
ar
X

iv
:2

50
6.

10
62

0v
1

 [
cs

.C
R

]
 1

2
Ju

n
20

25

Assessing the Resilience of Automotive Intrusion Detection
Systems to Adversarial Manipulation

STEFANO LONGARI, PAOLO CERRACCHIO, MICHELE CARMINATI, and STEFANO
ZANERO, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

The security of modern vehicles has become increasingly important, with the controller area network (CAN)
bus serving as a critical communication backbone for various Electronic Control Units (ECUs). The absence of
robust security measures in CAN, coupled with the increasing connectivity of vehicles, makes them susceptible
to cyberattacks. While intrusion detection systems (IDSs) have been developed to counter such threats, they
are not foolproof. Adversarial attacks, particularly evasion attacks, can manipulate inputs to bypass detection
by IDSs. This paper extends our previous work by investigating the feasibility and impact of gradient-based
adversarial attacks performed with different degrees of knowledge against automotive IDSs. We consider three
scenarios: white-box (attacker with full system knowledge), grey-box (partial system knowledge), and – the
more realistic – black-box (no knowledge of the IDS’ internal workings or data). We evaluate the effectiveness
of the proposed attacks against state-of-the-art IDSs on two publicly available datasets. Additionally, we study
effect of the adversarial perturbation on the attack impact and evaluate real-time feasibility by precomputing
evasive payloads for timed injection based on bus traffic. Our results demonstrate that, besides attacks being
challenging due to the automotive domain constraints, their effectiveness is strongly dependent on the dataset
quality, the target IDS, and the attacker’s degree of knowledge.

CCSConcepts: • Security and privacy→ Intrusion detection systems; •Computer systems organization
→ Embedded and cyber-physical systems; • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Automotive Security, Intrusion Detection Systems, Evasion Attacks

ACM Reference Format:
Stefano Longari, Paolo Cerracchio, Michele Carminati, and Stefano Zanero. 2018. Assessing the Resilience of
Automotive Intrusion Detection Systems to Adversarial Manipulation. J. ACM 37, 4, Article 111 (August 2018),
26 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The security of modern vehicles has become an increasingly critical concern as the integration
of connected technologies, such as Bluetooth and 5G, exposes vehicles to potential cyber threats.
The CAN bus serves as the communication backbone for various electronic control units (ECUs),
managing essential vehicle functions ranging from engine control to infotainment. However, the
CAN protocol lacks fundamental security features such as encryption and authentication, leaving
it vulnerable to cyberattacks. This issue was prominently highlighted in 2015 by Miller and Valasek,
who remotely attacked a Jeep Cherokee [25, 26]. IDSs have been widely adopted as a key defense

Authors’ Contact Information: Stefano Longari, stefano.longari@polimi.it; Paolo Cerracchio, paolo.cerracchio@mail.polimi.
it; Michele Carminati, michele.carminati@polimi.it; Stefano Zanero, stefano.zanero@polimi.it, Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milan, , Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s). Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-735X/2018/8-ART111
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0002-7533-4510
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-7533-4510
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2506.10620v1

111:2 Longari et al.

mechanism to monitor network traffic and identify malicious activities, mainly through frequency-
based detectors, analyzing patterns like packet timing or sequence, and payload-based detectors,
examining packet content for irregularities. Traditionally, IDSs rely on machine learning models to
detect anomalies [23, 32], but these models are susceptible to adversarial attacks, wherein carefully
crafted inputs evade detection [38]. Current research on adversarial threats, however, mainly
focuses on computer vision, with relatively few specialized studies in the automotive sector [2, 22].

In our previous work [2], we explored the resilience of automotive IDSs against white-box and
grey-box adversarial attacks, where the attacker has either full or partial knowledge of the target
system and data. The evasion attacks leverage gradient-based techniques, algorithms that were
inspired from the computer vision domain but adapted to the automotive one, to craft adversarial
examples that bypass IDS detection. However, in a real-world setting, attackers often lack direct
access to the internal workings of the IDS, making black-box attacks a more realistic threat. Black-
box attacks occur when the adversary has no knowledge of the IDS’s architecture, parameters,
or training data, and must rely either on probing the original system or on a surrogate model to
infer attack strategies. Thanks to the transferability property of gradient-based Techniques [39],
we focus on the ability of adversarial examples generated by surrogate models to transfer to grey-
and black-box target IDSs. Given this premise, this paper extends our prior work by investigating
the feasibility and impact of white-, grey-, and black-box adversarial attacks on automotive IDSs.
Our experimental evaluation on the ReCAN [47] and CARHacking [35] datasets provides a

comprehensive evaluation of adversarial robustness of automotive IDSs. Our objective is to identify
the effectiveness, impact, and feasibility of adversarial attacks in the automotive domain. Through
our experiments, we first explore the vulnerability of IDS models in white- grey- and black-box
scenarios, identifying the capability of adversarial algorithms to evade them. Then, we study the
impact of adversarial perturbations on the network signals, to evaluate whether the meaning of the
attack is maintained after the perturbation. Finally, we evaluate the feasibility of executing such
attacks in real-time constrained systems by precomputing evasive attack sequences and identifying
injection points in the CAN data stream. Our results demonstrate that the attack’s effectiveness is
strongly dependent on the dataset quality, the target IDS, and the attacker’s degree of knowledge. As
expected, white-box attacks proved overall most effective, degrading IDS performance by up to 60%
on the most challenging dataset. Nonetheless, the impact of adversarial samples in grey- and black-
box scenarios achieve lower but impactful results of up to 39% and 43% respectively. Interestingly,
in the grey- and black-box scenarios, perturbation sometimes led to an increased detection rate,
suggesting that in such constrained knowledge scenarios, the attempted perturbations may make
the original attack more conspicuous to the target IDS. These aspects suggests that knowledge of
the target IDS and the quality of data are crucial. The various models perform very differently, with
autoencoder-based IDSs being more resistant to adversarial attacks, but predictor-based oracles
being the more effective at generating adversarial samples. We conclude by discussing mitigations
and the challenges to face in order to apply them. In summary, our contributions are the following:

• We investigate the feasibility and impact of adversarial attacks on payload-based automotive
IDSs and different datasets, considering an attacker with different degrees of knowledge.
• We explore the transferability of adversarial examples generated by substitute models to
grey- and black-box target IDS, addressing a more realistic and challenging scenario.
• We evaluate the impact of adversarial perturbations on the actual vehicle signals, providing a
qualitative assessment of the attack’s effectiveness in the different scenarios.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:3

2 Background on CAN Security

CAN Primer. The controller area network (CAN) is a multi-master, message-broadcast protocol
originally developed by Robert Bosch in 1986, and later updated and standardized in 2012 (ISO
11898-1). It is one of the most widely adopted network protocols and has become the de-facto
standard for vehicle onboard networks, primarily used in the automotive industry to connect
various ECUs within a vehicle. The CAN bus [6] operates as a broadcast medium, offering multi-
master capabilities. This allows any node connected to the bus to read any packet transmitted
across the network. Additionally, when the bus is idle, any node can transmit a message. If multiple
nodes attempt to communicate simultaneously, message arbitration is resolved by prioritizing the
message with the lowest ID. The CAN protocol incorporates various error checking mechanisms. If
a message incurrs in an error it generates an error frame and invalidates the packet. Should errors
persist, the malfunctioning node eventually removes itself from the network [15].

Four types of messages can be transmitted on a CAN network: Data, Remote, Error, and Overload
frames. The Data frame is the most prevalent and, as its name implies, is used to transmit payload
data. Remote and Overload frames are less frequently encountered in modern CAN systems.
Error frames are sent by either the transmitter or the receiver when an error is detected in the

packet being transmitted on the bus, signaling that the current packet is invalid, and are not usually
notified by the CAN controller to higher layer computation units.
Data frames payloads embed multiple values each, each with a distinct meaning. In this paper,

we refer to these values as signals. Signals typically convey information from sensors or commands
for actuators, but they can also contain noisy bit sequences or cyclic redundancy checks (CRCs),
complicating their interpretation for security researchers. The mapping of these signals to specific
CAN IDs is often proprietary information of the manufacturers, which do not disclose them. This
reliance on security through obscurity presents significant challenges in the design of IDSs for
CAN.
CAN Security Issues. CAN, originally designed with network isolation in mind, lacks any inherent
security mechanisms and is thus vulnerable to various security threats [1]. Lacking authentication
and encryption, and being a broadcast network, any node can intercept messages and perform
actions aimed at compromising the authenticity and integrity of the transmitted data. Such as
transmit spoofed messages with manipulated CAN IDs. Moreover, due to CAN’s arbitration system,
which prioritizes messages based on CAN IDs, an attacker can misuse the protocol by sending
messages with low CAN IDs (higher priority), thus preventing legitimate messages from winning
arbitration and causing a denial of service (DoS) attack. Recent approaches to CAN attacks focus
triggering the error-handling mechanisms of CAN to silence specific nodes. This results in a targeted
DoS attack where only the victim node is excluded from the bus [7].
ML-based Intrusion Detection in CAN. Intrusion detection is a widely studied field [8]. For a
comprehensive review of automotive IDSs, refer to [19]. This section provides a concise overview of
key concepts. Most CAN intrusion detection systems focus on anomaly detection, which identifies
deviations from normal behavior. This classification can effectively differentiate between legitimate
and injected messages in a network. deep learning (DL) techniques often use autoencoders [4]
or predictive models [42]. Autoencoders learn a compressed representation of input data, then
attempt to reconstruct it, while predictive models forecast the next sequence element based on
previous samples. Both approaches operate in an unsupervised framework, assuming deviations
from the training data represent anomalies. The difference between the reconstructed or predicted
sample and the actual target, known as the anomaly score, quantifies deviation from the learned
distribution. A threshold is used to classify instances as anomalous or not, typically derived from
errors in a dedicated non-anomalous thresholding set.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Longari et al.

CAN IDSs can be flow-based, payload-based, or hybrid [29]. Flow-based detection exploits
deterministic ECU packet patterns. Taylor et al.[41] show that an support vector machine (SVM) can
detectmalicious outliers usingmetrics such as frame count, average inter-arrival time, andHamming
distance. However, frequency-based methods struggle with impersonation attacks that mimic
normal ECU behavior while manipulating data fields. Time-based models also yield comparable
results[27, 43]. Flow-based convolutional neural networks (CNNs) detectors exist but require
matrix-structured inputs, increasing complexity and vulnerability to adversarial attacks [14, 19, 37].
Payload-based IDSs address these limitations by detecting subtle impersonation attacks but

are generally more complex. Early works [5, 16, 42] use 64-bit data fields as input for machine
learning (ML) models. Taylor et al.[42] propose a predictive long short-term memory (LSTM) that
performs well on synthetic attacks, while Tanksale[40] focuses on single signals in the data flow,
though identifying fields like revolutions per minute (RPM) and brake position remains difficult
due to proprietary obfuscation. CANet [13] employs an LSTM-based autoencoder with a separate
interface for each CAN ID, concatenating outputs for final reconstruction via an feed-forward
neural network (FFNN), leading to a complex model. CANnolo and CANdito [21, 23] simplify this
by reconstructing payload windows for individual IDs, expanding on the reverse engineering of
automotive data frames (READ) method [24].

3 Related Work
In this section, we focus on relevant works in the field of adversarial machine learning.
Adversarial machine learning is a branch of ML that focuses on studying attacks against ML

algorithms. Goodfellow et al.[38] demonstrated that small perturbations applied to the input of
a deep learning model can induce classification errors in many realistic settings. These specially
crafted inputs are known as adversarial examples[10]. Such techniques can be exploited by malicious
attackers in various ways, each with different objectives [3]: (a) Exploratory attacks involve probing
a model that behaves as a black box to extract knowledge based on its responses to different inputs.
(b) Evasion attacks are the most common and were the first to be studied; here, the adversary
manipulates inputs to cause misclassification. (c) Poisoning attacks involve contaminating the
training data, which in many real-world scenarios requires evading checks by human experts or by
earlier versions of the targeted system, leading to mislabeling when such data is used in training.

This research field, originally stemming from computer vision, has also been applied to security-
critical applications, such as network or transaction monitoring and malware detection [36]. Pre-
vious research has revealed interesting properties of adversarial examples: Papernot et al.[30]
demonstrated the transferability of adversarial attacks by training an oracle—a substitute net-
work—to carry out attacks instead of directly targeting the model. Longari et al.[22] designed a
similar oracle-based approach within the domain of automotive IDSs, developing a greedy algo-
rithm for black-box adversarial attacks. However, this work evaluates the distortion introduced in
the perturbed packets using Hamming distance, which does not fully capture the actual semantic
distance and overlooks attackers with varying levels of knowledge about the target system.
One immediate way to enhance the resilience of DL models in supervised or semi-supervised

settings is adversarial training, which involves including labeled adversarial examples in the training
set [45]. Another approach is to select more resilient input features; for example, Papernot et al. [31]
propose training an initial model and then approximating it with a second, more resilient model,
leveraging the confidence scores and class similarity insights from the first model.
In the context of network intrusion detection, Li et al.[20] attacked an in-vehicle Ethernet

monitored by an LSTM IDS classifier[17] using fast gradient sign method (FGSM) and basic iterative
method (BIM), achieving a recall score as low as 2%. The authors then retrained the LSTM with
adversarial examples, nearly restoring the baseline attack-free score (∼ 98%). Similarly, Sauka et

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:5

Table 1. Overview of attacker knowledge and capabilities across threat scenarios

White-box Grey-box Black-box
Access to IDS model architecture Full None None
Access to IDS training data Full Full None
Oracle Not required Required Required
Training dataset for oracle - Same as IDS Similar but independent

al. [34] conducted multiple tests against FGSM, projected gradient descent (PGD), and successfully
mitigated the attack using adversarial training.

