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Abstract
We present a novel attack specifically designed against Tree-
Ring, a watermarking technique for diffusion models known
for its high imperceptibility and robustness against removal
attacks. Unlike previous removal attacks, which rely on strong
assumptions about attacker capabilities, our attack only re-
quires access to the variational autoencoder that was used to
train the target diffusion model, a component that is often
publicly available. By leveraging this variational autoencoder,
the attacker can approximate the model’s intermediate latent
space, enabling more effective surrogate-based attacks. Our
evaluation shows that this approach leads to a dramatic reduc-
tion in the AUC of Tree-Ring detector’s ROC and PR curves,
decreasing from 0.993 to 0.153 and from 0.994 to 0.385, re-
spectively, while maintaining high image quality. Notably, our
attacks outperform existing methods that assume full access
to the diffusion model. These findings highlight the risk of
reusing public autoencoders to train diffusion models—a threat
not considered by current industry practices. Furthermore,
the results suggest that the Tree-Ring detector’s precision, a
metric that has been overlooked by previous evaluations, falls
short of the requirements for real-world deployment.

1 Introduction

Recent advances in generative AI have led to the development
of text-to-image models capable of creating highly realistic
content. Some of these, such as Midjourney and DALL-E,
are proprietary models that produce images nearly indistin-
guishable from those generated by humans [31, 36]. As these
models become more sophisticated, discerning between AI-
generated and authentic content becomes increasingly difficult,
raising serious concerns about the risks of misuse, such as the
potential to create deepfakes and spread misinformation [9].

In response, the research community has turned its attention
to developing watermarking techniques that the owners of the
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models can deploy to ensure that AI-generated content can
be reliably identified. If these watermarks are robust against
removal, they can prevent malicious actors from passing off
deepfakes as authentic, thereby helping to mitigate some of
the risks associated with the misuse of these technologies.
Recent examples of watermarking schemes developed for this
purpose are Stegastamp [54], Stable Signature [23], and Tree-
Ring [56], with Tree-Ring standing out for the imperceptibility
of its watermarks in the generated images and its robustness
against removal attacks.

Tree-Ring was specifically designed for diffusion models.
It achieves high imperceptibility by encoding a fixed string
into the diffusion model’s initial latent variable, rather than
into the image directly. Embedding a fixed watermark con-
strains the latent space to a region, altering the model’s output
distribution; however, individual images generated from the
watermarked region are clean images, free of unusual patterns
or artifacts. To verify a watermarked image, Tree-Ring must
accurately approximate the inversion of the diffusion process
to recover the latent variable that generated the image and
confirm the presence of the watermark.

Evaluations of Tree-Ring have shown that attacks based on
simple image manipulations, such as rotation and cropping,
fail to remove the watermark without substantially modifying
the image [56]. Consequently, the attacked images cannot
serve as substitutes for the watermarked ones, losing their
value from an attacker’s perspective. However, these initial
evaluations did not explore attacks that expressly target the
latent space, where the watermarks are embedded.

Subsequent evaluations include more advanced attacks
tailored to Tree-Ring’s latent-space embedding mechanism [4,
37, 63]. These attacks are formulated as a learning problem
aimed at shifting the latent away from the watermarked region
while bounding image quality degradation. Although some
of these attacks are more effective than the simple attacks
evaluated by Wen et al., they have been criticized for making
strong assumptions about the adversary’s knowledge of the
target diffusion model [4]. Some attacks even require white-
box access to the diffusion model, which would eliminate
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the need for an attack, as the adversary could simply use the
model to generate their own non-watermarked images.

We demonstrate how an attacker can use publicly available
auxiliary models to overcome some of the assumptions made
in prior work. In particular, we present an attack inspired by An
et al.’s surrogate-detector approach [4]. Following their attack
strategy, we train a model that mimics Tree-Ring’s detector
and find adversarial examples on it that transfer to the original
detector. However, rather than training the detector on the pixel
representation of images, we train it on intermediate latents
approximated via a publicly available variational autoencoder
(VAE). Since VAEs are commonly used to reduce the training
cost of diffusion models, they are often shared and reused,
making them readily available to attackers.

Our VAE-enhanced surrogate detector attacks outperform
previous attacks, including those of An et al., drastically
decreasing Tree-Ring’s detection performance while main-
taining image quality. This improvement in attack perfor-
mance highlights the risks associated with sharing and
reusing VAEs for training diffusion models, a practice that
is currently overlooked in the industry (for example, see
[2, 8, 10, 14, 18, 34, 40, 49, 52]).

More specifically, our primary contributions are:

An in-depth analysis of Tree-Ring’s embedding mecha-
nism. We identify critical flaws in Tree-Ring’s embedding
mechanism, motivating the design of our attacks. The embed-
ding mechanism violates the assumption that the latents are
drawn from a Gaussian distribution. This, coupled with the
persistence of the watermarks through the diffusion process
exposes discriminating features that enable the training of a
surrogate detector in the latent space.

Novel VAE-based surrogate attacks. We leverage public
VAEs to attack Tree-Ring watermarking. Assuming access to a
VAE is realistic because, in practice, a pretrained autoencoder
is often used to train diffusion models [44], but we also
challenge this assumption by evaluating the attacks using a
different VAE. Our attacks successfully remove Tree-Ring
watermarks, decreasing the detector’s TPR@1%FPR from
0.968 to 0.04 and its ROC-AUC from 0.993 to 0.15, while
retaining high image quality. This is nearly a 5-fold decrease in
ROC-AUC over the state-of-the-art surrogate detector attack.

An evaluation of detector precision. In contrast to previous
evaluations ofwatermarking schemes,we measure Tree-Ring’s
detection precision under base rates that capture a range of
deployment scenarios. In a balanced setting, our attack reduces
the PR-AUC from 0.994 to 0.385. The impact is even more
pronounced at lower, more realistic base rates, suggesting that
Tree-Ring’s precision may be insufficient for the intended use
cases it aims to support.

2 Background and Related Work

This section provides the necessary background on diffusion
and Tree-Ring watermarking to follow the rest of the paper.

2.1 Diffusion Models
A diffusion model [50] is based on a forward diffusion process,
which involves gradually adding noise to a data point until the
signal is destroyed. By learning how to reverse this process,
a diffusion model estimates the underlying data distribution
and provides a method for sampling new data points from it.

More formally, let 𝑥0 be a data point drawn from the true
data distribution 𝑞(𝑥0). The forward diffusion process is a
Markov chain defined by a sequence of 𝑇 intermediate latent
variables 𝑥1, ..., 𝑥𝑇 in the same domain as 𝑥0, where each 𝑥𝑡 is
obtained by adding noise drawn from the noise distribution
𝑞(𝑥𝑡 | 𝑥𝑡−1) to the previous latent, 𝑥𝑡−1.

The diffusion model is a distribution 𝑝𝜃 (𝑥0), parametrized
by 𝜃, that reverses the forward process thus providing a method
to sample from 𝑞(𝑥0) and generate new data points:

𝑝𝜃 (𝑥0) =
∫

𝑝𝜃 (𝑥0:𝑇 ) 𝑑𝑥1:𝑇 ,

where 𝑝𝜃 (𝑥0:𝑇 ) := 𝑝𝜃 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ).
(1)

The learning objective is to find the parameters that maximize
the variational lower bound on the expected log-likelihood:

E𝑞 (𝑥0 ) [log 𝑝𝜃 (𝑥0)] ≥ E𝑞 (𝑥0 ,...,𝑥𝑇 )

[
log

𝑝𝜃 (𝑥0:𝑇 )
𝑞(𝑥1:𝑇 |𝑥0)

]
. (2)

Ho et al. presented Denoising Diffusion Probabilistic Models
(DDPMs) by specifying the forward diffusion process to
use a fixed predefined Gaussian distribution with a variance
schedule {𝛼𝑡 ∈ (0,1]}𝑇𝑡=1 [26], as follows:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1), (3)

with 𝑞(𝑥𝑡 |𝑥𝑡−1) :=N
(
𝑥𝑡−1

√︂
𝛼𝑡

𝛼𝑡−1
,

(
1−

√︂
𝛼𝑡

𝛼𝑡−1

)
𝐼

)
.

