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Abstract

Graph Neural Networks (GNNs) have achieved impressive success across a wide
range of graph-based tasks, yet they remain highly vulnerable to small, impercep-
tible perturbations and adversarial attacks. Although numerous defense methods
have been proposed to address these vulnerabilities, many rely on heuristic metrics,
overfit to specific attack patterns, and suffer from high computational complexity.
In this paper, we propose Kernel Complexity-Based Edge Sanitization (KCES), a
training-free, model-agnostic defense framework. KCES leverages Graph Kernel
Complexity (GKC), a novel metric derived from the graph’s Gram matrix that
characterizes GNN generalization via its test error bound. Building on GKC, we
define a KC score for each edge, measuring the change in GKC when the edge
is removed. Edges with high KC scores, typically introduced by adversarial per-
turbations, are pruned to mitigate their harmful effects, thereby enhancing GNNs’
robustness. KCES can also be seamlessly integrated with existing defense strate-
gies as a plug-and-play module without requiring training. Theoretical analysis
and extensive experiments demonstrate that KCES consistently enhances GNN
robustness, outperforms state-of-the-art baselines, and amplifies the effectiveness
of existing defenses, offering a principled and efficient solution for securing GNNs.

1 Introduction

Graph Neural Networks (GNNs) have emerged as powerful tools for modeling graph-structured
data, achieving notable success in diverse domains such as social network analysis [1, 2], recom-
mendation systems [3, 4], and drug discovery [5, 6]. Despite their widespread applicability, GNNs,
similar to neural networks operating on Euclidean data [7, 8], are demonstrably vulnerable to ad-
versarial attacks [9, 10, 11, 12]. These attacks involve minor perturbations, such as targeted node
manipulations [13] or strategic edge modifications [14], which severely degrades model performance.

To enhance GNN robustness against adversarial attacks, various defense strategies have emerged.
Heuristic purification methods like GNN-Jaccard [15] and GNN-SVD [16] refine graph structure by
removing suspicious or noisy edges based on similarity or low-rank approximations. Adversarial
training approaches, such as RGCN [17], expose the model to perturbed graph during training to
learn robust representations. Robust architecture designs like ProGNN [18] and GNNGuard [19]
incorporate adaptive graph learning or attention-based edge filtering. However, these methods still
exhibit notable limitations: (i) Reliance on heuristic metrics: Many methods (e.g., GNN-Jaccard,
GNN-SVD) use simple priors like jaccard similarity or low-rank approximations to identify suspicious
edges. These heuristics lack a grounding in model generalization analysis, potentially reducing their
effectiveness in identifying edges under adversarial perturbations; (ii) Overfitting to specific attacks:
Adversarial training methods like RGCN often defend against known attack patterns (e.g., Nettack [9]),
which can limit their robustness to unseen attack strategies; (iii) High computational complexity:
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approaches like ProGNN involve complex iterative optimization procedures, increasing runtime and
limiting scalability.
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Figure 1: Defense Framework against Adversarial Perturbations with KCES.

Motivated by the above limitations and recent progress in data-independent generalization [20, 21],
we introduce Kernel Complexity-Based Edge Sanitization (KCES), which operates in two main
steps (see Figure 1). First, drawing on research in kernel models, we introduce Graph Kernel
Complexity (GKC), a metric that controls the test error bound of GNN. From GKC, we define the
Graph Kernel Complexity Gap Score (GKCG score), or simply the KC score, for an edge as the
change in GKC upon its removal. This score indicates the corresponding change in the test error
bound and serves as an effective signal for identifying adversarial edges, which typically exhibit
high KC scores. Second, KCES leverages KC scores, which are computed solely from the graph
data and pseudo labels, to perform targeted edge sanitization by pruning edges with high scores.
This strategy, validated visually (Figure 1) and experimentally (Sections 6.2 and 6.3), is based on
the insight that edges with high KC scores are characteristic of adversarial attacks. By selectively
removing these detrimental perturbations while preserving essential benign graph structure, KCES
significantly improves GNN robustness.

KCES presents several key advantages over existing defense baselines. It is theoretically grounded
under certain assumptions and data-driven, while avoiding reliance on heuristic assumptions about
graph properties. This ensures greater flexibility and general applicability across various GNN
architectures. KCES quantifies each edge’s intrinsic contribution to GNNs’ generalization, which
measure the probability of the edge under the adversarial perturbations, which is independent of
specific attack strategies, helping prevent overfitting to known adversarial patterns and improving
robustness against previously unseen attacks. Furthermore, KCES is a training-free, computationally
efficient approach, typically needing only a single pre-training computation, thereby bypassing the
high costs of iterative optimization methods.

