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Abstract—Indicators of Compromise (IoCs) are critical for
threat detection and response, marking malicious activity
across networks and systems. Yet, the effectiveness of au-
tomated IoC extraction systems is fundamentally limited by
one key issue: the lack of high-quality ground truth. Current
extraction tools rely either on manually extracted ground truth,
which is labor-intensive and costly, or on automated ground
truth creation methods that include non-malicious artifacts,
leading to inflated false positive (FP) rates and unreliable
threat intelligence. In this work, we analyze the shortcomings
of existing ground truth creation strategies and address them
by introducing the first hybrid human-in-the-loop pipeline for
IoC extraction, which combines a large language model–based
classifier (LANCE) with expert analyst validation. Our system
improves precision through explainable, context-aware label-
ing and reduces analysts’ work factor by 43% compared to
manual annotation, as demonstrated in our evaluation with
six analysts. Using this approach, we produce PRISM, a high-
quality, publicly available benchmark of 1,791 labeled IoCs
from 50 real-world threat reports. PRISM supports both fair
evaluation and training of IoC extraction methods and enables
reproducible research grounded in expert-validated indicators.

1. Introduction

Detecting and analyzing malicious activity is essential
in modern cybersecurity defense. Indicators of Compromise
(IoCs), such as IP addresses, domain names, URLs, and file
hashes, which signal malicious activity, are among the most
important parts of threat intelligence [1], [2], [3]. Analysts
rely on IoCs for both immediate defense, such as creating
block lists and firewall rules, and for activities such as
threat hunting. Accurate and timely identification of IoCs
can therefore significantly improve an organization’s ability
to detect, respond to, and mitigate cyber-threats.

One of the most prominent sources of IoCs is threat
reports (TRs), which are published by cybersecurity
companies, research institutions, and government agencies,
and contain critical information about attacks, campaigns,
and incidents [4], [2], [5], [1]. Threat reports vary widely
in structure and detail due to the lack of standardized
formatting. This inconsistency makes accurate IoC
extraction challenging, as indicators may be embedded in
diverse formats and contexts, yet their precise identification
is critical for effective threat response.

Previous work has focused on three general approaches
for extracting IoCs from threat reports: manual labeling,

automated extraction, and automated retrieval from threat
intelligence sharing platforms. As noted repeatedly [6], [1],
[7], [8], manual labeling is the most accurate approach
to extract IoCs from unstructured threat reports. However,
this requires significant domain knowledge and can be
very time-consuming, making it expensive and difficult
to scale [1], [6], [7]. Automated IoC extraction tools,
including recent work that leverage large language models
(LLMs) [9], [10], [11], offer potential efficiency but often
lack the necessary accuracy due to the complexity of natural
language in technical cybersecurity reports, the variability
in IoC presentation, and the difficulty in distinguishing
true IoCs from similar-looking but benign artifacts (e.g.,
indicators such as benign domain names, IP addresses, and
URLs that are not related to the threats described in the
reports). Finally, while there exist efforts to distribute IoCs
to the community in an easy-to-parse structured format,
for instance via threat exchanges (e.g., AlienVault [12]),
threat report databases (e.g., orkl.eu), and online security
scanners (e.g., VirusTotal [13], [14], [15], [16]), we find
that popular threat report IoC exchanges like AlienVault,
often automatically extract IoCs from unstructured TRs
with low precision (<80%), recall (<80%) and/or coverage.
As a result, these approaches either incur high manual work
factor costs or yield unreliable intelligence, underscoring the
need for a new solution that is both accurate and efficient.

To address these challenges, we propose the first IoC
extraction approach that combines automated extraction
supported by explainable AI with human-in-the-loop
verification. Our central hypothesis is that large language
models (LLMs), when guided by properly engineered
prompts and paired with analyst feedback, can match
or surpass the accuracy of manual-only labeling while
significantly reducing the time cost of human effort. In
our evaluation, we observe a 43% reduction in parsing
time compared to manual-only workflows. Importantly,
our pipeline design and prompt engineering strategies
are model-agnostic and generalize across most state-of-
the-art LLMs, enabling flexible deployment in diverse
environments. By integrating human analysts in the IoC
extraction process, we can leverage the speed of automation
while ensuring high precision through human judgment.
Similar “human-in-the-loop” (HITL) approaches have
been successfully demonstrated in other domains where

https://arxiv.org/abs/2506.11325v1


high-accuracy data labeling and expert oversight are critical,
such as medical applications and some computer vision and
natural language processing tasks [17], [18], [19], [20]. To
the best of our knowledge, we are the first to adapt the HITL
approach for the efficient and accurate labeling of IoCs
from unstructured reports. To this end, we develop a HITL
system that provides: (1) visual assistance (via highlighted
text) that allows analysts to quickly identify indicators of
interest in unstructured (potentially long) threat reports;
and (2) color-coded IoC labels assigned by an LLM, each
accompanied by an explanation of the contextual cues
used to justify the label – designed following principles of
effective data visualization [21], [22], [23].

Figure 1 shows an overview of our system. It consists
of LANCE and a human-in-the-loop (HITL) component
where analysts, supported by LANCE and by a custom
web-based user interface, assign labels to IoCs found in
threat reports. Thanks to our system’s custom user interface
and explainable LLM-based IoC labels, analysts can quickly
confirm or correct the label recommendations throughout
the report, thus boosting accuracy and efficiency. To evaluate
our approach, we applied it to 50 real-world threat reports
from reputable sources and observed that junior analysts
made fewer labeling errors when assisted by our system. We
then used the system to construct PRISM, a high-quality,
manually validated dataset of 1,774 labeled IoCs, including
domains, URLs, IPs, and file hashes. PRISM supports both
training and evaluation of IoC extraction tools and serves
as the first openly available benchmark for this task.

In summary, the main contributions of this work are:

• Human-in-the-Loop IoC Labeling System: The
first human-in-the-loop system for IoC extraction
and labeling from threat reports, which combines an
LLM-based automated and explainable IoC labeling
process with manual verification to minimize
labeling costs and maximize accuracy.

• LANCE: The LLM–based labeling component that
provides explainable classifications of indicators
from unstructured threat reports. This explainability
allows for faster human validation, reducing anno-
tation time by 43% compared to manual labeling.

• Review of Existing IoC Extraction/Labeling
Systems: We review and attempt to reproduce
previous work on IoC extraction and labeling,
including automated IoC extraction systems and
threat exchanges. Our results show that existing
available systems (specifically, systems whose code
is available and reusable, or can be accessed via an
API) either lack precision (i.e., high false positives)
and/or recall (i.e., high false negatives).

• PRISM: The first open, fully manually validated,
and well-documented benchmark dataset of IoCs
from threat reports, consisting of 1,791 indicators
extracted from 50 real-world threat reports. Our
dataset, called PRISM, is designed to support both
future training/testing of IoC extraction/labeling
models and as a common evaluation dataset for
comparing IoC extraction systems among each other.

We will make the HITL system, LANCE, and PRISM
available to the research community upon publication.
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Figure 1: Overview of the human in the loop (HITL) IoC
extraction pipeline. It combines automated extraction and
LLM-based labeling (LANCE) with manual annotation,
thus promoting efficient, high-confidence IoC labeling.

2. Background and Related Work

In this section, we analyze the challenges that affect
automated IoC extraction and the implications of IoC
misclassifications. We then present the IoC ground truth
generation methods used in recent works.