Given this, we can express the intermediate latent variables in
a closed form:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√︁
1−𝛼𝑡𝜖, (4)

which shows that 𝑥𝑡 is a linear combination of the initial point
and a Gaussian noise variable 𝜖 ∼ N(0, 𝐼). Equation 4 allows
DDPM to reparameterize the learning objective to learn a
predictor 𝜖𝜃 (𝑥𝑡 ) of the noise to be removed to recover 𝑥0.

Extending upon this, Denoising Diffusion Implicit Models
(DDIM) [51] propose to replace DDPM’s Markov chain with



a non-Markovian forward process, where each step depends
also on the initial data point, enabling a deterministic and
faster sampling mechanism compared to the original DDPM
approach. The DDIM denoising process, which transforms an
initial Gaussian noise vector 𝑥𝑇 to an image 𝑥0 is given by:

𝑥
(𝑡 )
0 =

𝑥𝑡 −
√

1−𝛼𝑡𝜖𝜃 (𝑥𝑡 )√
𝛼𝑡

, (5)

where 𝑥
(𝑡 )
0 denotes the estimation of 𝑥0 from time step 𝑡. A

single-step denoising process can thus be expressed as:

𝑥𝑡−1 =
√
𝛼𝑡−1𝑥

(𝑡 )
0 +

√︁
1−𝛼𝑡−1𝜖𝜃 (𝑥𝑡 ). (6)

This is a recursive process starting from time step 𝑇 : as 𝑡

decreases, 𝑥 (𝑡 )0 becomes a more accurate estimate of 𝑥0. Song
et al. denote this recursive denoising process by D𝜃 (𝑥𝑇 ) [51].

2.2 Latent Diffusion
Diffusion models are commonly implemented using a U-Net
architecture [45] that learns how to approximate the noise
variable 𝜖 . However, training a full diffusion model directly
on high-resolution images is computationally demanding. To
address this, a technique known as latent diffusion [44] is often
used to compress the image into an intermediate latent rep-
resentation, reducing memory consumption at training time.
Once the noise predictor is trained on this lower-dimensional
space, the output of the diffusion model must be mapped back
to the image space to generate an image. We denote E the
compression function and E−1 the function that maps from
latent to image space. In practice, E and E−1 are often param-
eterized by a Variational Autoencoder (VAE). For example,
the popular Stable Diffusion v2.1 uses AutoencoderKL [32].

2.3 Digital Watermarking
Digital watermarking emerged from the need to protect copy-
right as digital media became widespread and easy to dis-
tribute [55]. Early methods considered an adversary attempting
to remove watermarks to misappropriate the content. To ad-
dress this threat model, watermarking techniques often rely on
steganography to embed watermarks directly into the content—
unlike digital signatures, which are typically appended in the
content’s metadata and can be stripped out. This inseparabil-
ity from the content is a design goal of watermarking that
distinguishes it from other authentication methods.

The rise of generative AI has introduced new use cases for
watermarking. Research in this field has focused on the use
of watermarks to protect the intellectual property of model
owners [11] and dataset curators [21]. More recently, water-
marking has been proposed as a means to reliably identify
AI-generated content [62]. For image generation, such water-
marking schemes aim to distinguish digital photographs and
human-made art from artificially generated images.

An et al. [4] categorize image watermarking techniques
into two main classes:
Post-processing techniques embed the watermark directly
into the image. This includes traditional watermarking
schemes based on signal-processing methods, such as those
that encode the watermark in the image’s frequency do-
main [3, 16], as well as recent ML-based approaches that
involve training models, such as autoencoders, to learn how to
insert and subsequently extract an imperceptible watermark
from an image [54, 60, 64].
In-processing watermarking schemes are embedded within
the generation process. This typically requires retraining
the model [38, 58, 59], fine-tuning it [23], or modifying its
sampling procedure. An approach specific to diffusion models,
first proposed by Tree-Ring, is to embed the watermark in the
model’s latent space [24, 56, 57]. Latent-space watermarking
has gained popularity due to its imperceptibility and the added
difficulty it poses for adversaries: removal attacks require
approximating the inversion of the diffusion process without
knowledge of the model, as it is assumed to be proprietary.

Tree-Ring is a representative and meaningful target for
study. As the first scheme to propose embedding the water-
mark in the model’s latent space, Tree-Ring has been highly
influential, with subsequent schemes closely following its
embedding mechanism. Given the growing adoption of latent-
space watermarking, a detailed analysis of Tree-Ring has
broader implications for the design and evaluation of future
schemes. For example, our use of VAEs to mount attacks in
the latent space highlights a broader potential vulnerability
applicable to other latent-space watermarking schemes.

2.4 Tree-Ring Watermarking
The Tree-Ring watermarking scheme, proposed by Wen et al.
relies on one key property of DDIM models [56]. Dhariwal
et al. discovered that the DDIM sampling process can be
inverted, mapping an image 𝑥0 back towards the initial noise
vector 𝑥𝑇 [20]. Given a learned noise function 𝜖𝜃 , we can
re-estimate 𝑥𝑇 with:

𝑥𝑡+1 =
√
𝛼𝑡+1𝑥

(𝑡 )
0 +

√︁
1−𝛼𝑡+1𝜖𝜃 (𝑥𝑡 ). (7)

According to Dhariwal et al., this inversion process reasonably
estimates the initial latent variable if two conditions hold:
(i) the inversion process reintroduces noise in small steps,
i.e., the difference between 𝑥𝑡 and 𝑥𝑡+1 is small; and, (ii)
𝑥𝑡−1− 𝑥𝑡 ≈ 𝑥𝑡+1− 𝑥𝑡 . If these two hold, the inversion process
can accurately reconstruct the initial noise vector, enabling
the key detection scheme of Tree-Ring watermarking. Wen et
al. denote this inversion process by D†

𝜃
(𝑥0).

Figure 1 illustrates the embedding process. A predefined
key is encoded as a pattern in the central region of the Fourier
space of the initial noise vector. This region, which contains
the low-frequency components, corresponds to global image
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Figure 1: Embedding mechanism. The radius of the ring
determines the number of pixels we sample from the frequency
domain. The ring is embedded in the center of the initial
Gaussian noise vector in Fourier space. After applying Inverse
Fast Fourier Transform (IFFT), the resultant noise vector is
fed to the diffusion model for image generation.

characteristics. Embedding a watermark here diffuses its infor-
mation across these high-level features, making the watermark
not only more imperceptible but also more robust to image ma-
nipulations such as rotation and cropping. As the watermark
becomes entangled with the image’s semantic content, pixel-
level operations that remove it inevitably destroy the image’s
meaning, rendering the image unusable from the adversary’s
perspective. Wen et al. experimented with various key patterns
and found that the most robust to rotations is a circular pattern
composed of multiple rings, each ring with a constant value
sampled from the frequency domain of a Gaussian vector. To
generate a new image, the modified vector is transformed back
to the latent domain via IFFT and denoised into an image with
standard DDIM backward diffusion.

Detecting the watermark is more challenging, especially
for conditional models that take a text prompt as input. For
perfect reconstruction, both the output image and the original
prompt are needed, as the prompt conditions the diffusion
process to generate an image that aligns with the user’s intent.
However, for privacy reasons, model owners must allow users
to delete their prompt history. Consequently, DDIM inversion
without access to the original prompt can only approximate
the initial noise vector (see Figure 2). That said, Wen et al.
demonstrate that this approximation is sufficiently accurate to
enable watermark detection even without the original prompt.

