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Abstract
Large language models (LLMs) have achieved remarkable
success and are widely adopted for diverse applications. How-
ever, fine-tuning these models often involves private or sen-
sitive information, raising critical privacy concerns. In this
work, we conduct the first comprehensive study evaluating the
vulnerability of fine-tuned LLMs to membership inference at-
tacks (MIAs). Our empirical analysis demonstrates that MIAs
exploit the loss reduction during fine-tuning, making them
highly effective in revealing membership information. These
findings motivate the development of our defense. We propose
SOFT (Selective data Obfuscation in LLM Fine-Tuning), a
novel defense technique that mitigates privacy leakage by
leveraging influential data selection with an adjustable param-
eter to balance utility preservation and privacy protection. Our
extensive experiments span six diverse domains and multiple
LLM architectures and scales. Results show that SOFT ef-
fectively reduces privacy risks while maintaining competitive
model performance, offering a practical and scalable solution
to safeguard sensitive information in fine-tuned LLMs.1

1 Introduction

Large language models are gaining significant public inter-
est with diverse applications [8, 13, 46, 66, 70]. With LLMs
continuously improving and model sizes growing, there is sig-
nificant interest in understanding the potential privacy threat
to the data used to train LLMs. One common way to assess
the privacy threat is to conduct membership inference attacks
(MIA) [74], which determine whether a specific data record
was used to train a target model or not.

Researchers have empirically demonstrated that LLMs can
be vulnerable to membership inference attacks [16, 62, 73, 82,
87, 92, 98], reporting Area Under the Curve (AUC) values
for MIA as high as 0.98 [82, 87] in pre-trained LLMs. How-
ever, recent analyses have identified significant limitations in

1Code is available at https://github.com/KaiyuanZh/SOFT.

these findings. Duan et al. [23] and Maini et al. [60] have at-
tributed the high AUC of these membership inference attacks
to the temporal shift between members and non-members in
the Wiki-MIA dataset [73], rather than genuine membership
leakage. Recent works [21, 62, 97] have further validated that
existing MIAs for pre-training data are largely ineffective.
This is not surprising, given that each piece of data is only
used once [49, 65, 81] during LLMs pre-training.

While it is unclear that MIAs pose significant threats for the
pre-training phase of LLMs, in real-world scenarios, LLMs
are often fine-tuned to be deployed across diverse downstream
tasks. As pre-training large-scale LLMs requires resources
that are usually only available to large companies [8, 66, 81],
more and more small companies and individuals use pre-
trained model as the backbone to fine-tune on downstream
applications, such as medical [50], clinical [45], legal [20],
code generation [29, 78, 89], and multilingual abilities [6],
etc. Data used in fine-tuning often includes either personally
identifiable information (PII) [17], copyright data [55], or
even confidential organizational information [5], adding com-
plexity to privacy and legal considerations. The protection
of such sensitive information sometimes falls under regula-
tory frameworks like the General Data Protection Regulation
(GDPR) [2] in Europe and the California Consumer Privacy
Act (CCPA) [1] in the United States, which establish guide-
lines for handling private information responsibly.

Recent studies have explored privacy leakage during the
fine-tuning phase, including techniques such as prefix or
prompt tuning [17, 30], and adapters tuning [64]. While these
works have advanced our understanding of privacy risks in
fine-tuned large language models, their scope remains lim-
ited. For example, some focus exclusively on smaller models,
such as RoBERTa [56], or employ compute-intensive fine-
tuning techniques [30]. Additionally, methods like Low-Rank
Adaptation (LoRA) [43] and comparative analyses of privacy
leakage between full fine-tuning and alternative fine-tuning
approaches in large language models remain underexplored.

This paper investigates privacy leakage in fine-tuned large
language models (LLMs). In addition to evaluating a wide
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range of existing MIA techniques, we also introduce an en-
semble attack that combines features from existing attacks
to better assess the extent of privacy risks. Using this ensem-
ble attack and nine baseline MIAs, we conduct a compre-
hensive evaluation of privacy leakage in the Pythia suite of
models [12], trained on seven datasets from the Pile [34]. Eval-
uation results from diverse datasets such as ArXiv, Wikipedia,
and GitHub, reveal significant privacy risks in fine-tuned
LLMs. For instance, most attacks achieve an AUC exceeding
0.8 when inferring membership status for Pythia-6.9B fine-
tuned models. To understand the mechanisms behind these
privacy risks, we analyze the effectiveness of MIAs across
datasets and model configurations. Existing MIAs can be cate-
gorized as reference-based or reference-free, and they mainly
differ in strategies for distinguishing uncommon sentences
used in training from common sentences excluded from train-
ing. Our empirical results demonstrate that reference-based
attacks generally outperform reference-free ones. We also
find that privacy leakage increases with model size and data
exposure, with significant risks evident even after one epoch
of fine-tuning. LoRA offers better privacy protection than full
fine-tuning but results in significant utility loss.