4 Threat Model
As highlighted in prior research [19, 29], the specific objectives of attacks on the CAN bus can
vary, but they generally involve injecting sequences of packets to achieve outcomes ranging from
impairing vehicle functionality to compromising the safety of passengers and nearby individuals.
These attacks typically work by introducing false sensor data or forged control commands. Given
the lack of inherent security mechanisms in the CAN protocol, as discussed in Section 2, we assume
an attacker with control over a node in the network, which is plausible given the established
methods for carrying out complex attacks on CAN systems. This level of control allows the attacker
to inject or remove packets to obtain its goals.
We define an evasive attack as one in which the injected packets maintain their malicious

intent (e.g., spoofing sensor values or control commands) while being purposefully crafted to avoid
detection by the IDS. In other words, our adversarial strategy focuses on perturbing a predetermined
set of malicious packet sequences with the goal of transforming them into evasive examples. The
attacker then - controlling a node on the bus - injects the sequence of perturbed packets on the bus.
To perturb them effectively, an attacker may have black-, grey-, or white-box knowledge of the
target IDS, each with varying degrees of access and requirements. In Table 1 we provide a summary
of the core properties of each attacker, of which a more detailed explanation follows:
Black-box Attacker. The attacker has no access to the internal architecture or training data of
the target IDS. To generate adversarial inputs, they rely on a surrogate (oracle) model [30] trained
to approximate the target IDS’s behavior. This surrogate is trained on a separate but compatible
dataset, which could realistically be collected from a similar vehicle—e.g., one of the same make and
model. The generated adversarial examples are then transferred with the goal of evading detection
by the target IDS. In our experiments, this scenario is simulated by splitting the dataset into two
disjoint subsets: one used to train the surrogate model and the other for the target IDS.
Grey-box Attacker. In the grey-box scenario, the attacker has access to the training dataset used
by the target IDS, but no knowledge of its internal architecture or parameters. This access could be
obtained through a data leak or breach, though the specific method is beyond the scope of this work.
The attacker uses this dataset to train a surrogate model that approximates the target’s decision
boundary, and generates adversarial samples through the surrogate model.
White-box Attacker. The attacker has full knowledge of the target IDS, including its model
architecture, parameters, training data, and expected behavior of themonitored node. This privileged
access allows them to accurately predict traffic from the victim ECU and craft coherent, stealthy
attack sequences that blend into the observed communication. Such a scenario typically assumes
insider access or deep system compromise.

5 Motivation
In the automotive domain, machine learning models are already being used and have been proposed
for tasks that directly affect vehicle safety, efficiency, and security. Ensuring the security of these

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Longari et al.

models is therefore critically important. Within this context, Adversarial Machine Learning (AML)
attacks pose a unique threat due to their ability to algorithmically generate evasive examples
designed specifically to bypass detection mechanisms.

To provide a complete assessment of evasion feasibility in automotive domains, unlike previous
studies where adversarial samples are evaluated in ideal scenarios, this work emphasizes creation
of samples coherent with the concurrent non-anomalous network traffic. Additionally, we aim to
preserve characteristics typical of automotive attacks, which often do not involve a single packet
injection but rather sequences of harmful packets, while attempting to minimize deviation from
the original attack sequence. Specifically, we evaluate the effectiveness, feasibility, and impact of
these attacks in the automotive context by addressing three key aspects: (i) their ability to evade
state-of-the-art intrusion detection systems, (ii) their capacity to preserve the intended malicious
semantics, and (iii) the possibility of overcoming the real-time constraints of the CAN bus through
the precomputation of evasive attack sequences.

Our previous work. The foundation for this research is laid by our previous work, Cerracchio et
al. [2], which began investigating the impact of evasion attacks on automotive IDSs.We adaptedwell-
known gradient-based adversarial techniques from the computer vision domain to the automotive
context, focusing on payload-based IDSs that leverage machine learning models. Our findings
highlighted the feasibility of such attacks and emphasized the role of model complexity and attack
quality in determining the success of evasion attempts. Building on these results, the present work
extends the investigation by exploring three attacker scenarios, white-box, grey-box, and black-box,
integrating the latter, which is the most realistic attack setting, where adversarial samples are crafted
using a surrogate detection model trained on data from a similar vehicle, and evaluated on the target
IDS. To simulate varying degrees of attacker knowledge, we re-executed all experiments using a
reduced dataset1, to provide consistent results across the various attacker models. Additionally,
we replicated the experiments on a second dataset to assess how dataset variability influences
adversarial behavior. The combination of an additional dataset and a systematic exploration of all
three attacker scenarios allows us to draw clearer conclusions about the feasibility of adversarial
attacks on CAN-based IDSs. Finally, we integrate the work with a discussion on countermeasures.

6 Approach
The objective of our study is to investigate how evasion attacks can be adapted to the domain of
automotive intrusion detection and to assess their effectiveness. In doing so, we aim to identify
attack strategies that are compatible with the unique characteristics of this domain — namely,
the tabular and temporal nature of the data, the sensor-like behavior of certain signals within
the payloads, and the real-time constraints imposed by the CAN bus environment. Our approach
consists of two key steps: first, we perform a domain-specific preprocessing phase that transforms
raw CAN payloads into a representation suitable for machine learning-based IDSs. Second, we
adapt and extend state-of-the-art gradient-based adversarial techniques—originally developed for
computer vision—to align with the constraints of automotive systems. These adaptations include
limiting perturbations to physically plausible ranges, preserving signal semantics, and lowering
the average convergence iterations to increase compatibility with real-time execution. We opt
for gradient-based approaches due to their transferability property [39]: being it unlikely for an
attacker to possess the actual models running on the target IDS, the capability of gradient-based
attacks to transfer to other models comes helpful to allow for the training of the attacks against an
oracle and their execution against a different target model.

1The original datasets were split into two sets each, simulating scenarios with different levels of attacker knowledge.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:7

Victim Node Attacker

CAN Bus

NO

Attack
Perturbation

Inject Attack Evasive Algorithm

0x3F ...
0x01 ...

0x4C ...

CAN Attack Packets

YES

Oracle

IDS

Detected?

Fig. 1. Scheme of the attacker’s approach. The attacker controls a node with bus access. Either in real-time or
precomputing it, they generate the evasive attack sequence through the oracle and inject it on the CAN bus.

Table 2. Bit ranges with semantic meaning identified

Type Description
Constant Bits that remain constant. They are excluded from the feature vector.
Physval Sequences of bits that contain a changing value, usually corresponding to physical signals.
Binary Ranges containing an isolated, non-constant bit, interpreted as a logical flag.
CRC Checksums for message integrity, detected through their Gaussian random distribution.
Counter Application-level counters, increasing by one with each subsequent frame.

Preprocessing. To ensure domain-relevant input representations, we perform a preprocessing step
that extracts semantically significant features from raw payloads, addressing the lack of publicly
available signal mappings and the obfuscated nature of CAN data. Following the approach proposed
in prior works [23, 47], we apply a heuristic analysis to the packet payloads, incorporating slight
improvements over the original READ method [24]. This analysis enables the identification of bit
ranges with distinct semantic roles by examining how frequently bits change over time. For example,
it distinguishes adjacent bits that function as counters from isolated binary flags that do not exhibit
strong correlation with neighboring bits. Using attack-free data, we categorize the extracted fields
into five types, as summarized in Table 2. Consistent with findings from previous work [21], we
retain only physical and binary ranges as features, which improves both reconstruction accuracy
and model efficiency compared to using the full set of non-constant bits. Finally, physical signals
are parsed as integers and normalized in the [0, 1] interval by dividing each value by the maximum
representable number for its corresponding bit length.
Evasion Algorithms. In our approach [2], as visible in Figure 1, the attacker starts with an initial
CAN log containing some unperturbed attack messages as a baseline, and attepmts to morph these
sequences to be evasive by applying repeated modifications. We formalize an evasion attack as
the optimization problem of finding the adversarial sample 𝑥 , undetected under the discrimination
function 𝐹 (𝑥) while minimizing the perturbation 𝛿 (𝑥, 𝑥): 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∗ [𝛿 (𝑥∗, 𝑥)] s.t. 𝐹 (𝑥∗) =
0 ∧ 𝑥∗ ∈ 𝐷𝑥 . In most applications, the generated adversarial sample 𝑥 must also comply with
domain-specific constraints, i.e., 𝑥 ∈ 𝐷𝑥 . For instance, in the computer vision domain, inputs
are typically constrained to pixel intensity values within the integer range [0, 255]. In our case,
we enforce domain validity by restricting each perturbed, normalized signal obtained during the
preprocessing stage to remain within the [0, 1] interval.

The algorithms we propose are derived from gradient-based techniques originally designed for
computer vision; the common rationale behind these kinds of techniques, namely fast gradient
method (FGM), BIM [18], and Deepfool [28], is to leverage the backpropagation algorithm against
the model under attack. The intuition is to push the original input towards areas in the problem
space with lower confidence, approaching and crossing the decision boundary by exploiting the
gradient ascent of an arbitrary loss function. Figure 1 illustrates a single iteration of the process. At
each iteration, the chosen algorithms try to find an optimal additive term and produce 𝑥𝑡+1.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Longari et al.

6.1 BIM-based algorithms

Algorithm 1: Proposed BIM step decay variant
begin

𝑡 ← 0;
𝑠𝑡𝑒𝑝 ← 𝜖 ;
while 𝑡 <𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

𝑠𝑐𝑜𝑟𝑒 ← get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) ;
𝑔𝑟𝑎𝑑 ← gradient𝑠𝑎𝑚𝑝𝑙𝑒 (𝑠𝑐𝑜𝑟𝑒) ;
𝑝𝑒𝑟𝑡 ← 𝑠𝑡𝑒𝑝 · 𝑠𝑖𝑔𝑛 (𝑔𝑟𝑎𝑑) ; // (1)
𝑝𝑒𝑟𝑡 ← −𝑝𝑒𝑟𝑡 · 𝑡𝑎𝑚𝑝𝑒𝑟_𝑚𝑎𝑠𝑘 ; // minimizing

𝑠𝑎𝑚𝑝𝑙𝑒 ← clip𝑚𝑖𝑛,𝑚𝑎𝑥 (𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑝𝑒𝑟𝑡) ;
𝑠𝑎𝑚𝑝𝑙𝑒 ← round(𝑠𝑎𝑚𝑝𝑙𝑒) ;
𝑠𝑡𝑒𝑝 ← 𝑠𝑡𝑒𝑝 · 𝑑𝑒𝑐𝑎𝑦 ; // step decay

if get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
return 𝑠𝑎𝑚𝑝𝑙𝑒 ; // sample is now evasive

end
𝑡 ← 𝑡 + 1;

end
return 𝑁𝑜𝑛𝑒 ; // Abort computation

end

Algorithm 2: Proposed 𝑙2 BIM variant
begin

𝑡 ← 0;
𝑠𝑡𝑒𝑝 ← 𝜖 ;
while 𝑡 <𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

𝑠𝑐𝑜𝑟𝑒 ← get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) ;
𝑔𝑟𝑎𝑑 ← gradient𝑠𝑎𝑚𝑝𝑙𝑒 (𝑠𝑐𝑜𝑟𝑒) ;
𝑝𝑒𝑟𝑡 ← 𝑠𝑡𝑒𝑝 · 𝑔𝑟𝑎𝑑

| |𝑔𝑟𝑎𝑑 | |2 ; // (2)
𝑝𝑒𝑟𝑡 ← −𝑝𝑒𝑟𝑡 · 𝑡𝑎𝑚𝑝𝑒𝑟_𝑚𝑎𝑠𝑘 ; // minimizing

𝑠𝑎𝑚𝑝𝑙𝑒 ← clip𝑚𝑖𝑛,𝑚𝑎𝑥 (𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑝𝑒𝑟𝑡) ;
𝑠𝑎𝑚𝑝𝑙𝑒 ← round(𝑠𝑎𝑚𝑝𝑙𝑒) ;
if get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

return 𝑠𝑎𝑚𝑝𝑙𝑒 ; // sample is now evasive

end
𝑡 ← 𝑡 + 1;

end
return 𝑁𝑜𝑛𝑒 ; // Abort computation

end

The original BIM iteratively applies the FGSM perturbation described by (1).

𝑥𝑡+1 = 𝑐𝑙𝑖𝑝𝑋 (𝑥𝑡 − 𝜖
∇𝑥𝐿 (𝑤,𝑥𝑡)
| |∇𝑥𝐿 (𝑤,𝑥𝑡) | |) (1)

From a geometric point of view, this method produces a perturbation directed towards amaximum
of the loss function 𝐿 via approximation of the gradient ∇𝑥𝐿 and constrained by | |𝑥𝑡+1 − 𝑥𝑡 | |∞ ≤ 𝜖 ,
depending on the hyperparameter 𝜖 .

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:9

Algorithm 3: Pseudocode for the DeepFool variant
begin

𝑡 ← 0;
𝑠𝑡𝑒𝑝 ← 𝜖 ;
while 𝑡 <𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

𝑠𝑐𝑜𝑟𝑒 ← get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
𝑔𝑟𝑎𝑑 ← gradient𝑠𝑎𝑚𝑝𝑙𝑒 (𝑠𝑐𝑜𝑟𝑒) ;
𝑝𝑒𝑟𝑡 ← 𝑠𝑐𝑜𝑟𝑒 ·𝑔𝑟𝑎𝑑

| |𝑔𝑟𝑎𝑑 | |22
; // (3)

𝑝𝑒𝑟𝑡 ← (1 + 𝜖)𝑝𝑒𝑟𝑡 · 𝑡𝑎𝑚𝑝𝑒𝑟_𝑚𝑎𝑠𝑘 ; // projection

𝑠𝑎𝑚𝑝𝑙𝑒 ← clip𝑚𝑖𝑛,𝑚𝑎𝑥 (𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑝𝑒𝑟𝑡) ;
𝑠𝑎𝑚𝑝𝑙𝑒 ← round(𝑠𝑎𝑚𝑝𝑙𝑒) ;
if get_score(𝑖𝑑𝑠_𝑚𝑜𝑑𝑒𝑙, 𝑠𝑎𝑚𝑝𝑙𝑒) < 0 then

return 𝑠𝑎𝑚𝑝𝑙𝑒 ; // sample is now evasive

end
𝑡 ← 𝑡 + 1;

end
return 𝑁𝑜𝑛𝑒 ; // Abort computationend

We implement two slightly different variants of the BIM attack, namely the step decay BIM
and the 𝑙2 BIM; both versions of the algorithm include an adjustment procedure to restrict the
resulting value 𝑥𝑡+1 to stay in the problem space. We achieve this by clipping and rounding to
the nearest integer so that the features can be effectively represented in the actual underlying bit
vector. This ensures that modified payloads remain within valid signal representations, aligning
with the bit-level constraints and signal encoding formats typical of in-vehicle CAN traffic. Besides
this modification, the step decay method differs from the simple BIM in the parameter 𝜖: in our
implementation, it has not a fixed magnitude but rather a geometrically decreasing value according
to the update rule 𝜖𝑡+1 = 𝜖𝑡 ∗ 𝜔 , introducing the hyperparameters 𝜖0 and 𝜔 . The reason for the
introduction of step decay is that, similarly to what happens with the learning rate decay during the
training of DL models [46], the introduction of a geometrically decreasing step size helps mitigate
oscillations around the decision boundary, reducing the number of iterations needed and making
the attack more compatible with the strict real-time constraints of automotive systems.