2.5 Previous Attacks
Tree-Ring’s security has been evaluated in several studies,
including the original Tree-Ring paper [56].This evaluation
showed that Tree-Ring is robust to rotation, cropping, rescaling,
and JPEG compression [56]. However, these image transforma-
tions lack fine-grained control in the latent space necessary to
target the watermark without substantially altering the image.

Next, we summarize follow-up works that have proposed more
sophisticated attacks against Tree-Ring watermarking.

DDIM

Prompt
" "

FFT

Original Key Recovered Key

Compare

Figure 2: Detection scheme. Using forward diffusion, Tree-
Ring estimates the initial noise vector used to generate the
image with an empty prompt. It then extract the key in the
center and thresholds its distance to the original key to make
a final decision.

Regeneration attacks. Zhao et al. propose regeneration at-
tacks, which re-encode the image with an off-the-shelf encoder,
inject noise, and subsequently decode to reconstruct the im-
age [63]. The authors found that these attacks are effective
against pixel-level watermarking schemes like Stable Sig-
nature, but they have limited success against Tree-Ring. A
more extensive evaluation by An et al. demonstrates that these
attacks can be further tuned to increase their performance but
then significantly degrade image quality [4].

Zhao et al. instantiate the encoder–decoder pair of a regen-
eration attack with public auxiliary models, such as a VAE or
a diffusion model. These attacks are closest to our attacks in
that they rely on a public auxiliary model. However, our attack
strategy is more precise, as our attacks exploit weaknesses
specific to the Tree-Ring embedding mechanism, rather than
indiscriminately adding noise to the latents.

Adversarial attacks. In the most extensive survey of water-
mark removal attacks to date, An et al. also explore adversarial
attacks, which are characterized by crafting adversarial ex-
amples against the watermark detector. The success rate of
adversarial attacks is overall lower than that of regeneration
attacks [4], but they retain most of the original image, which is
a desirable property for a removal attack. An et al. distinguish
between two types of adversarial attacks: surrogate detector
and embedding adversarial attacks.

Embedding attacks. They rely on an existing encoder to
map images to their corresponding latent representation. The
adversary uses the encoder to find a small perturbation of
the image that maximizes the distance between original and
perturbed latents [4]. By maximizing this distance, the attacker
aims to push the latent representation of the perturbed image
outside the “watermarked” region of the latent space. An et al.
evaluated embedding attacks extensively and showed that they
are only effective if the attack’s encoder exactly matches the
one used by the victim’s diffusion model. Although this attack
could be improved, embedding attacks do not target specific



parts of the embedding but rather randomly shift the entire
embedding, causing significant changes in the final image.

Surrogate detector attacks. The adversary first trains a surro-
gate classifier to detect the presence of a watermark,mimicking
the behavior of the actual watermark detector. Next, they aim to
find a small perturbation in the image that causes the surrogate
detector to misclassify it, in the hope that this misclassification
will transfer to the watermark detector. Unlike embedding
attacks, these attacks do not explicitly assume access to the
victim’s encoder; however, gathering the data to train the
surrogate can be challenging in practice.

An et al. explore various methods to obtain training data
for the surrogate detector. One of the training procedures
requires white-box access to the victim’s diffusion model
to generate a dataset of image pairs, each pair consisting of
a watermarked image and its non-watermarked counterpart.
This is an unrealistic assumption: it implies full access to
the victim’s model, eliminating the need for an attack, as the
adversary could directly sample from the model to generate
non-watermarked images. A more realistic setting is to train
the surrogate classifier with Tree-Ring images and an auxiliary
publicly-available image dataset. However, this attack did not
evade the Tree-Ring detector [4]. An et al. hypothesize that the
reason is the difference between the public dataset distribution
and that of the generated images, which may have led to
spurious features that are independent of the watermarks [4].

Adaptive attacks. Lukas et al. propose adaptive attacks [37],
which can be seen as a combination of embedding and sur-
rogate detector attacks [4]. The instantiation of these attacks
for Tree-Ring relies on a less capable version of the victim’s
model. To deploy the attack, the adversary can use this surro-
gate diffusion model in two ways: adversarial noising, where
the adversary finds an adversarial example through a pertur-
bation that maximizes the distance between decoded keys
(embedding attack); and adversarial compression, which com-
presses the image while minimizing the LPIPS loss. Lukas
et al. evaluate these attacks assuming that the adversary has
a diffusion model with the same architecture as the victim’s.
This is a strong assumption: if the victim’s model is propri-
etary, the adversary is unlikely to have access to a diffusion
model with the same architecture, and it is unclear how much
attack performance degrades if this assumption does not hold.

We present novel adversarial attacks with fewer assumptions
on the adversary’s access and knowledge. In particular, we use
an auxiliary model, such as a public VAE, to formulate An et
al.’s surrogate detector attacks in the latent space, eliminating
the need for a dataset of non-watermarked images.

3 Attack Methods

In this section, we define our threat model and describe our
attack methods in detail.

3.1 Threat Model
We follow the threat model in previous watermarking studies,
considering two parties: the model owner and the adversary.
The model owner maintains a proprietary diffusion model
and monetizes it by offering subscription-based access to
prompt it (e.g., through an API). Upon receiving a prompt,
the model owner uses Tree-Ring to embed a key, 𝑘 , and
generate a watermarked image. We only consider proprietary
models because Tree-Ring watermarks are embedded during
generation and thus cannot be enforced on open-source models.
Adversary’s goal. The adversary’s goal is to use the images
generated by the hosted model for their own purposes with-
out revealing that they were generated with that model. To
achieve that, the adversary’s strategy is to apply an image
transformation such that the watermark is no longer detected.

Although certain images might be more susceptible to at-
tacks than others, the attacker’s aim is to identify a general
transformation that succeeds for an arbitrary image, imply-
ing ineffectiveness of the watermarking scheme. To be more
precise, the adversary’s objective is to find an image trans-
formation F such that, for any image 𝑥 generated with the
queried model, it satisfies two conditions:

i.
𝑘 − �̃�1 > 𝜏, where �̃� is Tree-Ring’s approximation of
the original key 𝑘 and 𝜏 is the decision threshold, and

ii. ∥F (𝑥) − 𝑥∥∞ ≤ 𝛿, for a small 𝛿 > 0.

Although the maximum norm is a common metric to bound
an image perturbation, the specific metric will depend on the
adversary’s use case and their tolerance to changes in the image.
In Section 5, we quantify how our attacks achieve the above
objectives by measuring the decrease in detector performance
under multiple common image similarity metrics.
Adversary’s capabilities. Since the target model is propri-
etary, the adversary has only black-box access: they can query
it but have no knowledge of its parameters. Specifically, they
observe only the output image and the input prompt that pro-
duced it. Additionally, the adversary is assumed to have limited
computational resources; if they had sufficient resources, they
could train a diffusion model from scratch instead of resorting
to an attack. We therefore define a watermarking scheme as
robust if such a computationally bounded adversary cannot
successfully remove the watermark without spending more
resources than would be required to collect data and train
a comparable diffusion model. However, the adversary can
still leverage publicly available models, such as pretrained
autoencoders, readily accessible on model-sharing platforms,
such as Civitai [39] and Hugging Face [28].
Justification of the public VAE access assumption. Auxil-
iary models suitable for use in attacks are publicly available on
model-sharing platforms. These platforms are driven by the
need to make diffusion model development—such as training
and fine-tuning—more cost-efficient and accessible. Since



(a) 𝑡 = 40 (b) 𝑡 = 30 (c) 𝑡 = 20 (d) 𝑡 = 10 (e) 𝑡 = 0

(f) 𝑡 = 40 (g) 𝑡 = 30 (h) 𝑡 = 20 (i) 𝑡 = 10 (j) 𝑡 = 0

Figure 3: The Fourier transform (magnitude) of the fourth channel for the intermediate latents of the backward diffusion process.
The first row of figures, (a)–(e), are the intermediate latents of an image with the watermark embedded. The second row, (f)–(j),
are the intermediate latents generated with the same prompt but excluding the watermark. The plots are all in log scale and
centered around the zero-frequency component. We omit the axes for emphasis.

training diffusion models from scratch is computationally
expensive, practitioners often adopt latent diffusion, which
reduces training costs by leveraging a pre-trained VAE. As
a result, these VAEs are frequently reused and redistributed
without modification.