To mitigate privacy leakage from MIAs, existing defenses
often modify training processes or model outputs. While
methods like DP-LoRA [54, 94] offer differential privacy for
LLM fine-tuning, they introduce memory overhead without
achieving a favorable privacy-utility trade-off. This under-
scores the need for practical defenses tailored to fine-tuned
LLMs that balance privacy protection and utility. Building
on insights gained from our analysis of MIAs, we propose
SOFT (Selective data Obfuscation in LLM Fine-Tuning), a
novel technique that mitigates privacy leakage by replacing
influential samples in the fine-tuning dataset with obfuscated
paraphrases. By targeting samples most vulnerable to MIAs,
SOFT effectively balances performance and privacy. In Sec-
tion 4, we detail SOFT’s three-phase pipeline: warm-up fine-
tuning, influential data selection, and data obfuscation. This
iterative approach addresses privacy risks while maintaining
scalability and practicality in LLM fine-tuning.

We summarize our contributions as follows:

• We present the first systematic study evaluating the vul-
nerability of fine-tuned LLMs to MIA. While prior work
focuses on pre-trained LLMs, our study fills the gap by
analyzing privacy risks in fine-tuned models.

• We propose SOFT, a novel defense mechanism that
mitigates membership leakage by replacing influential
samples with obfuscated paraphrases. By refining the
selection of influential data through loss-based prioritiza-
tion, SOFT effectively balances privacy protection and
model utility.

• We perform extensive experiments to analyze the factors
influencing MIAs in fine-tuned LLMs across different

dataset categories and various LLM architectures and
scales. Our results provide insights into the relationship
between dataset properties, model configurations, and
privacy risks.

Organization. The rest of this paper is organized as follows.
Section 2 formulates the problem and provides background
on membership inference attacks and defenses. Section 3
introduces the ensemble attack, discusses five key findings,
and analyzes insights. Section 4 presents the design and anal-
ysis of our proposed defense, SOFT. Section 5 provides a
comprehensive evaluation of SOFT against various MIAs,
comparing it with state-of-the-art defenses. Section 6 reviews
related work. Section 7 concludes the paper.

2 Preliminaries

In this section, we start by giving our problem definition and
threat model. Then we provide a brief overview of LLM
fine-tuning, e.g. full fine-tuning and LoRA [43, 75]. Finally,
we introduce various existing MIA methods and mitigation
techniques.

2.1 Problem Definition
In this paper, we focus on membership inference attack [14,
61, 74] within the context of fine-tuned LLMs. Assuming a
dataset D is used to fine-tune a large language model fFT.
Note that D is not necessarily disjoint from the pre-training
dataset. The objective of an MIA is to determine whether a
given instance x is part of D (i.e. x ∈ D).
Threat Model. Our threat model is consistent with the exist-
ing MIAs for LLMs in the literature [16, 62, 73, 82, 87, 98],
while we focus on the fine-tuning phase of LLM. Note that
MIAs against the pre-training phase of LLMs have been pro-
posed with varying assumptions made for the adversary, from
access to the model weights [58], to only query access with
model logits [16, 61, 62, 73, 82, 87, 98] or merely generated
text [24]. Some work also assumes access to additional non-
member data from the same distribution as the target sam-
ple [58, 82, 87]. We assume the adversary can query both
the pre-trained model and the target fine-tuned model to get
model logits and data distribution. This scenario aligns with
common deployment settings for commercial LLMs, where
the adversary merely obtains the label or the predicted words
along with their associated probabilities.

2.2 Fine-tuning LLMs
Directly using large models for specific tasks often results

in suboptimal performance. As a result, fine-tuning has be-
come an essential approach when adapting pre-trained lan-
guage models to downstream tasks. Full fine-tuning, which
updates all the model parameters, has been a longstanding
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practice in the NLP domain. However, with the advent of
scaling laws [47] and increasingly large foundation mod-
els [13, 63, 66], Parameter-efficient fine-Tuning (PEFT) has
gained more attention. Among PEFT methods, LoRA has
become the de-facto PEFT approach [88] due to its simplicity
and effectiveness, and is widely adopted in real-world popular
LLMs [102] and libraries, such as Hugging Face PEFT and
Databricks [11]. In this work, we focus on examining privacy
leakage risks during the LLMs fine-tuning, with emphasis on
full fine-tuning and LoRA.

Outputs

Pre-trained
Weights

𝑾𝑷𝑻 ∈ ℝ!×#

Weight
Updates
𝑾$ ∈ ℝ!×#

⨁

Inputs

(a) Full Fine-tuning

𝑳 ∈ ℝ!×𝒓

𝑟
Pre-trained
Weights

𝑾𝑷𝑻 ∈ ℝ!×#

𝑹 ∈ ℝ$×%

Inputs

Outputs

⨁

(b) LoRA

Figure 1: Full Fine-tuning vs. LoRA.

Fine-tuning. Given a pre-trained language model f (WPT;x)
parameterized by WPT ∈ Rm×n, where x is any input, the fine-
tuned model is represented as:

fFT(WPT ⊕∆W ;x), (1)

where ∆W ∈ Rm×n represents the additional parameters
learned during fine-tuning.

