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Abstract—Intelligent Transportation Systems (ITSs) technol-
ogy has advanced during the past years, and it is now used for
several applications that require vehicles to exchange real-time
data, such as in traffic information management. Traditionally,
road traffic information has been collected using on-site sen-
sors. However, crowd-sourcing traffic information from onboard
sensors or smartphones has become a viable alternative. State-
of-the-art solutions currently follow a centralized model where
only the service provider has complete access to the collected
traffic data and represent a single point of failure and trust.

In this paper, we propose GOLIATH, a blockchain-based
decentralized framework that runs on the In-Vehicle Infotain-
ment (IVI) system to collect real-time information exchanged
between the network’s participants. Our approach mitigates the
limitations of existing crowd-sourcing centralized solutions by
guaranteeing trusted information collection and exchange, fully
exploiting the intrinsic distributed nature of vehicles.

We demonstrate its feasibility in the context of vehicle
positioning and traffic information management. Each vehicle
participating in the decentralized network shares its position
and neighbors’ ones in the form of a transaction recorded
on the ledger, which uses a novel consensus mechanism to
validate it. We design the consensus mechanism resilient against
a realistic set of adversaries that aim to tamper or disable
the communication. We evaluate the proposed framework in a
simulated (but realistic) environment, which considers different
threats and allows showing its robustness and safety properties.

Index Terms—Automotive, Blockchain, Smart Cities, Position-
ing Systems, Traffic Management

I. INTRODUCTION

In the last years, Intelligent Transportation Systems (ITSs)
have gone through significant changes, mainly due to the
introduction of new technologies deployed on vehicles, which
allow advanced applications that often require vehicles to ex-
change real-time data to provide high-quality services. Modern
vehicles are now equipped with In-Vehicle Infotainment (IVI)
systems that allow executing custom applications on top-notch
mobile processors [1]. Additionally, vehicle manufacturers are
investing on Vehicle to Everything (V2X) communication [2],
either based on cellular network [3] or on short range commu-
nication technologies [4]. These features allow vehicles to per-
form complex operations and take part in a vehicular network,
thus enabling the deployment of lightweight blockchain-based
solutions, which guarantee trust without relying on a single,
centralized point of failure.

All authors are with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano, Italy. E-mail:
davide.maffiola@mail.polimi.it {stefano.longari, michele.carminati,
mara.tanelli, stefano.zanero}@polimi.it

The most common field of application of ITSs is traffic
information management, which requires the processing of
a high volume of real-time traffic information. Currently,
traffic information sources are local authorities or agencies
that use costly on-site sensors such as Road Side Units
(RSUs), or services based on Floating Car Data (FCD) and
crowdsourcing like Waze, TomTom HD Traffic, and Google
Maps. However, both technologies are based on centralized
systems, where the service providers have complete control
of the collected data and acts as a trusted element. Although
these methods can provide crowdsourced traffic information,
they suffer from high deployment and maintenance costs, and
their effectiveness is limited to a specific area. Also, precise
traffic information is challenging to measure and estimate,
and the available sources are often partial or not easily
accessible. In fact, in last years we assisted to the growth
of blockchain-based solutions applied to various domains of
the automotive ecosystem [5]–[21]. However, these solutions
are usually only semi-decentralized since they rely on base
stations (e.g., RSUs) and are not evaluated against advanced
attacks in the automotive environment.

In this paper, we aim to solve the challenges mentioned
above by proposing GOLIATH, a blockchain-based frame-
work that relies on the resources offered by IVI systems
to provide a decentralized alternative to centralized services
commonly used to collect real-time information exchanged
between network’s participants. We demonstrate its feasibility
in the context of vehicle positioning and traffic information
management by processing real-time traffic information. In
the proposed framework, each participating vehicle shares its
position and its neighbors’ ones, obtained through an on-board
Global Navigation Satellite System (GNSS) module, in the
form of blockchain transactions. To detect nearby vehicles,
the participants periodically use short-range communication
to broadcast a probe message. When the participants receive
a reply to their probe message, they generate, sign, and
broadcast, for each received answer, a transaction containing
the information about the occurred interaction (i.e., the probing
entity’s position and the vehicles’ identifiers). The transactions
are then collected in a block, which goes through a novel
consensus mechanism for validation. The consensus mech-
anism verifies the integrity of the received information and
evaluates the participants’ reliability and trustworthiness. By
doing so, GOLIATH is resilient against adversaries aiming to
tamper or disable the communication, which instead have been
proven effective against current centralized solutions [22].
Once validated, all participants are updated with the new
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block. The consensus mechanism is entirely managed by the
participant vehicles with supporting RSUs and does require
any entity to have special privileges or permissions after
the break-in phase. This allows the framework to be fully
decentralized, implying that a trusted intermediary – i.e., the
service provider – is no longer required.

We validate GOLIATH by implementing a network sim-
ulator for realistic traffic generation. We demonstrate the
resilience of the framework in realistic scenarios while also
showing its capability of maintaining high-quality traffic in-
formation even in the presence of malicious entities.

Our contributions are the following:
• GOLIATH, a lightweight, decentralized, blockchain-

based framework for real-time data collection in ITSs that
mitigates the limitation of centralized systems and fully
exploits the intrinsic distributed nature of vehicles. We
also demonstrate its feasibility in the traffic information
management domain.

• A novel consensus mechanism designed to be resilient,
differently from existing centralized solutions [22],
against a realistic set of adversaries that aim at tampering
or disabling the communication. The consensus mech-
anism is entirely managed by the participant vehicles,
removing the need for a centralized service provider.

• A simulation tool (available at https://github.com/necst/
GOLIATH) which is, to the best of our knowledge, a
first attempt to evaluate decentralized traffic information
management systems through the simulation of realistic
attack scenarios. This tool will help future researchers
in the comparison with the state of the art and in the
evaluation of the robustness of their approaches.

The paper is structured as follows: In Section IV we
describe the problem we aim to tackle and our research goal. In
Section II we offer an overview of blockchain technologies,
while in Section III, we discuss the current status of posi-
tioning systems and related works that study the blockchain
technologies in the automotive domain. Then, in Section V
we provide an analysis of the threat model, fundamental to
understand the choices we made in Section VI, where we
present GOLIATH. In Section VII we show the experimental
evaluation of our framework. Finally, in Section VIII we
discuss the conclusions of our work, discussing the main
limitations and outlining some future works.