Another common practice is to fine-tune existing diffusion
models rather than retraining the full pipeline. For example,
the most popular way to fine-tune a diffusion model is to apply
LoRA methods [27] to fine-tune only the U-Net component,
while leaving the VAE unchanged [46]. Consequently, even if
the fine-tuned model is not published, the original VAE would
remain public. We observe numerous real-world instances of
these practices. For example, Civitai [39], a popular model-
sharing platform, hosts a wide range of fine-tuned diffusion
models that either retain the original VAE or continue training
from publicly available checkpoints.

There is a plethora of examples of commercial diffusion
models that rely on a VAE (see [1, 2, 8, 10, 14, 17, 18, 34,
40, 41, 49, 52]), and the trend of publishing the VAE used
during training is also common in the industry. For instance,
commercial text-to-image APIs such as those offered by Black
Forest Labs [10], ShuttleAI [49], and BigModel [8] provide
access to their VAEs. Even OpenAI has published the VAE
for its text-to-image model, DALL-E [40]. These practices
make access to the VAE associated with the target diffusion
model a realistic and practical assumption. Moreover, even
if the exact VAE is not publicly available, the abundance of
VAEs trained for other diffusion models makes it likely that a
suitable alternative is available.

3.2 Flaws of Tree-Ring Watermarking

The high accuracy of Tree-Ring’s detector despite the large
amount of noise added in Wen et al.’s evaluation suggests that
the approximation of the original initial latent is remarkably
distinct from its non-watermarked counterpart. This inherent
difference between watermarked and non-watermarked latents
exposes a vulnerability in Tree-Ring that can be exploited.

Non-Gaussian nature of watermark latents. The embed-
ding mechanism of Tree-Ring violates the assumption that
the initial latent follows a Gaussian distribution. Recall that
Tree-Ring draws both the initial latent vector and the values
of the key ring from a Gaussian distribution. However, that
does not imply that the combination of the two together will
be normally distributed.

To demonstrate the difference between the watermarked
and non-watermarked latent distributions, we examine the
Fourier transform of the channel in which the key is embedded.
Figure 3 shows the progression of the intermediate latent
through the backward diffusion process, from the step when
the key is embedded (𝑡 = 40) to the final latent (𝑡 = 0). As
shown in the figure, a ring structure is clearly visible in the
first diffusion steps and is gradually removed after each step
until, in the final diffusion step (𝑡 = 0), the watermark is almost
imperceptible. However, remnants of the original key structure
remain visible at the center of the latent representations.

After applying backward diffusion, images are obtained by
applying a transformation function parameterized by a neural
network (e.g., a VAE) that has been pretrained to generate
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Figure 4: Two t-SNE components of the initial latents of the
Wm & UnWm dataset. Data points for watermarked images
are tightly clustered together around the center. A Gaussian
kernel could easily separate the two classes.

images. In the Tree-Ring scheme, to detect the watermark,
the image needs to be re-encoded back to latent space before
forward diffusion can be used to recover the key. Although
this process incurs a small amount of information loss, for key
detection to work, this step must be sufficiently accurate to
approximate the initial latent vector, suggesting that traces of
the key must prevail to some extent.

This observation is the basis of our attacks: the difference
in the distributions of the watermaked and non-watermarked
latents naturally suggests attack strategies that aim to bring
the watermarked latents back to their original distribution.
Separability of the latents. To further demonstrate the differ-
ence between the watermarked and non-watermarked latent
distributions, we perform dimensionality reduction and plot
two t-SNE (t-distributed stochastic neighbor embedding) com-
ponents of the initial latents of a set of watermarked images
and their non-watermarked counterparts (from the dataset
“Wm & UnWm” described in Section 4.2). As Figure 4 con-
firms, the two classes are perfectly separable, suggesting that
the initial watermarked latent variables form a hypersphere in
the latent space. Moreover, Figure 4 shows this hypersphere
exhibits compactness and well-defined boundaries.

This hints on the type of image transformation F that would
effectively bypass the detector of a Tree-Ring scheme. Such
transformations require modifying the latent representation
such that the forward diffusion process D†

𝜃
(𝑥0) does not map

the image back to the original watermarked latent hypersphere.
To enable such an attack, the adversary should focus on
mapping the image back into latent space rather than defining
transformations in the image space. Given the non-Gaussian
nature of the intermediate latents, it may suffice to recover
an intermediate latent. Such mapping can be achieved by
using autoencoders, e.g., Stable Diffusion’s VAE [44], SDXL’s
VAE [42] and other models with similar architectures [12].

3.3 Suitability of a Surrogate Detector Attack

Assuming we have the means to recover the latent space
representation of an image, we ask the question of which
attack strategy is most effective in pushing a point out of the
watermarked hypersphere.

Regeneration attacks produce 𝑥∗0 by adding Gaussian noise
to E(𝑥0), where E encodes an image back to latent space. This
noise completely disrupts the latent representation E(𝑥0) and
changes the output image distribution. However, because the
noise indiscriminately shifts the entire latent representation,
the quality of the image suffers as a result.

Adversarial attacks aim to shift the latent via solving an
optimization problem. For example, embedding attacks di-
rectly solve max𝑥∗0

∥E(𝑥∗0) − E(𝑥0)∥ such that ∥𝑥∗0 − 𝑥0∥ < 𝛿,
where 𝑥∗0 := F (𝑥0) is the transformed image. Although more
refined than a regeneration attack, this strategy is not optimal.
Due to the non-Gaussian nature of the watermark’s latent
distribution, the overall goal of the transformation F should
not be to merely maximize the perturbation’s effect on the
latent, as formulated in the optimization objective. Instead,
the objective should also ensure that the latents of the trans-
formed images are distributed like the original latents, i.e.,
D†

𝜃
(𝑥∗0) ∼ N (0; 𝐼), where D†

𝜃
(𝑥∗0) is the initial noise vector

resulting from forward diffusion.
Surrogate detector attacks are better suited to achieve that.

Training the surrogate detector is akin to modeling the water-
marked hypersphere. In essence, such a surrogate detector is
an approximation of the watermark detector independent of
the implementation details of the watermark detection scheme.
Thus, the loss of the surrogate detector provides a mechanism
to mount an adversarial attack with precisely the desired objec-
tive: after training the surrogate detector, the adversary solves
min𝑥∗0

𝐿 (E(𝑥∗0), 𝑦target) s.t. ∥𝑥∗0− 𝑥0∥ < 𝛿, where 𝐿 is the loss
of the surrogate detector.

This is a different objective from the surrogate detector
attack evaluated by An et al. [4]. Their surrogate detector was
trained on watermarked images, but, because it is unrealistic
to assume the adversary can generate the non-watermarked
versions of those images, they used publicly available images.
Public datasets follow a different distribution than the model’s
output distribution and,as a result,An et al.’s surrogate detector
picked up on features that might have helped to distinguish
between the two image distributions, but that were independent
of the watermark, leading to an inadequate surrogate forfinding
adversarial examples.

Instead, we propose training the surrogate detector with the
latent representation of the images, increasing the likelihood
that it discriminates based on features dependent on the wa-
termark. Our surrogate detector is therefore more likely to
capture the watermarked region and generalize better than An
et al.’s. This encoding step is crucial because the success of
a surrogate detector attack hinges on how well the surrogate
detector approximates the Tree-Ring detector.
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3.4 Overview of Our VAE-Based Attacks
Our attack implementation is divided into three main compo-
nents: the surrogate detector model, the autoencoder model,
and the Project Gradient Descent (PGD) attack. In this sec-
tion, we describe how the adversary trains these models and
combines them to deploy the attack.