In the following, we instantiate fine-tuning in both full
fine-tuning and fine-tuning via LoRA.

Full Fine-tuning. In full fine-tuning, all model parameters
are updated, such that ∆W = W ′, where W ′ ∈ Rm×n. This
approach updates all parameters of the pre-trained weights,
modifying WPT in its full dimensionality to obtain the fine-
tuned model.

Fine-tuning via LoRA. While full fine-tuning treats all pa-
rameters as trainable, LoRA [43, 75] reduces the parameter
number by reparameterizing the weight updates ∆W as the
product of two low-rank matrices, such that ∆W = LR, where
L ∈Rm×r, R ∈Rr×n, and the rank r ≪ min(m,n). where WPT
remains frozen, and the learned updates LR are added to the
pre-trained weights.

Comparison of Full Fine-Tuning and LoRA. The num-
ber of trainable parameters per weight matrix is mn in full
fine-tuning, and mr+ rn in LoRA. When the rank r is small,
LoRA’s reparameterization significantly reduces the compu-
tational cost.

2.3 Membership Inference Attacks in LLMs
Prior MIAs mainly focused on classical machine learning
models, such as classification models [14,18,57,74]. Recently,
more and more methods [73, 82, 87, 98] have been proposed
to perform MIAs against pre-trained LLMs.

Given a model M , an MIA is given by a membership scor-
ing function s(x;M ), such that for each instance x, a higher
s(x;M ) value means that the MIA considers that x is more
likely to be a member.
Loss. Many existing MIAs against classification models use
the loss of an instance to determine membership [92]. Since
LLM training also aims to reduce the loss of the training
instances, it is natural to use the model’s computed negative
loss over the target sample as the membership score. Denote
the score function as ℓ, then we have:

s(x;M ) =−ℓ(x,M ). (2)

We define the loss function based on the negative log-
likelihood as,

ℓ(θ;x) =−
n

∑
i=1

log p(xi | x1, . . . ,xi−1;θ), (3)

where p denotes the conditional probability of xi given the
preceding inputs, parameterized by θ.

The main drawback of directly using loss is that a non-
member common sentence may have a lower loss than an un-
common sentence that is used in training. Many other MIAs
have been proposed to address this by using different calibra-
tion approaches.

The Calibration Challenge. Existing LLM MIAs mainly
differ on how to differentiate uncommon sentences used
in training from common sentences not used in training.
Many of these methods share similarities on calibration
and differ mainly in their use of loss, log-likelihood, per-
plexity, contrastive ratios, or an extra reference model.

Zlib. Zlib Entropy [16] computes the ratio of the target sam-
ple loss and the bit length of x after zlib compression [32],
i.e. zlib(x). Essentially, this approach uses zlib compression
length of a sentence as an approximation of whether the sen-
tence is common, and uses that to normalize loss for the pur-
pose of membership inference. The score function is defined
as:

s(x;M ) =
−ℓ(x,M )

zlib(x)
. (4)

Lowercase. Lowercase [16] normalizes the loss of the target
sample x by dividing it by the loss of its lowercased version
xlowercase. The score function is defined as:

s(x;M ) =
ℓ(x,M )

ℓ(xlowercase,M )
. (5)
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The intuition is that if x was used in training, then the model
has optimized for the specific casing in x, and this ratio is
likely to be higher than when x was not used in training.
Min-K% Prob. Min-K% probability [73] deals with the cali-
bration challenge by focusing on the k tokens that have the
lowest predicted probabilities. More specifically, the member-
ship score is defined as the average log-likelihood of these
minimum-probability tokens, as follows:

s(x;M ) =
1

|min-k(x)| ∑
xi∈|min-k(x)|

− log p(xi | x1, · · · ,xi−1).

(6)
The intuition is that the score will not be affected by having
many common tokens in a sentence. If an instance has been
used in the training, even the k least common tokens in the
instance may have higher predicted probabilities. This ap-
proach, however, still cannot correctly identify non-members
that have very few uncommon tokens.
Min-K%++. Min-K%++ [98] extends Min-K% by calibrat-
ing the log-likelihood of each token sequence using the mean
and standard deviation over the vocabulary of the model, de-
fined as:

stoken(x<t ,xt ;M ) =
log p(xt | x<t ;M )−µx<t

σx<t
, (7)

where x<t is the prefix. µx<t and σx<t denote the mean and
standard deviation of the log-likelihoods over the model’s
vocabulary, respectively.

s(x;M ) =
1

|min-k(x)| ∑
(x<t ,xt )∈min-k(x)

stoken(x<t ,xt ;M ), (8)

where min-k(x) denotes the set of token sequences corre-
sponding to the k% lowest token-level scores for the input
sequence x.
Ratio. Ratio [16] determines membership by comparing the
loss ratio between a target model and a reference model (or
shadow model) on a target sample. The reference model
serves as a calibration baseline. The intuition behind Ratio is
that members are expected to have a lower loss on the target
model M than the reference model R . The membership score
is defined as:

s(x;M ) =
ℓ(x;M )