Overall, our contributions are summarized as follows:

• We propose GKC, a novel data-driven, model-agnostic metric defining a key complexity factor
in GNN generalization error bounds. From GKC, we derive the KC score to quantify each edge’s
contribution to test performance on GNNs, effectively identifying adversarially perturbed edges.

• We design KCES, a universal, training-free defense that enhances graph model robustness by
selectively pruning likely adversarial edges. This approach is independent of GNN model
specifics or attack assumptions.

• Extensive experiments show that KCES outperforms popular defense baselines across diverse
datasets and various GNN architectures. Moreover, it can be seamlessly integrated as a plug-and-
play component to further boost the robustness of existing defense strategies.

2 Related Works

Attacks and Defenses in GNNs Adversarial attacks in machine learning seek to degrade model
performance by introducing subtle input perturbations [22, 23, 24, 25, 26]. When applied to graph-
structured data, these attacks compromise structural or semantic integrity through strategies such as

2



structural perturbations [27, 28, 29, 9, 30], attribute manipulation [11, 13, 31], and malicious node
injection [13, 32, 33]. To counter these attacks, various strategies have been developed to enhance
the robustness of machine learning models [22, 23, 24, 25, 26, 34, 35]. In the graph domain, several
defense methods have been proposed. Robust architecture design aims to strengthen GNNs by opti-
mizing their structural components, as demonstrated by GNNGuard [19] and ProGNN [18]. Graph
adversarial training improves robustness by incorporating adversarial examples during training, as
in RGCN [17]. Graph data purification mitigates perturbations by denoising or correcting input
data, with methods such as GNN-Jaccard [15] and GNN-SVD [16]. However, existing defenses face
several challenges, including insufficient theoretical grounding, limited adaptability to diverse attacks,
and high computational overhead. These limitations inspire our method’s design to overcome them.

Gram Matrix Applications Gram matrices are pivotal for analyzing neural network behavior
and optimization. Model-centric applications include investigating how architectures learn target
functions [36] and exploring invariance in MLPs [37]. From an optimization standpoint, they
are crucial for understanding training dynamics, such as gradient descent in over-parameterized
networks [38] and the interplay of learning and stability in two-layer networks [20]. Building on
this, training-free data valuation methods employing Gram matrices have quantified individual data
point influence in Euclidean data [21]. Such approaches, however, are less explored for Graph Neural
Networks (GNNs). Inspired by recent advances [20, 21], we extend this concept to graph-structured
data by conceptualizing a two-layer GNN as a kernel model. Then we propose KCES, a training-free
and model-agnostic method to enhance GNNs’ robustness against adversarial perturbations.

3 Preliminaries

In this section, we summarize the key notations used throughout the paper. Let Rd denote the
d-dimensional Euclidean space, and define [n] = {1, 2, . . . , n}. Bold symbols (e.g., W) represent
matrices, where Wij denotes the (i, j)-th entry. If W is symmetric, then λmin(W) denotes its smallest
eigenvalue. Capital letters (e.g., X) denote vectors, and lowercase letters (e.g., c) denote scalars.
We use ∥ · ∥p to denote the p-norm for vectors and the corresponding operator norm for matrices,
while ∥ · ∥F refers to the Frobenius norm. A Gaussian distribution with mean µ and covariance Σ is
denoted by N (µ,Σ).

3.1 Theoretical Setup for GNNs.

We analyze a two-layer GNN as a kernel model on an undirected graph with N nodes. The graph
distribution DG, defined over RN×F × RN , generates a single graph G = (X, Ã, D̃,y), where
each node feature-label pair (Xi, yi) ∈ RF × R is drawn independently. The adjacency matrix
Ã ∈ {0, 1}N×N is fixed, symmetric, and includes self-loops (Ãii = 1), and the degree matrix D̃
is defined by D̃ii =

∑
j Ãij . A subset of nodes and their corresponding labels from G, denoted as

Gtrain, is used for training. The forward propagation of a two-layer GNN for node i is given by:

fGNN(Xi, Ã, D̃) =
1√
m

m∑
r=1

arσ
(
W⊤

r

(
D̃− 1

2 ÃD̃− 1
2X

)
i

)
, (1)

Here, m denotes the number of hidden units; W ∈ RF×m is the first-layer weight matrix with
columns Wr ∈ RF ; a = (a1, . . . , am)⊤ ∈ Rm is the second-layer weight vector with scalar entries
ar; σ(·) is the activation function (e.g., ReLU).