2.1. IoC Extraction Challenges and Previous Work

Extracting Indicators of Compromise (IoCs) from
unstructured threat reports is far from straightforward.
While IoCs like IP addresses, domains, URLs, and file
hashes are vital for threat detection and response, they are
often buried in reports that lack consistent formatting. These
indicators may appear inline, in tables, or within images, and
their relevant context may be scattered throughout the doc-
ument [8]. This fragmented presentation makes it difficult
for automated tools to reliably detect and interpret IoCs.

A further complication lies in differentiating true IoCs
from benign artifacts that share similar structure [24], [5].
Regular expression–based extractors, though widely used,
frequently overreport by flagging non-malicious entities
such as popular domains embedded within malicious
URLs [1]. Because maliciousness is context-dependent,
identifying IoCs accurately requires understanding context
that is not always located near the indicator itself, making
it difficult for NLP methods to draw accurate associations.

To address these challenges, a range of extraction
methods have been proposed, spanning rule-based
approaches [1], [25], NLP [8], [26], [27], machine learning
(ML) [28], [29], [30], [31], deep learning (DL) [7], [32],
[24], [2], [6], [5], [33], including LLMs [9], [10], [11], and
graph-based techniques [34], [35]. Yet each approach has its
drawbacks. Rule-based systems lack contextual awareness.
NLP models often struggle with inconsistent grammar,
distant dependencies, and report structure [29]. ML and DL
techniques require large, accurately labeled datasets, which
are scarce [8], [6], [2]. LLM-based approaches are prone
to hallucinations and are limited by their context window
[9], [10], [11], [36], [37].

The most reliable and commonly used method remains
manual labeling [1], [25], [8], [27], [29], [28], [31], [5],
[7], [2], [32], [33], [6], [35], [34]. Unfortunately, despite
its higher accuracy compared to automated extraction, it is
expensive, time-consuming, and does not scale to meet the
growing volume of threat intelligence [1]. Similarly, Cyber
Threat Intelligence (CTI) platforms, which aim to streamline



indicator sharing, often provide IoCs without essential
contextual metadata, such as attack stage or malware
behavior, that is necessary for assessing relevance [26].

Our HITL system is different from previous work in
that it addresses the above challenges by providing LLM-
generated, context-aware IoC labels to human analysts who
can quickly validate or correct ambiguous labels with full
visibility into the broader document structure.

2.2. IoC Ground Truth Generation Methods

Our HITL approach integrates analyst review into the
pipeline to improve IoC labeling fidelity and enable the
generation of high-quality ground-truth benchmark datasets.

Incorrect ground truth (GT) data, with mislabeled
benign/malicious indicators, harms both training and
evaluation of automated systems [38], [39]. Models trained
on noisy labels risk learning incorrect patterns, overfitting,
or failing to generalize. For example, labeling “github.com”
as malicious teaches the model to overreport benign indica-
tors, while missing actual threats reduces future detection
capability. Ambiguity in what constitutes maliciousness,
often context-dependent, further complicates matters.

In practice, misclassifications carry real-world
consequences [40], [41], [42]. False positives increase
alert fatigue and waste analyst effort, while false negatives
let threats bypass detection. These mistakes degrade the
efficacy of threat detection systems and damage trust in
automation. Addressing them requires both better extraction
methods and access to clean, well-labeled datasets that
reflect real operational challenges.

To understand how IoC ground truth has been generated
so far by the research community and extract useful lessons,
we conducted an extensive survey of peer-reviewed papers
focused on extracting IoCs from unstructured threat reports.
We selected papers that use diverse techniques for extraction
and IoC extraction is one of their main contributions. Table
1 summarizes each method’s technique, GT strategy, dataset
size, availability of the code and dataset, and usability
of any available code. For all the tools for which the
code and/or the dataset were not available, we contacted
the authors twice in an attempt to obtain them. Our
analysis reveals a lack of transparency in GT construction
and limited availability of datasets and code, hindering
reproducibility and fair comparison.

Based on our extensive literature search, we identified
six common GT creation strategies: manual labeling, Virus-
Total (VT)-based validation, RegEx-based matching, curated
lists, unsupervised methods, and forum-based sources.

Manual Labeling: The vast majority of prior works
rely on manual GT creation, with over half using it
exclusively. Manual efforts ensure precision but are time-
consuming and unscalable. Tools across all categories,
including rule-based systems [1], [25], NLP-based systems
[8], [27], machine learning (ML) systems [29], [28], [31],
deep learning (DL) models [5], [7], [2], [32], [33], [6], and
graph-based approaches [35], [34], use manual labels to
train or validate their systems. Despite the high precision,
this approach lacks scalability.

VirusTotal-Based Validation: More than one third of
the works, mainly ML systems [28], [29], [30], [31] but

also DL models [24] and graph-based implementations
[35], use VirusTotal (VT) to validate extracted IoCs. While
VT offers broad coverage, threshold choice is inconsistent
across studies, and VT can introduce false positives or
negatives [14], [15], [16].

RegEx-Based Matching: Widely used in both
extraction and GT creation, regular expressions (RegEx)
provide high recall but poor precision due to limited
contextual awareness (e.g., IoC Searcher [1]). Most systems
use RegEx in conjunction with other methods to improve
accuracy [26], [30], [7], [24], [2], [6].

Threat Exchanges and Other Information Sharing
Platforms: Some systems enrich their datasets with
indicators gathered from forums or open-source threat
sharing platforms (e.g., AlienVault) [7], [2], [6], [35].
However, these forums are often noisy and unreliable,
requiring extensive filtering and manual verification.

Curated Lists: Static IoC lists, while easy to use,
are rarely sufficient alone. They are typically combined
with RegEx or manual validation to boost coverage. Tools
such as Twiti [29] and CTI View [6] use curated lists for
labeling or cross-checking, though the lists’ limited update
frequency can hinder relevance for emerging threats.

Unsupervised Methods: Techniques like those used
in TIMiner [26] leverage context-based heuristics and
keyword co-occurrence to identify IoCs. While scalable,
these methods are prone to context-related mislabeling.

We evaluate the most prominent ground truth creation
methods and combinations of methods in section 5.1.1.

2.3. Investigating Errors of Existing Ground Truth
Creation Systems

To understand the errors that common ground truth
creation methods make and their sources, we review two
representative systems that are often used to collect IoCs
found in unstructured threat reports, IoC Searcher [1]
and AlienVault [7], [12]. We evaluate the tools on 10
threat reports published in 2024, sourced from AlienVault’s
database, and parsed manually by two analysts, resulting in
517 confirmed IoCs. IoC Searcher is a state-of-the-art rule-
based tool with public code that has been compared to other
similar tools by previous work [1], [30], and this evaluation
provides a robust baseline for assessing both tools.