Attack preparation. The first step of the attack is to collect a
dataset of watermarked vs. non-watermarked images. Since
the adversary has query access to the victim’s model, they
can simply query it to generate the watermarked images. To
obtain non-watermarked images, the adversary will draw them
from public image datasets, ideally as semantically similar as
possible to the generated images, as defined by the prompt.

To encourage the surrogate detector to learn to discriminate
watermarked vs. non-watermarked images, the adversary uses
a pretrained autoencoder that maps the images to latent space.
In our evaluation, we start by assuming that this autoencoder

Algorithm 1 PGD Attack
Require: Surrogate Model 𝜃𝐶 , budget 𝛿, image 𝑥, VAE E, 𝑁

steps, target class 𝑦
1: 𝜃𝑥0 ←E(𝑥0) ⊲ Encode to latent space
2: for 𝑛 to 𝑁 do
3: �̂�← 𝜃𝐶 (𝐹𝐹𝑇 (𝜃𝑥0 )) ⊲ Fourier Transform (FFT)
4: 𝑔𝜃𝑥0

←∇𝜃𝑥0
BCELoss( �̂�, 𝑦)

5: 𝑔𝜃𝑥0
←P𝛿 (𝑔𝜃𝑥0

) ⊲ Clip gradients to 𝛿 budget
6: 𝜃𝑥0 ← 𝜃𝑥0 −Adam(𝜃𝑥0 , 𝑔𝜃𝑥0

)
7: end for
8: 𝑥∗0←E

−1 (𝜃𝑥0 ) ⊲ Decode to image space
9: return 𝑥∗0

is identical to the one of the victim and, then, evaluate the
setting in which these two autoencoders are different.

Surrogate detector model. Our surrogate detector model is
based on Resnet18 [25], a common neural network architec-
ture in image classification tasks. Since our input data is in
the frequency domain, we adapted its design to handle the fre-
quency’s magnitude and phase as a complex number. A minor
implementation detail is that, due to this representation, the
output is also a complex number which is not fully supported
by Pytorch cross-entropy loss. As such, we only use the real
components of the output likelihood estimates when we train
our surrogates on latent representations.

The surrogate is thus a binary classifier whose output is
whether or not an image is watermarked based on its input data
representation (see Figure 5). We use a batch size of 32, Adam
optimizer with a learning rate of 10−3, and optimize for cross-
entropy loss. For model selection, we use a 7:3 evaluation split
ratio, and save the model with the highest validation accuracy
every 100 epochs for later use in the PGD attack.

PGD attack. The ultimate goal of the attack is to construct
an image close to the original target image that our surrogate
detector misclassifies as “non-watermarked.” Our surrogate
detector predicts the class of the image and calculates the cross-
entropy loss between the output class and the target class, i.e.,
the non-watermarked class (see Figure 6). Backpropagation
provides the gradient step required to shift our data towards
being misclassified. As shown in Algorithm 1, we repeat this
process for 𝑁 steps and introduce a step size parameter 𝛼 to
control the smoothness of the perturbations. We take 𝑁 = 200
and 𝛼 = 0.05, a setup similar to the one by An et al. [4].

An et al. use a perturbation budget to limit the amount of
pixel changes. Their budget is defined in the image domain,
however, since our attack acts in the latent space, we must
rescale the budget. To find the appropriate scale, we take the
maximum number of watermarked latents in our dataset 𝑝 and
set our perturbation budget to 1

𝑝
. After completing the 𝑁 steps,

we decode the latent into an image using the autoencoder.
To sum up, once we have trained the surrogate, the deploy-

ment of the attack on a watermarked image requires encoding



the image using the autoencoder, obtaining its Fourier trans-
form, and performing the PGD attack with the loss of the
surrogate on the image. The attacker can repeat the attack
with different values of 𝛿 until the adversarial image on the
surrogate transfers to the Tree-Ring detector.

4 Evaluation Methodology

4.1 Models
We take Stable Diffusion v2.1 [44] as the victim’s diffu-
sion model. This version of Stable Diffusion uses Autoen-
coderKL [32] by default as its VAE to generate the image from
the intermediate latent space. We use this VAE to encode and
decode images for our surrogate detector attack. However, in
Section 5.4, we also challenge the assumption of having the
exact same VAE by evaluating the attack with different VAEs.

4.2 Datasets
To assess the effectiveness of our attacks, we used the Ima-
geNet1K dataset [47]. Specifically, following the methodology
established in previous work [4], we used 7,000 images from
the ImageNet1K validation dataset. Each image has a set of
annotated bounding boxes around objects each corresponding
to one of the classes in ImageNet1K. We sample 7 images from
each class and preprocess the image by cropping to the first
annotated bounding box. Afterwards, we resize each image to
512x512 to match the output dimensions of Stable Diffusion.
To match the classes from ImageNet1K, we queried Stable
Diffusion v2.1 to generate an image for each class using the
prompt: “A photo of a <ImageNet Class>.” Each generated
image was watermarked with the Tree-Ring scheme, and 7
images were generated for each class, each with a different
random seed to introduce diversity in the outputs.

To train the surrogate detector, we collect two datasets:

Wm & UnWm represents the setting where the adversary can
use the diffusion model to generate both the watermarked and
non-watermarked images. It includes a total of 3,000 images:
1,500 images are generated using a victim diffusion model
with Tree-Ring watermarks (Wm); the remaining 1,500 are
generated using the same diffusion model, random seed, and
image prompt, but skipping the watermarking step (UnWm).

Wm & Pub caputres the more realistic setting where the ad-
versary uses images in a public dataset as the non-watermarked
training examples. This dataset has a total of 14,000 images,
7,000 images are generated using a victim diffusion model
with Tree-Ring watermarks, the other 7,000 are preprocessed
ImageNet images.

The Wm & UnWm dataset is smaller since training an accurate
surrogate detector with the non-watermarked version of the
watermarked images requires significantly less data.

4.3 Performance Metrics
In line with existing evaluations of watermarking techniques
for generative models [4, 56, 63], we have selected metrics to
assess various aspects of the attack. These metrics measure the
fulfillment of the two adversarial goals outlined in Section 3.1:
(i) the first set of metrics quantify the success in evading
detection measured by the decrease in predictive performance
of the watermark detector after deploying the attack; (ii) the
second set of metrics measure the impact of the attack on the
target image by quantifying the degradation of the attacked
image compared to the original.

As pointed out by An et al., these objectives are context-
dependent and are subject to the adversary’s use case. For this
reason, we use multiple metrics for each objective, providing
a comprehensive evaluation and a discussion of their practical
implications. The two sets of metrics are as follows.

4.3.1 Predictive Performance Metrics

We assume that the reader is familiar with basic binary clas-
sification predictive performance metrics, such as Accuracy,
Precision, Recall (TPR), and FPR, and we will only describe
metrics that are less known or that are particularly common
in the evaluation of watermarking techniques.

TPR@1%FPR is the detector’s TPR at a threshold chosen to
ensure a 1% FPR. A 1% FPR threshold is commonly used in
prior evaluations of watermarking schemes and is considered
a stringent criterion [4, 56].

ROC-AUC measures the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve, a common
performance metric for binary classifiers. In this case, it
quantifies the detector’s ability to detect watermarked images
correctly as an aggregate measure of the detector’s TPR–FPR
trade-off for all possible decision thresholds.

PR-AUC is the Area Under the Precision–Recall curve. Like
the ROC-AUC, this is a composite metric that measures the
classifier’s ability to ensure both high Precision and Recall
(TPR), aggregating the classifier’s trade-offs at all possible
decision thresholds.