II. BACKGROUND ON BLOCKCHAIN TECHNOLOGY

Blockchain is a vast research topic, for which we refer the
reader to [23], [24]. In this section, we provide the basic
concepts needed to understand our contribution.

A blockchain is a data structure employed in decentralized
and distributed systems to obtain immutable and verifiable
data in the form of blocks. This solves the issues deriving
from the lack of a centralized trusted intermediary intrinsic
of a Peer-to-Peer (P2P) network. A blockchain-based system
is composed of three core components: nodes, which are the
participants of the network, transactions, which represents
the interactions between nodes (e.g., monetary transactions
in blockchain-based cryptocurrencies), and blocks, which are

collections of valid transactions over a period of time. On top
of these three components, blockchain-based systems require
the definition of two processes to ensure authenticity and
verification of data: the first is a signature scheme that grants
the integrity and authenticity of transactions and blocks, and
the second is a consensus mechanism, which has the goal
of validating data. The consensus mechanism is composed
of a consensus algorithm and a validation algorithm. The
former is used to achieve a distributed consensus, and the
latter checks the validity of the content of a block. One
of the most known consensus algorithms is the Proof-of-
Work (PoW), implemented initially by Bitcoin [25], which
chooses the next valid block by rewarding nodes based on
expended computation and time. A second class of consensus
algorithms is the Proof-of-Stake (PoS) [26], where instead
of computational power, an abstract resource imaginable as
a currency is used by the nodes as a stake. The higher the
stake a node offers, the higher is the chance of that node
generating the next block. In this work, we opt for a PoS-
based system in light of the strict computational requirements
of the automotive field that would make PoW unfeasible.

From a high-level perspective, nodes (i.e., participants) of a
blockchain generate transactions that express the interactions
between each other and broadcast them. Harvesters then
collect these transactions into candidate blocks and compete
for the right of adding their candidate block to the blockchain
through the consensus algorithm designed for that specific
blockchain system. The block of the winning harvester is then
added to the blockchain by attaching to it the hash of the previ-
ous block, officially chaining the new block to the blockchain.
The robustness of a blockchain-based system depends on the
number of legitimate participants in the network since they
directly influence the consensus mechanism. Hence, it is of
paramount importance for a blockchain-based system to reach
critical mass (i.e., a high number of participants) in a short
period and that the consensus mechanism rewards legitimate
behaviors only.

III. RELATED WORKS

In the following section, we present related blockchain-based
works that pave the way for the validity of our approach
and, then, we illustrate decentralized solutions applied to the
automotive field.

A. Related Blockchain Methodologies

In the last ten years, the need for decentralized solutions to
share information has been answered most of the time by the
blockchain technology. Initially in 2008 by Nakamoto with
Bitcoin [25], followed by many others. We briefly discuss
those that apply techniques related to or similar to ours.
ByzCoin [27] proposes to improve the transaction acceptance
delay of Bitcoin through the use of a consensus mechanism
based on Practical Byzantine Fault Tolerance (PBFT) [28],
where view-based leader election is decoupled from the vali-
dation algorithm. The Proof-of-Believability (PoB) consensus
algorithm used in IOST [29], which is a modification of a PoS
algorithm, divides the participants into a believable league and
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a normal league, similarly to the method used in the proposed
framework. The believable league, though, is only used to
validate the transactions optimistically, and the normal league
still has to run the modified version of PBFT used in ByzCoin.
In particular, the blockchain technology has been applied in
nearly all domains of the IoT [6], from the healthcare [30]–
[32] and embedded devices [33], [34], to fog computing [35]
and software-defined networking [36].

B. Related Blockchain-based works in the automotive field

Blockchain-based solutions have also been applied to the
automotive ecosystem. In particular, the most common appli-
cations are related to trust-based dynamic data collection and
exchange [5]–[9], secure storage of static data [10]–[14], key
management for authentication and verification [15]–[17], and
energy trading in vehicular networks [18]–[21].

Regarding the trust-based dynamic data collection and ex-
change domain, to which our work belongs, the blockchain
is used for exchanging information in dynamic vehicular
networks (i.e., traffic management systems). The security (e.g.,
integrity and availability) of the exchanged information is
guaranteed through the concept of trust among the entities
involved in the communication, where only entities that gain
trust through legitimate interactions and can participate in
the blockchain. Yahiatene et al. [5], [6] propose a framework
based on Software Defined Vehicular Network (SDVN) and
blockchain that builds trust through the feedback of satisfac-
tion of other nodes regarding the received information. The
process is handled in a semi-centralized manner by RSUs,
and the miners’ election is done dynamically through a novel
distributed miners-connected dominating set algorithm (DM-
CDS). Yang et al. [7], [8] propose a trust model based
on blockchain where the information received by the RSU,
which acts as a centralized controller, is given a credibility
rating that builds the trust value of each of the nodes. Li et
al. [9] propose Creditcoin, a framework to encourage privacy-
preserving communication of alerts between vehicles with a
cryptocurrency-like solution, where RSUs are used as a trusted
element, and the alert generator is rewarded by receiving a
tailored currency in a PoS-like fashion.

Regarding the secure storage of static data domain, multiple
solutions have been designed to securely and publicly share
long-term data from different sources, such as vehicle and
parts chain of ownership, insurance data, and other VANET-
related data (e.g., driving habits, on-board sensors data),
through the use of various blockchain technologies. Distefano
et al. [11], Jiang et al. [10], Sharma et al. [13], and Javaid
et al. [12] study the feasibility and the requirements needed
to build blockchain-based frameworks to accommodate the
needs of the automotive domain, while Li et al. [14] tackle
the specific issue of ad dissemination in vehicular networks.

The works that fall in the key management for authenti-
cation and verification domain [15]–[17], as the name sug-
gests, tackle the issue of authentication in vehicular networks,
which have tailored requirements such as privacy-preserving
pseudonyms, fast key transfer time, and low computing and
communication overheads.