ℓ(x;R )
. (9)

ReCall. ReCall [87] quantifies the log-likelihood of a target
sample x with a non-member prefix Pnon-member context. The
method assumes access to a small number of non-member
samples. The intuition is that introducing a non-member con-
text Pnon-member alters the likelihood of a sample depending
on its membership status. For non-members, the prefix in-
troduces a new, unseen context that significantly affects the
likelihood, while for members, the impact is smaller. The
score is defined as:

s(x;M ) =
log p(x | Pnon-member;M )

log p(x;M )
. (10)

CON-ReCall. CON-ReCall [82] leverages contrastive de-
coding to enhance membership inference by comparing the
log-likelihoods of a target text x under both member and non-
member prefixes. The method assumes access to both mem-
ber and non-member samples. This approach builds on the
observation that member and non-member prefixes induce
asymmetric shifts in likelihood, using these differences to
determine membership. The membership score is defined as:

s(x;M )=
log p(x | Pnon-member;M )− γ · log p(x | Pmember;M )

log p(x;M )
,

(11)
where γ controls the contrast strength. Pmember and Pnon-member
are prefixes composed of member and non-member contexts
respectively.
Bag of Words (BoW). Recent studies [21,23,62] have demon-
strated that MIA is largely ineffective against pre-trained
LLMs. A Bag of Words [62] classifier f is solely trained on
dataset features to distinguish members from non-members,
without considering the model:

s(x;M ) = f (v(x)), (12)

where v(x) denotes corresponding textual features. An AUC
significantly exceeding 0.5 when evaluated with BoW indi-
cates a pronounced distribution shift in the dataset rather than
actual data leakage. Similar findings are also reported by [21].

2.4 Membership Inference Defenses in LLMs
Existing defenses are mostly grounded on differential pri-
vacy (DP), focusing on either pre-training [7, 41] or fine-
tuning [54, 94] with privacy guarantees. Next, we introduce
several current defense mechanisms against MIAs in the LLM
context.
DP. DP [26, 27] is a formal privacy definition for algorithms
that operate on sensitive datasets. An algorithm is differen-
tially private if and only if including or excluding any individ-
ual sample does not substantially influence the distribution of
algorithm outputs.

Definition 2.1 ((ε,δ)-Differential Privacy). A randomized
algorithm F : X → Y is (ε,δ)-differentially private if for all
adjacent datasets X, X ′ ∈ X and all Y ⊆ Y , it holds that

Pr[F (X) ∈ Y ]≤ exp(ε)Pr[F (X ′) ∈ Y ]+δ,

where ε and δ denote the privacy budget and the privacy loss
parameter, respectively.

Fine-tuning via DP-SGD. Differentially private stochastic
gradient descent (DP-SGD) [4, 9, 76] is the most widely
adopted algorithm for training machine learning models with
privacy guarantees. In this paper, we focus on the application
of DP-SGD in the context of fine-tuning.
Fine-tuning via DP-LoRA. DP-LoRA [94] is a notable adap-
tation of DP-SGD specifically designed for fine-tuning large
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language models (LLMs). Recall LoRA in Section 2.2, fine-
tuning with DP-LoRA restricts modified gradient updates
to the adaptation layers (LoRA weights). Compared with
DP-SGD in LLMs, DP-LoRA reduces the memory and in-
creases the training speed [94], while still unable to scale
large datasets.

3 Privacy Leak Analysis in Fine-tuned LLMs

In this section, we first propose a simple yet effective ensem-
ble attack that leverages existing membership inference attack
features to enhance the analysis of privacy leakage. Using the
ensemble attack and other MIA baselines, we then investigate
privacy leakage from five distinct perspectives. The insights
derived from this analysis inform the design of our proposed
defense, SOFT, which is introduced in the subsequent sec-
tion.

3.1 Ensemble Attack

Building upon the existing MIAs discussed in Section 2.3
and inspired from [60], we introduce an ensemble attack that
combines multiple MIAs to enhance membership inference
accuracy.

As outlined in “The Calibration Challenge,” existing LLM
MIAs primarily differ in their approach to distinguishing
uncommon sentences used in training from common sen-
tences not included in training. These attacks can be broadly
categorized into two groups: (1) reference-based attacks
and (2) reference-free attacks. For instance, Ratio [16] is
a reference-based attack that determines membership by com-
paring the loss ratio between a target model and a refer-
ence model. In contrast, all other attacks are reference-free,
including Loss [92], Zlib [16], Lowercase [16], Min-K%
Prob [73], Min-K%++ [98], Bag of Words [62], ReCall [87],
and CON-ReCall [82]. We evaluate these nine MIAs using the
Pythia [12] suite of models (default as Pythia-6.9B), e.g. 70M,
160M, 410M, 1B, 1.4B, 2.8B, 6.9B, on seven various subsets
of the Pile dataset [34], such as ArXiv, DeepMind Mathemat-
ics, HackerNews, PubMed, Pile CC, Wikipedia, and GitHub.
The dataset partitioning follows [23], and the evaluation is
conducted with 13-grams data split (13_0.8) by default.