For the GNN fGNN(Xi, Ã, D̃), we define the training error (empirical risk) on Gtrain as:

L(W) =
1

2

N∑
i=1

(
yi − fGNN(Xi, Ã, D̃)i

)2

, (2)

Here, Xi and yi are sampled from Gtrain. The corresponding test error (expected risk) is defined as
the expectation of the training error over the graph distribution DG, denoted by:

LDG
(W) = EG∼DG

[L(W)] . (3)
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3.2 Graph Kernel Gram Matrix

We introduce the Graph Kernel Gram Matrix (hereafter, the Gram matrix), which captures
pairwise node relationships based solely on graph structure and node features. This matrix builds
upon classical kernel methods [39, 20, 37, 40], where Gram matrices are widely used to connect
model complexity with generalization performance. In our specific GNN setting, we integrate the
graph aggregation operation directly into this kernel. Consequently, for a graph G = (X, Ã, D̃,y),
given the normalized aggregated feature matrix X̃ = D̃− 1

2 ÃD̃− 1
2X ∈ RN×F , we define the Gram

matrix H∞ =
[
H∞

ij

]N
i,j=1

∈ RN×N , where each entry H∞
ij is given by:

H∞
ij =

X̃⊤
i X̃j

(
π − arccos

(
X̃⊤

i X̃j

))
2π

, (4)

Here, X̃i ∈ R1×F and X̃j ∈ R1×F represent the i-th and j-th rows of the matrix X̃, respectively.
The Gram matrix H∞, computed from these aggregated features, captures the pairwise interactions
between nodes. This process effectively establishes a kernel-induced feature space, which forms the
basis for computing the Graph Kernel Complexity presented in the subsequent section.

3.3 Graph Kernel Complexity

Based on the above Gram matrix, we define the Graph Kernel Complexity (GKC) to qualify the
test error bound of GNNs, reflecting their generalization capacity. Formally, given the Gram matrix
H∞ ∈ RN×N and the label vector y ∈ RN , the GKC is defined as:

GKC(H∞) =
2y⊤ (H∞)

−1
y

N
. (5)

Notably, y denotes pseudo labels generated by K-means [41] in practice, rather than the ground-
truth node labels. Therefore, GKC is a model-independent complexity metric, determined solely
by intrinsic data properties. A lower GKC score reflects well-aligned and internally consistent
data, which simplifies the learning process and facilitates generalization in GNNs. Theorem 4.2
formalizes this relationship by showing that smaller GKC values correspond to lower test error,
thereby indicating stronger generalization.

4 GKC-based Generalization Analysis

This section employs the Gram matrix and GKC to establish generalization bounds for the two-layer
GNN (Section 3.1). Theorems for training and test errors are presented informally for clarity, with
formal statements and proofs in the Appendix.

First, Theorem 4.1 characterizes the training error dynamics as following:
Theorem 4.1 (Training error dynamics). Under Assumption E.2 in Appendix E, after t gradient
descent updates with step size η, the training error satisfies

L(Wt) =
∥∥∥(I− ηH∞)

t
y
∥∥∥2
2
+ ε, (6)

where H∞ denotes the Gram matrix, m is the hidden layer width, and ε = Õ(m−1/2) represents
an error term dependent on t and m. The formula shows that the training error decreases with the
number of training steps, and the rate of decrease is governed by the Gram matrix. A formal version
of the result is provided in Appendix E.2.1 (Theorem E.4).

Building on training error analysis, Theorem 4.2 establishes a generalization bound via GKC:
Theorem 4.2 (Test error bound). Under Assumption E.2 in Appendix E, for sufficiently large
hidden layer width m and iteration count t, the following holds with probability at least 1− δ:

LDG
(Wt) ≤

√
GKC(H∞) + O

√
log N

λ0δ

N

 , (7)
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Here, GKC(H∞) denotes the Graph Kernel Complexity (Section 3.3), δ ∈ (0, 1) is the confidence
level, N is the number of nodes, and λ0 is a lower bound on λmin(H∞) (Lemma E.3). The
generalization bound on the GNN test error, as derived from the formula, is primarily influenced
by the data-dependent GKC term. A smaller GKC leads to a tighter bound, indicating improved
generalization under standard GNN training regimes. The formal statement and proof are presented
in Appendix E.2.1 (Theorem E.5).