IoC Searcher produced 126 false positives. The most
common error was “Not Malicious” (52 instances),
where benign entities like domains (e.g., “msn.com”,
“github.com”), IPs, (e.g., “1.1.1.1”, “4.2.2.4”), URLs, and
hashes were misclassified as IoCs solely based on their for-
mat, without considering the surrounding context indicating
they were benign. A second major error type involving
semantic misclassification (“File Path”), was benign paths
flagged as domains/URLs due to superficial string patterns
(e.g., “do.zip”, “asp.net”). Other types of errors occurred by
“TLD” misclassified as IoC domains, indicators pointing to
the “Reporting Company” extracted as IoCs, substrings of
an actual IoC, and indicators with placeholders or reduced
parts in them (e.g., “www.[reducted].com”, “microsoft-
update-com.github.io/XXX/update.html?id=[GUID”). These
results reflect the limits in contextual understanding and
formatting variability. Despite these issues, IoC Searcher



Technique IoC extraction Ground Truth (GT) Creation Methods GT Size Availability Code
Tool Manual VT RegEx TI Platforms Lists Unsupervised Malicious Not Malicious Code Dataset Usability

Rule Based IoC Searcher [1] ○ 29 77 ✓ ✓ ○

STIXnet [25] ○ ✓ ○

NLP
ChainSmith [8] ○ 6,264
TIMiner [26] ✓ ✓

Xiao [27] – 435

Machine Learning

IoCMiner [28] ○␣ ✓ 45 297 ✓ ✓ ○

Gharibshah [31] – ✓ 14,268
Twiti [29] ○␣ ✓ ✓ 50,653 ✓

IoC Stalker [30] ✓ ✓ 63,903 439,586 ✓ è

Deep Learning
& LLM

Long et al. [5] – 69,032
iACE [7] ○ ✓ ✓ 1,500 3,000
AITI [32] – 1,782 1,782

AspIOC [24] ✓ ✓ 50,235 50,185 ✓

STIOCS [2] – ✓ ✓ 5,922 ✓

Zhou et al. [33] – 69,032
CTI View [6] – ✓ ✓ ✓ 17,364

Graph-based DL HinCTI [35] è ✓ ✓ 11,340
HINTI [34] – 30,000 ✓

TABLE 1: Summary of IoC extraction tools and their ground truth (GT) creation methods, grouped by extraction technique.
The Manual column denotes the extent of manual labeling, with ○ indicating extensive and clearly documented manually
labeling, è partial manual labeling with documentation, ○␣ minimal manual labeling with documentation, and “–” a claim
of manual labeling but without sufficient explanation. Check marks (✓) in the GT Creation Methods columns indicate that
the paper employed the corresponding method. We report malicious and non-malicious samples’ GT sizes where available.
✓ in Availability indicates publicly available code and/or dataset. A ○ in the Usability column marks that we successfully
used the tool, while a è indicates that the tool was usable but out of scope (e.g., works on input types that do not include
threat reports).

showed high recall, missing only 9 indicators. Most errors
stemmed from newlines splitting indicators, incorrect type
detection, or partial matches (“Found Longer Variant”).

Most of the 64 false positives in AlienVault’s dataset
were indicators that did not appear in the reports, often
due to inferred relationships like alternate file hashes (e.g.,
SHA1→SHA256). Even though these indicators might be
useful, they do not appear in the report and are difficult to
validate. In terms of false negatives, the dataset missed 67
IoCs. Among these, 60 were entirely missing, 6 were split
across lines, and 1 was only partially matched. These results
highlight that even widely used platforms like AlienVault
suffer from coverage gaps and labeling inconsistencies.

Overall, this analysis illustrates the key limitations of
automated IoC extraction tools: poor context handling,
formatting brittleness, and inconsistent labeling. These chal-
lenges motivate our hybrid human-in-the-loop (HITL) de-
sign, which combines automated context-aware suggestions
with validation from analysts, thus avoiding these pitfalls
and producing a more precise and high-quality dataset.

3. IoC Labeling Methodology

In this section, we present our methodology for labeling
IoCs extracted from unstructured threat reports. We
begin by formally defining the problem, the goals of our
methodology, and the constraints that guide our human-in-
the-loop design. We then describe LANCE, our LLM-based
system for generating explainable IoC labels, detailing its
architecture. Next, we introduce the custom user interface
developed to support analyst interaction, enabling efficient
validation and correction of LLM-generated labels. Finally,
we explain the full dataset creation process.

3.1. Problem Definition, Goals, and Constraints

In Section 2.2 we examined the ground truth creation
methodology of 18 prominent IoC extraction papers,
analyzing the transparency of their methods, the availability,
and usability of their code and datasets, as summarized in
Table 1. We observed significant variance in how ground
truth was created. Manual labeling was often poorly
documented, making it unclear what role human input
played in the dataset creation process. Furthermore, only
one paper made both its code and dataset publicly available,
with one more sharing them upon request. These limitations
have been echoed in recent studies [43], [1], [2], [8], [4].

The lack of transparency in ground truth construction,
combined with the unavailability of the underlying datasets,
severely impedes reproducibility, fair tool evaluation, and
comparison. This not only slows progress in the field but
also diminishes trust in automated IoC extraction systems
due to unclear validation paths and opaque data pipelines.

To overcome these limitations, we introduce a novel
IoC extraction and labeling methodology based on a
Human-in-the-Loop (HITL) framework, which we use
to construct the first openly available and thoroughly
documented benchmark dataset for IoC extraction from
threat reports, called PRISM. Our HITL pipeline integrates
large language model (LLM)–generated labels with analyst
oversight, enabling both high-precision labeling and
significant reductions in human effort. Rather than treating
human labeling and automation as mutually exclusive
approaches, we combine them into a cohesive workflow in
which explainable LLM predictions guide human decisions,
and human validation resolves ambiguity.

Our methodology aims to achieve these main objectives:
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Figure 2: Overview of the LANCE pipeline. Indicators are
extracted using regular expressions, labeled by an LLM
using contextual report segments, and finalized through a
voting mechanism to resolve overlapping predictions.

• High Accuracy: The dataset must minimize both
false positives and false negatives to ensure fidelity.

• Manual Work Factor Effectiveness: The labeling
workflow should reduce total analyst hours without
compromising label quality.

3.2. LANCE

To streamline the IoC extraction and labeling process,
so we can minimize the time the analysts need to spend on
the task, we developed LANCE: LLM-Assisted Notation
and Classification Engine, a tool that automatically
extracts and labels Indicators of Compromise (IoCs)
from unstructured threat reports. An overview of LANCE
can be seen in Figure 2. The extraction phase utilizes a
rule-based approach using regular expressions, while the
labeling is performed by a Large Language Model (LLM).
Explainability is central to our HITL design. By requiring
the LLM to justify each classification decision, we shift the
downstream analyst’s role from being a manual extractor
to that of an informed validator.

3.2.1. Rule-based Extraction. Regular expression-based
tools are highly effective in achieving high recall for
IoC extraction but struggle with precision as discussed
in Section 2.3, as they cannot differentiate between
malicious and non-malicious indicators. Given the above,
we employed regular expressions for the extraction step to
ensure broad coverage of potential IoCs.

While RegEx-based tools like IoC Searcher maximize
recall, they lack contextual understanding. In our pipeline,
this extraction phase is intentionally broad: it ensures
full coverage so that no potential IoC is missed, with
human and LLM refinement steps later correcting for
over-inclusion. This supports a recall-first strategy where
precision is restored through layered validation.

For this purpose, we adopted IoC Searcher, a regular
expression-based tool proposed by Caballero et al.[1],
and integrated it into our pipeline (Figure 2 part 2). As
discussed in Section 2.3, IoC Searcher demonstrates high
recall across various IoC types, making it well-suited for
the initial extraction phase [1], [30]. We used the tool
without modifications, as it has been evaluated in prior
research and outperformed other regular expression-based
IoC extraction tools [1].

3.2.2. LLM-based Indicator Labeling. For the labeling
phase, we are employing a conversational LLM with zero-
shot learning. Each report is processed iteratively for each

IoC type, with the LLM classifying extracted indicators as
either IoC or nonIoC based on their surrounding context.

