, or behavior completions.

This abstraction not only simplifies the development of
robotics-aware applications, but also enables RCP to function
seamlessly across diverse deployment contexts—including on-
device, edge-based, or cloud-native infrastructures. In doing

https://arxiv.org/abs/2506.11650v1


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MONTH, YEAR

so, RCP allows robotic systems to be treated as modular,
context-aware services within broader multi-agent networks,
thereby promoting interoperability, scalability, and ease of
access in next-generation human-AI-robot collaborations.

Communication within the RCP is structured around two
primary mechanisms: HTTP endpoints and WebSocket chan-
nels [3]. These two modes of interaction are designed to cover
both synchronous, stateless operations and asynchronous, real-
time data exchange.

The HTTP interface supports structured, stateless requests
that are ideal for discrete transactions, such as querying
robot states, retrieving parameter values, or invoking one-shot
control commands. These endpoints follow RESTful principles
and are accessible via standard web client calls, facilitating
integration with conventional cloud services and frontend
applications.

The WebSocket interface, on the other hand, establishes
a persistent, bidirectional channel that enables low-latency,
real-time communication. This mode is particularly well-
suited for event streaming, continuous telemetry monitoring,
and interactive control loops. Through these two channels,
RCP exposes a unified interface to all robot-readable and
writable entities—including topics, parameters, actions, and
services—irrespective of the robot’s underlying middleware or
runtime system.

The implementation of RCP adheres to a layered architec-
tural paradigm that cleanly separates system responsibilities
and facilitates modularity. At the core of this design is the
Message Transformation Layer, which orchestrates commu-
nication between external clients and the robot’s native control
stack. This layer is further subdivided into two principal
components: the Adapter Layer and the Transport Layer.

III. PROTOCOL ARCHITECTURE

The Robot Context Protocol (RCP) is structured as a multi-
layered architecture that facilitates modular and scalable com-
munication between external agents and robotic systems. Each
layer is designed to abstract complexity, promote interoperabil-
ity, and support deployment across a wide range of operational
contexts.

At the highest level, the Adapter Layer enables seamless
integration with heterogeneous client types, including large
language models (via MCP), autonomous agents (via A2A),
and human interfaces such as dashboards. These adapters
normalize diverse interaction modalities into a unified message
format.

Following adaptation, messages are processed by the Trans-
port Layer, which provides support for three communication
mechanisms: HTTP for synchronous request-response trans-
actions, WebSocket for real-time bidirectional streaming, and
Server-Sent Events (SSE) for efficient unidirectional message
broadcasting. This tri-channel design supports low-latency,
reliable communication for a variety of application scenarios.

The Service Layer encapsulates protocol functionality
through a minimal and expressive set of operations—read,
write, execute, and subscribe. This layer abstracts
the control surface of the robot into a semantically coherent
interface, enabling uniform access to system capabilities.

Fig. 1. Overall architecture of the Robot Context Protocol (RCP). The
system is structured in modular layers: the Adapter Layer translates diverse
client interfaces (e.g., MCP, A2A, dashboards) into unified RCP requests; the
Transport Layer handles communication via HTTP, WebSocket, and Server-
Sent Events (SSE); the Service Layer abstracts commands into high-level
operations—read, execute, and write; and the ROS2 Interface Layer maps
these operations onto native ROS2 constructs such as Topics, Services, and
Actions. A dedicated status query path provides protocol and adapter health
diagnostics. The RCP stack can interface seamlessly with physical robots,
simulators like Gazebo or Isaac Sim, or cloud-hosted deployments.

Beneath the service interface, the ROS2 Interface Layer
serves as an abstraction envelope that translates high-level
commands into ROS2-native constructs such as topics, ser-
vices, actions, and parameters. This mapping is performed
in a type-safe, schema-driven manner that decouples external
access from internal middleware conventions.

Complementing these layers is a Status and Monitor-
ing Module that exposes real-time protocol health, adapter
readiness, and diagnostic metadata. This capability supports
runtime introspection, autonomous fault handling, and system-
level orchestration.