ArXiv
DM Math.

HackerNews
PubMed

Pile CC
Wikipedia GitHub

Loss
Zlib

Lowercase
Min-K% Prob

Min-K%++
Ratio

Bag of words
ReCall

CON-ReCall
Ensemble

0.530 0.484 0.523 0.501 0.503 0.525 0.737
0.534 0.488 0.516 0.505 0.507 0.529 0.759
0.509 0.493 0.513 0.514 0.494 0.541 0.766
0.504 0.505 0.504 0.488 0.491 0.496 0.556
0.513 0.493 0.512 0.502 0.506 0.541 0.745
0.544 0.494 0.536 0.550 0.524 0.566 0.785
0.585 0.501 0.528 0.529 0.520 0.503 0.709
0.533 0.487 0.527 0.516 0.507 0.531 0.748
0.522 0.500 0.506 0.497 0.495 0.541 0.723
0.649 0.572 0.563 0.585 0.595 0.592 0.757

0.5

0.6

0.7

Figure 2: AUC-ROC of MIAs on Pre-trained Pythia-6.9B.

Ensemble Attack. An effective MIA should achieve an AUC
significantly greater than 0.5. In Figure 2, we observe that no
single MIA consistently outperforms others across all datasets,
except for the ensemble approach in the last row. However,
if there exists MIAs demonstrate performance slightly better
than random guessing, we can selectively combine those pro-
viding positive signals and aggregate their features to train
a classifier tailored to a specific dataset. For the Ensemble
attack, we strategically select twelve features: loss, perplex-
ity, lowercase, zlib, seven features derived from Min-K%++
with varying k thresholds, and ratio. The last row in Figure 2
demonstrates that the Ensemble attack significantly outper-
forms other MIAs across diverse scenarios.
Remark. The ineffectiveness of existing membership infer-
ence attacks in pre-trained LLMs, motivating the proposal of
the Ensemble attack.

3.2 Pitfalls in Full Fine-tuning
While several studies [11, 43, 75, 102] provide valuable in-
sights into the performance of full fine-tuning and LoRA
across various domains and datasets, research on privacy leak-
age in fine-tuned LLMs remains limited. Although some find-
ings may seem intuitive at first glance, they often stem from
the intricate interplay of attack designs (e.g., loss-based at-
tacks) and data properties (e.g., code, math).

Finding 1: As model size and fine-tune epoch increase,
fully fine-tuned LLMs exhibit greater privacy leakage.
Even one-epoch fine-tuning results in significant leakage.

Description. We evaluate the Pythia [12] family of models
trained on the Pile [34] dataset, covering six model sizes: 70M,
160M, 1B, 1.4B, 2.8B, and 6.9B parameters, and fine-tune
them on seven distinct downstream datasets. To investigate the
effect of data exposure, we fine-tune Pythia-6.9B for varying
numbers of epochs across the same downstream datasets. To
ensure a fair comparison, we maintain consistent core training
settings, including the optimizer, learning rate schedule, total
training steps, and other hyperparameters.

ArXiv
DM Math.

HackerNews
PubMed

Pile CC
Wikipedia GitHub

Loss
Zlib

Lowercase
Min-K% Prob

Min-K%++
Ratio

Bag of words
ReCall

CON-ReCall
Ensemble

0.878 0.647 0.854 0.848 0.863 0.853 0.889
0.882 0.609 0.861 0.850 0.859 0.862 0.909
0.843 0.589 0.861 0.811 0.833 0.830 0.885
0.650 0.542 0.631 0.624 0.674 0.617 0.604
0.866 0.618 0.827 0.842 0.850 0.841 0.908
0.874 0.773 0.866 0.865 0.863 0.875 0.922
0.583 0.517 0.519 0.560 0.496 0.524 0.706
0.884 0.649 0.873 0.860 0.864 0.847 0.900
0.825 0.600 0.835 0.851 0.822 0.831 0.882
0.872 0.710 0.873 0.871 0.868 0.876 0.839

0.6

0.7

0.8

0.9

Figure 3: AUC-ROC on Full Fine-tuned Pythia (3 Epochs).

Insights. Our observations indicate that larger models con-
sistently enhance membership inference attack (MIA) perfor-
mance, with a clear upward trend in full fine-tuning scenarios,
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(a) Pile CC (b) Wikipedia

ReCall
Loss

Zlib
Ratio
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CON-ReCall
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(a) Full Fine-tune on Different Model Sizes of Pythia (3 Epochs).
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C
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C

0.4
0.6
0.8
1.0

Epoch No.
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0.6
0.8
1.0

Epoch No.
0 1 3 5 7 9 0.4

0.6
0.8
1.0

Epoch No.
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(a) DM Mathematics (b) Pile CC (c) Wikipedia

(b) Full Fine-tune with Different Epochs on Pythia-6.9B.