We measure these metrics using the setup used in Tree-
Ring’s original paper [56], setting a 1:1 ratio between the
two classes. For example, for the Wm & UnWm dataset,
we have 1,500 attacked watermarked images vs. 1,500 non-
watermarked images. In Section 5.6, we evaluate performance
while varying this ratio.

4.3.2 Image Degradation Metrics

We evaluate the visual impact of the attacks using several
metrics, each reflecting different aspects of image quality.

CLIP Score is the cosine similarity between an image em-
bedding and a textual embedding given a fixed text-to-image



model. We use it to measure how well the attacked image
represents the original prompt. We use the open-source model
ViT-g-14 [29,43] pretrained on LAION-5B [48] to generate
image and textual embeddings.
FID measures the distance between probability distributions
of images by mapping them to a latent representation from a
predefined network InceptionV3 [53], capturing similarities
in the distributions rather than individual images.
LPIPS [61] computes the similarity of the activations gen-
erated by an image classification model at each layer, in our
case Alexnet [33]. Unlike FID, LPIPS is defined between two
images rather than between two samples of images.

In our evaluation, we are interested in the degradation effect
of our attacks relative to a ground truth image (or set of images
for FID). As such, for each of the image degradation metrics
above, we calculate:

|𝑄(𝑥0, 𝑥ref) −𝑄(𝑥∗0, 𝑥ref) |, (8)

where 𝑄 is the quality metric (CLIP Score, FID, or LPIPS),
𝑥0 is a generated watermarked image using Tree-Ring, 𝑥∗0 is
the transformed image after applying an attack, and 𝑥ref is the
real image from ImageNet1k which was used to derive the
prompt to generate 𝑥0 and serves as the reference image.

4.4 Evaluation Baselines
We take various baselines as a reference point to assess the
success of our attacks. These baselines include idealized
settings and state-of-the-art attacks ( [4, 37]).
No-Attack: Tree-Ring’s performance with no attacks applied.
Raw Pixel Values: Directly train a surrogate detector on the
images without converting to latent space, i.e. the setting
considered in An et al.’s study [4].
True Latent Vectors: Train a surrogate detector on the final
(𝑡 = 0) latent vectors before decoding the latents into images
via AutoencoderKL. This is an idealized baseline as it assumes
that the adversary has full access to the model instead of using
the VAE to approximate these latents.
Adversarial Noising: We reproduce the adversarial noising
attack by Lukas et al. [37]. This is also an idealized baseline
as it assumes access to a model with the same architecture
as the victim’s, making it less practical than our attacks. We
discard adversarial compression also by Lukas et al. because
they show that it performs worse than adversarial noising [37].

5 Evaluation

In this section, we present the results of our evaluation. We
evaluate various aspects of the attacks, including their perfor-
mance compared to the baselines, and the detector’s precision
under a range of deployment conditions. In addition, we con-
duct ablation studies to evaluate the impact of differences

Table 1: Surrogate Detector Training. Watermarked images
(Wm) are generated using the victim’s diffusion model with
the Tree-Ring scheme. Non-watermarked images (UnWm) are
generated without Tree-Ring. Public images (Pub) are taken
from the ImageNet1k ILSVRC2012 dataset.

Attack Name Training Dataset Training
Accuracy

Validation
Accuracy

Wm & UnWm 99.95% 96.44%
Wm & Pub 99.86% 99.52%

Wm & UnWm 99.00% 96.00%
Wm & Pub 99.93% 100%

Wm & UnWm 100% 94.78%
Wm & Pub 99.93% 98.48%

Raw Pixel Values

True Latent Vectors

VAE-Recovered Latent Vectors

in the attack setup and the deployment setting, including a
different VAE and a different diffusion model.

5.1 No-Attack Baseline
For the first experiment, we test the Tree-Ring watermark
detector on our dataset when no attack is in place. The results
of this experiment are presented in the first row of Table 2.

The Tree-Ring watermark detector shows near perfect de-
tection accuracy without affecting image quality. The high
detection accuracy aligns with the original reported results,
and no image degradation occurs since the images remain
unchanged. This establishes a baseline for evaluating how
attacks impact detector performance in later experiments.

5.2 Surrogate Detector Performance
Before applying the attacks, we have evaluated the classifi-
cation accuracy of the surrogate detectors we consider. We
measure the training and validation accuracies to assess the
potential overfitting of the surrogate detector. If the surrogate
detector overfits the training data, the PGD attack is less likely
to succeed in finding images that evade it.

As seen in Table 1, training and validation accuracies are
high for all surrogate detectors, with none of them significantly
overfitting. All surrogate detectors perform better when trained
on Wm & Pub than Wm & UnWm, which can be explained
by the greater difference between the watermarked and public
image distributions in the latter dataset. The detector trained
on true latent vectors (second row) achieves the best validation
accuracy, which is rather unsurprising given that there is no
loss of information in approximating the latent.

The last row in Table 1 shows the results for our surrogate
detector, namely the same task as before but training on latent
vectors recovered via the AutoecoderKL. The drop in Valida-
tion Accuracy indicates that this task is more challenging. We
hypothesize that this is due to the information loss incurred by
re-encoding the image back into latent space with the VAE.



5.3 VAE-Based Latent Vector Attacks

After training all our surrogate models, we attempt a PGD
attack on the watermarked images. Figure 9 in Appendix A
illustrates the visual impact of all attacks on an example image
by providing the resulting attacked image (first column), and
the difference between the original and resulting images in
image space (second column) and Fourier space (third column).
As shown in that figure, none of the attacks exhibits obvious
unusual patterns in the image. However, the attacks have
different impacts on the region of the Fourier space where
the watermark is embedded, with our VAE-recovered attacks
having a precise and concentrated effect on the key ring area.

In Table 2, we report the performance of the watermark
detector under each of the attacks, as well as the impact of such
attacks on image quality. We observe that our attack based on
the recovery of the latents with AutoencoderKL is the most
successful in disrupting watermarkdetection (highlighted row).
Furthermore, the quality of the image is retained compared
to the baseline CLIP score: it only rises by 0.008. Similarly,
LPIPS and FID Score only have small increases, especially for
the surrogate trained for distinguishing watermarked latents
vs. public image latents. The changes in pixel space in the
fifth and sixth rows of Figure 9 are imperceptible.

Contrary to the expectation that access to the true latents
(fourth row of Table 2) would lead to better attack performance,
we see that this attack performs worse than our surrogate
attack trained on VAE-recovered latent vectors. We believe
that differences in distribution and scale between the true
latent vectors and the VAE-recovered ones account for the
attack’s lower performance in this setting, as it learns an image
perturbation that is effective in the true latent space but not
necessarily in the VAE-recovered space.

As a result of the attacks, some of the ROC-AUC values
are below the random guess baseline of 0.5. Note that in an
adversarial setting, the model owner cannot simply invert the
detector to achieve ROC-AUC > 0.5 because they have no
reliable way of predicting the occurrence and the extent of an
attack. Since the detector’s decision is based on a threshold
on the error between the recovered watermark and the initial
watermark, flipping the decisions implies that the greater the
dissimilarity between the recovered and initial watermark, the
more likely it is to be watermarked. Therefore, if the model
owner preemptively deploys the inverted detector and no attack
takes place, inverting it causes it to miss most watermarked
images, rendering the detector ineffective.

We found a discrepancy between An et al.’s and our results
when executing the PGD attack with a surrogate trained on
the Raw Pixel Values of the Wm & Pub dataset: they reported
an average TPR@1%FPR of 0.99, but our results show a
value of 0.48. The main difference between our setups is that
we trained the Resnet18 from the ground up while they fine-
tuned a pretrained version. Using the pretrained Resnet18 may
have caused their surrogates to incorporate broader features
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Figure 7: Results of our attack while varying 𝛿 to adjust the
strength of the attack. Next to each score in the legend, we
denote what direction of magnitude indicates a successful
attack. We only include metrics that range within the unit
interval, as such we exclude FID.

when fine-tuning for classification, which indicates that the
adversary can benefit from training Resnet18 from scratch.