This layered protocol design enables RCP to function
as a runtime-agnostic control interface, capable of bridging
physical hardware, simulation environments, and cloud-native
robotic platforms. An overview of the system architecture is
depicted in Fig. 1.

a) Adapter Layer: The Adapter Layer is tasked with
handling user-specific logic, converting diverse forms of user
inputs into protocol-compliant RCP messages. It provides an
extensible mechanism for integrating heterogeneous interac-
tion modalities. Currently implemented adapters include:

• MCP Adapter: Translates outputs generated by LLMs
into structured command messages, enabling natural lan-



LEE et al.: ROBOT CONTEXT PROTOCOL (RCP): A RUNTIME-AGNOSTIC INTERFACE FOR AGENT-AWARE ROBOT CONTROL 3

guage interaction with robotic systems.
• A2A Adapter: Facilitates agent-to-agent coordination by

converting symbolic planning outputs into executable task
sequences suitable for robotic execution.

• Web/Dashboard Adapter: Supports graphical interfaces
and dashboard applications, offering RESTful endpoints
and visualization-ready telemetry.

This modular approach ensures that new client types—such
as mobile applications, command-line tools, or gRPC-based
microservices—can be accommodated by implementing addi-
tional adapters, without requiring changes to the underlying
transport logic or core RCP message format.

b) Transport Layer: Following adapter processing, mes-
sages are relayed through the Transport Layer, which stan-
dardizes the formatting, delivery, and routing of RCP mes-
sages. This layer serves as the protocol’s interface to external
systems:

• The HTTP interface manages short-lived, synchronous
operations, including data queries, service invocation, and
configuration updates.

• The WebSocket interface supports long-lived sessions
for use cases that demand real-time responsiveness, such
as continuous data streaming, subscription-based event
updates, and live task monitoring [3].

• The Server-Sent Events (SSE) interface provides a
unidirectional, lightweight push mechanism ideal for
broadcasting periodic status updates or event notifications
to browser-based or resource-constrained clients. SSE is
well-suited for applications where WebSocket overhead
is unnecessary or unsupported.

Together, these communication channels enable RCP to
deliver low-latency, scalable, and interoperable interactions for
both human operators and autonomous agents.

The layered communication model implemented in RCP
ensures consistency across all external interactions. Incom-
ing and outgoing messages undergo uniform validation and
schema enforcement, and are tagged with session metadata
for robust tracking and error handling. By abstracting internal
system details, RCP allows external users to interface with
robots in a predictable, secure, and implementation-agnostic
manner.

This unified architecture enables seamless operation across
local deployments, cloud environments, or hybrid configura-
tions. As a result, RCP serves as a foundational layer for
building agent-compatible, context-aware robotic ecosystems
that can be accessed and orchestrated by a wide range of
intelligent systems and human operators alike.

c) Status Query (RCP Internal Health and Command
Feedback): To support reliability, observability, and opera-
tional transparency, the Robot Context Protocol (RCP) incor-
porates a dedicated status feedback system. This system plays
a central role in ensuring that external users and agents can
make informed decisions about robot state, system availability,
and error conditions without relying on internal diagnostics or
middleware-specific monitoring tools.

The status system continuously tracks and exposes a range
of runtime metrics that characterize the health and availability

of both the protocol infrastructure and its connected adapters.
These metrics include, but are not limited to: system uptime,
memory and CPU usage (where available), adapter readiness,
backend connectivity, message queue backpressure, and re-
cently logged warnings or errors. This data is periodically
refreshed and made accessible via a standardized status query
endpoint, which can be polled or subscribed to depending on
the client’s communication mode [4].

Clients—whether human operators, graphical interfaces, or
autonomous agents—can issue status queries to verify that
RCP is operational, determine the connection status of core
adapters (such as MCP for natural language interaction or A2A
for multi-agent coordination), and inspect whether any com-
mand execution faults have occurred. This capability is partic-
ularly important in fault-tolerant systems, distributed control
environments, or scenarios involving dynamic orchestration
of multiple robotic agents, where awareness of system state
directly informs execution logic and contingency planning.

In addition to reporting passive system health, RCP also
delivers structured command-level feedback for every opera-
tion initiated through the protocol, regardless of the communi-
cation channel used (HTTP, WebSocket, or adapter-mediated).
Upon command submission, the system returns a detailed sta-
tus response encapsulating the outcome of the operation. This
response specifies whether the command has been accepted,
successfully executed, rejected, or marked as pending due to
delayed fulfillment or dependency resolution [3], [5].