𝑥𝑡+1 = 𝑐𝑙𝑖𝑝𝑋 (𝑥𝑡 − 𝜖
∇𝑥𝐿 (𝑤,𝑥𝑡)
| |∇𝑥𝐿 (𝑤,𝑥𝑡) | |2

) (2)

Conversely, the 𝑙2 BIM simply uses the Euclidean norm instead of the absolute value for the FGSM
equation, resulting in (2). In this case, 𝜖 quantifies the module of the perturbation vector, which now
completely orients itself according to the gradient and constitutes the tighter bound | |𝑥𝑡+1−𝑥𝑡 | |2 ≤ 𝜖 .
We deem this approach more suitable in our case - given the higher dimensionality and feature
inter-correlation in the automotive domain - but also in general when dealing with diverse features,
as they apply small perturbations along all dimensions. By relying on the Euclidean norm, the 𝑙2 BIM
distributes the perturbation more evenly across all features—an approach particularly well-suited
for the highly interdependent and heterogeneous signals found in automotive payloads. In both
implementations, we choose as loss function the opposite of the anomaly score.

6.2 DeepFool-based algorithm
Deepfool [28] is another iterative method that approximates the IDS as an affine classifier𝑤 ·𝑥 +𝑏 =

𝐹 (𝑤, 𝑥), then the perturbation 𝛿 tries to push the sample beyond the affine decision boundary,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Longari et al.

which we assume to be the 0 plane for 𝐹 .

𝑥𝑡+1 = 𝑥𝑡 + (1 + 𝜖) · (−𝐹 (𝑤,𝑥) ∇𝑥𝐹 (𝑤,𝑥𝑡)
| |∇𝑥𝐹 (𝑤,𝑥𝑡) | |22

)) (3)

Equation (3) illustrates the original computation, notice the overshooting factor 1 + 𝜖 : since the
algorithm can’t converge to a point precisely on the decision boundary, we attempt to cross it by a
small value 𝜖 instead - according to the approximation - and cause the objective misclassification.
In our case, we do not deal with a sign-dependent decision value like 𝐹 (𝑤, 𝑥), however, we can
consider the reconstruction error 𝐿(𝑤, 𝑥) as a classification confidence score and apply a shift by
the thresholding value 𝜃 to obtain an analogous zero-centered boundary 𝐹 (𝑤, 𝑥) = 𝐿(𝑤, 𝑥) − 𝜃 . We
apply the same adjustment procedure to obtain valid samples that we use for the BIM algorithms.
This may hinder the algorithm convergence; however, we mitigate this phenomenon by testing
different overshooting magnitudes. According to the evaluation of the original paper, albeit more
computationally complex, it should terminate in fewer iterations than simple BIM. Note that in most
automotive intrusion detection algorithms, the input windows contain malicious and legitimate
packets. This is true for all the models in our experimental evaluation except the FFNN. Therefore,
we apply the computed perturbation only on the injected packages at each step via a simple
projection of the computed perturbation matrix. Notably, in this way the algorithm naturally aligns
with the temporal nature of predictive IDSs: the attacker perturbs the most recent packet to better
match the model’s prediction, and upon successful evasion, the sliding input window incorporates
this crafted packet, subsequently affecting future classifications.

7 Experimental Evaluation
In this section, we describe the experiments and discuss the results that are the core of our investi-
gation, which aim to answer the following research question:

Are existing adversarial evasion attacks effective against payload-based automotive IDSs?
The first experiment evaluates the feasibility and impact of adversarial attacks against IDSs per-
formed by an attacker with different degrees of knowledge (see Section 4) of the target system,
using the ReCAN [47] and CarHacking [35] datasets.
The second experiment evaluates whether the adversarially perturbed attacks maintain the attack
goal, assessing the effectiveness of the adversarially perturbed attacks on the vehicle by comparing
the shape of the original and adversarial attacks signals.
Finally, the third experiment is meant to study whether attacks can be executed even in stringent
real time constraints, by restricting the assumption of the attacker’s computational capabilities. To
emulate the physical real-time constraints, we precompute the evasive payload sequence allowing
an attacker to inject it entirely when given requirements on bus traffic are met.

7.1 Experimental Settings

Performance Metrics. Since the goal of this work is to assess the impact of adversarial evasion
attacks across different IDS architectures, the attacker does not alter benign traffic. As a result, the
IDSs’ behavior on legitimate (non-malicious) traffic remains unchanged. Consequently, metrics
such as true negatives (TN) and false positives (FP) are unaffected by the attack and are therefore
not relevant to our evaluation. We mainly report the true positive rate (TPR) (i.e., recall) of each
IDS under attack, as it directly reflects the degradation in detection capability due to adversarial
perturbations. Moreover, to quantify the magnitude of the adversarial perturbation applied to evade
detection, we introduce the aggregate perturbation (AP) metric, which measures themean maximum

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:11

perturbation of a single field in each packet. Formally, we define it as:

AP =

∑𝑁
𝑖=1 | |𝑥𝑖 − 𝑥𝑖 | |∞

𝑁

where 𝑁 is the number of malicious packets in the test set, 𝑥𝑖 is the array of features in the original
𝑖-th malicious packet, and 𝑥𝑖 is the corresponding adversarial packet. The infinity norm captures
the largest individual feature perturbation per packet. Since all features are normalized to the [0, 1]
range, the AP score also lies within this interval.

7.2 Datasets Under Analysis
For our evaluation we rely on two publicly available, real-world traffic datasets: ReCAN [47] and
the Car Hacking Dataset (CH) [35]. Both datasets offer realism in the untampered section of the
data, being extracted live from real vehicles. Where the ReCAN dataset integrates synthetic attacks
to allow for complex attack events to be tested, the CH dataset contains real-world attacks, which
are however executed live with safety in mind and therefore less complex and predictable.

7.2.1 ReCAN Dataset. The ReCAN dataset [47] consists of real CAN traffic collected from a Giulia
Veloce vehicle using a CANtact interface [9]. We focus on the “C-1” subset, which provides the
richest trace (over two hours of city and highway driving). This dataset contains no attack instances,
enabling us to inject synthetic attacks in a controlled and isolated manner, in line with prior
work [21, 23].

Synthetic attacks are generated using the CANtack tool and following the same setup presented
by Nichelini et al. [29], which supports both injection and masquerade strategies. Specifically, the
following attack types are included:
Injection Replay: Injects previously observed packets at a lower rate (injection rate = 0.4) to avoid
triggering frequency-based detection.
Masquerade Replay: Simulates ECU impersonation, replaces 25 valid packets content with content
of a previously recorded sequence of valid packets, without affecting frequency or period of arrival.
Continuous Change: Replaces 25 legitimate packets content without affecting frequency or period
of arrival, but instead of replaying previous data it gradually modifies a single signal (of at least 9
bits) over 25 packets to reach a random target value inside the boundaries of the signal.
Change to Minimum: A variant of the above, targeting a final all-zero value.
Fuzzy: Randomly modifies physical and binary fields at each packet.

In the context of CAN security, injection attacks typically involve the insertion of new packets
by the attacker, superimposed on the existing traffic. This often results in a noticeable change in the
arrival frequency of the attacked packets, which could be detected. In contrast, masquerade attacks
usually refer to silencing the sender ECU by various methods [7, 26], and then sending packets
on its behalf at the correct frequency to avoid detection by frequency-based IDSs. To further hide
their presence, attackers may execute attacks that do not abruptly change signal values but that
do so gradually. Finally, fuzzy attacks are usually meant to test a system for unexpected behavior,
modify the values of the payload randomly, and are usually relatively simple to detect. All generated
attacks are signal-aware and generated using an enhanced version of the READ heuristic [24],
modifying only the targeted field within each packet. Each attack is independently generated per
CAN ID and spaced at least one minute apart. Following CANova [29], we select 12 specific IDs for
evaluation. To prevent overfitting, training and testing sequences are drawn from disjoint portions
of the dataset. In black-box settings, oracles and IDSs are trained on separate sequences to simulate
differing attacker and defender environments.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Longari et al.

7.2.2 Car Hacking Dataset. The publicly available car hacking (CH) dataset [35] complements
ReCAN by offering real-world adversarial scenarios collected via the on-board diagnostics (OBD)
port during live vehicle operation. It includes five experiments: DoS, fuzzy, RPM spoofing, gear
spoofing, and an attack-free trace. We focus on the RPM and gear spoofing attacks (IDs 0316 and
043f) as they involve payload-level manipulations and are conducted in a realistic setting.
Unlike synthetic scenarios, these attacks were executed live with safety in mind. As such, they

are inherently less aggressive, need to provide predictable outcomes (e.g., only specific IDs are
attacked) and must maintain vehicular safety during execution. Nevertheless, they provide valuable
insights into how adversarial perturbations behave in practical contexts.

We exclude the DoS and fuzzy attacks from our evaluation, as they are trivially detectable [33, 35]
and not aligned with the stealth-focused objective of our adversarial approach. Due to known
inconsistencies between the “attack-free” and “injected” logs [44], we train all models using the
untampered portions of the attack sessions themselves to avoid distribution shift.

7.3 Selected intrusion detection systems
Given that attacks that alter the frequency are easy to detect, an adversarial attacker will implement
masquerade attacks that do not alter frequency of the network stream. Therefore, to assess the
effectiveness of evasion attacks against IDSs in the automotive field, we select six commonly
used [22] architectures of payload-based anomaly detector.
FFNN. A one-to-one autoencoder with two fully connected layers with 16 units each; this archi-
tecture is blind to replay attacks as it considers a single packet at a time, however, it is a simple
solution to detect more obvious payload tampering and is included to provide a baseline reference.
CANdito [21]. A window-to-window symmetrical autoencoder with two fully connected (128
units each) and two LSTM layers (64 cells each), it is the most complex among the chosen networks.
LSTM predictors [42]. Two window-to-one predictors, we implement two variants, a short with
just two LSTM layers having 32 cells each, and a long with four LSTM layers, with 64 and 16 cells.
GRU-based predictors. Two window-to-one predictors analogous to the short and long LSTM
variants, employing the more lightweight gated recurrent units (GRUs) instead.

A final sigmoid-activated dense layer with one unit per input feature follows each individual
architecture to provide an output with the correct dimensionality. While the predictor models
produce an anomaly score for one packet at a time, with a rolling input window, the CANdito
autoencoder reconstructs the whole window, operating with non-overlapping input sequences. We
choose a window size of 40 (or 39 plus one predicted frame for the predictor models).

7.4 Experiment 1: Adversarial attack performance evaluation
7.4.1 Baselines Performance. Table 3 reports the average recall and precision for various non-
evasive attacks evaluated across two datasets—ReCAN and CarHacking—using a range of IDS
models: FFNN, CANdito, shortLSTM, longLSTM, shortGRU, and longGRU. These metrics provide a
baseline understanding of each model’s ability to detect attacks under non-evasive conditions.

On the ReCAN dataset, results align with expectations. The Fuzzy attack, which significantly dis-
rupts data patterns, yields high recall across all models, with CANdito showing the best performance.
However, precision drops notably—especially in shortLSTM—indicating non null false positive
rates (note that this is not particularly relevant for our experiments, since the adversarial samples
do not affect non-tampered data). Attacks such as Continuous Change and Change to Minimum
show moderate recall, particularly in CANdito and longLSTM, but again suffer from low precision,
especially in shortLSTM and shortGRU. The Injection Replay and Masquerade Replay attacks are
particularly challenging to detect, showing very low recall and precision across all models. For

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:13

Table 3. Average Recall and Precision for each non-evasive attack on the ReCAN and CarHacking Dataset.

R
eC

A
N

Attack Metrics FFNN CANdito shortLSTM longLSTM shortGRU longGRU

Fuzzy recall 0.9192 0.9777 0.8928 0.8430 0.8976 0.9058
precision 0.7032 0.7758 0.4542 0.4264 0.5241 0.4763

Continuous Change recall 0.4317 0.7758 0.6321 0.6256 0.6224 0.6190
precision 0.5424 0.7270 0.2874 0.3294 0.3478 0.3125

Change to Minimum recall 0.5158 0.7845 0.5307 0.5550 0.5224 0.5116
precision 0.7152 0.9184 0.2852 0.2916 0.3761 0.2839

Injection Replay recall 0.0000 0.4215 0.6640 0.5447 0.6927 0.6893
precision 0.0000 0.6513 0.2436 0.3268 0.2718 0.2494

Masquerade Replay recall 0.0006 0.3604 0.2743 0.2557 0.2070 0.2214
precision 0.0067 0.5024 0.1522 0.1728 0.1690 0.1366

C
ar
H
ac
k. RPM Spoofing recall 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

precision 1.0000 1.0000 0.9066 0.9066 0.9066 0.9066

Gear Spoofing recall 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
precision 0.9950 0.9655 0.9090 0.9090 0.9090 0.9090

instance, FFNN fails almost entirely to detect Injection Replay, due to its lack of temporal context,
while sliding-window models perform slightly better, benefiting from sequential input awareness.