Figure 4: AUC-ROC of MIAs against Full Fine-tuned Models.

as shown in Figure 4a. Since it is a standard practice to pre-
train LLMs for approximately one epoch due to the scale of
the training data [49, 65, 81]. For most existing MIAs, the
performance on pre-trained LLMs is close to random guess-
ing. However, after full fine-tuning, some of these attacks can
achieve AUC scores as high as 0.9 regardless of domains, as
illustrated in Figure 3.

Regarding fine-tune epochs, we observe a significant boost
in attack performance even with only one epoch of full fine-
tuning. Figure 4b demonstrates the increasing AUC perfor-
mance for various MIAs as the number of fine-tuning epochs
grows. Notably, the Bag of Words attack is useful for detect-
ing distribution shifts in datasets, with an AUC around 0.5
indicating a fair dataset distribution.
Remark. In summary, full fine-tuning demonstrates signifi-
cant privacy leakage, which motivates our defense proposal,
SOFT.

3.3 Privacy-Utility Trade-offs in LoRA

Finding 2: LoRA with different ranks provides privacy-
utility trade-offs. Overall, LoRA demonstrates better pri-
vacy protection compared to full fine-tuning.

Description. We fine-tune the Pythia-6.9B model using LoRA
for 5 epochs, as LoRA generally requires more time to con-
verge compared to full fine-tuning. The ranks evaluated in-
clude 1, 8, 32, 64, and 128. Empirically, setting α = 2r has
been established as a common practice in LoRA [11], where
α is the scaling factor and r denotes the rank. We adopt this
parameterization as the default configuration. Our evaluation
ensures fair comparisons by converging both full fine-tuning
and LoRA models to the same performance level.
Insights. LoRA provides a favorable privacy-utility trade-off,
fundamentally operating as a form of continual learning [84],
where a subset of parameters is fine-tuned to adapt the base

ArXiv
DM Math.

HackerNews
PubMed

Pile CC
Wikipedia GitHub

Loss
Zlib

Lowercase
Min-K% Prob

Min-K%++
Ratio

Bag of words
ReCall

CON-ReCall
Ensemble

0.601 0.533 0.560 0.557 0.527 0.571 0.770
0.599 0.524 0.569 0.548 0.514 0.583 0.766
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Figure 5: AUC-ROC on LoRA Fine-tuned Pythia (5 Epochs).

Loss
Ratio

Zlib
Bag of words

Lowercase
ReCall

Min-K% Prob
CON-ReCall

Min-K%++
Ensemble

A
U

C
 R

O
C

0.5
5

0.6
0

0.6
5

0.7
0

LoRA Rank
1 8 32 64 128

Figure 6: AUC-ROC on LoRA Fine-tuned in Different Ranks.

model’s capabilities to new domains. We observe that vanilla
LoRA fine-tuning provides a balance between model perfor-
mance and privacy protection, as evidenced by comparing
Figure 3 (full fine-tuning) and Figure 5 (LoRA). However,
identifying this privacy-utility trade-off requires careful tun-
ing. Recent works [11, 42] demonstrate that higher ranks and
proper hyperparameter configurations significantly improve
LoRA’s performance. Our study corroborates these findings,
revealing that higher ranks can exacerbate privacy leakage, as
shown in Figure 6.
Interpretation of the LoRA Privacy-Utility Trade-off.
LoRA and full fine-tuning produce structurally different pa-
rameter updates, characterized by intruder dimensions [75],
which are absent in full fine-tuning. Intuitively, intruder di-
mensions correspond to high-ranking singular vectors in
weight matrices with large associated singular values. When
fine-tuning with LoRA, these intruder dimensions emerge and
are approximately orthogonal to the singular vectors in the
pre-trained weight matrix. In contrast, full fine-tuning main-
tains spectral similarity to the pre-trained model and does
not introduce intruder dimensions. The existence of intruder
dimensions in LoRA fine-tuning complicates its ability to
achieve performance equivalent to full fine-tuning on a given
task, explaining the observed trade-off in privacy and utility.
Remark. While LoRA achieves a trade-off between privacy
and utility, the ensemble and ratio attack remain capable
of compromising it, motivating the proposal of our defense,
SOFT.

3.4 Dataset Properties

Finding 3: Dataset properties significantly affect MIA
difficulty.

6



Description. State-of-the-art pre-trained LLMs are trained on
billions to trillions of tokens [63, 81], with dataset domains
exhibiting varying properties. These variations affect the diffi-
culty of performing MIAs. We follow the experimental setup
described in Findings 1 and 2, fine-tuning the models using
both full fine-tuning and LoRA for 3 and 5 epochs, respec-
tively, to evaluate the impact of dataset properties.
Insights. While a few studies [11,25] have rigorously com-
pared full fine-tuning and LoRA across various datasets, in-
cluding challenging domains such as code and mathematics,
our study focuses on the privacy implications of dataset prop-
erties. In Figure 3, we observe that mathematical datasets ex-
hibit lower AUC scores compared to other domains. Addition-
ally, the GitHub dataset demonstrates significant distribution
shifts, as evidenced by the Bag of Words [62] AUC exceeding
0.5. This high overlap is attributable to the repetitive nature
of code, including function definitions, code structures, and
commonly used frameworks and libraries.
Remark. Given that different datasets and samples possess
specialized properties, we strategically design an influence
function to estimate the impact of individual samples in our
proposed defense, SOFT.