Each status message is enriched with semantic annotations
and, when applicable, human-readable diagnostic text that
clarifies the reason for the result. This includes messages
such as command accepted,” execution completed,” resource
unavailable,” parameter out of bounds,” or “action in progress.”
In error scenarios, the system may also attach diagnostic
metadata such as the error type, origin module, recommended
remediation steps, or stack trace references (if supported by
the backend).

Illustrative examples of status responses include:
• Command /action/move_to executed
successfully.

• Failed to apply configuration:
parameter ’speed_limit’ exceeds
allowed range.

• Warning: action ’/navigate_to’ is
currently in progress; rejecting
duplicate request.

• Command rejected --- MCP adapter is
not connected to the runtime.

This structured feedback mechanism is critical for imple-
menting reliable higher-order logic in external systems. For
instance, agents can automatically retry failed operations,
initiate fallback actions, or escalate to human oversight when
critical faults are detected. It also simplifies the design of
user interfaces by providing immediate, interpretable feedback
that can be displayed to operators without revealing internal
protocol or middleware details.

Furthermore, RCP’s feedback mechanism is protocol-
consistent across all endpoints and interaction modalities. This
uniformity ensures that whether a command is submitted



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MONTH, YEAR

Fig. 2. Architecture of the ROS2 Interface Layer within the Robot Context
Protocol (RCP). This component mediates between high-level RCP service
requests and the underlying ROS2 runtime. The API handler supports stan-
dardized operations—read, execute, write, and subscribe—while the serial-
ization module ensures payload compatibility with ROS2 message types. The
parameter server provides access to runtime configuration values, enabling
dynamic reconfiguration. This layered abstraction allows RCP to expose a
unified control surface without revealing internal ROS2 constructs to external
agents.

by a RESTful web client, a WebSocket subscriber, or a
language model agent, the resulting status information follows
a predictable schema and semantic pattern.

d) ROS2 Operations Interface: At its core, RCP encapsu-
lates the complexity of the underlying ROS2 runtime through
a semantically structured interface layer that presents a unified,
middleware-agnostic control surface. This interface abstracts
native ROS2 constructs—including topics, services, actions,
and parameters—into standardized RCP operations such as
read, write, execute, and subscribe. Internally, these
operations are mapped through handler modules that bridge to
ROS2 primitives, enabling external clients to issue commands
or retrieve data without direct exposure to ROS2-specific
message types, service signatures, or node architecture [4],
[6].

The design draws from the DDS-based publish-subscribe
paradigm of ROS2, while deliberately abstracting low-level
details such as Quality-of-Service (QoS) settings, discovery
protocols, and type negotiation [7]. This abstraction allows
for a simplified, developer-friendly interface that supports
integration across varied deployment environments, including
embedded systems, high-fidelity simulators, and cloud-hosted
platforms.

A distinctive enhancement introduced by RCP is its
native support for multi-tenant communication. Clients
operate within logically isolated namespaces—e.g.,

/tenant/alpha or /tenant/beta—which scope
access to sensor data, actuators, configuration parameters,
and system actions. This namespacing mechanism enables
concurrent control by multiple agents while maintaining
secure and context-aware separation of state, operations, and
privileges.

An overview of this abstraction model and its integration
with ROS2 runtimes is illustrated in Fig. 2.

Recommended command syntax for interacting in a multi-
tenant environment might include:

• read /tenant/alpha/sensor/pose — Query
position within tenant alpha

• execute /tenant/beta/action/move_to —
Command navigation for tenant beta

• write /tenant/alpha/param/speed_limit
— Adjust motion constraint in context of alpha

By combining runtime transparency, structured feedback,
and system health monitoring, RCP enables external systems
to engage with robotic agents in a resilient, introspective, and
backend-agnostic manner. This design is critical for enabling
long-running autonomous operation, collaborative multi-agent
systems, and intelligent user interfaces that adapt to the real-
time status of the robotic platform.