To handle long reports, we implemented a rolling
window approach with a segment size of approximately
8000 characters (Figure 2 part 3), ensuring splits occurred at
the nearest whitespace to preserve readability. This approach
has been shown to improve the performance of LLM [44],
[45]. To mitigate content loss at segment boundaries, we
introduced a 50% overlap between consecutive segments.
This implementation ensured that no critical context was
lost in segmentation [46].

For each segment, we provide the LLM with the
segment text along with a list of all extracted indicators (of
the target type) from that segment (Figure 2 parts 3 and
4). We then prompt it to classify each indicator as IoC or
nonIoC and provide a justification for its label (Figure 2 part
5). Including justifications enhances the labeling process’s
interpretability, offering insights into why a particular
indicator was classified as malicious or benign. This level
of explainability is crucial for understanding the decision-
making process and enables better auditing of the output.

Since some indicators appeared in multiple segments,
we implemented a voting mechanism to consolidate
classifications across the entire report (Figure 2 part 7).
The voting thresholds and the ratio of IoC to nonIoC
labels required for a final classification were treated as
hyperparameters. We empirically fine-tune the voting
threshold for each type (see Appendix A).

Regarding the prompts given to the LLM, after extensive
iteration and error analysis, we finalized a robust structure
that improves both precision and model reliability across
IoC types. The final prompts consist of the following
components:

• Specify the role of the LLM.
• Clear definition of what the input is.
• Clear definition of the classification task.
• Explicit definitions for “IoC” vs “nonIoC”.
• Descriptions of common false positives/negatives.
• Clear definition of the justification task.
• Explicit instructions to be careful and thorough.
• Specification for the expected output format.

These design elements significantly reduced error rates,
particularly in complex cases, including domains and
URLs, where indicators often resemble benign artifacts or
contain embedded nonIoC substrings. A detailed analysis
of the prompt engineering phase and evaluation of the
prompts can be found in Appendix A.

3.3. Custom User Interface

Once LANCE-labeled IoCs are extracted, they are
shown to the analyst in context within the related
threat report document, alongside LLM-generated label
explanations. This structure reduces human effort and
allows experts to focus only on the most ambiguous cases
with full visibility into the model’s reasoning.

To this end, we developed a custom user interface (UI)
to assist analysts in the label verification/correction task.
In the UI, the analysts are able to load a threat report for
processing. All indicators (IPs, URLs, domains, and hashes)



extracted by LANCE are highlighted with a color-coded
scheme, making them easily visible to the analysts [21],
[22], [23]. The colors we use are either green, for non-IoC
indicators, or red for indicators labeled as IoC. A view of
the User Interface can be seen in Appendix E, Figure 12.

The user interface provides the analyst with the
LANCE-generated label and justification. The analyst has
the option to either accept or override the generated label.
The interface also enables analysts to view justifications
by hovering over indicators as well as adding additional
comments for future reference. After all labels are finalized
by the analyst, they can be exported in a structured format
along with all justifications and additional comments
optionally provided by the analyst.

The user interface is not merely a visualization tool. It
operationalizes the human-in-the-loop paradigm by making
model predictions transparent, actionable, and easy to
confirm or override. This design reduces annotation effort
and supports our goal of a scalable expert-guided validation.

4. PRISM Dataset Creation

We now describe how we use the HITL system described
earlier (Figure 1) to create our PRISM dataset. The labeling
pipeline we use is depicted in Figure 3. We start by
describing our ground truth generation methodology with
human vetting, and then discuss our concrete application
of this methodology to the PRISM dataset. We describe
PRISM first here, and later (in Section 5) use the manually
verified IoC labels obtained during this dataset creation
process to evaluate LANCE’s accuracy by measuring its
level of agreement with expert threat analysts.

4.1. Methodology Overview

For the dataset creation, given a set of threat reports, we
first divide them into two equal subsets, ensuring a balance
in average report length, indicator density, and distribution
of indicator types. The two sets are used in two separate
manual labeling pipelines: the Baseline Annotation Pass
(BAP) and the Guided Annotation Pass (GAP). A detailed
analysis of each is given in this section.

All reports are processed through LANCE to extract and
label indicators. For the creation of PRISM, we assigned
each report to junior analysts who parsed the report indepen-
dently to facilitate comparison and identify discrepancies.

To further increase the quality of the PRISM dataset as
well as to evaluate the effects LANCE had on the junior an-
alysts, we also employed a senior analyst. The senior analyst
annotated only the reports that had indicators that the junior
analysts disagreed on. This way, we minimized the time the
senior analyst needed to spend on labeling indicators and
used their expertise only on the difficult-to-label indicators.

4.1.1. Baseline Annotation Pass (BAP). For this part,
we gave the first set of reports to the junior analysts,
with the goal of labeling the indicators in the reports as
“IoC” or “nonIoC”. The reports were given to the analysts
through the user interface described in Section 3.3, with
the crucial difference that the analysts could not see the
LANCE-generated labels and justifications. In each report,

they were able to see all the indicators highlighted in the
report with a neutral color (blue). A view of the User
Interface used for BAP can be seen in Appendix E in
Figure 13. The analysts were able to assign and change the
label of each indicator in an easy and quick way.

The junior analysts were instructed not to use any
external sources that would help them choose the label
of an indicator, and to rely on the context in which the
indicator appears in the report. The types of indicators that
were targeted were explained to the analysts so they could
avoid confusion with indicator-like strings that the regular
expression part of LANCE might have extracted. In the
cases of an indicator appearing more than once in a report,
the label assigned by the analyst to that indicator appeared
in all instances of the indicator.

A short video tutorial of the User Interface was
provided, as well as written user instructions and task
details. Finally, after labeling all the indicators of a report,
the labels were stored in a JSON file.

The junior analyst received the following instructions:

• Label all extracted indicators (domain, IP, URL,
HASH) in each of the assigned reports as IoC or
nonIoC using the web interface.

• An IoC is an indicator that suggests compromise
or malicious activity based on the context provided
in the report.

• Complete labeling for each report in one sitting,
but you may take breaks between reports.

• Do not use the internet or external resources. In-
stead, base your decisions only on the report content.

After the end of the junior analysts’ task for BAP, we
used the labels from the junior analysts to find disputed
indicators. We define a disputed indicator as an indicator for
which there was no total agreement between the labels of the
analysts and the LANCE-generated label. For example, if
LANCE and a junior analyst agree that an indicator should
be labeled as an “IoC” but another junior analyst labeled
that indicator as “nonIoC”, then this is a disputed indicator.

The reports that included at least one disputed indicator
were tagged as disputed reports and were given to a senior
analyst to determine the correct label of the indicators.
These reports were given to the senior analyst through the
same UI and with the same instructions as it was given to
the junior analysts.

The senior analyst was tasked to label all indicators in
the disputed reports, not only the disputed indicators. This
way, we could see if there were other indicators that were
labeled falsely by both the junior analysts and the LLM.

4.1.2. Guided Annotation Pass (GAP). For the second
part of the ground truth creation setup, we used the second
set of reports. The setup for GAP was similar to that of
BAP with the exception that the analysts did have access to
the labels that were assigned to the indicators by LANCE,
as well as the justifications that LANCE provided for this
choice. This allowed the junior analysts to be “advised” by
LANCE while labeling each indicator.

The junior analysts did not have access to any source
of information other than the report and LANCE-generated
labels and justifications.
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The junior analyst received the following instructions
in this part:

• Review the assigned reports where indicators
(domain, IP, URL, HASH) have already been
labeled by the system, along with justifications.