We reproduced the original adversarial noising paper’s re-
sults, achieving a TPR@1%FPR of 0.141 for 𝛿 = 2, slightly
higher than the reported 0.052, likely due to dataset differences.
Although adversarial noising minimally degrades image qual-



Table 2: Average performance of the attacks across three random seeds. Standard deviations were consistently below 0.01 for all
metrics and are thus omitted. For all the scores, the lower the score, the more successful the attack is.

Attack Name Training Data PR-AUC ROC-AUC Accuracy TPR@1%FPR CLIP Score FID LPIPS
No Attack N/A 0.994 0.993 0.965 0.968 0.000 0.000 0.000
Adversarial Noising N/A 0.584 0.459 0.575 0.141 0.005 0.602 0.018

Wm & UnWm 0.870 0.816 0.785 0.529 0.005 1.163 0.014
Wm & Pub 0.828 0.743 0.756 0.485 0.006 0.303 0.008

Wm & UnWm 0.599 0.413 0.610 0.212 0.006 0.689 0.008
Wm & Pub 0.742 0.615 0.692 0.343 0.005 0.519 0.004

Wm & Unwm 0.452 0.333 0.516 0.039 0.023 33.71 0.143
Wm & Pub 0.626 0.540 0.587 0.125 0.014 2.453 0.025

Wm & Unwm 0.834 0.767 0.752 0.450 0.008 3.754 0.021
Wm & Pub 0.846 0.774 0.768 0.486 0.007 0.088 0.008

Wm & UnWm 0.350 0.108 0.508 0.023 0.009 2.684 0.021
Wm & Pub 0.385 0.153 0.515 0.039 0.008 0.694 0.012

Raw Pixel Values

True Latent Vectors

SDXL-VAE Latent Vectors

16-Channel VAE Latent Vectors

VAE-Recovered Latent Vectors

ity, our attacks are more effective and do not require access to
the watermarking scheme.

We extend our attack evaluation by varying the perturbation
budget, 𝛿, for each attack. These results are plotted in Figure 7.
The adversarial noising attack is extremely effective when
using a 𝛿 of 8 and above. However, the image quality starts
to deteriorate at that point. Our attacks work well with a 𝛿 of
32. Furthermore, image degradation is not affected for any
of the surrogate models we have trained, demonstrating the
effectiveness of surrogate detector attacks.

Finally, comparing these results with those reported in the
original Tree-Ring paper, all the attacks included in our evalu-
ation are significantly more effective than any of their tested
approaches. They reported on average for each of their adver-
sarial examples, an ROC-AUC of 0.975 and TPR@1%FPR
of 0.694. Compared with our reported results, we have an
average of 0.519 ROC-AUC and 0.261 TPR@1%FPR, which
represents a 1.9x decrease in general detection accuracy.

5.4 Ablation Study for Different VAEs
While it is extremely common for text-to-image models to
directly use a publicly available checkpoint, there still exist
a few fine-tuned autoencoders that continue training from
said publicly available checkpoint on Civitai. To account for
this, we also evaluated our attack’s effectiveness when using
different VAEs to train our surrogate detectors, addressing
scenarios where model owners might employ private VAEs.
Specifically, we considered two cases: (1) when the victim
model uses a fine-tuned version of a publicly available VAE,
and (2) when the adversary uses a VAE with a different
architecture. For the fine-tuned VAE scenario, we utilized
SDXL’s VAE, which is derived from Stable Diffusion’s VAE.
To test a different architecture, we employed a 16-Channel
VAE [12], which has fewer parameters than Stable Diffusion’s

VAE and produces latents of dimension (64,64,16), compared
to Stable Diffusion’s (64,64,4) latent dimensions.

The results are presented in rows 5–6 of Table 2 and Fig-
ure 7. Using SDXL’s VAE, the attack remains robust, albeit
less effective than when using the victim model’s VAE. How-
ever, the impact on image quality becomes more pronounced.
Training on the Wm & UnWm dataset significantly degrades
image quality, with the FID score increasing by 33.71 and
similar increases in LPIPS and CLIP Score. We also show
the attacked image in Figure 9 of Appendix A. Upon close
inspection, the image has noticeable image artifacts. The 16-
Channel VAE’s performance is comparable to training the
surrogate detector on raw images. Interestingly, when trained
on the Wm vs. Pub dataset, it causes less image degradation.
We hypothesize that SDXL’s superior performance over the
16-Channel VAE is due to it being a fine-tuned version of the
victim model’s VAE, resulting in re-estimated latents with
distributions similar to those of the victim model’s VAE.

These findings suggest that using a customized VAE sig-
nificantly enhances watermark robustness. We observed that
increasing the perturbation budget 𝛿, leads SDXL VAE to
substantial image degradation, particularly for the surrogate
trained on the Wm & UnWm dataset. We anticipate that
further increasing 𝛿 would eventually impact the quality of
attacked images derived from the surrogate trained on the Wm
& Pub dataset as well. This implies a trade-off between attack
effectiveness and maintaining image quality, with the choice
of VAE playing a crucial role in this balance.

5.5 Ablation Study Without a VAE
To determine the importance of having access to a VAE

for the success of our attack, we evaluate it on OpenAI’s
Guided Diffusion [20], an open source implementation of a
diffusion model that does not use a VAE. While Tree-Ring



can be directly applied to Guided Diffusion, this is not a
text-to-image model but a class-conditioned diffusion model
trained on ImageNet classes and thus does not expect a prompt
for generation. Aside from this, the evaluation follows the
same methodology: we use the model to generate images and
construct the Wm & Unwm and Wm & Pub datasets to train
the surrogate models and apply PGD on them.

Table 3: Attack performance on Tree-Ring applied to Guided
Diffusion. Unlike Table 2, we omit CLIP Score and LPIPS
as Guided Diffusion is a class-conditioned model and ground
truth images are not available for assessing generation quality.

Training Data PR-AUC ROC-AUC Accuracy TPR@1%FPR FID

Wm & UnWm 0.8503 0.7870 0.7713 0.4880 56.44

Wm & Pub 0.8506 0.7855 0.7712 0.4803 56.44

Table 3 presents the results of this evaluation. While the
attack still decreases the effectiveness of Tree-Ring, it is not as
successful as when the VAE is available. This result aligns with
the findings by An et al. [4], who show that surrogate-based
attacks on images do not perform as well as other adversarial
attacks, indicating that the attack achieves lower performance
if the attacker does not use a VAE to encode the images into
the latent space. These results highlight the critical role of the
VAE in enabling our attack and demonstrate the risk posed by
making this diffusion model component publicly available.

5.6 Impact of the Base Rate
Precision has been overlooked in the evaluation of watermark-
ing schemes. This is a limitation, as it misses an aspect of
detection performance not captured by performance metrics
based on TPRs and FPRs. Even with high TPR and low FPR,
precision can be low if the base rate of the positive class (wa-
termarked) is low, leading to low confidence in the detection
of watermarked images. In real-world deployments, the base
rate is likely to be low, as any watermarking scheme that is
not broadly adopted will be overwhelmingly exposed to non-
watermarked content. Excluding precision in the evaluation
of a detector where a class imbalance is likely is a case of the
base rate fallacy, an evaluation bias that has been extensively
studied in domains with similar detection tasks [5, 7, 30].

Since we do not know the base rate of real-world deploy-
ments, we plot the precision curves of all attacks and baselines
over a range of possible base rates for four ROC operating
points obtained by imposing a minimum TPR of 0.5, 0.75,
0.95, and 0.99 (see Figure 8). The linearity of the high-TPR
curves is expected, as in those cases TPR≈FPR. However, for
base rates below 0.1, which are plausible in a deployment
scenario, precision decreases significantly, even for high TPR.