Finally, multiple works focus on the issue of energy trading
in vehicular networks [18]–[21], handling the exchange of data
required to track the involved entities and transactions, again
focusing on the preservation of the privacy of the vehicle own-
ers while considering the requirements of vehicular networks.
Discussion on related works. In this paper, we propose a
blockchain-based framework for real-time data collection in
ITSs that exploits a novel consensus mechanism that falls into
the trust-based dynamic data collection and exchange domain.
It is evident how the scope and structure of solutions that fall in
the other aforementioned categories, although being based on
blockchain technologies, significantly differ from the approach
of our paper, making a direct comparison unfeasible. Re-
garding the trust-based dynamic data collection and exchange
domain, all the presented related works manage participants
(e.g., miners, harvesters) differently. In fact, most of the time,
they are based on RSUs or base station to which the mining
process is delegated. Consequently, related works are based
on a centralized or at most semi-decentralized architecture,
which significantly differs from our approach, which is fully
decentralized (the RSUs are needed only in the initialization
phase). Indeed, the comparison of output results can not take
place, besides being of little significance. Therefore, in line
with the presented related works, we resort to demonstrating
the robustness of the blockchain-based solution by studying
the resistance against known attacks (e.g., Sybil attacks).
In addition, in the presented work, we further evaluate the
feasibility of our approach in the automotive scenario by
exploiting a network simulator for realistic traffic generation,
demonstrating the resilience of the framework in realistic sce-
narios while also showing its capability of maintaining high-
quality traffic in-formation even in the presence of malicious
entities. This contribution, in particular, is missing or only
briefly discussed in all the above-presented works.

IV. PROBLEM STATEMENT AND RESEARCH QUESTION

Exchange of data between vehicles in V2X environments has
currently been designed mainly as a centralized, proprietary
communication that uses technologies such as 4g, 5g, and
Dedicated Short Range Communications (DSRC) to transfer
data. Regarding the context of vehicle positioning and traffic
information, local authorities and agencies in large cities, e.g.,
Transport for London [37], often provide real-time traffic
information on an open-access basis. This information is
primarily collected through on-site sensors like CCTV cam-
eras, Wi-Fi data, and induction loops, possibly paired with
artificial intelligence techniques [38]. Several companies, like
TomTom [39], Google [40], and Waze [41] have adopted
crowdsourcing and FCD [42] to remove the need of on-site
sensors. This approach relies on GNSS and Global System
for Mobile Communications (GSM) to collect the real-time
positions from the devices of active users.

Although these companies allow users to obtain aggregated
traffic information, the raw data are not publicly accessible,
and the offered services adopt a loose security model. These
centralized systems have been proven vulnerable to several
successful attacks that tamper with the collected traffic infor-
mation, the most recent being from Simon Weckert [22].



4

Research Question. Based upon the same technologies
premises (i.e., crowdsourced information collection and global
positioning), the research presented in this paper aims to
explore the feasibility of a fully decentralized framework for
vehicle data collection based on a blockchain data structure,
whose properties directly tackle the weaknesses of current
centralized solutions while preserving their functioning. To
achieve the research goal, we have to face two challenges. The
first challenge regards ensuring the system’s resilience (i.e.,
reliable and trusted information collected) against realistic
attacks. The second challenge regards the compatibility of
the proposed framework with existing automotive technology.
In fact, computational power is a known constraint in the
automotive domain. Even if GOLIATH can be applied to any
exchanged data – with proper modification – in the remainder
of this work, we apply our approach to the traffic information
management domain since it is one of the most common and
best fits the problem under analysis.

V. THREAT MODEL

Threat modeling [43] is essential to derive the non-functional
security requirements in the design of a system.
Threat Agents. The main threat agents are individuals (or
small groups) who aim at profiting from disrupting the service
(e.g., ransomware attack) or wish to hijack traffic for personal
gain or to affect society at large. Attackers may also wish
to forge information for anti-forensic purposes (i.e., claiming
they are or they have been in a different position). Another
potential threat comes from competitors who may gain an
advantage from a loss of reputation of the targeted service.
Therefore, the most significant threats are a disruption or
degradation of service or targeted manipulation of the results.
Attacker Goals. To disrupt the service, an attacker could aim
to lower the overall quality of the collected information (e.g.,
broadcasting a high number of crafted artifacts) or deploy a
Denial of Service (DoS) attack by exhausting the resources –
computational or network related – of the participants (e.g.,
flooding the system with forged data). To manipulate the
system results or to forge fake records, attackers could aim to
make the system accept as valid maliciously crafted data (e.g.,
faking the position of vehicles). It should be noted that the two
goals affect each other since the robustness of blockchain-
based solutions depends on the number of participants. Dis-
rupting the service lowers the (perceived) reliability of the
system, which in turn lowers the interest in participating of
legitimate nodes. If a minor number of nodes participates
in the consensus mechanism, the capability of attackers to
manipulate the system increases.
Attack Modeling. Attackers can perform their attacks on the
blockchain core components: at a transaction level, block, or
consensus level. At a transaction level, the attacker can forge
or spoof fake transactions. To name a few, they can selectively
reply only to DSRC probes sent by some participants, or
broadcast transactions with incorrect information, or send
spam transactions. At a block level, attackers attempt to
tamper with the blockchain validation algorithm by altering
the validity tags of transactions, the reputation scores, or the

Fig. 1: Overview of GOLIATH Approach.

activity flags. Also, attackers can try to gain the majority
during the execution of the consensus algorithm and reject
a legit block or force a forged block to be accepted. These
block-level attacks fall into the category of Sybil attacks [44].

VI. GOLIATH APPROACH

In Figure 1 we provide an overview of GOLIATH. Each
participating vehicle shares (i.e., broadcasting a message) its
position and its neighbors’ ones in the form of blockchain
transactions. In the meantime, following the consensus mecha-
nism, the participants elect a harvester, which generates a valid
candidate block by aggregating the broadcasted transactions,
and a set of supporters, which run the validation algorithm.
The candidate block, generated by the harvester, is evaluated
by the supporters following the validation algorithm and, if
valid, is broadcasted and added to the blockchain.

The consensus mechanism determines how the blockchain
grows by validating blocks. It performs primarily two op-
erations. First, it executes a consensus algorithm to ensure
that the choice between accepting or rejecting a new block
is indisputable by electing harvesters and supporters. This
operation permits decentralization and the removal of trusted
intermediaries, allowing the consensus mechanism to work in
a trust-less environment.