• An IoC is an indicator that suggests compromise
or malicious activity based on the context provided
in the report.

• Identify and correct any incorrect labels, providing
a short comment for corrections where necessary.

• Complete labeling for each report in one sitting,
but you may take breaks between reports.

The main motivation for this part of the setup was to
evaluate the influence the LANCE labels and justifications
had on the analysts. Given that the LLM might have more
information about certain indicators, we expected it to be
able to “persuade” the analysts that its label was correct
without changing their minds when its approach is incorrect.

After annotation, disputed indicators were identified,
and the reports that contained at least one disputed indicator
were assigned to the senior analyst for final validation.

4.2. PRISM Dataset Details

To construct PRISM, our benchmark dataset of labeled
IoCs, we first curated a diverse set of 500 threat reports from

ORKL [47], an online repository containing over 13,000
reports from 11 reputable sources, including MITRE, APT-
notes, CyberMonitor, and Malpedia [48], [49], [50], [51].
These reports span a 20-month period from April 2023 to
November 2024 and vary in length, origin, and IoC density.

To ensure relevance and quality, we filtered for reports
that also appeared in AlienVault [7], a widely used threat
intelligence platform. Specifically, we selected reports pub-
lished by AlienVault’s official user account, which aggre-
gates high-quality reports from vendors such as Kaspersky,
Palo Alto Networks, and Microsoft. From this filtered cor-
pus, we identified 50 reports that (i) appeared on both ORKL
and AlienVault, (ii) were fewer than 30 pages in length, and
(iii) contained more than 5 unique indicators. Although this
threshold provides only an upper bound on the number of
true IoCs, it serves as an effective proxy for report richness.

These 50 reports were used to construct the ground truth
dataset following the annotation methodology described
in Section 4.1. To annotate the reports, we recruited five
junior analysts-PhD students specializing in cybersecurity,
and one senior analyst with seven years of experience in
threat hunting.

The 50 reports were divided into two equal subsets of 25
for the two annotation phases: the Baseline Annotation Pass
(BAP) and the Guided Annotation Pass (GAP). The sets were
balanced in terms of average report length, indicator density,
and distribution of IoC types. Table 2 shows the total number



of non-unique indicator instances per type for each set.
For the LANCE implementation, we used ChatGPT 4o

as the underlying LLM [52]. Each report was independently
labeled by two junior analysts. We evenly distributed the
workloads in terms of reports, indicator counts, and
inter-annotator overlap across the analyst pairs.

Indicator Type BAP GAP Total
IP 177 112 289
Domain 694 729 1423
URL 426 445 871
HASH 962 758 1720
Total 2259 2044 4303

TABLE 2: Analysis of non-unique indicator instances in
reports for BAP and GAP, including total sums and per
IoC type.

Disagreements between annotators, or between
annotators and the LANCE-generated labels, were flagged
as disputed. We identified 15 reports from BAP that had
at least one disputed indicator and 9 from GAP. These
reports were escalated to the senior analyst, who re-labeled
all indicators in those reports to ensure consistency and
completeness. Figure 4 shows the agreement ratios between
annotators and with LANCE.

Indicator BAP GAP Total
Type IoC nonIoC IoC nonIoC (IoC + nonIoC)
IP 97 0 58 3 158
Domain 176 113 105 143 537
URL 156 63 100 47 366
HASH 309 1 400 3 713
Total 738 177 663 196 1774

TABLE 3: Analysis of unique IoC and nonIoC indicators
for BAP and GAP, including total sums and per IoC type.

This methodology resulted in 1,774 high-confidence,
expert-reviewed labels. The combination of unaided
annotation (BAP) and LANCE-assisted annotation (GAP),
along with senior analyst arbitration, ensures PRISM is both
rigorous and reproducible, offering a high-quality ground
truth for fair evaluation and training of IoC extraction
systems. Table 3 presents the number of unique labeled
indicators, both IoC and nonIoC, for each annotation phase
and indicator type.

The Precision, Recall, and F1 scores that the junior
analysts achieved compared to the final ground truth can
be seen in Figure 5.

5. IoC Labeling Evaluation
In this section, we evaluate LANCE by comparing

it with other prominent automated ground truth creation
methods. We also evaluate its downstream utility and its
ability to generalize across different state-of-the-art LLMs.
Finally, we evaluate the proposed HITL pipeline by com-
paring its impact on junior analysts, specifically in terms of
how it influenced their precision, recall, and labeling speed.

5.1. LANCE Evaluation

5.1.1. Comparison with Existing Automated IoC Label-
ing Systems. We use PRISM, our dataset of IoCs that are

manually labeled by multiple threat analysts (see Section 4),
to evaluate the most prominent existing automated ground
truth (GT) creation methods discussed in Section 2.2, and
compare them with LANCE. Specifically, we assess four
strategies based on their extraction and labeling perfor-
mance: (1) IoC Searcher with whitelist-based filtering [1],
(2) AlienVault [7], and (3,4) VirusTotal-based labeling with
two thresholds [24], [35], [31], [30], [29]. None of the
mentioned GT creation methods requires training.

Evaluation Setup: For the RegEx + Whitelist method,
we implemented the GT creation pipeline from the Good-
FATR paper [1], which supplements rule-based extraction
by IoC Searcher with whitelist and frequency-based filtering
to reduce false positives. The AlienVault method involved
retrieving all IoCs (including inactive ones) linked to each
report from the AlienVault platform [7]. All indicators not in
the platform were considered unlabeled and treated like non-
IoCs. For the VirusTotal-based methods, we followed prior
work [30], [29], [24], [31] by extracting indicators with IoC
Searcher and labeling them based on VirusTotal lookups. We
used two thresholds: Threshold 1 labels an indicator as IoC
if at least one vendor flags it as malicious, and as nonIoC
if all vendors deem it benign. Threshold 5 raises the bar,
requiring five or more malicious detections to label an indi-
cator as IoC, while indicators with fewer than five malicious
detections are labeled nonIoC. Indicators not included in the
database are left unlabeled and are considered as nonIoC

Coverage Analysis: We assume a total of 1,789
candidate indicators, extracted using IoC Searcher, a
state-of-the-art rule-based tool [1], [30], [24], [31]. Figure 6
shows the ratio of unlabeled indicators across methods. The
RegEx + Whitelist method labels all extracted indicators
but still suffers from poor precision due to insufficient
context awareness. The AlienVault method yields the most
unlabeled indicators (37%). When evaluating the ground
truth provided by AlienVault, we also observe that the sum
of Labeled and Unlabeled indicators exceeds the total of
1,789. This can be explained by the analysis in Section 2.3.
The VirusTotal-based methods leave over 280 indicators
unlabeled, suggesting that 16% of the indicators are absent
from the VirusTotal database. In contrast, LANCE labeled
over 99% of all extracted indicators, with the few unlabeled
cases attributed to malformed LLM outputs.

Takeaway: LANCE provides more comprehensive
extraction and labeling coverage than other prominent
automated ground truth creation methods.

Performance Analysis: Figure 6 summarizes overall
precision, recall, and F1 score for each method. We further
break down performance across the four IoC types (IP,
hash, URL, domain) in Appendix D (Table 7).