5 Kernel Complexity-Based Edge Sanitization for Robustness

Motivated by the established connection between GKC and the test error of GNNs, we propose
Kernel Complexity-Based Edge Sanitization (KCES), a training-free and model-agnostic defense
framework that evaluates the importance of graph edges and strategically prunes them to improve
GNN robustness against adversarial perturbations. This framework comprises two key components:
(i) Edge KC Score Estimation and (ii) KC-Based Edge Sanitization. The first component assigns
a kernel-based score to each edge, quantifying its structural importance. The second component
utilizes these scores to selectively remove potentially harmful edges, thereby mitigating the impact of
adversarial attacks.

5.1 Edge KC Score Estimation

To quantify the importance of each edge, we introduce the Graph Kernel Complexity Gap Score,
hereafter referred to as the KC score. Specifically, for an edge eij connecting the i-th and j-th nodes
in the graph, the KC score is defined as:

KC(i, j) =
∣∣∣GKC (H∞)− GKC

(
H∞

−(i,j)

)∣∣∣ , (8)

Here, H∞ denotes the Gram matrix of the original graph, and H∞
−(i,j) corresponds to the Gram matrix

of the graph G−(i,j), obtained by removing edge eij . Both matrices are computed using pseudo labels
y generated by K-means; the details of generating y refers to Appendix B. The KC score KC(i, j)
quantifies the change in GKC resulting from the removal of edge eij . This score governs the upper
bound of the interval within which the test error may vary, as stated in Corollary 5.1 (For a formal
version and proof of the corollary, see Appendix E.2.2 and E.4.3).

Corollary 5.1 (Edge-specific test error bound). Let the graph G−(i,j) be obtained by deleting edge
eij , and let Wt denote the GNN parameters after t gradient descent updates on the modified graph.
Under the same assumptions as Theorem 4.2, and for sufficiently large hidden width m and iteration
count t, the following holds with probability at least 1− δ:

LDG−(i,j)
(Wt) ≤

√
GKC (H∞) +

√
KC(i, j) +O

√
log N

λ0δ

N

 , (9)

where N denotes the number of nodes; λ0 is the lower bound on λmin(H∞), as specified in Assump-
tion E.2; and DG−(i,j)

represents the data distribution for graph G−(i,j), which are generated by
taking graphs from DG and removing edge eij . Corollary 5.1 establishes a theoretical link between
the KC score of an edge eij and the GNN’s expected test error on the graph G−(i,j) (i.e., after re-
moving eij), thereby quantifying the edge’s contribution to the overall GKC. Adversarially perturbed
edges, being theoretically detrimental to GNN generalization, are expected to exhibit higher KC
scores. This is empirically supported by the results in Section 6.2, which shows attacks increase the
prevalence of such high-impact edges. Thus, the KC score serves as an effective indicator of these
adversarial structural perturbations, guiding the strategic removal of detrimental edges to enhance
GNN robustness.

5.2 KC-based Edge Sanitization

Building on estimated KC scores, we can use them to sanitize graphs. Since edges with high scores
tend to negatively impact model performance, we can remove edges with higher KC scores to ensure
GNN performance, enhancing its robustness. Specific KCES refer to the following Algorithm 1.
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Algorithm 1 KCES: Kernel Complexity-Based Edge Sanitization
Input: Graph G = (V,E); features X; pruning ratio α ∈ [0, 1]
Output: Sanitized graph G′ = (V,E′)

1: ŷ← K-means(Ã,X) // Generate pseudo labels for nodes via K-means
2: H∞ ← GKGM(G,X) // Compute original Gram matrix, see Eq. 4

3: GKC(H∞)← 2ŷ⊤(H∞)−1ŷ
N

// Compute original GKC, see Eq. 5
4: KC← [ ] // Initialize a KC list for edge scores
5: for each edge eij ∈ E do
6: G−(i,j) ← G \ {eij} // Create a modified graph excluding edge eij
7: H∞

−(i,j) ← GKGM(G−(i,j),X) // Compute Gram matrix for the modified graph, see Eq. 4

8: GKC(H∞
−(i,j))←

2ŷ⊤(H∞
−(i,j))