The validation algorithm ensures the integrity of the re-
ceived information and evaluates the participants’ reputations.
We define the reputation as a measure of the reliability and
trustworthiness of a participant that depends on the correctness
of the history of its past transactions, and we use it as the
abstract resource (i.e., stake) in our PoS. In fact, participants
may broadcast incorrect or malicious transactions. Therefore,
validation is required to decide whether a transaction is valid
or not, and the reputation of the transmitting node is updated
accordingly. Unlike the consensus algorithm, the validation is
domain-specific.
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A. Blockchain Data Structure

The blockchain data structure stores traffic information in the
form of transactions and blocks. It guarantees the properties of
immutability, transparency, decentralization, persistence, and
pseudo-anonymity [45].
Transaction. The primary entity in a blockchain data structure
is the transaction, representing the interaction between two or
more participants. In our context, transactions are generated
by the participants through short-range communication. Par-
ticipants – also called nodes – periodically broadcast a probe
message that is captured by nearby vehicles (i.e., vehicles in
communication range), which respond with a reply message.
Regarding the communication range, it can be defined by
both distance-bounding protocols [46] or by considering the
maximum detection distance of short-range communication
devices. Since, according to the US Federal Communications
Commission (FCC) classification, a low-power DSRC trans-
mitter has a maximum range of about 15 meters [47], from
this point on, we will consider as “short-range” a distance in
the order of a few tens of meters. Then, the probing vehicles
generate a transaction for each reply received, which contains
their identifier, the identifier of the detected participant, their
position obtained through GNSS (e.g., GPS), and a timestamp.
The sender digitally signs its transactions individually, making
them immutable, and broadcasts them to all the other partic-
ipants using a long-range communication mean (e.g., cellular
network).
Block. The second element that composes the blockchain is
the block, which contains all the information that defines the
current state of the blockchain and references the previous
one through its hash value, forming a structure similar to a
linked list. Each block contains up to a maximum number
of transactions, which is defined by a “block-size”. Blocks
are added to the blockchain after being validated by the
consensus mechanism (see Section VI-B), and each participant
is rewarded by increasing their reputation.

A new block is inserted after a fixed amount of time from
the previous insertion, which we refer to as “block-time”
(i.e., the interval between two executions of the consensus
mechanism). If more transactions than the block size are
generated in the block-time, we apply a “greedy” selection
strategy. When a new transaction is received, our strategy
randomly selects a transaction from the participant with the
highest number until it finds one that is older and removes
it. Blocks also include a tag that indicates each transaction
validity status, the list of identifiers of the participants, an
integer score representing their reputation, and a flag that
indicates if the participant has been active during the “block-
time” (A node is considered active if at least one of its
transactions is evaluated as valid). The metadata stored in
the block includes a timestamp indicating when the block
was created, the digital signature of the node that harvested
the block, the block height, which is the index of the block
from the genesis block (i.e., the first validated block), and the
attempt number, that is derived from the elapsed time since
the last block as

a = ⌊ ∆time

block − time
⌋
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Creation timestamp

Previous block hash

Attempt number
Sender 

ID

.

.

.

Target
ID Timest. Sender 

Location Flags
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.

.

.
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Node ID Reputation Activity 
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.

.

.
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Hash
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Approval
Signatures

Block i

Block i+1Hash

Fig. 2: Structure of the blockchain and of the blocks used in
the proposed framework.

The attempt number is necessary to distinguish different
attempts when the consensus mechanism fails, causing a block
to be rejected. Figure 2 graphically summarizes the structure
of the blocks and the transactions.
Genesis Block. A crucial aspect to consider is the generation
of the first block in the blockchain, which is called the genesis
block. It has to satisfy the assumptions of the validation phase
(see Section VI-C) and allows GOLIATH to start correctly.
Consequently, the genesis block contains a set of randomly
generated transactions between initially trusted participants
(e.g., RSUs). In other words, the genesis block must be
trusted in the break-in phase. After this phase, these trusted
participants are no longer required and are treated as normal
ones.
Resources Optimization. The amount of memory required to
store the whole blockchain grows constantly. This represents
a critical issue for embedded systems, such as In-Vehicle
Infotainment (IVI) systems, where the amount of memory
is limited. It is possible to introduce the concept of state
blocks [29], [48], leaving the task of memorizing the full
blockchain only to the participants with more resources, like
RSUs. When there are enough regular blocks, the consensus
mechanism produces a new state block that summarizes and
aggregates the oldest regular blocks, allowing participants with
limited resources to store only state blocks and the most recent
regular blocks. Moreover, new nodes that want to join the
blockchain have to download and verify less data, granting a
faster join.
Key distribution and Pseudonymity. The node identifiers and
their respective asymmetric keys are bound to one vehicle.
Their distribution may be performed by car dealers or by
the local Department of Motor Vehicles. Therefore, strict
anonymity cannot be enforced. However, it is possible to
provide pseudonymity by creating identifiers uncorrelated with
real entities [49]. The definition of a method to distribute
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identities and keys is beyond the scope of this paper.

B. The Consensus Algorithm

For the consensus algorithm design, we evaluate established
ones [25]–[27], [29], [50]–[52] and customized them given the
requirements of the automotive context. Consensus algorithms
can be systematized into election-based or voting-based.

Election-based algorithms rely on a resource that is difficult
or expensive to obtain, like computational power or invested
money. A leader, called the block harvester or the block
miner, is then elected considering this resource. The harvester
performs the validation of the block, digitally signs it, and
broadcasts the resulting block to all the other participants,
which only have to check the eligibility of the harvester to
accept the new block. The main alternatives for this approach
are PoW, like in Bitcoin [25], and PoS and its variants, like
in Peercoin [26]. PoW can not be executed on embedded
systems such as IVI systems due to the computational re-
quirements [53]. On the other hand, PoS is robust only if the
resource that is at stake does not vary too quickly [54], which
is not easily achievable in a network composed of vehicles
where participants can join and leave frequently.

Voting-based algorithms are variations of the Practical
Byzantine Fault Tolerance (PBFT) [28] method. All the partic-
ipants take part in the voting process and decide whether the
candidate block proposed by the harvester is acceptable or not.
Because of this feature, voting-based algorithms perform better
in small networks, where they typically have higher throughput
than election-based algorithms. Using this approach, all the
participants execute the validation phase at least once per
block. However, this overhead is undesirable because the
framework would be much more resource-intensive. Moreover,
the amount of exchanged messages required to achieve con-
sensus is proportional to the square of the total number of
participants, introducing significant overhead.