The abstraction model implemented by the RCP encom-
passes a broad range of robotic operation domains, offering a
unified interface for both human and agent-level interaction.
These domains include but are not limited to: continuous
streaming of sensor data (e.g., camera images, LiDAR point
clouds, IMU readings), dispatching motion commands for
navigation and actuator control, invoking internal diagnostic or
maintenance services, and adjusting runtime parameters such
as velocity caps, sensor gains, or behavior modes.

Each of these functions is exposed using a consistent path-
based addressing scheme, designed to decouple clients from
backend implementation details. Paths are organized semanti-
cally to reflect the logical structure of the robot’s capabilities.
Illustrative examples include:

• /sensor/pose — Access robot position and orienta-
tion

• /action/move_to — Trigger navigation to a target
location

• /param/speed_limit — Modify motion constraints
• /service/reset_system — Invoke system reboot

or fault recovery
These abstract paths are designed to be accessed us-

ing a small, standardized set of operations: read, write,
execute, and subscribe. This interaction model enables
clients to perform queries, updates, and control operations in
a consistent manner regardless of backend complexity.

For example, rather than requiring clients to sub-
scribe to backend-specific topics such as /odom or
/robot_pose_ekf/odom_combined, a request to read
/sensor/pose retrieves the robot’s current estimated posi-
tion [4]. Likewise, issuing execute /action/move_to
eliminates the need for ROS2-specific action interfaces
like /move_base [4].. To modify configuration parame-
ters—such as updating the robot’s maximum speed—clients



LEE et al.: ROBOT CONTEXT PROTOCOL (RCP): A RUNTIME-AGNOSTIC INTERFACE FOR AGENT-AWARE ROBOT CONTROL 5

can use write /param/speed_limit, without interact-
ing directly with ROS2’s parameter services or dynamic
reconfigure tools [4]. A full system reset can be initiated
via execute /service/reset_system, regardless of
whether the underlying implementation relies on a service,
action, or custom node logic.

This unified interface design confers several key advan-
tages. First, it is environment-agnostic: no ROS2-specific topic
names, message types, or service signatures are exposed to
external users. Second, it introduces a clean, human-readable,
and agent-friendly command syntax, reducing the barrier to
integration for developers, researchers, and AI systems. Third,
the interface supports runtime introspection, allowing clients to
discover all available paths and associated operations dynam-
ically through a discovery API. This promotes adaptability,
as clients can reconfigure or evolve without requiring prior
hardcoding of system knowledge.

Internally, RCP organizes all robot-accessible resources
within a unified context model. This model standardizes
representation across sensors, actuators, high-level actions,
runtime parameters, and events such as boot cycles, task
completions, or fault states. Each resource is defined using
a structured namespace and schema-based type signature, fa-
cilitating automatic parsing, validation, and error reporting [7].
Clients are able to enumerate this namespace through protocol-
level queries, enabling fully dynamic interaction models and
adaptive control strategies.

To support the demands of production-grade deployment,
RCP integrates several robustness features adapted from prior
systems like rosbridge [2], [5]. These include:

• Emulation of asynchronous services with structured re-
sponse handling.

• Optional message compression for bandwidth-sensitive
scenarios.

• Segmentation and reassembly for large payloads (e.g.,
image or map data).

• Strict schema enforcement for all messages, ensuring type
correctness and protocol conformance.

• Persistent session tracking to support long-running agent
interactions.

• Endpoint-level access control and authentication for
multi-tenant environments.

Although the RCP protocol surface is fully backend-
agnostic, it relies internally on a system of robot-facing
adapters to bridge with operational runtimes such as ROS2
[4]. Each native capability—whether defined as a topic, ser-
vice, or action—is wrapped by an RCP handler module. These
modules map the backend functionality onto the HTTP/Web-
Socket protocol endpoints in a consistent and transparent
manner, ensuring that clients interact with the robot through a
uniform abstraction, regardless of deployment modality.

As a result, RCP enables seamless integration with physical
robotic systems, high-fidelity simulators [8], or cloud-hosted
control environments [9], [10], all without requiring modifica-
tions to the external protocol. This layered abstraction forms
a clean architectural boundary between internal robotic logic
and external consumer access, empowering a wide range of

use cases from single-user control panels to fully autonomous
multi-agent orchestration platforms.