The RegEx + Whitelist method achieves almost perfect
recall but low precision, particularly for domains and
URLs, making it unsuitable for high-fidelity ground truth
creation due to excessive false positives. AlienVault shows
the lowest recall for URLs (25%) and significant gaps in
domain coverage (73% recall), likely due to incomplete
extraction. Its precision on hashes is also low (69%) because
many labeled hashes do not appear in the report text.
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Figure 5: Comparison of LANCE and analyst performance across precision, recall, and F1 score during both annotation
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VirusTotal with threshold 1 performs reasonably well,
achieving an average F1 score of 86%, with consistent
scores across indicator types. Threshold 5 has increased
precision; however, it suffers from low recall due to strict
filtering criteria, reducing its reliability for comprehensive
dataset creation.

LANCE outperforms all other methods, consistently
achieving over 90% F1 score across all types and 97.6%
overall. Its lowest score, 86.8% recall on domains, is due to
intentional disagreements between LANCE’s labels and the
senior analyst in cases involving compromised legitimate
websites. Notably, LANCE’s justifications showed aware-
ness of this nuance, reinforcing the importance of contextual
labeling aligned with downstream use cases. Appendix C
reports some concrete examples of such scenarios. These
discrepancies between LANCE and the senior analyst’s
labels highlight an important challenge: the definition of
what constitutes an IoC can, in some cases, be ambiguous as
it may depend on factors such as the time of observation, the
current threat landscape, and the specific downstream task
where the IoC labels will be used (e.g., detection, attribution,
or sharing)[30], [53], [54]. This further justifies the need
for manual verification with a human-in-the-loop approach.

Takeaway: LANCE outperforms all other prominent
automated ground truth creation methods in total
F1 score, maintaining consistently high performance
across all IoC types. This makes it the most suitable
approach for creating ground truth in high-stakes
security contexts.

5.1.2. LANCE Comparison With Naive LLM Prompts.
We evaluate how the LANCE pipeline impacts labeling per-
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ground truth creation methods

formance by comparing ChatGPT-4o [52] with and without
it. For this experiment, we input to ChatGPT the 50 reports
included in PRISM and naively prompt it to extract all IoCs
from the text. We run four such experiments, one for each
type of indicator. Finally, we compare the extraction and
labeling results to LANCE. As mentioned in Section 3, we
implement zero-shot learning, so there is no training needed.

As seen in Figure 7, LANCE performs significantly
better than the baseline naive ChatGPT in all metrics.
Specifically, the baseline approach achieves a 0.669 F1
score in total, with its F1 scores in URLs and Domains being
0.343 and 0.517, respectively. It is evident that the naive
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Figure 7: Performance comparison of LANCE and baseline,
naively prompted ChatGPT on PRISM.

approach suffers both in extraction and labeling capabilities,
which has also been shown in previous work [55]. This
demonstrates the necessity of the LANCE approach.

These results show that LANCE is critical in the
pipeline. Rather than relying on naive prompting, LANCE
strategically orchestrates LLM capabilities via prompt
design and context-aware segmentation and achieves high
precision on complex threat data. Without this pipeline,
the LLM underperforms by 30% in F1 score (as shown in
Figure 7).

Takeaway: Without structured guidance, LLMs like
ChatGPT 4o underperform in IoC extraction and label-
ing. LANCE significantly boosts both precision and re-
call, underscoring the importance of a tailored pipeline.

5.1.3. Downstream Utility Evaluation. To evaluate the
usefulness of the IoC labels automatically generated by
LANCE, we use it to train and then measure the effect
it had on the performance of IoCMiner [28], a Machine
Learning-based IoC classification tool. IoCMiner was
developed for labeling from tweets. Given that our dataset
consists of threat reports, we adapt our data by extracting
English sentences that include indicators. We only evaluate
its performance on IPs, URLs, and hashes since it was
designed to only extract these types.

Out of the 500 reports from ORKL mentioned in
Section 4.2 we use 450 for training and the other 50, which
are included in PRISM, for testing. To extract English
sentences from the reports, we first split the text of the
report on periods and then use IoC Searcher [1] to see if an
indicator of the targeted type is included in each sentence.
For the 450 reports of the training set, we generate labels
for the indicator in each sentence using the two highest
performing ground truth generation methods (VirusTotal
with threshold=1 and threshold=5) as indicated in Figure 6,
and LANCE, automatically generating three different
training sets (VT1, VT5, and LANCE). We train IoCMiner
[28] once for each different training set using the available
code and without altering the hyperparameters, and evaluate
the three separately trained versions of the model on PRISM.
The result of the evaluation can be seen in Figure 8.

We observe that the model trained on the dataset labeled
by LANCE achieves a superior F1 score in PRISM than the
models trained on datasets labeled by the other two methods.
This is consistent with previous evaluations of LANCE, as
in Section 5.1.1 we see that LANCE has superior labeling
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Figure 8: Comparison of IoCMiner’s [28] accuracy on
PRISM, based on differently created ground truths. The
ground truths for this experiment were labeled by VirusTotal
with threshold=5 (VT5), VirusTotal with threshold=1
(VT1), and LANCE. We see that the model trained with the
LANCE-generated ground truth outperforms the other two.

capabilities than Virsus Total with thresholds 1 and 5 and
better ground truth enables better-performing models [38],
[39]. More specifically, we see that the LANCE-trained
model outperforms the VT1-trained model by over 6% and
the VT5-trained model by over 8% in terms of F1 score.

Takeaway: Datasets created by the LLM-based
pipeline (LANCE) promote better and more robust
training than other automated ground truth creation
methods.

5.1.4. Generalization Across LLMs. To test the generaliz-
ability of our pipeline, we evaluate it across several state-of-
the-art LLMs. This not only tests the adaptability of LANCE
but also our broader hypothesis: that well-engineered
systems can remain effective across model families by ab-
stracting the labeling logic into prompts and input structure.

We tested LANCE on four additional prominent LLMs:
LLama 3.3 70b [56], Gemma 3 27b[57], Gemini 2.0
Flash [58], and Nvidia Llama 3.1 Nemotron 70b [59].
We test those LLMs on PRISM ground truth with the
same prompts that we developed in section 3.2. For our
experiments on GPT and Gemini, we used the provided
APIs, while we used the open-source pre-trained models
LLama, Nemotron, and Gemma that are available, with
quantization, on 2 A40 GPUs with 46068 MB of memory
each. To ensure a fair evaluation, we only tested the LLMs
on the 25 reports of BAP (where the GPT-based LANCE
labels were not available to analysts during ground truth
creation), eliminating potential bias.

We evaluated the four LLMs on the BAP-generated
part of the PRISM ground truth dataset. The results,
summarized in Figure 9, show that Gemma and Gemini
perform comparably to GPT, achieving total F1 scores of
0.98 and 0.92, respectively. Llama and Nvidia Nemotron
demonstrated moderate performance, which could likely be
improved with targeted prompt engineering. A more detailed
analysis of this comparison is presented in Appendix B.

In terms of coverage, Gemini and Nvidia Nemotron
failed to label only 19 and 22 indicators, representing
2.1% and 2.4% of the dataset, highlighting their strong
labeling capability relative to other leading approaches
(see Section 5.1.1). Llama and Gemma missed 84 (9.2%)
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Figure 9: Comparison of the F1 Score of the LANCE
implementation using GPT, Llama, Nvidia Nemotron,
Gemini, and Gemma on IoC Classification.

and 102 (11.1%) indicators, respectively, indicating lower,
though still substantial, labeling coverage.