In blockchains, the election can be deterministic (e.g., Byz-
Coin [55]) or probabilistic (e.g., NEM [51]). A deterministic
approach uses a synchronized view-number to perform the
election. Instead, a probabilistic approach relies on a time-
dependent condition evaluated locally by each participant to
determine if it is eligible to harvest the next block. This
means that, in this case, explicit synchronization among the
participants is not required. However, several participants may
try to harvest the next block simultaneously, causing the
blockchain to fork, which does not occur in deterministic
approaches. Eventually, a fork policy solves the issue, but
the participants have already wasted their limited resources
in discarded operations.

Proposed Consensus Algorithm. In GOLIATH, we propose a
consensus algorithm that combines election- and voting-based
approaches adapting their functioning to the domain under
analysis and finding a trade-off between resource efficiency
and performance. Instead of involving all the participants in
the voting process, only a subset of them, which we defined as
supporters, perform the PBFT algorithm on the new block. The
harvester produces a new block; then, it broadcasts the new
block to the rest of the participants, which stores the block and

waits for its approval by the supporters. The supporters vote
on whether to accept or reject the proposed block following
the PBFT method and broadcast their decisions, through
approval signatures, to the non-supporting participants. Once
it receives enough approval signatures, each participant adds
the corresponding block with the received approval signatures
to its local copy of the blockchain. Unlike voting-based
methods, the proposed consensus algorithm requires a robust
method to determine when and how to elect the harvester
and the supporters. For this reason, we introduce an election
step inspired by election-based approaches. Since probabilistic
approaches may waste resources due to the simultaneous block
harvesting and the consequential forking of the blockchain,
we adopt a deterministic approach based on the elapsed time
since the creation of the previous block. To avoid an easy to
predict view-number, we derive its value from both the hash
of the previous block – on which there is already consensus
– and the elapsed time – which can be kept synchronized
with various solutions, e.g., Global Positioning System (GPS).
The harvester and the supporters are elected based on the
view-number and their reputation. In a lottery-like fashion,
each candidate receives several lottery tickets proportional to
its reputation. Then, winning tickets (one for each supporter
and harvester to be elected) are extracted based on the view-
number. More formally, for each election, the view-number
is concatenated with an increasing integer, and the resulting
value is hashed using SHA-256 (i.e., winning tickets). The
hash function is used as a uniform pseudo-random number
generator. The algorithm then assigns to each node a partition
of the image of the hash function used, proportionally to
their reputation (i.e., number of lottery tickets per candidate).
Finally, the algorithm elects the participant that owns the
partition in which the hash is included. Since the output of
the SHA-256 function is comparable to a uniform distribution,
the probability of electing a participant is proportional to its
reputation score. Regarding the number of elected participants,
following the PBFT method, we select a total of n = 3f + 2
candidates either as harvester or supporters, where f repre-
sents the fault tolerance parameter, which corresponds to the
minimum number of approval signatures required to add a
new block. By doing so, we reduce the number of average
validation phase executions per block to n.
Proposed Algorithm Evaluation. We demonstrate the robust-
ness of the proposed consensus algorithm by analyzing the
probability of a successful malicious block insertion in the
case of a Sybil attack [44]. To achieve the malicious goal, an
attacker should be elected as harvester and control a number of
supporters sufficient to win the voting procedure. Considering
3f+11 supporters, a malicious block insertion is successful if
the harvester node is malicious and the attackers own over
33% of the supporter nodes. To perform the analysis, we
model the problem by assigning a probability distribution to
each involved variable. We define as H the probability that
an attacker has been elected as a block harvester, which is a
Bernoulli random variable with success probability p, where p

1f is the fault tolerance parameter of Practical Byzantine Fault Tolerance
(PBFT)
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Fig. 3: Probability of a successful malicious block insertion in
relation with the amount of reputation owned by attackers.

is the ratio of the attackers’ reputation with respect to the total
reputation. We define as M the number of nodes controlled
by attackers elected as supporters and will participate in the
voting process. Since n = 3f+2 is the total number of elected
nodes between harvester and supporters and f corresponds to
the minimum number of approval signatures required to add a
new block, we model M as a binomial random variable with
3f + 1 trials, each having a success probability p, which is
the same as in H . Equation 1 shows how the formulas for
the probability of success of attackers (i.e., malicious block
insertion) are derived.

H ∼ Bernoulli(p)

M ∼ Binomial(3f + 1, p)

Pr(“A malicious block is inserted”) =
=Pr(H = 1 ∧M ≥ f + 1) =

=Pr(H = 1)(1− Pr(M ≤ f)) =

=p ·

(
1−

f∑
k=0

(
3f + 1

k

)
pk(1− p)3f+1−k

) (1)

To evaluate the robustness of the proposed approach, we,
therefore, study the probability of a successful malicious block
insertion by varying p (i.e., as the amount of reputation owned
by attackers grows) and f , as shown in Figure 3. It is evident
how by keeping p in the interval [0; 33%] (i.e., the intersection
between the f curves), an increase in the fault tolerance
parameter f maintains the success rate of attackers low, if
not close to zero.

C. The Validation Algorithm

In light of the strict computational requirements of IVI sys-
tems, we designed three heuristics that achieve the same result
– i.e., the validation of the block in the ledger performed by
elected participants – of algorithms implemented in contexts
where the computation power is not limited (e.g., Bitcoin
[53]). In particular, in this phase, we validate a block by
removing invalid transactions and updating participants’ rep-
utations following a reputation update strategy.

1) Illegal transaction filtering: The first heuristic filters
out illegal transactions and apply a penalty (i.e., lower par-
ticipants’ reputations) to their owners. First, it filters out
transactions that have the same target and sender IDs because
the sender could otherwise exploit the validation algorithm
to increase its reputation score by itself. Then, it removes
transactions that are not “acknowledged” by participants. In
other words, for each transaction, there must be another
transaction with sender and receiver IDs swapped, i.e., from
the detected vehicle to the original sender. By doing so, we
prevent a single attacker (i.e., not organized in a group) from
masking itself as another vehicle.