In contrast, the CarHacking dataset yields significantly stronger results. Both the RPM Spoofing
and Gear Spoofing attacks are consistently detected, with all models achieving perfect recall.
Precision is similarly high across the board, with CANdito slightly outperforming others on the
Gear Spoofing attack. These results highlight that real-world injected attacks, potentially due to the
safety limitations in generating the dataset, are more easily detected than synthetic ones, and the
similarity in performance across the RPM and Gear spoofing attacks is expected, as both rely on
the same injection-based attack strategy.

7.4.2 White-Box scenario. In this experiment, we compare the performances of all six IDSs over all
the available attacks in the white-box scenario. Tables, 4, 5, 6, 7, and 8 show the aggregated results
for the adversarial attacks on the ReCAN dataset, while Tables 9 and 10 present the results on the
CarHacking dataset. Note that the performance metric values in each table are averaged over all
evaluated IDs. Since we test the evasive packets generated by each oracle model against all the
other available architectures on the same dataset, the diagonal in these tables represents the results
of the white-box scenario, while the remaining part shows the results of the grey-box one.
ReCAN. Overall, the performances on the ReCAN datasets in the white-box scenario demonstrate
the effectiveness of the evasion process. Across all the attacks, multiple algorithms manage to lower
the detection rate of the respective detection systems by 10% to 60%. As presented in Table 11, the
oracles in the white-box scenario significantly outperform the others in lowering the detection rate.
Among all attacks, the fuzzy attack (see Table 4) is predictably the easiest to detect due to the

random fluctuations in the values of the tampered signals. The intent behind the fuzzing attack
is often to investigate the behavior of a system or study its interaction with the IDSs, rather
than to produce a specific effect. Notably, it is also the attack with the highest white-box evasion
performance, with DeepFool repeatedly causing a detection rate loss exceeding 50% compared
to the baseline. Interestingly, CANdito maintains a significantly lower performance loss than the
other algorithms.

The continuous change and change-to-minimum attacks (see Tables 5 and 6) exhibit comparable
baseline performances, with the former being slightly easier to detect (with a difference of about
5-10% in TPR), likely due to the randomly generated target value potentially falling outside the
normal behavior of the signal. As expected, for similar reasons, it is also easier to find an evasive
sample for the continuous change attack. In these attacks, the intruder replays previous packets

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Longari et al.

Table 4. Results on the ReCAN dataset in the white-box, grey-box (first part of the table, the white diagonal
line represent the white-box), and black-box scenarios for the fuzzy attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.81 (-11.21%) 0.98 (0.0%) 0.89 (-0.12%) 0.84 (0.07%) 0.9 (-0.06%) 0.9 (-0.29%)
L2 BIM 0.18 0.43 (-48.99%) 0.98 (0.0%) 0.89 (-0.71%) 0.83 (-1.29%) 0.89 (-0.68%) 0.9 (-0.71%)
DeepFool 0.19 0.58 (-33.67%) 0.98 (0.0%) 0.88 (-0.94%) 0.82 (-1.94%) 0.89 (-0.8%) 0.89 (-1.26%)

CANdito
Decay BIM 0.0 0.92 (0.0%) 0.98 (0.0%) 0.89 (0.0%) 0.84 (0.0%) 0.9 (0.0%) 0.91 (0.0%)
L2 BIM 0.0 0.92 (-0.06%) 0.97 (-1.04%) 0.89 (0.0%) 0.84 (0.0%) 0.9 (0.0%) 0.91 (0.0%)
DeepFool 0.01 0.91 (-1.06%) 0.89 (-9.03%) 0.89 (-0.17%) 0.84 (-0.23%) 0.9 (-0.17%) 0.9 (-0.17%)

Short LSTM
Decay BIM 0.0 0.92 (-0.0%) 0.98 (0.0%) 0.87 (-2.66%) 0.84 (-0.06%) 0.89 (-0.47%) 0.9 (-0.18%)
L2 BIM 0.1 0.88 (-4.03%) 0.98 (0.0%) 0.66 (-22.82%) 0.81 (-2.88%) 0.86 (-3.48%) 0.87 (-3.14%)
DeepFool 0.79 0.67 (-24.9%) 0.87 (-10.6%) 0.29 (-59.87%) 0.53 (-30.86%) 0.63 (-27.03%) 0.63 (-27.59%)

Long LSTM
Decay BIM 0.0 0.92 (0.19%) 0.98 (0.0%) 0.89 (-0.11%) 0.81 (-2.81%) 0.89 (-0.34%) 0.9 (-0.29%)
L2 BIM 0.13 0.84 (-7.56%) 0.98 (0.0%) 0.87 (-2.77%) 0.58 (-26.48%) 0.86 (-3.33%) 0.87 (-3.61%)
DeepFool 0.76 0.67 (-25.31%) 0.87 (-10.88%) 0.68 (-21.22%) 0.24 (-59.99%) 0.7 (-20.04%) 0.69 (-22.0%)

Short GRU
Decay BIM 0.0 0.92 (0.01%) 0.98 (0.0%) 0.89 (-0.12%) 0.84 (-0.18%) 0.88 (-2.16%) 0.91 (-0.07%)
L2 BIM 0.1 0.9 (-2.12%) 0.98 (0.0%) 0.87 (-2.44%) 0.83 (-1.4%) 0.69 (-20.61%) 0.88 (-2.14%)
DeepFool 0.7 0.74 (-17.93%) 0.9 (-8.04%) 0.67 (-22.21%) 0.64 (-20.73%) 0.35 (-54.59%) 0.7 (-20.63%)

Long GRU
Decay BIM 0.0 0.92 (0.07%) 0.98 (0.0%) 0.89 (-0.28%) 0.84 (-0.11%) 0.9 (-0.23%) 0.88 (-2.2%)
L2 BIM 0.1 0.89 (-2.98%) 0.98 (0.0%) 0.85 (-3.87%) 0.82 (-2.62%) 0.86 (-3.77%) 0.69 (-21.16%)
DeepFool 0.76 0.67 (-25.39%) 0.86 (-11.98%) 0.64 (-24.83%) 0.62 (-22.2%) 0.67 (-23.21%) 0.31 (-59.36%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.9 (-2.12%) 0.98 (0.0%) 0.89 (0.0%) 0.84 (-0.04%) 0.9 (-0.07%) 0.9 (-0.11%)
L2 BIM 0.12 0.85 (-7.18%) 0.98 (0.0%) 0.89 (-0.09%) 0.84 (-0.78%) 0.89 (-0.29%) 0.9 (-0.62%)
DeepFool 0.16 0.84 (-7.6%) 0.98 (0.0%) 0.89 (-0.61%) 0.84 (-0.5%) 0.9 (0.0%) 0.9 (-0.36%)

CANdito
Decay BIM 0.0 0.92 (0.0%) 0.98 (0.0%) 0.89 (0.0%) 0.84 (0.0%) 0.9 (0.0%) 0.91 (0.0%)
L2 BIM 0.0 0.92 (0.01%) 0.97 (-1.04%) 0.89 (0.0%) 0.84 (-0.0%) 0.9 (0.0%) 0.91 (0.0%)
DeepFool 0.01 0.92 (-0.19%) 0.97 (-1.04%) 0.89 (-0.17%) 0.84 (0.06%) 0.9 (-0.17%) 0.9 (-0.17%)

Short LSTM
Decay BIM 0.0 0.92 (-0.13%) 0.98 (0.0%) 0.89 (-0.07%) 0.84 (0.01%) 0.9 (0.0%) 0.9 (-0.18%)
L2 BIM 0.13 0.86 (-5.48%) 0.98 (0.0%) 0.87 (-2.33%) 0.82 (-2.33%) 0.87 (-2.36%) 0.88 (-2.62%)
DeepFool 0.69 0.72 (-20.27%) 0.95 (-2.57%) 0.68 (-21.23%) 0.62 (-22.53%) 0.71 (-18.98%) 0.71 (-19.63%)

Long LSTM
Decay BIM 0.0 0.92 (0.0%) 0.98 (0.0%) 0.89 (0.01%) 0.84 (-0.1%) 0.9 (-0.06%) 0.91 (-0.06%)
L2 BIM 0.15 0.85 (-7.36%) 0.98 (0.0%) 0.87 (-2.03%) 0.82 (-2.23%) 0.88 (-1.76%) 0.88 (-2.68%)
DeepFool 0.74 0.65 (-26.82%) 0.94 (-4.24%) 0.65 (-24.48%) 0.59 (-25.4%) 0.7 (-19.48%) 0.71 (-19.43%)

Short GRU
Decay BIM 0.0 0.91 (-0.8%) 0.97 (-0.32%) 0.89 (0.12%) 0.83 (-0.93%) 0.9 (0.22%) 0.91 (-0.04%)
L2 BIM 0.11 0.91 (-1.34%) 0.98 (0.0%) 0.88 (-1.36%) 0.83 (-1.24%) 0.87 (-2.32%) 0.89 (-1.92%)
DeepFool 0.74 0.75 (-17.14%) 0.94 (-3.5%) 0.69 (-20.08%) 0.65 (-19.41%) 0.72 (-18.14%) 0.71 (-19.71%)

Long GRU
Decay BIM 0.0 0.92 (-0.11%) 0.98 (0.0%) 0.89 (-0.12%) 0.84 (0.01%) 0.9 (-0.17%) 0.91 (0.0%)
L2 BIM 0.13 0.88 (-3.92%) 0.98 (0.0%) 0.87 (-1.96%) 0.82 (-2.07%) 0.87 (-2.34%) 0.87 (-3.13%)
DeepFool 0.69 0.73 (-19.3%) 0.95 (-2.69%) 0.68 (-20.97%) 0.62 (-22.78%) 0.73 (-17.23%) 0.7 (-20.19%)

while tampering with just one signal field— with a minimum length of 9 bits— making the payload
progressively easier to detect as the attack continues. Unfortunately, this behavior also causes
the algorithms to strongly perturb the target signal, often resulting in an example that closely
resembles a packet from the attack-free scenario, meaning that while the evasion is successful, the
intended effect is lost. Notably, while DeepFool performs best in the fuzzy attack, in these cases it
is the L2 BIM algorithm that consistently achieves a 40% to 50
The masquerade replay attack (see Table 7) justifiably has the lowest detection rates in the

baselines, due to the attack signals being valid sequences in themselves, simply inserted at a
different moment on the network by the attacker. Therefore, the system can only leverage the
semantic discontinuity in the flow of messages for its classification. The FFNN algorithm is rendered
completely useless, meaning no evasion is necessary or achieved. CANdito with the L2 BIM
algorithm performs best in terms of detection loss, with a 23% reduction, but overall the evasion
capabilities are relatively low, likely due to the already low detection performances of the detection
systems.

Finally, in the injection replay scenario (see Table 8), the attacker interleaves additional replayed
packets into the normal traffic so that the content is analogous to full replay sequences, but

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:15

Table 5. Results on the ReCAN dataset in the white-box, grey-box (first part of the table, the white diagonal
line represent the white-box), and black-box scenarios for the continuous change attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.2 (-23.64%) 0.78 (0.0%) 0.62 (-0.76%) 0.62 (-0.63%) 0.61 (-0.99%) 0.62 (-0.18%)
L2 BIM 0.06 0.07 (-35.68%) 0.78 (0.0%) 0.6 (-3.41%) 0.58 (-4.33%) 0.59 (-2.86%) 0.6 (-2.37%)
DeepFool 0.04 0.21 (-22.11%) 0.78 (0.0%) 0.62 (-0.86%) 0.61 (-1.68%) 0.62 (-0.1%) 0.62 (0.18%)

CANdito
Decay BIM 0.0 0.43 (0.0%) 0.78 (0.0%) 0.63 (0.0%) 0.63 (0.0%) 0.62 (0.0%) 0.62 (0.0%)
L2 BIM 0.0 0.42 (-0.77%) 0.65 (-12.22%) 0.63 (-0.27%) 0.62 (-0.19%) 0.62 (-0.47%) 0.62 (-0.33%)
DeepFool 0.02 0.4 (-3.54%) 0.68 (-9.74%) 0.62 (-0.8%) 0.61 (-1.98%) 0.61 (-0.84%) 0.61 (-0.8%)

Short LSTM
Decay BIM 0.02 0.39 (-4.2%) 0.74 (-3.57%) 0.45 (-18.54%) 0.55 (-7.9%) 0.54 (-8.34%) 0.53 (-9.27%)
L2 BIM 0.13 0.26 (-17.17%) 0.65 (-12.76%) 0.17 (-46.27%) 0.32 (-30.91%) 0.38 (-23.96%) 0.35 (-27.31%)
DeepFool 0.25 0.29 (-13.7%) 0.67 (-10.61%) 0.24 (-38.88%) 0.4 (-22.48%) 0.45 (-17.2%) 0.43 (-18.71%)

Long LSTM
Decay BIM 0.02 0.38 (-4.8%) 0.74 (-3.57%) 0.55 (-8.64%) 0.44 (-18.67%) 0.54 (-8.38%) 0.53 (-9.11%)
L2 BIM 0.13 0.24 (-18.97%) 0.62 (-15.66%) 0.36 (-26.8%) 0.12 (-50.23%) 0.39 (-23.26%) 0.37 (-25.32%)
DeepFool 0.22 0.3 (-13.52%) 0.73 (-4.81%) 0.43 (-19.93%) 0.23 (-39.94%) 0.49 (-13.69%) 0.46 (-15.47%)

Short GRU
Decay BIM 0.03 0.37 (-5.84%) 0.76 (-1.19%) 0.57 (-6.38%) 0.57 (-5.26%) 0.41 (-21.31%) 0.55 (-6.82%)
L2 BIM 0.13 0.25 (-18.44%) 0.64 (-13.79%) 0.37 (-26.02%) 0.37 (-25.32%) 0.14 (-47.84%) 0.35 (-27.39%)
DeepFool 0.25 0.31 (-12.29%) 0.67 (-10.27%) 0.42 (-20.76%) 0.41 (-21.23%) 0.23 (-39.7%) 0.45 (-17.23%)