−1ŷ

N
// Compute GKC for the modified graph, see Eq. 5

9: KC[eij ]←
∣∣GKC(H∞ − GKC(H∞

−(i,j))
∣∣ // Compute KC score for eij , see Eq. 8

10: end for
11: (e(1), e(2), . . . , e(|E|))← SortEdgesByScore(KC, descending) // Sort edges by KC score
12: k ← ⌈α · |E|⌉ // Number of edges to remove
13: E′ ← E \ {e(1), . . . , e(k)} // Prune the top-k KC score edges
14: Return G′ = (V,E′) // Return Graph with pruned edge set

6 Experiments

This section details four comprehensive experiments designed to validate our theoretical analyses and
assess the KCES method’s effectiveness against adversarial attacks. Experiment 1 examines KC
score distributions in clean and adversarial graphs, explaining the effect of adversarial perturbations
on KC score. Experiment 2 shows connection between pruning strategies and model generalization,
empirically demonstrating edge KC score is highly linked with GNN performance. Experiment 3
assesses KCES’s robustness across diverse adversarial settings, demonstrating state-of-the-art re-
sults. Finally, Experiment 4 showcases KCES’s plug-and-play compatibility with existing defense
baselines, highlighting its capacity to further improve their robustness.

6.1 Overall Setup

Dataset We evaluate the robustness and scalability of the proposed KCES method using five
benchmark datasets spaning three distinct scales: (1) small-scale graphs (fewer than 10,000 edges):
Cora[42], Citeseer [42], and Polblogs[43]; (2) medium-scale graph (10,000-100,000 edges): Pubmed
[44]; and (3) large-scale graph (exceeding 100,000 edges): Flickr[45]. Detailed dataset statistics are
provided in Appendix A.

Attack strategies We utilize five representative attack methods to evaluate robustness, categorized
into three types. These strategies involve perturbing the graph data before GNN training, with
defense methods subsequently applied to mitigate their impact. The categories are: (i) Non-targeted
Attack, which degrade overall GNN performance by perturbing the entire graph structure, including
Metattack [30], MINMAX [27], and DICE [29]; (ii) Targeted Attack, which focus on misleading GNN
predictions for specific nodes, for which we employ the widely-used Nettack [9]; and (iii) Random
Attack, which simulate noise by randomly adding or removing edges at, termed Random.

Baseline methods We evaluate the effectiveness of KCES by comparing it against several state-of-
the-art defense methods from two complementary perspectives. First, we consider a set of widely
adopted and robust GNN architectures, including GCN [27], GAT [46], and RGCN [17]. Second,
we benchmark KCES against established defense strategies specifically designed to improve the
robustness of GNN in adversarial settings. These include ProGNN [18], GNN-Jaccard [15], GNN-
SVD [16], and GNNGuard [19], all of which represent mainstream approaches for defending against
both non-targeted and targeted attacks.

Implementation details We use test accuracy for node classification as the primary evaluation
metric in the following experiments. Further implementation details are provided in Appendix C.
Code is available at: https://anonymous.4open.science/r/KCScore-FB15/README.md.
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6.2 Impact of Adversarial Perturbations on Kernel Complexity Gap Scores

This experiment investigates the relationship between KC score distribution and adversarial per-
turbations. Based on Corollary 5.1, adversarially perturbed edges are usually detrimental to GNN
generalization, which may increase GKC theoretically, resulting in a larger test error bound (expressed
as large KC scores). To verify this, we compare KC score distributions across three settings: . To
verify this, we compare KC score distributions across three settings: (1) the original clean graph,
(2) an adversarially perturbed graph (using Metattack), and (3) the perturbed graph after pruning its
high-KC score edges. For a fair comparison, an equal number of edges are randomly sampled from
each graph type, and their KC scores are normalized to the [0, 1] range. Kernel Density Estimation
(KDE) [47] is used to visualize these smoothed distributions. Experiments are conducted on Cora
and Pubmed datasets (representing varying graph scales) using a GCN. We sample 1,000 edges from
Cora and 10,000 from Pubmed, proportional to their sizes. Pruning ratios are set to 0.25 for Cora and
0.75 for Pubmed, based on findings in Section 6.3.

Cora Pubmed

KC Score KC Score

KD
E 

D
en

si
ty

Figure 2: Visualization of KC Score Distributions Across Clean, Metattack, and Pruned Graphs.