IV. MESSAGE FORMAT AND INTERFACE DEFINITION

The Robot Context Protocol (RCP) defines a structured,
schema-driven message format to ensure consistent commu-
nication between external clients and robotic systems [2], [5].
All interactions—whether over HTTP or WebSocket—adhere
to a unified message structure that abstracts low-level middle-
ware details and provides semantic clarity for client applica-
tions. The format is designed to be both human-readable and
machine-parseable, supporting robust validation, introspection,
and interoperability [3], [7].

A. Message Envelope

Each RCP message consists of an envelope containing meta-
data and a body containing the request or response payload.
The envelope includes fields such as:

• type – Indicates the operation category (e.g., "read",
"write", "execute", "subscribe", "status").

• path – Specifies the logical target resource using
a namespace-based identifier (e.g., /sensor/pose,
/param/speed_limit).

• id – A client-specified identifier used to track the
request-response lifecycle, particularly for asynchronous
operations.

• timestamp – (Optional) UTC timestamp for temporal
tracking.

The message body is context-dependent and varies accord-
ing to the operation type. For example, a write operation
includes a data payload, while a read operation may contain
filter parameters or sampling hints.

B. Data Schema and Types

All payloads in RCP conform to JSON-based schemas
defined for each addressable path [7]. Each path corresponds
to a resource with a specified type signature, including:

• Primitive types: int, float, bool, string
• Compound types: arrays, dictionaries (maps), and nested

structs
• Time types: ISO-8601 formatted timestamps or UNIX

epoch
• Geometry types: standardized representations for pose,

twist, acceleration, etc.
For instance, a query to /sensor/pose may return a

structured response like:

{
"position": { "x": 1.23, "y": 4.56, "z":

0.00 },
"orientation": { "x": 0.0, "y": 0.0, "z":

0.0, "w": 1.0 },
"frame_id": "map",
"timestamp": "2025-05-29T14:12:04Z"

}

Each response is strictly schema-validated against its path
definition to ensure type safety and compatibility across
clients [7].



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MONTH, YEAR

C. Data Abstraction and Namespacing

All robot-readable and robot-writable data exposed through
the RCP are organized under a unified context model, which
abstracts low-level system constructs into semantically mean-
ingful objects [4], [5], [9]. This abstraction spans a wide
range of domains, including sensor data such as outputs
from cameras, inertial measurement units (IMUs), and LiDAR
devices; actuator commands targeting components like wheels,
robotic arms, and grippers; system-level events including
boot sequences, idle states, or error notifications; task-level
instructions such as navigation or pick-and-place directives;
and configuration parameters that define runtime behavior,
including velocity limits or controller modes.

Each of these elements is represented by a unique names-
pace and associated type descriptor, forming a structured and
addressable hierarchy [4], [7]. This naming scheme enables
dynamic discovery and interaction without requiring external
clients to hardcode internal system endpoints. Instead, clients
can introspect the available context at runtime using a discov-
ery API, which enumerates the operational interfaces exposed
by the robot [5]. This model provides a consistent and scal-
able method of exposing robot capabilities to user interfaces,
autonomous agents, and cloud orchestration systems [9], [10].

D. Interface Contracts and Introspection

RCP supports a discovery endpoint that returns a com-
plete catalog of available paths, each annotated with:

• Supported operations (e.g., read-only, execute-
enabled)

• Expected input/output schema definitions
• Human-readable descriptions and usage examples
This enables dynamic introspection and client-side code

generation [2], [10], allowing users and agents to adaptively
compose valid RCP requests without hardcoding schema
knowledge.

E. Asynchronous Semantics and Feedback

For operations like execute or subscribe, RCP mes-
sages support asynchronous feedback via a subscription chan-
nel or response event [7], [11]. Clients are notified through
response messages with status updates such as:

• "accepted" – The command is queued for execution.
• "in_progress" – The action has started and is being

monitored.
• "completed" – The action completed successfully.
• "failed" – An error occurred; includes diagnostic

fields.
These updates are identified by their id field to allow the

client to correlate responses with original requests.

F. Security and Namespacing

Each message is scoped to a namespace (e.g.,
/tenant/alpha/) to support secure multi-tenant
operation. The protocol enforces access control lists (ACLs)
and authentication at the transport layer to restrict interaction
based on user roles or client certificates [7], [9], [10].