In terms of processing time per report, GPT and
Gemini required approximately 2–3 minutes, while Llama,
Nemotron, and Gemma took around 20 minutes due to
more limited computational resources. Precise timing
comparisons are challenging, as external factors such as
network latency and server response times can significantly
influence the measurements and are not indicative of the
models’ inherent performance.

5.2. HITL Pipeline Evaluation

5.2.1. LANCE’s Effect on Junior Analysts’ Labels.
To evaluate the LANCE-generated and the junior analysts-
generated labels, we compare the Precision, Recall, and F1
scores they achieved on the 25 reports from the Baseline
Annotation Pass (BAP) part of the ground truth generation
methodology. We evaluate the results based on the final
ground truth labels of those 25 reports. In Figure 5, we see
that LANCE performed on par with the junior analysts.
In the more difficult indicator types, namely domains and
URLs we see an increase of 1.9% and 3.7% respectively in
F1 score. We also observed an increase of 1.4% in total Pre-
cision, with the same metric increasing by 5.3% in domains.
This means that LANCE produced fewer false positive
domains than the junior analysts. Finally, we can see that
LANCE achieved 6.9% higher recall in URLs, producing
fewer false negative URLs than the junior analysts.

Takeaway: LANCE-generated labels exhibit similar
levels of precision, recall, and F1 score to those
produced by junior analysts.

In Figure 5, we also see the performance the junior
analysts and LANCE achieved on the reports from the
Guided Annotation Pass (GAP) part of the ground truth
creation. In this part, the junior analysts had access to
the LANCE-generated labels and justifications during the
labeling of the indicators. With the assistance and the
additional information provided by LANCE, the junior
analysts performed better in total F1 score than LANCE
and, by extension, better than without LANCE assistance.

Takeaway: Junior analysts assisted by LANCE-
generated labels and justifications achieve higher
precision, recall, and F1 scores when labeling IoCs
from unstructured threat reports. This demonstrates
the practical benefit of LLM-assisted annotation
workflows for cyber-threat analysts.

5.2.2. Timing Evaluation. In addition to the Precision,
Recall, and F1 evaluation of the analysts (junior and
senior), we also evaluated the time variation due to the
provided LANCE-generated labels and justification in the
User Interface. We do that by automatically measuring the
time each junior analyst spent on each report in BAP and
GAP of the ground truth creation process.

From the results of those measurements, we see a 43%
drop in the average and median time the analysts spent on
a report. These findings validate a key goal of our HITL
approach: significantly reducing analyst workload without
compromising accuracy. The 43% reduction in annotation
time, when paired with consistently high precision and
recall, demonstrates that LLM-augmented interfaces can
streamline expert workflows by offloading routine labeling
while still allowing humans to oversee critical edge cases.

6. Conclusion

We addressed the challenge of extracting high-quality
Indicators of Compromise (IoCs) from unstructured reports
by introducing the first hybrid labeling system that com-
bines explainable LLMs with human-in-the-loop (HITL)
validation. Unlike naive LLM prompting or existing au-
tomated systems like VirusTotal and AlienVault, LANCE
achieves high precision and recall across all IoC types while
providing context-aware justifications for the analysts. Our
evaluation shows that while junior analysts alone perform
well, those assisted by LANCE complete tasks 43% faster
with improved accuracy, particularly on ambiguous types of
indicators like domains and URLs. This human-augmented
workflow enabled the creation of PRISM, the largest pub-
licly available expert-validated IoC dataset from real-world
reports. Our results show that a carefully crafted LLM-based
system guided by human oversight addresses critical chal-
lenges in IoC extraction, and our dataset lays the foundation
for more trustworthy and efficient methods in the future.
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Appendix A.
LANCE Prompts

This section presents the prompt engineering phase for
LANCE as well as the evaluation of the final prompts. For
both the prompt engineering phase and the evaluation of the
prompts, we used ChatGPT 4o [52] as the underlying LLM.

A.1. Prompt Engineering and Input Structuring

To evaluate prompt performance, we manually extracted
and labeled all indicators in 10 reports. These reports
were selected from AlienVault with the turgent of ensuring
diversity in structure, size, and IoC density. The indicator
extraction and labeling process was iterative, as some
indicators were missed or misclassified in the initial
extraction iteration.

We conducted 27 structured prompt tests to refine our
approach. Initially, we tested prompts that processed the
entire report while simultaneously targeting all IoC types.
However, this resulted in poor performance, including
high confusion and inconsistency in model responses.
This behavior has been well documented in the literature
[60], [61], [62].To address this, we modified the prompt
structure to classify each IoC type separately, leading to
more reliable and consistent results.

Each iteration involved reviewing model outputs for
false positives and false negatives. Based on observed
errors, we adjusted prompts for each IoC type to address
recurring misclassifications.

Due to the nature of the different types of indicators,
as well as the reasons for appearing in a report, some types
were more difficult to prompt than others. Specifically,
domain labeling was the most difficult task to prompt-
engineer for. In our experiments, we came across several
domain-like strings that were not actual domains. This was
to be expected if taking into consideration the analysis in



Prompt Technique Description Example
Role specification Specify the role of the LLM. You are a cybersecurity analyst.
Input definition Clear definition of what the input is. I will give you part of a cybersecurity report along

with some URLs found in that section.
Task definition Clear definition of the classification task. Your Task is to label each of the given URLs as either “IoC”

or “nonIoC” based on the context that the URL is given
in the report.

Definition of Terms Explicit definitions for “IoC” vs “nonIoC”. Label as “IoC” the URLs that are Indicators
of Compromise (IoCs) related to malicious activities,
such as phishing, malware, or other cyber threats, and as
“nonIoC” if they are not referenced in the context of IoCs.

Reference to common Descriptions of common false positives/negatives. If a given URL is not complete (eg. is split by a new line or
mistakes has a placeholder), do not label it as an IoC.

Do not return URLs that were not in the given list, but make
sure that you return all the URLs in the given list. I want you
to make sure that the number of URLs in the “Extracted URLs”
list that I give you is the same as the number of URLs
you return.

Secondary task definition Clear definition of the justification task. I also want you to justify your choice of the label for each URL.
Thoroughness Reminder Explicit instructions to be careful and thorough. Go through the report part twice to make sure

your labeling and justifications are correct.
Make sure that for each URL you followed all the given
instructions.

Output format request Specification for the expected output format. Return all the URLs, their label, and the justification
separated by “,”, one per line, with no additional text.
The list might be empty, in that case, return an empty output.

TABLE 4: LANCE prompt structure and example. The example prompt in the corresponding column is the final prompt used
for LANCE for the labeling of URLs. The same techniques and structures were used as needed for the rest of the IoC Types.

Section 2.3. In addition, the appearance of nonIoC domains
in IoC URLs was very common, making it necessary for
the prompt to cover these instances of domains.

The second most difficult type was URLs. The difficulty
of labeling URLs arose from the fact that in several cases,
there were placeholders in the extracted URLs, as they
were included in the threat report as examples. Even
though the obvious cases could easily be tackled with
rule-based implementations, there were several cases where
the example/placeholder part of the URL was not obvious
or representable by a specific rule. Thus, we needed to find
a way to describe the problem to the model and request it
to label as “nonIoC” these URLs.

The prompts for IPs and file hashes were easily
engineered in early iterations of the process.