The results, depicted in Figure 2, demonstrate that adversarial perturbations markedly increase edge
KC scores, thereby empirically supporting Corollary 5.1. Specifically, the KC score distribution for
clean graphs is highly concentrated around zero, reflecting a low prevalence of edges with high KC
scores. In contrast, Metattack induces a significant shift in the distribution towards higher KC values
and introduces a long tail. This suggests an increase in structurally redundant or uninformative edges,
which adversely affect GNN performance as edges with high KC scores contribute less to effective
learning. The proposed pruning strategy effectively counteracts this shift by removing these high-KC
score edges, thereby restoring the distribution to a form that closely resembles that of the clean graph.
These findings align with our theoretical analysis in Section 4, which posits that edges with high KC
scores are significant contributors to graph complexity and thus detrimental. The subsequent section
will further explore the impact of edges with high and low KC scores on GNN performance.

6.3 Impact of Edge Sanitization on Model Performance

Section 6.2 and Corollary 5.1 establish a link between each edge’s influence on GNN performance
and its corresponding test error, as quantified by the KC score. Edges with lower KC scores (Low-
KC), such as unperturbed ones, are typically associated with lower test error and improved GNN
performance. In contrast, edges with higher KC scores (High-KC), often resulting from adversarial
perturbations, tend to increase test error and degrade performance. To empirically validate this
insight, we prune edges based on their KC scores and assess the impact on model performance. Three
distinct pruning strategies are evaluated: (i) High-KC Pruning, removing edges with the highest KC
scores; (ii) Low-KC Pruning, removing edges with the lowest KC scores; and (iii) Random Pruning,
removing edges randomly as a baseline. Each strategy is tested with pruning ratios ranging from 0.05
to 0.95, in 0.05 increments. The primary evaluations utilize adversarially perturbed versions of the
Cora and Pubmed datasets (attacked via Metattack), with a GCN architecture employed consistently.
Results from corresponding experiments on clean graphs are detailed in Appendix D.1.

The result presented in Figure 6.3 highlights the significant positive contribution of Low-KC edges
to GNN performance, in contrast to the demonstrably negative impact of High-KC edges. This
finding, reinforced by analogous results on clean graphs (Appendix D.1), validates High-KC Pruning
as an effective method for removing detrimental edges in adversarial scenarios. It thus represents
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a robust strategy for improving GNN generalization and bolstering robustness against adversarial
perturbations. Specifically, under Metattack, High-KC Pruning consistently sustains or improves
GNN performance. In stark contrast, Low-KC Pruning generally leads to a decline in accuracy, often
performing worse than Random Pruning. Notably, under adversarial conditions, both Low-KC and
Random Pruning can yield performance improvements at high pruning ratios (beyond 0.5). This
phenomenon is likely attributable to the extensive removal of adversarial edges, where the benefit
of eliminating numerous detrimental perturbations outweighs the cost of losing some benign edges.
High-KC Pruning, however, does not exhibit this phenomenon, suggesting its superior precision
in targeting harmful edges while preserving essential ones. Overall, the efficacy of these pruning
strategies follows the order: High-KC Pruning > Random Pruning > Low-KC Pruning. These
empirical results align well with our theoretical analyses in Section 4.

Cora Pubmed

Pruning Ratio
A

cc
ur

ac
y 

(%
)

30

50

70

90

0 0.25 0.5 0.75 1

High-KC Pruning Low-KC Pruning Random Pruning

Pruning Ratio

A
cc

ur
ac

y 
(%

)

20

30

40

50

60

70

80

90

0 0.25 0.5 0.75 1

High-KC Pruning Low-KC Pruning Random Pruning

Figure 3: Comparing Edge Pruning Strategies via KC Scores in Adversarial Settings.

6.4 Defense against adversarial attacks

In this section, we evaluate that KCES can improve GNNs’ robustness against various adversarial
attacks. The experimental setup, including datasets, attack methods, and defense baselines, follows
the configuration described in Section 6.1. For non-targeted and random attacks, we allocate 25%
of the graph’s edges as the perturbation budget. For the targeted attack (Nettack), we select nodes
with degrees greater than 10 and perturb their connected edges. We implement KCES on GCN and
compare its robustness against other baseline methods. All results are reported as percentages, and
N/A indicates that the method is not applicable to the corresponding attack setting.