2) Transaction validation: The second heuristic validates
each transaction individually. It considers the transactions con-
tained in the previous N blocks and checks if the information
contained (i.e., position and timing) is compliant with the laws
of physics. By assuming a linear motion, it is possible to find
an upper bound to the travel distance of a vehicle for a given
interval of time ∆t and a maximum velocity vmax. Therefore,
we reject a transaction depending on participants’ reputations
and whether the travel distance exceeds these bounds. Also,
we apply a penalty to transactions’ owners. By comparing the
identifiers contained in old and new transactions, we define
four bounds, depending on whether the participant under
analysis is sender or detected node in the transactions: the
sender-sender bound, the sender-detected bound, the detected-
sender bound, and detected-detected bound. For the sender-
sender bound, we compute the euclidean distance between the
sender positions in different transactions since the values of its
positions are directly indicated in the transaction. This is not
true for all other bounds, where the node under analysis is a
detected one. In these cases, the position of the detected node
must be approximated based on the position of its sender, the
geometry of the problem, and the maximum range of detection
rangemax. For example, the detected-sender bound is:

distance(senderold, sendernew) ≤ vmax∆t+ rangemax

Then, we assign a score for each new transaction under
analysis: when the travel distance is not coherent with the
bounds, we lower the score assigned to the transaction of a
value equal to the reputation of the sender of the older trans-
action. Otherwise, the score is increased by the same amount.
Finally, we normalize the score with respect to the number of
bound checks made and compare it with a threshold. The new
transaction is rejected if the normalized score is lower than the
threshold. The evaluation of the transaction is not executed if
the number of matches is equal to zero.

3) Malicious groups penalization: The third heuristic pe-
nalizes the misbehavior of malicious groups, i.e., groups of
participants that support each other to boost their reputa-
tions while faking localization by forging transactions. This
heuristic is necessary since this behavior would pass unno-
ticed through the previous heuristics. We adopt a strategy
to penalize misbehaving participants over time by analyzing
each participant independently and detecting conflicts. There
is a conflict between two participants whenever they claim
to be in two close positions, but they do not detect each
other (i.e., there is no such transaction within the block).
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For each conflicting pair of participants, the one with the
lowest reputation score receives a penalty. When a participant
loses more than a defined amount of conflicts, all of its
transactions are blacklisted. This strategy is based on the
assumption that misbehaving participants have, on average,
less reputation than legitimate ones. Finally, it is essential to
highlight that this heuristic does not claim to provide an exact
representation of the traffic stream but only approximates it
by analyzing the transactions exchanged between participants.
As previously explained, each block contains a limited number
of transactions, and the remaining are dropped. Consequently,
this heuristic may have a high number of false positives.
However, experiments have shown that it does not deteriorate
the overall performance since it is unlikely that a correctly
behaving participant generates many conflicts systematically.

Reputation update strategy. We update the reputation of
the ledger participants based on the outcome of the previous
heuristics and their activity in the blockchain. To do so, we
first define as active a participant with at least one transaction
in the block. The reputation of active participants is updated
by summing to its original value the difference between their
total reward and total penalty. The total penalty is computed
by multiplying a penalty base value with the number of
rejected transactions. Instead, the total reward is computed by
multiplying a reward base value with the number of accepted
transactions and a scaling factor that considers the number of
frequent neighbors (i.e., participants that often appear together
in the transactions). The scaling factor mitigates the capability
of groups of malicious participants to boost each others’
reputation: the more a group of participants interacts only with
each other, the lower the scaling factor and, hence, the reward
is. The scaling factor is computed as:

Sf = 1− w
|newi ∩ oldi|

|oldi|

where w is the neighbor variance weight, newi is the set of
participants detected by participant i in the new block, and
oldi is the participants detected in the previous M blocks. A
low neighbor variance is more common in malicious groups,
as they are only a few and require to interact frequently
with each other to gain support and carry out the attack.
Regarding the reward and penalty base value, we select a
fixed value over a dynamic one (i.e., a value that changes
depending on the node history) since it performed better in
our experiments. Dynamic value often zeroes the reputation
of legit participants, making them unable to contribute to
the validation of transactions. We also defined a maximum
value for the reputation score so that participants that never
go offline, such as RSUs, cannot gain infinite reputation and,
hence, monopolize the execution of the consensus algorithm.
Inactive participants, instead, periodically lose their reputation
to give more weight to recent transactions over older ones. This
guarantees that malicious participants have a lower reputation
score than legit ones and that it is more difficult for them to
increase it.

TABLE I: Values of the parameters used in the experiments
obtained through the performance and robustness analysis.

Component Parameter Value

Scenario
No. of vehicles 1,500
No. of RSUs 40
Max speed 130 km/h

Blockchain
Blocksize 50,000
Blocktime 60 s

Transaction validation
No. of previous blocks 3

Threshold 0.1

Misbehavior penalization
Variance weight 0.67

Tolerable lost conflicts 2

Consensus algorithm Fault tolerance 6

Reward system

Max reputation 4,096
Initial reputation 64

Base reward 256
Base penalty 512

VII. EXPERIMENTAL RESULTS

We evaluate GOLIATH in a simulated (but realistic) environ-
ment. First, we analyze the performance and the robustness of
the proposed framework through parameter studies. Second,
we test the resistance of the framework against attacks derived
from the threat model.

A. Simulation Setup

The experiments conducted on GOLIATH are carried out
through simulations designed to be as realistic as possible
and provide reliable results. For this purpose, we developed
a modular simulator based on the Veins vehicular network
simulation framework [56]. This choice allowed us to use the
OMNeT++ [57] simulation library to simulate the network
model and SUMO [58], a microscopic traffic simulator. Also,
we adopt the Monaco SUMO Traffic (MoST) scenario [59]
which is based on the Principality of Monaco and simulates
46,000 trips in 10 hours. This setup guarantees a realistic
road layout, vehicle interactions, and traffic dynamics. Our
experiments consider 1,500 vehicles interacting for one hour to
keep the computational and storage requirements manageable.