Long GRU
Decay BIM 0.02 0.39 (-4.18%) 0.76 (-1.19%) 0.57 (-6.43%) 0.58 (-4.89%) 0.53 (-9.67%) 0.44 (-18.26%)
L2 BIM 0.12 0.27 (-15.7%) 0.7 (-7.94%) 0.45 (-18.37%) 0.45 (-17.68%) 0.39 (-23.49%) 0.17 (-45.07%)
DeepFool 0.26 0.31 (-11.86%) 0.68 (-9.51%) 0.43 (-20.02%) 0.43 (-19.79%) 0.43 (-19.44%) 0.22 (-39.44%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.39 (-4.58%) 0.76 (-1.19%) 0.62 (-1.3%) 0.62 (-0.82%) 0.61 (-0.79%) 0.61 (-0.41%)
L2 BIM 0.06 0.35 (-7.92%) 0.76 (-1.52%) 0.61 (-2.36%) 0.61 (-1.38%) 0.59 (-3.3%) 0.61 (-1.24%)
DeepFool 0.04 0.4 (-2.83%) 0.77 (-0.76%) 0.62 (-1.17%) 0.62 (-0.83%) 0.61 (-1.64%) 0.61 (-0.66%)

CANdito
Decay BIM 0.0 0.43 (0.0%) 0.78 (0.0%) 0.63 (0.0%) 0.63 (0.0%) 0.62 (0.0%) 0.62 (0.0%)
L2 BIM 0.0 0.43 (-0.24%) 0.76 (-1.76%) 0.63 (-0.06%) 0.63 (0.11%) 0.62 (-0.11%) 0.62 (0.06%)
DeepFool 0.01 0.43 (-0.31%) 0.77 (-0.76%) 0.63 (-0.19%) 0.62 (-0.07%) 0.62 (-0.39%) 0.62 (-0.2%)

Short LSTM
Decay BIM 0.02 0.37 (-6.2%) 0.76 (-1.19%) 0.59 (-4.26%) 0.59 (-4.06%) 0.56 (-6.71%) 0.58 (-4.26%)
L2 BIM 0.09 0.3 (-13.2%) 0.72 (-5.65%) 0.5 (-13.23%) 0.48 (-14.18%) 0.49 (-13.39%) 0.49 (-13.4%)
DeepFool 0.25 0.31 (-12.42%) 0.71 (-7.07%) 0.47 (-16.58%) 0.46 (-16.88%) 0.48 (-14.17%) 0.49 (-13.19%)

Long LSTM
Decay BIM 0.02 0.37 (-6.58%) 0.76 (-1.19%) 0.59 (-4.08%) 0.59 (-3.62%) 0.56 (-5.74%) 0.58 (-3.99%)
L2 BIM 0.09 0.27 (-16.09%) 0.71 (-6.7%) 0.48 (-14.89%) 0.48 (-14.52%) 0.49 (-13.32%) 0.48 (-13.57%)
DeepFool 0.25 0.29 (-14.34%) 0.68 (-9.51%) 0.46 (-17.42%) 0.45 (-17.46%) 0.47 (-14.94%) 0.49 (-13.18%)

Short GRU
Decay BIM 0.03 0.36 (-6.98%) 0.73 (-4.09%) 0.64 (1.07%) 0.63 (0.4%) 0.63 (0.42%) 0.63 (1.2%)
L2 BIM 0.09 0.32 (-11.33%) 0.74 (-3.88%) 0.57 (-6.44%) 0.56 (-6.73%) 0.53 (-9.28%) 0.56 (-6.14%)
DeepFool 0.22 0.36 (-7.11%) 0.71 (-6.31%) 0.5 (-12.83%) 0.5 (-12.86%) 0.49 (-13.16%) 0.51 (-10.5%)

Long GRU
Decay BIM 0.02 0.36 (-6.91%) 0.76 (-1.19%) 0.59 (-3.81%) 0.6 (-2.72%) 0.57 (-5.74%) 0.59 (-3.28%)
L2 BIM 0.09 0.31 (-12.34%) 0.74 (-3.27%) 0.54 (-8.9%) 0.54 (-8.09%) 0.5 (-12.06%) 0.52 (-9.81%)
DeepFool 0.24 0.3 (-13.1%) 0.69 (-8.56%) 0.47 (-16.04%) 0.47 (-15.86%) 0.48 (-14.02%) 0.48 (-13.64%)

discontinuities are present at each injection. This is the only attack against which the predictors
outperform CANdito in the baseline test. Similarly, the drop in detection rate is more pronounced in
the predictor models than in CANdito. As in the previous case, since it does not consider temporal
windows for detection, the FFNN is rendered completely useless.
CarHacking. Interestingly, the results on the dataset are heavily dependent on the evasion algo-
rithm used. In fact, the DeepFool algorithm is the only one to achieve any kind of evasion in both
the gear and RPM spoofing attack scenarios (see Tables 10 and 9). In these attacks, however, the
drop in detection performance is up to 85% for the FFNN and remains consistently high for all but
CANdito, with the only exception being the Long GRU model in the RPM spoofing attack.

7.4.3 Grey-Box scenario. In this experiment, we compare the performances of all six IDSs over all
the available attacks in the grey-box scenario. Tables, 4, 5, 6, 7, and 8 show the aggregated results for
the adversarial attacks on the ReCAN dataset, while Tables 9 and 10 on the CarHacking dataset. We
remember the reader that since we test the evasive packets generated by each oracle model against
all the other available architectures on the same dataset, the diagonal in these tables represents the
results of the white-box scenario, while the remaining part the results of the grey-box one.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Longari et al.

Table 6. Results on the ReCAN dataset in the white-box, grey-box (first part of the table, the white diagonal
line represent the white-box), and black-box scenarios for the change to minimum attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.31 (-20.7%) 0.85 (6.49%) 0.65 (12.43%) 0.68 (12.09%) 0.68 (15.3%) 0.67 (16.03%)
L2 BIM 0.09 0.08 (-43.68%) 0.81 (2.88%) 0.61 (8.13%) 0.61 (5.56%) 0.61 (9.24%) 0.63 (11.4%)
DeepFool 0.06 0.27 (-24.89%) 0.85 (6.8%) 0.63 (10.27%) 0.64 (8.68%) 0.64 (12.26%) 0.64 (12.87%)

CANdito
Decay BIM 0.0 0.56 (4.71%) 0.78 (0.0%) 0.67 (13.87%) 0.68 (12.26%) 0.68 (16.18%) 0.68 (16.82%)
L2 BIM 0.0 0.53 (1.22%) 0.72 (-6.89%) 0.66 (12.87%) 0.67 (11.87%) 0.68 (15.49%) 0.67 (16.32%)
DeepFool 0.01 0.52 (0.91%) 0.76 (-2.26%) 0.65 (12.22%) 0.66 (10.21%) 0.67 (14.53%) 0.66 (15.17%)

Short LSTM
Decay BIM 0.03 0.5 (-1.09%) 0.86 (7.95%) 0.46 (-6.9%) 0.6 (4.99%) 0.6 (7.65%) 0.6 (8.42%)
L2 BIM 0.15 0.34 (-17.89%) 0.69 (-9.82%) 0.18 (-34.66%) 0.38 (-17.26%) 0.4 (-11.91%) 0.39 (-12.6%)
DeepFool 0.26 0.35 (-16.6%) 0.74 (-4.48%) 0.21 (-32.34%) 0.43 (-12.26%) 0.47 (-4.85%) 0.44 (-6.68%)

Long LSTM
Decay BIM 0.03 0.5 (-1.59%) 0.88 (9.46%) 0.58 (5.32%) 0.47 (-8.02%) 0.6 (7.39%) 0.59 (8.14%)
L2 BIM 0.15 0.32 (-20.07%) 0.71 (-7.87%) 0.33 (-19.96%) 0.15 (-40.26%) 0.38 (-14.19%) 0.35 (-15.91%)
DeepFool 0.19 0.38 (-13.35%) 0.85 (6.05%) 0.47 (-6.19%) 0.27 (-28.36%) 0.54 (1.84%) 0.52 (0.47%)

Short GRU
Decay BIM 0.03 0.5 (-1.52%) 0.89 (10.51%) 0.6 (7.06%) 0.64 (8.26%) 0.48 (-4.5%) 0.61 (10.03%)
L2 BIM 0.14 0.35 (-16.31%) 0.75 (-3.36%) 0.42 (-10.93%) 0.45 (-10.92%) 0.19 (-33.1%) 0.41 (-10.13%)
DeepFool 0.25 0.37 (-14.24%) 0.75 (-2.95%) 0.43 (-9.82%) 0.45 (-10.65%) 0.25 (-26.92%) 0.47 (-4.37%)

Long GRU
Decay BIM 0.02 0.49 (-2.24%) 0.88 (9.46%) 0.6 (6.51%) 0.62 (7.0%) 0.59 (6.52%) 0.51 (0.0%)
L2 BIM 0.15 0.35 (-16.9%) 0.74 (-4.75%) 0.42 (-10.78%) 0.46 (-9.48%) 0.4 (-12.37%) 0.19 (-32.3%)
DeepFool 0.26 0.35 (-16.3%) 0.72 (-6.37%) 0.45 (-8.07%) 0.47 (-8.6%) 0.45 (-6.87%) 0.24 (-27.08%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.02 0.28 (-23.68%) 0.75 (-2.99%) 0.55 (2.24%) 0.58 (2.65%) 0.54 (1.94%) 0.53 (2.13%)
L2 BIM 0.08 0.08 (-43.12%) 0.57 (-21.14%) 0.53 (-0.09%) 0.56 (0.74%) 0.5 (-2.22%) 0.52 (0.43%)
DeepFool 0.04 0.27 (-24.39%) 0.72 (-6.26%) 0.55 (1.74%) 0.58 (2.3%) 0.53 (1.15%) 0.53 (2.04%)

CANdito
Decay BIM 0.01 0.51 (-0.44%) 0.68 (-10.22%) 0.56 (3.24%) 0.58 (2.92%) 0.55 (3.2%) 0.55 (3.9%)
L2 BIM 0.0 0.5 (-1.39%) 0.58 (-20.34%) 0.56 (2.91%) 0.58 (2.74%) 0.55 (2.86%) 0.55 (3.49%)
DeepFool 0.0 0.51 (-0.86%) 0.64 (-14.36%) 0.56 (2.71%) 0.58 (2.86%) 0.55 (2.8%) 0.54 (3.17%)

Short LSTM
Decay BIM 0.02 0.44 (-7.97%) 0.74 (-4.03%) 0.4 (-12.97%) 0.52 (-3.55%) 0.46 (-5.86%) 0.45 (-5.83%)
L2 BIM 0.1 0.32 (-19.3%) 0.66 (-12.39%) 0.18 (-35.13%) 0.37 (-18.43%) 0.33 (-19.06%) 0.31 (-20.35%)
DeepFool 0.23 0.33 (-18.65%) 0.65 (-13.7%) 0.16 (-37.07%) 0.33 (-22.13%) 0.33 (-18.96%) 0.31 (-19.71%)

Long LSTM
Decay BIM 0.02 0.45 (-6.84%) 0.73 (-5.22%) 0.49 (-4.16%) 0.41 (-14.79%) 0.47 (-4.91%) 0.47 (-3.89%)
L2 BIM 0.11 0.3 (-21.9%) 0.63 (-15.52%) 0.32 (-21.03%) 0.18 (-37.8%) 0.32 (-20.17%) 0.31 (-20.15%)
DeepFool 0.25 0.31 (-20.41%) 0.58 (-20.88%) 0.35 (-17.93%) 0.13 (-42.05%) 0.31 (-21.44%) 0.31 (-20.36%)

Short GRU
Decay BIM 0.02 0.46 (-5.41%) 0.75 (-2.99%) 0.52 (-0.83%) 0.55 (-0.55%) 0.37 (-15.11%) 0.48 (-3.25%)
L2 BIM 0.11 0.35 (-16.29%) 0.67 (-11.5%) 0.34 (-19.12%) 0.39 (-16.08%) 0.16 (-36.69%) 0.31 (-20.25%)
DeepFool 0.22 0.39 (-12.62%) 0.64 (-14.67%) 0.37 (-16.02%) 0.39 (-16.49%) 0.18 (-34.47%) 0.36 (-15.66%)

Long GRU
Decay BIM 0.02 0.44 (-8.05%) 0.75 (-2.99%) 0.52 (-1.11%) 0.54 (-1.38%) 0.47 (-5.57%) 0.39 (-12.65%)
L2 BIM 0.11 0.33 (-18.51%) 0.7 (-8.08%) 0.34 (-19.47%) 0.36 (-19.0%) 0.31 (-21.14%) 0.15 (-36.41%)
DeepFool 0.26 0.32 (-19.64%) 0.6 (-17.96%) 0.36 (-17.17%) 0.35 (-20.43%) 0.33 (-19.62%) 0.14 (-37.25%)

ReCAN.We refrain from evaluating each attack scenario again due to repetitiveness and space
constraints and instead highlight the most notable characteristics of the grey-box performances.
Overall, the results are, as expected, worse than in the white-box scenario and better than in the
black-box one. In some attack scenarios where the white-box attacks are effective, such as the fuzzy
and change-to-minimum attacks, the performance of using oracles different from the detection
model, although trained on the same data, drops significantly. The delta in performance loss is less
prominent in the already least-performing attacks. Probably the most notable characteristic of the
grey-box scenario is that the autoencoder models, namely CANdito and the FFNN, when used to
attack the predictive models, perform poorly enough to even increase the detection performance,
as is the case with the change-to-minimum attack. On the other hand, the FFNN used as a defense
system seems to increase its detection rate in grey-box attacks in the masquerade and injection
replay scenarios, mostly because these perturbations sometimes alter the shape of the packet from
one identical to previous traffic to one different enough to be detected. Nevertheless, the overall
detection performances of the algorithm in such scenarios still render it ineffective.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:17