Table 1 reports the defense performance of various methods across five datasets under random,
untargeted, and targeted attacks. Overall, our proposed method, KCES, consistently outperforms
baselines and achieves state-of-the-art robustness across all attack settings. Notably, KCES enables
the model to match, and occasionally exceed its performance on clean setting, even under adversarial
perturbations. On the Flickr dataset, we observe that several baselines perform better under adversarial
conditions than on clean data. This is likely due to the presence of numerous noisy or irrelevant
edges in the large-scale graph, which hinder model performance. This pattern is consistent with
prior findings [48, 49], suggesting that pruning-based defense methods, including ours, can reduce
the impact of such noise, effectively acting as regularization and enhancing both robustness and
generalization. Overall, these results confirm the effectiveness of KCES over baselines.
6.5 Effect of KCES as a Plug-and-Play Module for Enhancing Existing Defenses

KCES is a training-free and data-independent method, making it highly adaptable as a plug-and-
play module to enhance the robustness of existing models. To demonstrate its versatility and
effectiveness, we apply KCES to several baseline methods listed in Table 1, including robust GNN
architectures (GAT and RGCN) as well as defense algorithms (ProGNN, GNN-SVD, GNN-Jaccard,
and GNNGuard).

The results, presented in Figure 4, demonstrate that integrating KCES consistently improves the
performance of all baseline methods across diverse adversarial attacks, underscoring its effectiveness
as a plug-and-play module. Notably, KCES substantially enhances the robustness of both GNN
architectures and defense algorithms, with all KCES-integrated baselines achieving over 70% accuracy
on Cora and over 80% on Pubmed under a wide range of adversarial attacks. These findings indicate
that KCES does not conflict with existing defense methods and can be seamlessly integrated to further
strengthen their robustness against attacks.
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Table 1: Defense performance (Accuracy ± Std) under targeted and untargeted adversarial attacks.

Dataset Attack GCN GAT RGCN ProGNN GNN-SVD GNN-Jaccard GNNGuard KCES (Ours)

Polblogs
(small)

Clean 95.71± 0.79 95.40± 0.41 95.29± 0.52 95.60± 0.46 94.68± 0.88 N/A N/A 96.01± 0.18
Random 81.29± 0.61 85.01± 0.02 82.23± 0.76 86.50± 0.12 88.34± 0.83 N/A N/A 89.46± 0.77
Nettack 92.59± 0.73 85.79± 0.23 93.15± 0.70 95.20± 0.59 95.37± 0.57 N/A N/A 96.48± 0.82
DICE 71.47± 0.98 77.10± 0.87 71.16± 0.36 74.74± 0.18 76.48± 0.73 N/A N/A 93.04± 0.06
MINMAX 70.14± 0.54 68.04± 0.89 82.10± 0.42 60.73± 0.37 62.47± 0.72 N/A N/A 94.17± 0.47
Metattack 63.09± 0.12 63.60± 0.20 62.67± 0.13 65.23± 0.24 81.28± 0.58 N/A N/A 82.72± 0.32

Cora
(small)

Clean 83.65± 0.57 83.90± 0.15 82.89± 0.99 85.16± 0.77 78.16± 0.07 82.69± 0.74 78.87± 0.77 84.04± 0.42
Random 77.57± 0.38 79.23± 0.75 74.55± 0.13 79.58± 0.32 78.87± 0.36 77.36± 0.93 77.11± 0.57 79.67± 0.69
Nettack 57.83± 0.78 58.23± 0.08 59.04± 0.51 69.67± 0.68 74.70± 1.21 76.69± 0.64 62.65± 0.03 82.24± 0.43
DICE 76.16± 0.69 77.06± 0.31 73.59± 0.91 75.95± 0.40 72.68± 0.72 77.11± 0.22 75.50± 0.26 82.59± 0.09
MINMAX 60.66± 0.23 61.26± 0.73 59.80± 0.75 64.43± 0.23 59.45± 0.10 72.23± 0.69 70.57± 0.95 78.42± 0.47
Metattack 53.12± 0.83 58.35± 0.22 51.35± 0.72 63.37± 0.16 61.92± 0.28 75.28± 0.19 70.77± 0.97 82.99± 0.08

Citeseer
(small)