B. Experiment 1: Performance and Robustness Analysis

The framework needs to have a stable and robust configuration
that allows it to function correctly. For this reason, in the
first experiment, we analyze the impact of the GOLIATH
parameters to empirically estimate their optimal values and
their sensitivity in a context where no attack occurs. For
each of the parameters under analysis, we analyze the average
reputation of participants (i.e., the stake of our PoS) as a metric
of the goodness of our system. In particular, we run different
simulations varying the value of the parameters2. In Table I,
we show the final values obtained for each parameter that we
then use for subsequent experiments.
Number of previous blocks for transaction validation.
First, we study the number of preceding blocks (and their
related transactions) used to validate new transactions and,

2In the following experiments, we highlight only the most relevant values



9

0 900 1,800 2,700 3,600

0

1,000

2,000

Time (s)

A
vg

.r
ep

ut
at

io
n

1 2 3
4 5 6
8

(a) No. of previous blocks in transaction validation.
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(b) Threshold in transaction validation.
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(c) Initial reputation.
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(d) Base penalty.
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(e) Tolerable lost conflicts.
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(f) Detection variance weight.

Fig. 4: Experiment 1: Analysis of the average reputation of active participants, varying one parameter at a time.

therefore, recognize the attacks. The higher is the number
of blocks used, the more the transaction validation algorithm
complexity and the computation time increase. On the other
hand, the lower is the number of blocks used, the higher is
the chance of rejecting legitimate transactions (due to the lack
of a robust transaction history), lowering the reputation of
legitimate nodes. Figure 4a shows the average reputation of
active participants under different values of this parameter.
When the framework reaches the steady-state, all but two
configurations produce similar outcomes, suggesting that using
more than three previous blocks does not improve the trans-
action validation enough to justify the increased complexity.

Threshold in transaction validation. The threshold used
in the transaction validation (see Section VI-C2) is necessary
to define the minimum required support to accept a new
transaction. A threshold too high would compromise the
system’s functioning since it would lead to a high number of
legitimate rejected transactions (i.e., the score assigned to new
transactions would rarely satisfy the threshold) and, therefore,
an increase in the penalization of legitimate participants.
Figure 4b shows a comparison of the average reputation as the

value of the threshold varies. Low threshold values (i.e., 0, 0.1,
1, 16) produce similar outcomes (i.e., the average reputation
shows an almost identical trend and a low variance). However,
as the thresholds increase in value, the average reputation
drops, as expected. In particular, the highest tested threshold
(i.e., 2048) completely prevents the correct functioning of the
framework, forcing the average reputation to drop to zero
abruptly. Considering a scenario where no attacks occur, a
low value of the threshold guarantees the highest performance.
Consequently, we choose a threshold of 0.1. The goodness
of the threshold is also confirmed by results obtained in
experiment 2.

Initial reputation. The initial reputation given to participants
when they join the system for the first time should not
significantly affect the proposed framework’s long-term perfor-
mance. A high initial reputation would lead to a conveniently
fast convergence to a steady-state. However, this configuration
could be exploited by attackers that, with a high initial amount
of reputation, would have higher chances of succeeding with
their attacks. Instead, the convergence to a steady-state is
slower with a low initial reputation, but attackers would not
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have a multiplier factor to exploit since there would be no
difference between new participants and untrusted ones. The
results of this analysis are presented in Figure 4c, which
show that there is no significant difference in the steady-state
by selecting different values of initial reputation. Only the
first ten minutes of the simulation are significantly affected.
The configuration with no initial reputation, however, exhibits
worse behavior than the others. This is caused by the fact that
the participants with zero reputations cannot support others’
transactions, causing more transactions to get rejected. For
this reason, we opt for a low but non-zero value of the initial
reputation (i.e., 64).
Reward/Penalty base values. The most relevant parame-
ters in the reward system are the rewardbasevalue and
penaltybasevalue. The rewardbasevalue should be sig-
nificantly smaller than the penaltybasevalue to positively
reward a consistently correct behavior and heavily penalize
misbehaviors, thus reducing the chances of attack success.
To study the effects of these two parameters, we fixed the
rewardbasevalue – to 256 – and let the penaltybasevalue
vary. Figure 4d displays the comparison of the outcomes of
the simulations. As expected, higher penalties result in a lower
average reputation.

However, when the penalty is too high, the average rep-
utation decreases significantly, increasing the chances of a
transaction being rejected and leading to the worst-case sce-
nario in which the reputation of participants becomes zero.
In this case, attackers can exploit the low average reputation
of legitimate participants to carry out a successful attack.
Therefore, excessively high penalties are not advisable. On
the other side, as we tested on attack scenarios, a base penalty
not high enough does not penalize the attackers for their
misbehavior, enabling them to send false information before
being ignored. We choose a value of 512 for the base penalty,
which has proven to be a good trade-off value.
Maximum conflicts for the malicious group penalization.
The malicious group penalization simulation must be carefully
analyzed to prevent the framework from collapsing into unde-
sirable states. The parameter that drives the simulation is the
number of tolerable lost conflicts, which determines when to
blacklist a participant based on its behavior. If too many lost
conflicts are allowed, malicious behavior is more likely to pass
unnoticed. It is essential although to consider that spontaneous
conflicts may arise naturally. However, our simulations suggest
that the number of spontaneous conflicts is, in general, low.

The average reputation of active participants under different
values of this parameter is shown in Figure 4e, where it is
possible to notice that the least restrictive condition produces
the lowest average reputation. This is because if transactions
are blacklisted, the evaluation of other transactions is avoided
due to the lack of support. Therefore, overall, less penalty is
distributed because rejected transactions are not used to detect
conflicts. For this reason, we choose two as the maximum
number of conflicts before being blacklisted.
Reputation update strategy variance weight. The weight
given to the neighbors’ variance directly affects the variation
of overall reputation (see Section VI-C3). A low neighbor
variance is typical of cooperative malicious since they com-

municate with each other only to increase their reputation.
However, also legitimate participants can interact with the
same vehicles or RSUs more than once, especially in case of
traffic congestion. Figure 4f confronts the average reputations
obtained by changing the neighbor variance weight. When the
framework reaches a steady-state, the average reputations un-
der the different configurations are distinct and well-separated.
This shows that even in non-attack scenarios, neighbors often
repeat transactions between each other and that the weight
needs to be tuned to obtain a good average reputation. There-
fore, a trade-off between usability (i.e., low weight value) and
security (i.e., high weight value) must be considered. Since
it remains essential to ensure that attackers do not feed each
other reputation, we choose 0.67 as an in-between weight that
keeps the average reputation high enough while not rewarding
repeated neighbor detection.