Table 7. Results on the ReCAN dataset in the white-box, grey-box (first part of the table, the white diagonal
line represent the white-box), and black-box scenarios for the masquerade replay attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 0.0 (-0.06%) 0.36 (0.0%) 0.27 (0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (0.0%)
L2 BIM 0.0 0.0 (-0.06%) 0.36 (0.0%) 0.27 (0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (0.0%)
DeepFool 0.0 0.0 (-0.06%) 0.36 (0.0%) 0.27 (0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (0.0%)

CANdito
Decay BIM 0.01 0.01 (0.56%) 0.24 (-12.41%) 0.28 (0.96%) 0.27 (1.09%) 0.22 (1.21%) 0.23 (0.53%)
L2 BIM 0.01 0.0 (0.19%) 0.12 (-23.7%) 0.29 (1.2%) 0.26 (0.87%) 0.21 (0.09%) 0.23 (0.49%)
DeepFool 0.0 0.0 (0.06%) 0.25 (-10.65%) 0.29 (1.22%) 0.27 (1.06%) 0.21 (0.39%) 0.23 (0.57%)

Short LSTM
Decay BIM 0.02 0.01 (1.18%) 0.3 (-5.93%) 0.14 (-13.17%) 0.23 (-2.89%) 0.19 (-1.46%) 0.22 (-0.16%)
L2 BIM 0.06 0.02 (2.33%) 0.27 (-8.54%) 0.09 (-18.62%) 0.13 (-12.41%) 0.14 (-6.61%) 0.15 (-7.57%)
DeepFool 0.16 0.01 (0.97%) 0.29 (-6.6%) 0.09 (-18.8%) 0.15 (-11.06%) 0.13 (-7.4%) 0.13 (-9.63%)

Long LSTM
Decay BIM 0.02 0.01 (0.99%) 0.31 (-4.88%) 0.21 (-5.96%) 0.14 (-11.64%) 0.18 (-2.67%) 0.2 (-2.41%)
L2 BIM 0.06 0.02 (1.53%) 0.3 (-5.83%) 0.14 (-13.89%) 0.09 (-17.03%) 0.14 (-6.91%) 0.15 (-7.41%)
DeepFool 0.15 0.01 (0.47%) 0.34 (-1.97%) 0.13 (-14.86%) 0.07 (-18.91%) 0.12 (-8.87%) 0.13 (-9.37%)

Short GRU
Decay BIM 0.02 0.01 (0.96%) 0.31 (-4.88%) 0.22 (-5.1%) 0.22 (-3.51%) 0.12 (-8.66%) 0.2 (-2.44%)
L2 BIM 0.05 0.02 (2.04%) 0.27 (-9.35%) 0.19 (-8.38%) 0.2 (-5.89%) 0.08 (-12.46%) 0.15 (-7.4%)
DeepFool 0.15 0.0 (0.36%) 0.31 (-4.63%) 0.16 (-11.21%) 0.15 (-10.79%) 0.08 (-12.33%) 0.12 (-9.79%)

Long GRU
Decay BIM 0.02 0.02 (1.86%) 0.32 (-3.84%) 0.23 (-4.64%) 0.22 (-3.63%) 0.19 (-1.84%) 0.12 (-10.22%)
L2 BIM 0.05 0.03 (2.84%) 0.3 (-6.46%) 0.2 (-7.62%) 0.21 (-4.78%) 0.15 (-6.17%) 0.08 (-14.0%)
DeepFool 0.15 0.0 (0.12%) 0.32 (-4.51%) 0.16 (-11.36%) 0.14 (-11.18%) 0.12 (-8.83%) 0.08 (-14.39%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 0.0 (0.0%) 0.36 (0.0%) 0.27 (0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (0.0%)
L2 BIM 0.0 0.0 (0.0%) 0.36 (0.0%) 0.27 (-0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (-0.0%)
DeepFool 0.0 0.0 (0.0%) 0.36 (0.0%) 0.27 (0.0%) 0.26 (0.0%) 0.21 (0.0%) 0.22 (0.0%)

CANdito
Decay BIM 0.0 0.01 (0.47%) 0.36 (0.0%) 0.29 (1.3%) 0.27 (1.7%) 0.22 (1.3%) 0.24 (1.77%)
L2 BIM 0.0 0.0 (0.07%) 0.33 (-2.84%) 0.28 (0.59%) 0.26 (0.08%) 0.21 (-0.09%) 0.22 (0.1%)
DeepFool 0.0 0.0 (0.07%) 0.34 (-2.08%) 0.28 (0.76%) 0.26 (0.47%) 0.21 (0.02%) 0.23 (0.39%)

Short LSTM
Decay BIM 0.01 0.01 (0.74%) 0.31 (-5.09%) 0.24 (-3.63%) 0.22 (-3.98%) 0.19 (-1.39%) 0.2 (-1.82%)
L2 BIM 0.04 0.0 (0.28%) 0.29 (-7.18%) 0.22 (-5.82%) 0.2 (-5.91%) 0.18 (-3.11%) 0.18 (-4.12%)
DeepFool 0.14 0.01 (0.63%) 0.32 (-3.7%) 0.17 (-10.38%) 0.16 (-10.06%) 0.14 (-7.19%) 0.15 (-7.48%)

Long LSTM
Decay BIM 0.01 0.02 (1.46%) 0.34 (-2.29%) 0.24 (-2.96%) 0.22 (-3.63%) 0.21 (-0.12%) 0.21 (-0.74%)
L2 BIM 0.04 0.0 (0.08%) 0.29 (-7.38%) 0.2 (-7.33%) 0.17 (-8.1%) 0.17 (-3.36%) 0.18 (-4.44%)
DeepFool 0.14 0.0 (0.34%) 0.31 (-4.63%) 0.17 (-10.92%) 0.14 (-11.09%) 0.13 (-7.56%) 0.13 (-9.06%)

Short GRU
Decay BIM 0.02 0.02 (2.31%) 0.3 (-6.15%) 0.25 (-2.43%) 0.23 (-2.6%) 0.2 (-1.13%) 0.21 (-0.7%)
L2 BIM 0.04 0.04 (4.24%) 0.33 (-3.33%) 0.25 (-2.07%) 0.23 (-2.2%) 0.21 (0.1%) 0.23 (0.6%)
DeepFool 0.15 0.01 (0.73%) 0.3 (-5.56%) 0.17 (-10.06%) 0.15 (-10.32%) 0.14 (-6.94%) 0.14 (-8.01%)

Long GRU
Decay BIM 0.02 0.01 (1.13%) 0.31 (-5.3%) 0.25 (-2.79%) 0.23 (-2.92%) 0.2 (-0.63%) 0.21 (-0.79%)
L2 BIM 0.04 0.02 (2.07%) 0.32 (-4.38%) 0.22 (-5.78%) 0.2 (-5.72%) 0.17 (-3.24%) 0.19 (-3.31%)
DeepFool 0.15 0.01 (0.52%) 0.31 (-4.63%) 0.17 (-10.03%) 0.15 (-10.32%) 0.14 (-6.88%) 0.14 (-8.18%)

CarHacking. Aside from the lack of effectiveness of the BIM algorithms, the grey-box scenarios
for the CarHacking dataset mostly confirm what was already observed in the white-box scenario.
With DeepFool, the FFNN is extremely effective against most models, while the other oracles lose
some effectiveness but still maintain evasion capabilities. Interestingly, the FFNN also proves to be
effective as an intrusion detection system, apparently contradicting the results from the ReCAN
dataset. The hypothesis for why this occurs is that the ease of detection for the FFNN (and partially
for all detection systems) stems from the simplicity of the signal characteristics in the CarHacking
dataset, which are almost always constant. Notably, CANdito is the only IDS that is not evaded by
any oracle, but it is also the only oracle that does not find any suitable evasive point.

7.4.4 Black-Box scenario. Finally, we compare the performances of all six IDSs over all the available
attacks in the black-box scenario. Tables, 4, 5, 6, 7, and 8 show the aggregated results for the
adversarial attacks on the ReCAN dataset, while Tables 9 and 10 on the CarHacking dataset. The
second part of the table represents the black-box scenario. It is interesting to highlight that the
diagonal line of the black-box tables represents the case where the oracle and IDS share the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Longari et al.

Table 8. Results on the ReCAN dataset in the white-box, grey-box (first part of the table, the white diagonal
line represent the white-box), and black-box scenarios for the injection replay attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)
L2 BIM 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)
DeepFool 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)

CANdito
Decay BIM 0.0 0.0 (0.0%) 0.41 (-1.01%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)
L2 BIM 0.01 0.0 (0.07%) 0.29 (-13.5%) 0.66 (-0.6%) 0.54 (-0.73%) 0.69 (-0.2%) 0.68 (-0.8%)
DeepFool 0.0 0.0 (0.0%) 0.39 (-3.18%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)

Short LSTM
Decay BIM 0.03 0.01 (0.87%) 0.34 (-8.64%) 0.36 (-30.47%) 0.38 (-16.2%) 0.53 (-16.53%) 0.49 (-19.6%)
L2 BIM 0.08 0.03 (3.2%) 0.21 (-20.99%) 0.21 (-45.13%) 0.24 (-30.27%) 0.38 (-31.73%) 0.35 (-34.0%)
DeepFool 0.19 0.03 (2.6%) 0.46 (4.3%) 0.24 (-42.07%) 0.3 (-24.6%) 0.52 (-17.6%) 0.53 (-16.2%)

Long LSTM
Decay BIM 0.03 0.03 (3.07%) 0.35 (-6.81%) 0.51 (-15.33%) 0.32 (-22.93%) 0.54 (-15.67%) 0.53 (-15.6%)
L2 BIM 0.08 0.03 (3.27%) 0.24 (-18.6%) 0.41 (-25.13%) 0.16 (-38.33%) 0.44 (-24.93%) 0.44 (-24.87%)
DeepFool 0.19 0.04 (4.47%) 0.45 (3.02%) 0.48 (-18.73%) 0.16 (-38.13%) 0.52 (-17.07%) 0.51 (-17.6%)

Short GRU
Decay BIM 0.03 0.02 (1.53%) 0.34 (-8.12%) 0.43 (-23.2%) 0.4 (-14.47%) 0.38 (-31.07%) 0.43 (-25.53%)
L2 BIM 0.08 0.03 (3.33%) 0.21 (-20.99%) 0.33 (-33.0%) 0.29 (-25.8%) 0.22 (-46.8%) 0.3 (-39.0%)
DeepFool 0.19 0.04 (4.07%) 0.43 (0.83%) 0.46 (-20.33%) 0.37 (-17.47%) 0.28 (-41.13%) 0.47 (-22.33%)

Long GRU
Decay BIM 0.03 0.01 (1.4%) 0.34 (-8.64%) 0.42 (-24.87%) 0.41 (-13.73%) 0.5 (-19.73%) 0.38 (-31.4%)
L2 BIM 0.08 0.04 (3.6%) 0.21 (-20.99%) 0.31 (-35.6%) 0.27 (-27.13%) 0.31 (-38.07%) 0.22 (-46.67%)
DeepFool 0.19 0.04 (3.67%) 0.39 (-2.77%) 0.42 (-24.67%) 0.34 (-20.33%) 0.5 (-19.6%) 0.26 (-43.0%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)
L2 BIM 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)
DeepFool 0.0 0.0 (0.0%) 0.42 (0.0%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)

CANdito
Decay BIM 0.0 0.01 (0.6%) 0.42 (-0.52%) 0.66 (-0.07%) 0.54 (-0.07%) 0.69 (-0.13%) 0.69 (0.0%)
L2 BIM 0.0 0.0 (0.07%) 0.38 (-4.6%) 0.65 (-1.13%) 0.53 (-1.53%) 0.68 (-0.8%) 0.67 (-1.6%)
DeepFool 0.0 0.0 (0.0%) 0.42 (-0.52%) 0.66 (0.0%) 0.54 (0.0%) 0.69 (0.0%) 0.69 (0.0%)

Short LSTM
Decay BIM 0.03 0.01 (0.67%) 0.33 (-9.62%) 0.5 (-16.33%) 0.47 (-7.67%) 0.61 (-8.6%) 0.54 (-14.87%)
L2 BIM 0.05 0.02 (2.2%) 0.27 (-14.88%) 0.47 (-19.8%) 0.42 (-12.0%) 0.52 (-16.8%) 0.49 (-20.33%)
DeepFool 0.17 0.02 (2.2%) 0.45 (2.57%) 0.48 (-18.33%) 0.38 (-16.27%) 0.57 (-12.07%) 0.54 (-15.33%)

Long LSTM
Decay BIM 0.03 0.02 (1.93%) 0.33 (-9.62%) 0.53 (-12.93%) 0.46 (-8.87%) 0.61 (-7.8%) 0.58 (-10.93%)
L2 BIM 0.05 0.03 (3.27%) 0.27 (-14.88%) 0.48 (-18.0%) 0.41 (-13.13%) 0.56 (-13.6%) 0.54 (-15.33%)
DeepFool 0.18 0.03 (3.47%) 0.44 (1.67%) 0.51 (-15.6%) 0.39 (-15.87%) 0.55 (-14.2%) 0.56 (-12.73%)

Short GRU
Decay BIM 0.03 0.01 (1.1%) 0.32 (-10.29%) 0.5 (-16.23%) 0.47 (-7.72%) 0.59 (-10.71%) 0.55 (-13.73%)
L2 BIM 0.06 0.05 (4.8%) 0.29 (-12.66%) 0.46 (-20.6%) 0.43 (-11.73%) 0.49 (-20.73%) 0.5 (-19.27%)
DeepFool 0.2 0.07 (6.87%) 0.46 (3.46%) 0.48 (-18.6%) 0.39 (-15.47%) 0.52 (-16.8%) 0.54 (-15.0%)

Long GRU
Decay BIM 0.03 0.02 (2.33%) 0.34 (-8.51%) 0.5 (-16.13%) 0.46 (-8.53%) 0.58 (-10.8%) 0.56 (-12.87%)
L2 BIM 0.05 0.05 (5.0%) 0.29 (-13.22%) 0.47 (-19.73%) 0.42 (-12.27%) 0.52 (-17.2%) 0.5 (-19.2%)
DeepFool 0.19 0.04 (4.47%) 0.44 (1.66%) 0.5 (-16.4%) 0.39 (-15.73%) 0.54 (-15.53%) 0.53 (-15.8%)

same architecture, but the models have been trained on different datasets. However, the identical
architecture does not appear to provide a noticeable increase in evasion capabilities as long as the
training data is different.