G. Extensibility

Because the RCP message format is schema-defined and
transport-neutral, it supports extension via custom fields,
version negotiation, and dynamic field registration [5], [7].
Future message versions may include richer metadata, custom
events, or alternative encodings (e.g., CBOR or Protobuf) for
efficiency in constrained environments [7].

In summary, the RCP message format combines seman-
tic clarity with strict structure and validation, allowing het-
erogeneous systems—including LLMs, user interfaces, and
autonomous agents—to communicate with robots in a pre-
dictable, extensible, and middleware-agnostic manner.

V. ROBUSTNESS AND DEPLOYMENT FEATURES

A. Robustness and Protocol-Level Features

To support reliable and scalable integration across real-time
and distributed systems, RCP incorporates a set of robust com-
munication features inspired by established frameworks such
as rosbridge [2], [5]. These include asynchronous service em-
ulation, in which traditional blocking service calls are replaced
by non-blocking request-response patterns using event-driven
callbacks. This allows external agents to issue commands
without stalling, while still receiving feedback on success or
failure. Message compression is available to reduce network
load, particularly in bandwidth-constrained environments [2].
Large payloads, such as high-resolution images or volumetric
map data, are automatically segmented and reassembled by the
protocol stack to ensure transport reliability [2], [7]. All mes-
sages exchanged via RCP undergo strict schema validation,
which enforces type safety and ensures that malformed or am-
biguous data are rejected before reaching backend systems [7].
Persistent session tracking is implemented to maintain context
over long-lived interactions, supporting applications such as
continuous monitoring, adaptive learning, or multi-stage task
execution [10]. Additionally, RCP includes security and iso-
lation mechanisms at the endpoint level, allowing developers
to define access permissions and enforce multi-tenant policies
within shared robot platforms [9].

These features collectively enhance the reliability, security,
and efficiency of RCP as a middleware-agnostic protocol ca-
pable of bridging local and cloud-based robotic infrastructure.

B. Backend Integration and Deployment Flexibility

Although RCP is designed to be agnostic to the underlying
robotics framework, its internal implementation follows an
adapter-based integration model [4]–[6]. Each native robot
capability—whether defined as a topic, service, action, or
parameter within a framework such as ROS2—is wrapped by
a standardized RCP handler. These handlers translate between
the internal backend interface and the external protocol layer,
exposing their functionality over HTTP and WebSocket end-
points in a consistent and backend-neutral form. This archi-
tectural separation allows RCP to operate uniformly across
a variety of deployment contexts, including physical robots
operating at the network edge, simulated robots hosted in
virtualized environments, and large-scale cloud-native robotics



LEE et al.: ROBOT CONTEXT PROTOCOL (RCP): A RUNTIME-AGNOSTIC INTERFACE FOR AGENT-AWARE ROBOT CONTROL 7

orchestration platforms [9], [10]. By decoupling client inter-
action logic from execution infrastructure, RCP establishes
a clean and maintainable boundary between robot runtime
systems and external control interfaces, thereby simplifying
integration, improving scalability, and facilitating modular
system design.

VI. SUMMARY AND FUTURE DIRECTIONS

The Robot Context Protocol (RCP) presents a unified,
transport-agnostic framework for interacting with robotic sys-
tems across diverse deployment environments. By abstracting
low-level constructs such as ROS2 topics, services, and pa-
rameters into a semantically organized context model, RCP
enables external agents—human or autonomous—to engage
with robots using intuitive, schema-validated interfaces. This
simplification reduces integration overhead and fosters inter-
operability across hardware, simulation, and cloud platforms.

Key features such as message introspection, asynchronous
service emulation, dynamic discovery, and namespace-based
multi-tenant support establish RCP as a scalable and secure
interface layer. Its support for both HTTP and WebSocket
transports ensures compatibility with modern web and cloud-
native infrastructures, while the adapter-based backend model
provides the flexibility to support heterogeneous runtime
stacks without altering external APIs.