C. Experiment 2: Resistance to Attacks

In this experiment, we analyze the four attack scenarios
modeled from the threat model described in Section II: three
of them involve uncoordinated attackers that act individually,
while the last attack involves a coordinated group of attackers.
We analyze each attack independently since they do not affect
each other. For each attack scenario, we analyze the value of
the average reputation of legitimate and malicious participants
as a metric of the goodness of our system. In Figure 6, we
represent a graphical representation of the attack scenarios.
Uncoordinated attacks scenarios. We considered three attack
scenarios that require no coordination among the attackers and
no particular interactions with legitimate participants.

The first attack involves the generation of a significant
amount of valid-looking transactions with random sender
position and detected vehicle/RSU identifier to exhaust the
space in the block. In our experiments, attackers generate and
broadcast three times the transactions of the average user.
Figure 5a shows the result of the simulation of this attack
scenario. The average reputation of attackers is consistently
zero, while legitimate participants have, on average, enough
reputation for supporting correct traffic information. As visible
in Table II, as long as the number of attackers does not exceed
30% of the total number of users, GOLIATH is resilient to this
attack. This is coherent with the threat model, which considers
a relatively small number of attackers, and with the limitations
of similar solutions that apply PBFT-based algorithms, which
requires that for m attackers, at least 3m+1 total nodes exist
to ensure stability.

TABLE II: Experiment 2: Analysis of the resilience of GO-
LIATH in terms of the maximum percentage of attackers that
can be managed by our framework. For each attack scenario,
we show the % of accepted malicious block transactions of
the successful attack.

Attack Scenario % of attackers % of blocksize
Random (1) 30% 26,80%

Position Changing (2a,b) 80% 80%

Replay (3) 45% 16,4%
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(a) Randomly generated transaction attacks.
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(b) Offset position transaction attacks.
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(c) Replayed transaction attacks.
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(d) Self-sustaining group of 5 members.
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(e) Self-sustaining group of 20 members.

Fig. 5: Experiment 2: Analysis of the average reputation of
active legitimate and malicious participants in different attack
scenarios.

The second attack involves altering the sender’s position to
spoof a real position or lower the quality of traffic information.
Regarding altering the sender’s position, attackers add a con-
stant offset vector to their real positions. Regarding lowering
the quality of traffic information, the offset is changed for each
spoofed transaction so that the attacker appears to be moving
unrealistically. Both attacks generate similar results, shown in
Figure 5b, which follow a similar pattern to the first attack. As
shown in Table II, GOLIATH resists these attacks as long as
the number of attackers is lower than 80% of the total users.

The third uncoordinated attack consists in replaying the
content of the transactions generated by legitimate partici-
pants. In this scenario, attackers wait for legit participants to
broadcast their transactions to copy the content except for the
sender’s identifier. Then, the attackers sign and broadcast the
copied transaction. By doing so, an attacker can impersonate
a legitimate participant, spoofing its position. Figure 5c shows
the outcome of the attack. Similar to the previous scenarios,
the attack fails, and the reputation of the attackers remains
zero with small spikes during the initial transient. The copied
transactions usually are not confirmed by the detected partici-
pant, as the attacker is at another position and, hence, filtered
by the illegal transactions filtering process of the validation
algorithm. As in the previous attacks, the minimum number of
attackers required for the framework to not detect the attacks
is significantly higher than the one considered in the threat
model, as visible in Table II.
Coordinated attack scenario. In this attack scenario, attack-
ers operate as a group. One of the attackers is on-road while
the others are in a different position and behave properly
until the attack begins. At this point, the malicious group
generates fake transactions (between each other), pretending
to be close to the one on-road. The on-road attacker even-
tually stops interacting with the rest of the group, which
now has enough reputation to sustain itself autonomously.
Then, the self-sustaining malicious group generates fake traffic
congestion by changing the advertised position. This attack
affects the usability of GOLIATH even if a few attackers can
succeed consistently. Figure 5d shows the outcome of the
attack when the self-sustaining malicious group is composed
of 5 members. After an initial peak, the average reputation
of the attackers starts dropping and eventually reaches zero.
Consequently, the attack partially succeeds only for a limited
period. The average reputation of the attackers is kept lower
than the one of legitimate participants thanks to both the
misbehavior penalization heuristic and the reputation update
heuristic. Figure 5e shows the same attack with 20 attackers.
Although the attackers do not reach zero reputation during
the simulated time, their reputation remains very low and
easily distinguishable from the legitimate ones. The number
of accepted malicious transactions is less than 50% of the
malicious ones in the block, implying that the attack remains
contained although not completely blocked.

VIII. CONCLUSIONS

This paper presents GOLIATH, a blockchain-based decen-
tralized framework that can be used as an alternative to
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widespread centralized solutions to collect real-time vehicular
information. We demonstrated its feasibility in the context of
vehicle positioning and traffic information management. Con-
sequently, we defined a threat model tailored to the automotive
domain. We validated GOLIATH by implementing a network
simulator for realistic traffic generation. The results show that
the framework can function stably in realistic scenarios while
also maintaining high-quality traffic information even in the
presence of malicious entities.

One of the limitations of this work is related to the limited
availability of real traffic dynamics. Therefore, we resorted
to use the SUMO traffic framework and the MoST scenario
to produce a realistic simulation. However, MoST contains
only one sequence of simulated events. To avoid overfitting,
we evaluated our framework in different time windows of
the MoST scenario. Another limitation is the computational
complexity of the consensus mechanism, which has a quadratic
dependency on the number of transactions stored in a block.
Therefore, the proposed framework may not scale well with
big blocks. The quadratic dependency is determined by the
fact that every transaction in the new block has to be compared
with all the transactions contained in older blocks or the new
blocks themselves. Although it is possible to parallelize the
critical loops of the validation algorithm, the computational
complexity is still quadratic on the size of the block and cannot
be reduced without redesigning the algorithms. An alternative
approach and future work is to rely on a statistical approach
for the consensus mechanism, where a node has only to check
a smaller and fixed portion of the blocks. This approach could
effectively reduce the computational complexity to linear, but
it would carry the challenge of probabilistic guarantees that
need to be carefully proved and enforced.

Overall, this research lays the foundations for further in-
vestigation toward decentralized blockchain-based vehicular
systems, since to the best of our knowledge, there is no
proposal for a decentralized traffic monitoring framework that

can be used in a real environment.
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