ReCAN. As expected, the performances of the oracles in the black-box scenario are significantly
lower than in the white-box scenario. However, the DeepFool algorithm maintains a consistent
20% drop in detection rate for the predictive models in all attacks except the masquerade injection
case. In the black-box scenario, the predictive models remain the overall better oracles, consistently
achieving better evasion performances than the autoencoders, with both the FFNN and CANdito
consistently showing less than a 10% loss in detection rate. Nonetheless, in terms of detection
system performance, CANdito remains the hardest to evade, often experiencing a 5-20% smaller
drop in detection rate than the other detectors.

CarHacking. The results in the black-box scenario for the CarHacking dataset appear similar to
those in the white- and grey-box scenarios, with the predictive oracles being able to find evasive
points only against predictive IDSs, and CANdito achieving a perfect TPR against all oracles.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:19

Table 9. Results on the CarHacking dataset in the white-box, grey-box (first part of the table, the white
diagonal line represent the white-box), and black-box scenarios for the RPM spoofing attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.68 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 0.15 (-85.02%) 1.0 (0.0%) 0.15 (-84.51%) 0.15 (-84.51%) 0.15 (-84.51%) 0.15 (-84.51%)

CANdito
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

Short LSTM
Decay BIM 0.03 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.01 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 0.68 (-32.13%) 1.0 (0.0%) 0.97 (-2.99%) 0.99 (-1.14%)

Long LSTM
Decay BIM 0.02 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.02 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.01 1.0 (0.0%) 1.0 (0.0%) 0.88 (-11.53%) 0.75 (-24.91%) 0.85 (-14.7%) 0.7 (-29.84%)

Short GRU
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 0.85 (-15.49%) 1.0 (0.0%)

Long GRU
Decay BIM 0.02 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.02 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.01 1.0 (0.0%) 1.0 (0.0%) 0.99 (-0.88%) 0.99 (-0.88%) 0.99 (-1.06%) 0.99 (-1.5%)

Black-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 0.15 (-85.02%) 1.0 (0.0%) 0.15 (-84.51%) 0.15 (-84.51%) 0.15 (-84.51%) 0.15 (-84.51%)

CANdito
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

Short LSTM
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 0.56 (-44.1%) 0.56 (-44.1%) 0.56 (-44.01%) 0.56 (-44.1%)

Long LSTM
Decay BIM 0.11 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.07 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 0.54 (-46.48%) 0.54 (-46.48%) 0.55 (-45.16%) 0.54 (-45.86%)

Short GRU
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 0.7 (-30.37%) 0.7 (-30.37%) 0.7 (-29.84%) 0.7 (-30.37%)

Long GRU
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 0.98 (-1.67%) 0.98 (-1.67%) 0.98 (-1.67%) 0.98 (-1.67%)

However, the FFNN performs exceptionally well as an oracle against all but CANdito in the gear
spoofing attack, while it fails completely in the RPM spoofing attack.

7.4.5 Discussion on results. Tables 11 and 12 provide aggregated results of the performances of the
various evasive algorithms, oracles, and IDSs in all scenarios and over all the tested attacks.

It is evident from Table 11 that the difference in performance between the white-box and the
grey-/black-box scenarios suggests that knowing the exact model is significantly more effective than
having access only to the training dataset, which appears to be closer to not having any information
at all. The table also shows that DeepFool is capable of achieving much higher perturbations without
being detected, making it the most effective evasion algorithm (note that while the lack of evasion
capabilities of the BIM algorithms on the CarHacking dataset skews the results toward DeepFool,
similar although attenuated results would be observed if only the ReCAN dataset were considered).
Table 12 combines the results across IDSs and oracles, highlighting that while CANdito, as

expected, remains the most effective intrusion detection algorithm across all scenarios, it is also the
worst-performing oracle, with even a slight average increase in detection in the grey-box scenario.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Longari et al.

Table 10. Results on the CarHacking dataset in the white-box, grey-box (first part of the table, the white
diagonal line represent the white-box), and black-box scenarios for the gear spoofing attack.

White-box and Grey-box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 0.17 (-83.46%) 0.14 (-86.0%) 0.17 (-82.9%) 0.17 (-82.9%) 0.17 (-82.9%) 0.17 (-82.9%)

CANdito
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

Short LSTM
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.2 1.0 (0.0%) 1.0 (0.0%) 0.6 (-40.07%) 0.85 (-15.2%) 0.56 (-44.13%) 0.75 (-25.04%)

Long LSTM
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.05 1.0 (-0.25%) 1.0 (0.0%) 0.49 (-51.04%) 0.46 (-54.4%) 0.61 (-38.77%) 0.96 (-3.8%)

Short GRU
Decay BIM 0.04 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.04 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.01 0.73 (-26.73%) 1.0 (0.0%) 0.82 (-17.79%) 0.95 (-4.92%) 0.71 (-28.84%) 0.95 (-5.27%)

Long GRU
Decay BIM 0.1 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.12 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.02 1.0 (0.0%) 1.0 (0.0%) 1.0 (-0.09%) 1.0 (-0.09%) 1.0 (0.0%) 0.2 (-80.14%)

Black Box TPR (Δ)
Oracle Algorithm AP FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU

FFNN
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

CANdito
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

Short LSTM
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (-0.17%) 1.0 (0.0%) 1.0 (-0.09%) 1.0 (0.0%)

Long LSTM
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (-0.09%) 1.0 (0.0%) 0.99 (-1.21%) 1.0 (0.0%)

Short GRU
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 0.86 (-13.53%) 1.0 (0.0%) 0.98 (-1.64%) 0.94 (-6.3%) 0.99 (-0.69%) 0.96 (-3.89%)

Long GRU
Decay BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
L2 BIM 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)
DeepFool 0.0 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%) 1.0 (0.0%)

Table 11. Average perturbation and delta TPR of the different evasive algorithms depending on the scenario.

White Box Grey Box Black Box
Decay BIM L2 BIM DeepFool Decay BIM L2 BIM DeepFool Decay BIM L2 BIM DeepFool

Avg. Perturbation 0.02 0.08 0.17 0.02 0.08 0.17 0.01 0.05 0.15
Avg. Delta Recall -7.76% -20.13% -30.88% -0.82% -5.71% -10.44% -2.02% -5.21% -10.41%

Overall, the predictor architectures are significantly more effective at achieving evasive samples,
with the Short LSTM model performing best in all but the black-box scenario.

7.5 Experiment 2: Attack Perturbation
Figure 2 shows some exemplary adversarial behaviors to provide a qualitative assessment of
the effectivness of the adversarially perturbed attacks on the vehicle by comparing the shape
of the original with the adversarial attacks signals In the plot. In the figures, the dotted lines
represent the intended content of an injected sequence while the blue lines are the results of the
adversarial perturbation and the green lines provide a baseline reference depicting the normal
signal in the attack-free state; a red background highlights packets that have successfully evaded
the IDS and a grey background indicates the packets that were already undetected. We present

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:21

Table 12. Combined Results of IDSs and Oracles for Whitebox, Greybox, and Blackbox Scenarios.

Average IDS performances over all attacks
Scenario FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU
White Box 0.35 0.71 0.47 0.45 0.49 0.48
Grey Box 0.52 0.72 0.64 0.62 0.64 0.64
Black Box 0.51 0.73 0.64 0.62 0.64 0.64

Average oracle TPR loss over all attacks
Scenario FFNN CANdito Short LSTM Long LSTM Short GRU Long GRU
White Box -20.63% -4.61% -23.97% -23.86% -21.31% -23.15%
Grey Box -6.02% 1.63% -7.99% -7.70% -7.15% -6.72%
Black Box -4.64% -0.19% -8.31% -8.63% -6.94% -6.58%

0 5 10 15 20
5800

5850

5900

5950

6000

6050

6100

6150

6200

Adversarial Attack Unmodified Attack Legitimate Behavior

(a) White-box, Short LSTM oracle, Masquerade replay
attack, DeepFool evasion algorithm, ID 0DE.

0 5 10 15 20
5800

5850

5900

5950

6000

6050

6100

6150

6200

Adversarial Attack Unmodified Attack Legitimate Behavior

(b) Black-box, Short LSTM oracle, Masquerade replay
attack, DeepFool evasion algorithm, ID 0DE.

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Adversarial Attack Unmodified Attack Legitimate Behavior

(c) White-box, Short GRU oracle, Continuous change
attack, DeepFool evasion algorithm, ID 0DE.

0 5 10 15 20
0

200

400

600

800

1000

Adversarial Attack Unmodified Attack Legitimate Behavior

(d) White-box, Short GRU oracle, Continuous change
attack, DeepFool evasion algorithm, ID 0FF.

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

Adversarial Attack Unmodified Attack Legitimate Behavior

(e) Black-box, Short GRU oracle, Continuous change
attack, L2 BIM evasion algorithm, ID 11C.

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

Adversarial Attack Unmodified Attack Legitimate Behavior

(f) Black-box, Short GRU oracle, Continuous change
attack, DeepFool evasion algorithm, ID 11C.

Fig. 2. Example plots of attack events in various scenarios. In each plot the green line shows the untampered
legitimate behavior of the signal, the dotted yellow line shows the basic version of the attack, and the blue
line shows the evasive version of the attack.

three recurring scenarios worth discussing, cases in which the perturbation is effective, cases in
which the perturbation nullifies the attacker goals, and cases in which the attack fails.

Plots 2a, 2b, and 2c. illustrate attack sequences that successfully achieve the initial attack goal while
fully evading detection. It’s worth noting, though unsurprising, that effective evasion strategies tend
to involve staying close to the baseline reference (Plots 2a and 2b) and avoiding overly aggressive
value changes (Plot 2c). Plots 2a and 2b depict nearly identical setups, with the key difference being
the white-box vs. black-box scenario. Interestingly, the behavior of effective evasive sequences in
both scenarios is often quite similar, as seen in this case. The main difference in evasion rate and
perturbation, as previously shown in Table 11, is typically due to the algorithm’s failure to find an

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Longari et al.

evasive perturbation, rather than any notable variation in the behavior of the generated evasive
sequences themselves.
Plot 2e. captures an output sequence of the continuous change attack against the short GRU model
for CAN ID “11C”. There are multiple instances, throughout the experiments, of attacks that evade
in a similar pattern, where the evasive points are very close to the reference normal traffic that the
ECU would have transmitted if it was not silenced. This is particularly true for the two continuous
experiments where the attack heavily manipulates only one specific signal and replays the others:
the adversarial gradient ascent correctly captures the intra-packet dependency and pushes the
rogue signal to values that are consistent with the context. This behavior is of course undesirable
for a malicious actor since, despite the success of the evasion attempt, the meaning of the target
payload is completely lost and the result is almost identical to not carrying out any attack. Note
that not all evasive algorithms act similarly when attempting to generate an evasive attack, as
visible in Plots 2e and 2f. Although both plots represent the same attack instance, scenario, and
oracle, while the L2 BIM algorithm finds an evasive (but ineffective) perturbation, DeepFool fails.
Finally, plots 2d and 2f. depict perturbation scenarios that can be considered failures. In Plot 2d,
the attack signal’s unpredictable behavior prevents the algorithm from identifying a suitable
perturbation for several packets in the sequence. In most of the evaded instances, the perturbed
signal does not reach values similar to the original attack, casting doubt on the attack’s overall
effectiveness. If we focus on the correctly flagged packets that the algorithm failed to modify (shown
with a white background), it becomes evident that it is easier to perturb the signal toward values
resembling the last received packet (note that this behavior was not seen in CANdito, as the initial
fully connected layer and target sequence reversal prevent the model from overly weighting the
most recent packets during reconstruction, while also using a non-overlapping sliding window
input). In Plot 2f, the algorithm completely fails to find a single evasive point throughout the entire
sequence. It is worth noting that the algorithm attempts to find an evasive point for up to 50 steps,
and depending on the attack and oracle, some algorithms may have slower or more aggressive
modification curves, which could explain the significant differences compared to Plot 2e.

7.6 Experiment 3: Attack Precomputation
The strategy described to generate the adversarial attacks requires repeated querying of a target
autoencoder or predictor. This does not fit well with the speed of the CAN bus signals, therefore
we test whether an attacker could compute a sequence of adversarial packets in advance and
successfully inject it at a later time while avoiding detection. In practice, this experiment takes all
those sequences that are fully evasive, i.e., exclusively composed of packets classified as normal
traffic, and tries to find similar points in the flow of messages where they could equally evade
the IDS. We also consider as candidate injection points every point in the traffic preceded by at
least ten packets identical to the preamble found at the original attack location. We exclude from
this test the FFNN model, as it performs classification independently of the order or position of
messages, and CANdito as, given its superior resilience, there were not enough completely evasive
sequences to carry out the test. Moreover, we provide this evaluation only for the ReCAN dataset,
since the attacks on the CarHacking dataset are per-se injection attacks, and would anyway disrupt
the normal flow of the network. The results are widely dependent on the specific CAN ID, with
two clear clusters:
Cluster 1. IDs “1FB” and “104” have very slowly varying physval signals, that for the duration of the
traffic gravitate around some common values rather than assuming any possible bit configuration
(albeit all configurations are valid and no bit always remains constant). This behavior causes a
relatively high number of possible reinjection points, with a peak cardinality of nearly 1800 points

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:23

found for a single sequence, and a high success rate. In general, sequences similar to the one in
the view of Plot 2a transfer easily into spots in the traffic with a longer matching preamble, as we
observe a 95% success rate with an average number of 38 identical preceding packets, obtaining
several hundreds of potentially fully evasive sequences from 4 to 10 precomputed attacks, depending
on the ID, attack, and oracle;

Cluster 2. The remaining 10 IDs do not bring the same degree of success as they provide way
fewer injection points, with many preambles without a match in the whole traffic flow; once again,
the few successful precomputed attacks require a preamble almost identical to the original, with
over 37 matching messages on average. In general, this precomputed attack is feasible and reliable
only within the trivial case of a preamble that is close to the original IDS input window, with more
of the 90% of the successful reinjections differing only for a couple of packets. This makes just a few
specific devices among the considered ECUs vulnerable to the approach under testing, however, it
is not possible to ascertain the impact of the resulting risk with the current information about the
function and semantic associated with each affected CAN ID.