In the fourth row of Figure 8 we see the precision curves
resulting from applying our attack. For both datasets, the false
positives induced by our attacks make precision drop linearly

even for TPR=0.5. Figure 10 of Appendix B complements
these results with the Precision–Recall curves where we can
see that our attacks are particularly effective in decreasing the
precision of the Tree-Ring detector.

Given these results, we would not recommend this scheme
for deployment. Even in the non-adversarial setting, for a
base rate of 0.1, the model owner would require picking an
operating point close to TPR = 0.5 to achieve high precision
(see also the first column of Figure 10 in Appendix B), missing
half of the total watermarked images.
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6 Discussion

We now discuss the implications of our findings, not only for
Tree-Ring, but also for other image watermarking schemes.
Attack’s reliance on VAE access. Our results indicate that
the attack heavily relies on the target VAE. We conducted
two ablation studies to test this assumption: one where the
attacker uses a different VAE (Section 5.4), and another where
the diffusion model does not use a VAE at all (Section 5.5). In
both settings, the attack is significantly less effective compared
to the ideal case. Despite this limitation, our contributions
remain practically relevant, as these ideal conditions are likely
to be met in real-world scenarios. As argued in Section 3.1, it
is common practice to reuse existing VAEs to train diffusion
models through latent diffusion.
The security arms race. As watermarking schemes continue
to gain traction in both academia and industry [19], ensuring
their robustness against removal becomes critical. Currently,
most security claims for these schemes are based on experi-
mental evaluations against ad-hoc attacks, meaning they are
only considered secure until a successful attack is discov-
ered. The security of image watermarking schemes should
instead be grounded in computational hardness assumptions
or existing cryptographic primitives. There is progress in
this direction for watermarking schemes for large language
models [13,22,35] and, more recently, for image models [24].
Precision as a key metric. The evaluation of watermarking
schemes often focuses on metrics that do not include precision.
However, relying solely on these metrics may overestimate the
performance of the detector once it is deployed. Thus, security
evaluations of image watermarking should use precision-based
metrics like PR-AUC, reflecting performance in low base rate
scenarios, such as those expected in the future deployment of
these watermarking schemes.

Our evaluation of Tree-Ring’s precision reveals that, even in
the absence of attacks, the detector’s precision is low in realistic
deployment scenarios. In a world where most images do not
contain a watermark, the detector’s confidence in detecting
watermarks decreases significantly without an attack and falls
drastically under our attacks, indicating that the detector is
not reliable when it detects watermarks in general settings.

These findings suggest that if watermarking schemes like
Tree-Ring were deployed to monitor content on publicly acces-
sible platforms, as it is currently proposed, their performance
would be inadequate at best and completely unusable if attacks
were widespread. This raises concerns about the practical
viability of these watermarking techniques.
Potential countermeasures. Our attacks exploit the shift in
the distribution of the latent space caused by the embedding
of a fixed watermark. Therefore, a natural mitigation strategy
is to ensure that the latent representations of watermarked
and non-watermarked images are indistinguishable, making it
harder to train effective surrogate detectors.

Additionally, the success of our attacks degrades when the
attacker and the victim’s autoencoder differ. Thus, a short-term
countermeasure is to train diffusion models with a custom
private autoencoder, ensuring some degree of misalignment
between the diffusion latents and those estimated by the attack,
although this would mean that practitioners would not be able
to benefit from the cost savings offered by latent diffusion [4].

Defenders may also leverage asymmetries in the deployment
setting. For example, Tree-Ring assumes the attacker has
black-box access to the diffusion model, as knowledge of its
weights would enable direct recovery of the watermarks. This
restricted access forces the adversary to rely on techniques
that approximate the inversion process, which increases the
cost of attack compared to that of defense. To capitalize on this
asymmetry, a model owner could embed multiple watermarks
per image—potentially using different embedding schemes
and rotating the keys—thereby forcing an attacker to craft
perturbations that evade several detectors simultaneously. In
addition, access-control mechanisms could restrict the number
of queries associated with a specific watermarking key, thus
limiting the adversary’s ability to collect a sufficient number
of watermarked samples for training a surrogate detector.

Countermeasures designed against adversarial examples,
such as adversarially training the watermark detector, would
improve the robustness of the detector against surrogate PGD
attacks. However, prior work has consistently shown that such
defenses often fail against adaptive attackers [6] or significantly
degrade model accuracy [15]. Currently, no defense provides
certified robustness to adversarial examples without incurring
substantial accuracy trade-offs.

External validity of the results. Note that we do not require
evaluating the attacks on multiple datasets to demonstrate
the generality of the attacks, as the attacker can choose any
publicly available dataset to train the surrogate detector.

Although we have not tested the effectiveness of our attacks
against otherwatermarking schemes,our analysis indicates that
any watermarking scheme that embeds a distinctive watermark
in the latent space is likely to be susceptible to a VAE-based
attack, even if the difference is not visible in the image space.

7 Conclusion

Our findings have uncovered a novel class of surrogate detector
attacks based on public pretrained autoencoders. The results
demonstrate that our method not only surpasses existing sur-
rogate detector attacks but also outperforms other attacks that
make strong assumptions about the threat model. Additionally,
our evaluation shows that Tree-Ring’s performance is lower
than initially thought under typical deployment scenarios,
raising concerns about the practicality of these schemes.
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Appendix

A Attack Visualization
From Figure 9, we can see that each attack learns a correlation
between the area where the watermark is embedded and the
class prediction. As seen in the difference between the Fourier
transform of the attacked images and the original images
(third column), the surrogates trained on the Wm & UnWm
dataset learn a significantly stronger correlation, which is

unexpected given that the difference between the two latent
distributions is only the watermark. With surrogate detectors
trained on the Wm & Pub dataset, the correlation is weaker,
but compared to surrogates trained on raw pixel values, the
attack is more concentrated around the key ring, rather than
scattered throughout the space. When training on the true
latents (at 𝑡 = 0), the correlation between attack area and
misclassification becomes stronger; however, it also starts to
include features outside the key ring.

When using a fine-tuned version of the victim’s VAE, the
SDXL-VAE,we see a more sparse effect of the attack in Fourier
space, which is in line with the degradation in performance of
the attack. Furthermore, when the victim uses a different VAE,
the 16-Channel VAE, there is limited impact of the attack on
the Fourier space.

B Precision–Recall Curves
Figure 10 plots the Precision–Recall curves for all the attacks
at a base rate of 0.5, namely a balanced dataset. Remarkably,
our attack (third column) exerts the most significant impact
on the curve, making it the attack in which the defender would
achieve the weakest compromise between precision and recall.
This is especially relevant in scenarios where the base rate is
low, as the additional false positives can have an overwhelming
effect on the deployment performance of the detector.



Wm vs. Unwm,
Raw Pixels

Attacked Image Pixel Space Difference
FFT Latent Space

Difference

Wm vs. Public,
Raw Pixels

Wm vs. Unwm,
True t=0 Latents

Wm vs. Public,
True t=0 Latents

Wm vs. Unwm,
VAE Latents

Wm vs. Public,
VAE Latents

Wm vs. Unwm,
SDXL-VAE Latents

Attacked Image Pixel Space Difference
FFT Latent Space

Difference

Wm vs. Public,
SDXL-VAE Latents

Wm vs. Unwm,
16-Channel VAE

Latents

Wm vs. Public,
16-Channel VAE

Latents

Adversarial Noising

Figure 9: Attacked images. Each row corresponds to a combination of dataset and input type. The columns from left to right are:
our augmented images 𝑥0𝑎𝑢𝑔 , the changes in pixel values, and the changes in latent space for the watermark channel after FFT.
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Figure 10: PR curves for all the attacks when the base rate is 0.5. 𝑦 = 0.5 is the PR curve of random guessing.
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