3.5 Attack Properties

Finding 4: Reference-based attacks generally achieve
the best performance, although there are specific settings
other attacks perform better.

Description. Using the experimental setup from Finding 1,
we conduct full fine-tuning with Pythia-6.9B, employing the
13-grams (13_0.8) data partition by default across seven di-
verse datasets. In our evaluation, Ensemble and Ratio [16]
are reference-based attacks, while the remaining attacks are
reference-free. The results highlight the consistent superiority
of reference-based attacks, with certain scenarios favoring
reference-free approaches.
Insights. Reference-based attacks rely on an auxiliary model
trained on a dataset similar to the target model’s training data
for calibration. By comparing the outputs of the target and
reference models, these attacks identify loss discrepancies
that indicate whether a specific data point was part of the
training set. As shown in Figure 2 (pre-trained LLMs) and
Figure 5 (LoRA fine-tuned LLMs), reference-based attacks,
such as Ensemble and Ratio, consistently achieve the best
performance. This approach leverages the observation that
the reference model’s loss on unseen data will differ from
that of the target model if the data point was included in the
training set. Other than reference-based attacks, many MIA
methods are loss-based or loss-variants, sharing similarities
on calibration and differ mainly in their use of loss.
Remark. Building on these observations, our defense, SOFT,
strategically leverages loss metrics to identify and prioritize
influential data for enhanced privacy protection.

3.6 Mitigation Strategies

Finding 5: DP-SGD and DP-LoRA add noise to each
sample and cause a degradation in model performance.

Description. DP-SGD enforces differential privacy by bound-
ing each sample’s contribution to the gradient through per-
sample gradient clipping and the addition of calibrated noise.
This ensures privacy at the level of every individual training
examples. Similarly, DP-LoRA adapts LoRA to integrate dif-
ferential privacy by applying clipping and noise addition to
updates associated with individual samples.
Insights. In most scenarios, DP-LoRA [94] demonstrates su-
perior defensive performance. However, differential privacy
techniques often result in notable utility degradation, partic-
ularly in large-scale LLM fine-tuning tasks, as empirically
validated in Section 5. Besides, as noted in Finding 2, LoRA
fine-tuning can also achieve a reasonable balance between
model performance and protection against MIAs.
Remark. DP-SGD and DP-LoRA add protection to all sam-
ples, however, it is feasible to identify individual vulnerable
samples, which motivates our SOFT.

4 Proposed Defense: Selective Data Obfusca-
tion by Paraphrasing

Motivated from Section 3 findings, in this section, we propose
a novel defense, SOFT. We start by providing an overview
of SOFT. Then we introduce the details of SOFT, which
paraphrases selected influential data. Intuitively, fine-tuning
on paraphrased data reduces the model’s overfitting to the
exact member samples, as it has not seen the raw member
data, which can fool all the loss based MIAs.

4.1 Overview of SOFT
In high-level, SOFT involves substituting influential samples
with semantically equivalent alternatives by a paraphraser dur-
ing fine-tuning. Inspired by influence functions [48], we define
influential samples as those vulnerable to MIA. By doing so,
SOFT provides a favorable balance between mitigating pri-
vacy leakage and maintaining fine-tuning performance.

Definition 4.1 (Influence Function). Influence functions quan-
tify the effect of a single training point on model parameters
or predictions. For a model M parameterized by θ, the influ-
ence function measures the change in parameters θ when a
training point x f is upweighted by an infinitesimal amount ε:

Iparams(x f ) =
dθε

dε

∣∣∣∣
ε=0

=−H−1
θ

∇ℓ(M ,x f ), (13)

where Hθ = ∇2L(θ) is the Hessian of the total loss L(θ), and
∇ℓ(M ,x f ) is the gradient of the loss with respect to model
parameters.
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Figure 7: Overview of SOFT

This formulation has been widely used to analyze the im-
pact of training points on model behavior [48]. While gradient-
based influence is theoretically grounded [69], SOFT em-
ploys a loss-based approximation for practical efficiency and
direct alignment with the data selection mechanism.

Figure 7 outlines the pipeline of SOFT, which is di-
vided into four main phases. 1 Warm-up involves training
the model on the entire dataset once, resulting in a warm-
up model that help assess the sensitivity of each sample.
2 Influential Data Selection entails computing the loss for
both the validation and fine-tuning datasets during each subse-
quent fine-tuning iteration. Samples with losses below a spec-
ified threshold (typically set as the average validation loss)
are selected as influential data. 3 Data Obfuscation consists
of paraphrasing the selected influential samples to obfuscate
them and incorporating these obfuscated samples back into
the fine-tuning process. SOFT updates the dataset by replac-
ing the original samples with their obfuscated versions while
retaining the remaining data. 4 Fine-tuning fine-tunes the
model using the updated dataset, thereby minimizing poten-
tial privacy leakage while preserving model utility. Note that
except for the warm-up phase, the remaining three phases are
iterative and occur across multiple epochs.