Together, these design principles position RCP as a robust
foundation for next-generation robotics systems—enabling
seamless orchestration, cross-platform interaction, and AI-
enhanced autonomy. As robotics continues to evolve toward
distributed, intelligent, and modular architectures, RCP offers
a protocol-level backbone to unify communication, enforce
structure, and empower scalable collaboration.

While the Robot Context Protocol (RCP) establishes a
robust foundation for decoupled, scalable robot interaction,
several avenues remain open for refinement and future en-
hancement.

First, extending RCP’s support to alternative transport en-
codings such as CBOR or Protobuf could significantly im-
prove performance in resource-constrained and low-latency
environments, particularly in edge or embedded deployments.
Similarly, incorporating richer Quality-of-Service (QoS) se-
mantics—akin to DDS in ROS2—would enable finer control
over data delivery guarantees, prioritization, and bandwidth
usage.

Second, formalizing RCP’s schema registry and message
introspection standards will support greater interoperability
across vendors and robotic platforms. This could pave the way
for a shared ecosystem of open, versioned interface definitions,
facilitating toolchains for automated client generation, valida-
tion, and simulation.

Third, deeper integration with agent planning systems and
foundation models (LLMs, VLMs) can enrich the semantic
expressiveness of RCP, allowing high-level goals to be trans-
lated into protocol-level actions through natural language or
symbolic reasoning. This would further lower the barrier for
intelligent agents to control and coordinate robot behavior
without rigid task programming.

Finally, future development may explore decentralized gov-
ernance and event-driven automation through mechanisms
such as blockchain-based access control, multi-agent con-
sensus protocols, or context-aware policy enforcement at the
protocol layer.

In summary, RCP offers a compelling base for unified robot
communication, and its modular design opens the door to a
wide range of extensions that will support the next generation
of intelligent, distributed, and adaptive robotic systems.

REFERENCES

[1] R. Firoozi et al., “Foundation Models in Robotics: Applications, Chal-
lenges, and the Future,” arXiv preprint arXiv:2312.07843, 2023.

[2] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Rosbridge:
ROS for Non-ROS Users,” in Proc. 15th Int. Symp. Experimental
Robotics (ISER), Québec City, Canada, Jun. 2012.

[3] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455, Internet
Engineering Task Force (IETF), Dec. 2011. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc6455.html

[4] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
Operating System 2: Design, Architecture, and Uses in the Wild,”
Science Robotics, vol. 7, no. 66, pp. eabm6074, May 2022. [Online].
Available: https://www.science.org/doi/10.1126/scirobotics.abm6074

[5] Robot Web Tools, “rosbridge suite,” GitHub repository, 2024. [Online].
Available: https://github.com/RobotWebTools/rosbridge suite

[6] M. Quigley et al., “ROS: an Open-Source Robot Operating System,” in
ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

[7] Object Management Group, “Data Distribution Service (DDS), Version
1.4,” OMG Specification formal/2015-04-10, Apr. 2015. [Online]. Avail-
able: https://www.omg.org/spec/DDS/1.4

[8] NVIDIA, “Isaac Sim,” NVIDIA Omniverse Documentation, 2025. [On-
line]. Available: https://docs.omniverse.nvidia.com/isaacsim

[9] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research
on Cloud Robotics and Automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, Apr. 2015.

[10] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta:
A Cloud Robotics Platform,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 481–493, Apr. 2015.

[11] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the Performance of
ROS2,” in Proc. 13th ACM SIGBED Int. Conf. Embedded Software
(EMSOFT), 2016.

https://www.rfc-editor.org/rfc/rfc6455.html
https://www.rfc-editor.org/rfc/rfc6455.html
https://www.science.org/doi/10.1126/scirobotics.abm6074
https://github.com/RobotWebTools/rosbridge_suite
https://www.omg.org/spec/DDS/1.4
https://docs.omniverse.nvidia.com/isaacsim

	Introduction
	Definition of the Robot Context Protocol
	Protocol Architecture
	Message Format and Interface Definition
	Message Envelope
	Data Schema and Types
	Data Abstraction and Namespacing
	Interface Contracts and Introspection
	Asynchronous Semantics and Feedback
	Security and Namespacing
	Extensibility

	Robustness and Deployment Features
	Robustness and Protocol-Level Features
	Backend Integration and Deployment Flexibility

	Summary and Future Directions
	References