7.7 Discussion on Defenses and Mitigation Strategies
While the focus of this work is on evaluating the vulnerabilities of machine learning-based intrusion
detection systems (IDSs) in automotive networks, it is important to discuss potential mitigation
strategies. The two main directions we envision are adversarial training and input preprocessing:

Adversarial training [11] involves incorporating adversarial examples during model training to
improve robustness. This technique has shown promise in other domains such as computer vision,
and could, in principle, be adapted to tabular and temporal domains like CAN traffic. However,
applying adversarial training in the automotive setting presents unique challenges. In particular,
introducing perturbed sequences during training may shift the model’s decision boundary in a way
that increases false positives. Given the safety-critical nature of automotive systems, an increase in
false alarms may render an IDS practically unusable.
Input preprocessing techniques (e.g., smoothing, quantization, or feature selection) have been

proposed in other fields [12] to reduce the impact of adversarial noise. Some of these approaches
could be adapted to the CAN context, especially given its structured and discrete nature. However,
their integration requires engineering to avoid excluding critical information from the detection
process, which would allow the attacker to bypass the detection system by injecting attacks that
do not affect the chosen features.

8 Conclusions
In this paper, we addressed the impact of adversarial attacks on state-of-the-art automotive IDSs. We
conducted a thorough evaluation of known adversarial evasion attacks, adapted to the automotive
domain, against payload-based IDSs using real CAN traffic over two public datasets. We designed
and implemented customized variants of the popular BIM and DeepFool perturbation algorithms,
and tested six different detection architectures from the state of the art in white-, grey-, and
black-box scenarios. Our results show that evasion is achievable, although not always consistently,
especially in the white-box scenario, across both datasets. In the grey- and black-box scenarios, the
performance degradation of the intrusion detection systems is notably reduced. DeepFool proves
to be the most effective evasion algorithm, generating numerous evasion points on both datasets
and achieving up to an 85% drop in TPR. Exploring the characteristics of evasion samples, we
observe that in multiple instances, either part of the attack sequence fails to evade detection or the
perturbation effects render the payload similar to a non-tampered one. We evaluate the feasibility
of precomputing the evasive sequence and injecting it, demonstrating that this is often possible.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 Longari et al.

The most significant limitation of our study stems from the lack of availability of a real test
vehicle, where the injected packets may influence the vehicle’s and bus’s behavior—a characteristic
that cannot be evaluated with previously collected traffic logs. Future work will aim to evaluate how
well perturbed attack sequences preserve the original attack intent, providing amore comprehensive
understanding of evasion algorithms—not only in terms of bypassing detection but also in achieving
the attacker’s intended impact. Additionally, further research should investigate the applicability
and effectiveness of alternative adversarial approaches, such as score-based methods, in tabular
and temporal domains like those found in automotive systems.

Acknowledgments
This work was partially supported by projects SERICS (PE00000014) under the NRRP MUR program
funded by the EU - NGEU andMICS (Made in Italy – Circular and Sustainable) fromNext-Generation
EU. CUP MICS D43C22003120001.

References
[1] Malik Avatefipour. [n. d.]. State-of-the-Art Survey on In-Vehicle Network Communication “CAN-Bus” Security and

Vulnerabilities. ([n. d.]).
[2] Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero, et al. 2024. Investigating the Impact of Evasion

Attacks Against Automotive Intrusion Detection Systems. In Symposium on Vehicles Security and Privacy (VehicleSec)
2024. N–A.

[3] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018. Adver-
sarial Attacks and Defences: A Survey. arXiv:1810.00069 [cs.LG]

[4] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. 2018. Autoencoder-based network anomaly detection.
In 2018 Wireless Telecommunications Symposium (WTS). 1–5. https://doi.org/10.1109/WTS.2018.8363930

[5] Valliappa Chockalingam, Ian Larson, Daniel Lin, and Spencer Nofzinger. 2016. Detecting attacks on the CAN protocol
with machine learning. Annu EECS 558, 7 (2016).

[6] Cia. [n. d.]. CAN data link layers in some detail. https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
[7] Alvise de Faveri Tron, Stefano Longari, Michele Carminati, Mario Polino, and Stefano Zanero. 2022. CANflict: Exploiting

Peripheral Conflicts for Data-Link Layer Attacks on Automotive Networks. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 711–723. https://doi.org/10.1145/3548606.3560618

[8] Dorothy E. Denning. 1987. An Intrusion-Detection Model. IEEE Trans. Software Eng. 13, 2 (1987), 222–232. https:
//doi.org/10.1109/TSE.1987.232894

[9] Eric Evenchick. [n. d.]. CANtact: Open Source Car Tool. https://cantact.io/. Accessed: 2025-03-21.
[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572 (2014).
[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[12] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. 2017. Countering Adversarial Images using
Input Transformations. CoRR abs/1711.00117 (2017). arXiv:1711.00117 http://arxiv.org/abs/1711.00117

[13] Markus Hanselmann, Thilo Strauss, Katharina Dormann, and Holger Ulmer. 2020. CANet: An unsupervised intrusion
detection system for high dimensional CAN bus data. Ieee Access 8 (2020), 58194–58205.

[14] Md Delwar Hossain, Hiroyuki Inoue, Hideya Ochiai, Doudou Fall, and Youki Kadobayashi. 2020. An effective in-
vehicle CAN bus intrusion detection system using CNN deep learning approach. In GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE, 1–6.

[15] Texas Instruments. 2002. Introductionto the ControllerAreaNetwork(CAN). (2002).
[16] Min-Joo Kang and Je-Won Kang. 2016. Intrusion detection system using deep neural network for in-vehicle network

security. PloS one 11, 6 (2016), e0155781.
[17] Zadid Khan, Mashrur Chowdhury, Mhafuzul Islam, Chin-Ya Huang, and Mizanur Rahman. 2019. Long short-term

memory neural networks for false information attack detection in software-defined in-vehicle network. arXiv preprint
arXiv:1906.10203 (2019).

[18] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples in the physical world. In Artificial
intelligence safety and security. Chapman and Hall/CRC, 99–112. From 2016 preprint.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/1810.00069
https://doi.org/10.1109/WTS.2018.8363930
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/TSE.1987.232894
https://cantact.io/
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1711.00117
http://arxiv.org/abs/1711.00117

Assessing the Resilience of Automotive Intrusion Detection Systems to Adversarial Manipulation 111:25

[19] Brooke Lampe and Weizhi Meng. 2023. A survey of deep learning-based intrusion detection in automotive applications.
Expert Systems with Applications (2023), 119771.

[20] Yi Li, Jing Lin, and Kaiqi Xiong. 2021. An adversarial attack defending system for securing in-vehicle networks. In
2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 1–6.

[21] Stefano Longari, Alessandro Nichelini, Carlo Alberto Pozzoli, Michele Carminati, and Stefano Zanero. 2022. CANdito:
Improving Payload-based Detection of Attacks on Controller Area Networks. arXiv preprint arXiv:2208.06628 (2022).

[22] Stefano Longari, Francesco Noseda, Michele Carminati, and Stefano Zanero. 2023. Evaluating the Robustness of
Automotive Intrusion Detection Systems Against Evasion Attacks. In International Symposium on Cyber Security,
Cryptology, and Machine Learning. Springer, 337–352.

[23] Stefano Longari, Daniel Humberto Nova Valcarcel, Mattia Zago, Michele Carminati, and Stefano Zanero. 2020. CANnolo:
An anomaly detection system based on LSTM autoencoders for controller area network. IEEE Transactions on Network
and Service Management 18, 2 (2020), 1913–1924.

[24] Mirco Marchetti and Dario Stabili. 2018. READ: Reverse Engineering of Automotive Data Frames. IEEE Transactions
on Information Forensics and Security (09 2018). https://doi.org/10.1109/TIFS.2018.2870826

[25] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA (2015).
[26] Charlie Miller and Chris Valasek. 2016. CANMessage Injection. https://illmatics.com/can%20message%20injection.pdf

[Online, accessed 1-Oct-2022].
[27] Michael R Moore, Robert A Bridges, Frank L Combs, Michael S Starr, and Stacy J Prowell. 2017. Modeling inter-signal

arrival times for accurate detection of can bus signal injection attacks: a data-driven approach to in-vehicle intrusion
detection. In Proceedings of the 12th Annual Conference on Cyber and Information Security Research. 1–4.

[28] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: a simple and accurate method
to fool deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2574–2582.

[29] Alessandro Nichelini, Carlo Alberto Pozzoli, Stefano Longari, Michele Carminati, and Stefano Zanero. 2023. CANova:
A hybrid intrusion detection framework based on automatic signal classification for CAN. Computers and Security 128
(2023). https://doi.org/10.1016/j.cose.2023.103166

[30] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. 2017.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference on computer
and communications security. 506–519.

[31] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. 2016. Distillation as a defense to
adversarial perturbations against deep neural networks. In 2016 IEEE symposium on security and privacy (SP). IEEE,
582–597.

[32] Sampath Rajapaksha, Harsha Kalutarage, M Omar Al-Kadri, Andrei Petrovski, Garikayi Madzudzo, and Madeline
Cheah. 2023. Ai-based intrusion detection systems for in-vehicle networks: A survey. Comput. Surveys 55, 11 (2023).

[33] Rafi Ud Daula Refat, Abdulrahman Abu Elkhail, Azeem Hafeez, and Hafiz Malik. 2022. Detecting CAN bus intrusion
by applying machine learning method to graph based features. In Intelligent Systems and Applications: Proceedings of
the 2021 Intelligent Systems Conference (IntelliSys) Volume 3. Springer, 730–748.

[34] Kudzai Sauka, Gun-Yoo Shin, Dong-Wook Kim, and Myung-Mook Han. 2022. Adversarial robust and explainable
network intrusion detection systems based on deep learning. Applied Sciences 12, 13 (2022), 6451.

[35] Eunbi Seo, Hyun Min Song, and Huy Kang Kim. 2018. GIDS: GAN based intrusion detection system for in-vehicle
network. In 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE, 1–6.

[36] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Goertzel, Andi Comissoneru,
Matt Swann, and Sharon Xia. 2020. Adversarial Machine Learning-Industry Perspectives. In 2020 IEEE Security and
Privacy Workshops (SPW). 69–75. https://doi.org/10.1109/SPW50608.2020.00028

[37] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. 2020. In-vehicle network intrusion detection using deep convolu-
tional neural network. Vehicular Communications 21 (2020), 100198.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2013. Intriguing properties of neural networks. https://doi.org/10.48550/ARXIV.1312.6199

[39] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
2014. Intriguing properties of neural networks. In 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1312.6199

[40] Vinayak Tanksale. 2020. Anomaly Detection for Controller Area Networks Using Long Short-Term Memory. IEEE
Open Journal of Intelligent Transportation Systems 1 (2020), 253–265. https://doi.org/10.1109/OJITS.2020.3043066

[41] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc. 2015. Frequency-based anomaly detection for the automotive
CAN bus. In 2015 World Congress on Industrial Control Systems Security (WCICSS). 45–49. https://doi.org/10.1109/
WCICSS.2015.7420322

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1109/TIFS.2018.2870826
https://illmatics.com/can%20message%20injection.pdf
https://doi.org/10.1016/j.cose.2023.103166
https://doi.org/10.1109/SPW50608.2020.00028
https://doi.org/10.48550/ARXIV.1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/OJITS.2020.3043066
https://doi.org/10.1109/WCICSS.2015.7420322
https://doi.org/10.1109/WCICSS.2015.7420322

111:26 Longari et al.

[42] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. 2016. Anomaly detection in automobile control network data
with long short-term memory networks. In 2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 130–139.

[43] Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara Kalutarage. 2018. Detection of automotive
CAN cyber-attacks by identifying packet timing anomalies in time windows. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 231–238.

[44] Miki E. Verma, Michael D. Iannacone, Robert A. Bridges, Samuel C. Hollifield, Pablo Moriano, Bill Kay, and Frank L.
Combs. 2022. Addressing the Lack of Comparability & Testing in CAN Intrusion Detection Research: A Comprehensive
Guide to CAN IDS Data & Introduction of the ROAD Dataset. arXiv:2012.14600 [cs.CR]

[45] Eric Wong, Leslie Rice, and J. Zico Kolter. 2020. Fast is better than free: Revisiting adversarial training.
arXiv:2001.03994 [cs.LG]

[46] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. 2019. How does learning rate decay help modern
neural networks? arXiv preprint arXiv:1908.01878 (2019).

[47] Mattia Zago, Stefano Longari, Andrea Tricarico, Michele Carminati, Manuel Gil Pérez, Gregorio Martìnez Pérez, and
Stefano Zanero. 2020. ReCAN–dataset for reverse engineering of controller area networks. Data in brief 29 (2020),
105149.

Received 15 September 2024; revised 1 February 2025; accepted 18 May 2025

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/2012.14600
https://arxiv.org/abs/2001.03994

	Abstract
	1 Introduction
	2 Background on CAN Security
	3 Related Work
	4 Threat Model
	5 Motivation
	6 Approach
	6.1 BIM-based algorithms
	6.2 DeepFool-based algorithm

	7 Experimental Evaluation
	7.1 Experimental Settings
	7.2 Datasets Under Analysis
	7.3 Selected intrusion detection systems
	7.4 Experiment 1: Adversarial attack performance evaluation
	7.5 Experiment 2: Attack Perturbation
	7.6 Experiment 3: Attack Precomputation
	7.7 Discussion on Defenses and Mitigation Strategies

	8 Conclusions
	Acknowledgments
	References