During our tests, there were some occasions when we
found that the prompt engineering was not enough to tackle
the problem at hand, so we implemented other techniques,
such as the rolling window input. We chose a size of 8000
characters, as this is close to the maximum number of
tokens that state-of-the-art LLMs can output. Even though
a token can include more than one character, we wanted
to make sure that in cases where all 8000 characters were
a list of important strings (e.g., Hashes), the model would
be able to output them properly with their label. To make
sure that no information would be lost due to the splitting
of the report, we implemented an overlap of 50% in each
consecutive report segment [46], [63], [64], [65].

The techniques analyzed in Section 3.2.2 as well as the
corresponding parts from the final prompt used for URLs,
can be seen in Table 4. By constructing our prompts this
way, we address most of the pitfalls the LLM can fall into
and steer it away from common inaccuracies.

We used the same set of reports to fine-tune the voting
threshold for each indicator type. We initially set the voting

threshold at 50% and adjusted it iteratively to optimize
performance, ensuring consistency in classification on the
prompt training set.

A.2. Prompt Evaluation

For the evaluation of the automated IoC extraction
pipeline, we collected the 10 most recent reports added
to the AlienVault database from their original user profile.
We then manually extracted and labeled the indicators that
existed in the text of the reports to create our test dataset.

We evaluated the Precision, Recall, and F1 scores
of LANCE and compared them with IoC Searcher. The
evaluation can be seen in Figure 10. The Recall of both
LANCE and IoC Searcher was 100% in all types of IoCs
and in total. LANCE consistently achieves higher precision
and F1, particularly on domains and URLs. The values
above each bar indicate the exact performance for each
indicator type and overall.

Appendix B.
LANCE Generalizability

In Table 5 we see a detailed evaluation of LANCE
using 5 state of the art LLMs for the LLM component:
ChatGPT 4o [52], LLama 3.3 70b [56], Nvidia Llama 3.1
Nemotron 70b [59], Gemini 2.0 Flash [58], and Gemma
3 27b [57]. The table shows the precision, recall, and F1
score the pipeline achieved with each model per indicator
type and in total. The total F1 score for each LLM is also
shown in Figure 9.



Type Precision Recall F1-Score
GPT Llama Nemotron Gemini Gemma GPT Llama Nemotron Gemini Gemma GPT Llama Nemotron Gemini Gemma

URL 0.97 0.71 0.80 0.97 0.90 0.99 0.35 0.52 0.98 0.84 0.98 0.47 0.63 0.97 0.87
Domain 0.96 0.83 0.76 0.94 0.75 0.94 0.78 0.78 1.00 0.77 0.95 0.80 0.77 0.97 0.76
HASH 1.00 1.00 1.00 1.00 1.00 1.00 0.86 1.00 0.99 0.99 1.00 0.93 1.00 0.99 0.99
IP 1.00 1.00 1.00 1.00 0.99 0.95 0.99 0.68 0.98 0.95 0.97 0.99 0.81 0.99 0.97
Total 0.98 0.92 0.90 0.98 0.93 0.98 0.76 0.80 0.99 0.91 0.98 0.83 0.85 0.98 0.92

TABLE 5: Comparison of the LANCE implementation using GPT, Llama, Nvidia Nemotron, Gemini, and Gemma on IoC
Classification.
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Figure 10: Comparison of precision and F1 score of
LANCE and IoC Searcher across multiple IoC types.

Appendix C.
Ambiguous IoCs’ Labels

In Figure 11 we show a segment of a report which is
part of PRISM dataset. Several URLs of legitimate websites
were compromised and used as command and control (C2)
points for the campaign. According to our senior analyst,
the domains (e.g., “abert-online.de”) are not IoCs (as they
are a legitimate website), whereas the complete URLs are.
LANCE labeled these domains as “IoC” and justified the
label(see Table 6) by referencing their “involvement in the
malicious activities.” Notably, LANCE acknowledged the
domains’ legitimate nature but still marked them as IoCs due
to their role in the attack. The justifications for the remaining
domains in Figure 11 were similar, and all were consistently
labeled as IoCs. In this case, both interpretations – labeling
as IoC or non-IoC – can be considered correct, depending
on the downstream use of the extracted indicators.

Figure 11: Segment of a report included in PRISM

LANCE justification
The domain abert-online.de is classified as an IoC because it
is identified as a legitimate website that has been compromised
and used as a command and control (C2) server for JackalControl,
indicating its involvement in malicious activities.

TABLE 6: The justification LANCE gave for the “IoC”
label it assigned to domain “abert-online.de” which appear
in the report segment shown in Figure 11.

Appendix D.
Ground truth creation methods evaluation
details

In Table 7 we see the performance of the five ground
truth creation methods discussed in Section 5.1.1 on
coverage as well as Precision, Recall, and F1 score on each
type of IoCs (IPs, hashes, URLs, and domains).

Appendix E.
User Interface

Figures 13 and 12 show a view of the custom user
interface developed for our system. In the proposed user
interface (Figure 12), the analyst can see all indicators
highlighted by a red or green rectangle. In the cases that the
LANCE-generated label is IoC, the rectangle is red, while
if the label is nonIoC it is green [21], [22], [23]. This way,
the analyst can quickly understand the generated label. By
hovering over the indicator or by selecting the indicator,
they can see the justification that LANCE provided for
the selected label. The label of each indicator can be
changed by the analyst either by selecting the indicator and
clicking the designated button or by double-clicking the
indicator. The label change propagates to all instances of
this indicator throughout the report.

For the baseline annotation pass (BAP), the user
interface was altered to not show the designated colors
unless the label was assigned by the analyst. The analyst
could also not see the label, justification, or any other
LANCE-generated information about any indicator. For
this pass, we also implemented a counter that showed the
remaining unlabeled indicators.



Method Labeled Unlabeled IP Hash URL Domain
Indicators Indicators Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RegEx + Whitelists [1] 1789 0 0.987 1.000 0.994 0.994 1.000 0.997 0.720 0.992 0.835 0.523 1.000 0.687
AlienVault [7] 1464 653 0.936 0.948 0.942 0.686 0.965 0.802 0.855 0.256 0.394 0.928 0.737 0.821
RegEx+VT th=1 [29], [30] 1502 287 0.993 0.929 0.960 0.998 0.674 0.805 0.965 0.863 0.911 0.826 0.961 0.888
[24], [35], [31] th=5 [30] 1502 287 1.000 0.503 0.670 0.998 0.626 0.769 0.995 0.785 0.878 0.891 0.730 0.802
LANCE 1774 15 1.000 0.968 0.984 0.996 1.000 0.998 0.970 0.992 0.981 0.878 0.950 0.913

TABLE 7: Performance comparison of four prominent ground truth creation methods from Table 1, across four IoC types
(IP, hash, URL, domain). The RegEx + Whitelists methodology [1] exhibits near-perfect recall but low precision due to
excessive false positives. VirusTotal-based methods vary depending on the chosen threshold, but they have a high number
of unlabeled indicators. The same can be said for AlienVault, which has the highest number of unlabeled indicators.
LANCE achieves the highest F1 score across all indicator types while providing excellent coverage.

Figure 12: This is a view of the user interface that the analysts used for the GAP of the ground truth creation. Contrary to
the User Interface for BAP, the indicators are extracted and labeled by LANCE. The indicators labeled as IoC can be seen in
a red rectangle, while those labeled as nonIoC can be seen in a green rectangle. A justification is provided for all indicators.

Figure 13: This is a view of the user interface, the analysts used for the BAP of the ground truth creation. The extracted
Indicators can be seen marked in a blue rectangle, which changes color according to the label assigned by the analyst.