Clean 72.51± 0.61 72.69± 0.55 71.97± 0.60 71.74± 0.59 69.60± 0.56 72.98± 0.06 71.03± 0.19 73.02± 0.93
Random 70.38± 0.83 69.31± 0.95 67.06± 0.26 72.36± 0.19 67.59± 0.15 71.21± 0.03 72.73± 0.60 72.81± 0.62
Nettack 52.38± 0.94 59.19± 0.46 49.21± 0.97 72.23± 1.04 74.60± 0.51 72.14± 0.69 72.95± 0.58 76.14± 0.60
DICE 67.71± 0.72 66.60± 0.43 66.17± 0.85 72.15± 0.61 67.35± 0.03 71.14± 0.19 69.01± 0.34 72.45± 0.84
MINMAX 66.29± 0.45 67.54± 0.43 61.02± 0.44 69.90± 0.80 64.57± 0.86 71.20± 0.02 68.60± 0.86 72.80± 0.36
Metattack 57.64± 0.59 61.20± 0.66 56.81± 0.75 66.33± 0.46 66.29± 0.39 70.14± 0.53 64.75± 0.60 71.86± 0.87

Pubmed
(medium)

Clean 85.72± 0.05 84.89± 0.84 84.72± 0.06 85.19± 0.43 84.53± 0.86 86.19± 0.97 84.49± 0.79 86.17± 0.52
Random 84.11± 0.28 81.02± 0.72 83.75± 0.10 84.28± 0.41 82.61± 0.63 84.27± 0.64 83.87± 0.03 85.83± 0.82
Nettack 66.67± 0.36 76.73± 0.88 72.58± 0.09 72.60± 0.14 80.10± 0.45 85.48± 0.12 83.33± 0.65 86.24± 0.09
DICE 81.68± 0.46 76.93± 0.19 81.44± 0.56 80.73± 0.30 80.39± 0.12 82.93± 0.70 82.28± 0.70 85.74± 0.39
MINMAX 55.67± 0.46 60.01± 0.97 54.64± 0.24 69.29± 0.37 80.50± 0.06 84.51± 0.83 81.69± 0.57 85.64± 0.97
Metattack 46.08± 0.39 49.72± 0.37 45.99± 0.92 72.08± 0.51 82.75± 0.25 84.22± 0.39 83.37± 0.89 86.45± 0.45

Flickr
(large)

Clean 56.24± 0.81 47.83± 0.25 39.62± 0.73 54.68± 0.68 60.46± 0.55 74.04± 0.38 74.31± 0.74 76.25± 0.93
Random 62.82± 0.62 60.80± 0.42 62.44± 0.16 65.43± 0.90 76.54± 0.41 74.83± 0.96 74.85± 0.55 76.74± 0.65
Nettack 38.82± 0.55 43.12± 0.39 59.87± 0.36 70.31± 0.74 58.70± 0.45 72.58± 0.48 74.51± 0.33 73.47± 0.97
DICE 51.71± 0.32 48.11± 0.11 47.34± 0.39 71.23± 0.17 73.38± 0.93 73.35± 0.02 73.59± 0.24 73.69± 0.67
MINMAX 14.57± 0.97 11.71± 0.26 27.13± 0.02 19.68± 0.58 39.17± 0.78 74.82± 0.33 75.04± 0.08 76.86± 0.90
Metattack 36.93± 0.86 37.29± 0.06 31.72± 0.21 65.05± 0.82 59.08± 0.36 74.85± 0.95 75.05± 0.75 76.63± 0.82
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Figure 4: Robustness Enhancement Against Adversarial Attacks via KCES Integration.

7 Conclusion and Limitation

In this work, we proposed KCES, a training-free and model-agnostic framework for defending GNNs
against adversarial attacks. At its core is the GKC, a novel metric derived from the graph’s Gram
matrix to quantify generalization. Building on GKC, we introduced the KC score, which measures
the impact of each edge on generalization by evaluating the change in GKC after edge removal.
Our theoretical analysis established a direct connection between KC scores and test error, enabling
principled edge sanitization. Experiments across diverse datasets and attack settings showed that
KCES consistently outperforms baselines and can serve as a plug-and-play component for improving
existing defenses. Despite its demonstrated effectiveness, KCES possesses certain limitations. Firstly,
its primary focus is on structural perturbations, meaning it does not inherently address adversarial
attacks targeting node features. Secondly, as an edge sanitization technique, KCES is not directly
applicable to graph-based tasks that are intrinsically edge-centric. Thirdly, while its implementation
is model-agnostic, the theoretical underpinnings of KCES rely on assumptions specific to GNNs,
which may limit its direct generalization to architectures outside the GNN family. Overcoming these
limitations could lead to more robust and versatile iterations of KCES, thereby further advancing
GNN security in complex, real-world applications.
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