4.2 Detailed Algorithm

Following the overview pipeline, in this section, we offer a
detailed description of our approach in Algorithm 1.
Initialization. (Line 1) The inputs consist of a pre-trained
model, a fine-tuning dataset, a validation dataset, and a set of
primary training parameters. Note that α is a scaling factor
that determines the strengths for data obfuscation.
Returning. (Line 2) Upon completion of the SOFT algo-
rithm, the output is a fine-tuned model with enhanced privacy
protection.
1 Warm-up Fine-tuning (Lines 3-4). This stage utilizes
two standard functions: CALC_LOSS and WEIGHTS_UPDATE.
CALC_LOSS, defined in Lines 14-19, computes the loss for
each sample in the given dataset D using the model M . It
returns a corresponding list of losses. WEIGHTS_UPDATE, de-
fined in Lines 10-13, takes the model M , its loss L , and the
learning rate η, and performs a standard gradient descent step
to update the model’s weights. The warm-up stage involves a

Algorithm 1 Pseudocode of SOFT

1: Input: Pre-trained model MPT , fine-tuning dataset D f , valida-
tion dataset Dv, paraphrasing strength α, number of fine-tuning
epochs T , loss function ℓ and learning rate η.

2: Output: Fine-tuned model with defense M .
3: Linit = CALC_LOSS(MPT ,D f )
4: M = WEIGHTS_UPDATE(MPT ,Linit ,η) ▷ Phase 1
5: for t in T do
6: D̂t

f = DATA_SELECTION(M ,D f ,Dv) ▷ Phase 2
7: L t = CALC_LOSS(M ,D̂t

f )

8: M = WEIGHTS_UPDATE(M ,L t ,η) ▷ Phase 4
9: return M

10: function WEIGHTS_UPDATE(M , L ,η)
11: µ = 1

n ∑
n
i=1 L i ▷ Average the losses

12: θ̂ = θ(M )−η · ∂µ
∂θ(M )

▷ Gradients descent

13: return M
θ̂

14: function CALC_LOSS(M , D)
15: L = {} ▷ Initialize the losses
16: for x in D do
17: l = ℓ(M ,x) ▷ Calculate the loss for each sample
18: L = L ∪{l}
19: return L
20: function DATA_SELECTION(M , D f , Dv)
21: Lv = CALC_LOSS(M ,Dv) ▷ Calculate the validation losses
22: τ = 1

n ∑
n
i=1 L i

v ▷ Use the average validation loss as data
selection threshold

23: D̂ f = {} ▷ Initialize the updated fine-tuning dataset
24: for x f in D f do
25: l f = ℓ(M ,x f ) ▷ Calculate the loss for each sample
26: if l f < τ then
27: D̂ f = D̂ f ∪{PARAPHRASE(x f ,α)} ▷ Phase 3
28: else
29: D̂ f = D̂ f ∪{x f }

30: return D̂ f

single pass over the fine-tuning set to help assess the initial
influence level of each sample.
2 Influential Data Selection (Lines 6). During fine-tuning
stage, at each epoch t, SOFT first performs data selection.
The selection function is defined in Lines 20-30. Specifically,
SOFT calculates the loss for each validation sample and
records them in Lv (Line 21). It then computes the average
validation loss in Line 22 as the data selection threshold
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τ, representing the safe boundary within which MIAs are
difficult to succeed. Empirically, the average validation loss is
sufficient for the defense. Subsequently, SOFT evaluates each
sample from the fine-tuning dataset and select influential ones
(Lines 23-29). If a sample’s loss falls below the threshold, i.e.,
outside the safe range, SOFT identifies it as an influential
sample. Otherwise, the sample is considered safe. In essence,
influential data selection identifies the most influential data
points in the fine-tuning set.
3 Data Obfuscation (Line 27). SOFT replaces the identified
influential samples with their paraphrased versions. To main-
tain data quality, we utilize state-of-the-art production LLMs,
such as GPT-4 [66] and Claude-3.5 [8], employing carefully
designed prompts. The function PARAPHRASE(x,α) in Line
27 takes an original sample x and a paraphrasing strength
factor α, which controls the extent of paraphrasing applied.
For example, setting α = 0.5 preserves the first half of the
original text while paraphrasing the remaining half. Tuning α

involves a trade-off: a higher paraphrasing ratio may reduce
the utility of the data, whereas a lower ratio could increase
the risk of privacy leakage. Our ablation study in Section 5.6
shows that varying α has a slight impact on performance.
Empirically, we adopt α = 0.5 as the default value. Further
details on paraphrase prompt template are provided in [3].
4 Fine-tuning (Line 7-8). Combining the obfuscated data

with the remaining safe data, SOFT obtains the updated
dataset D̂t

f . The model is then fine-tuned on this updated
dataset, resulting in updated model weights.

SOFT effectively mitigates membership leakage by replac-
ing influential samples with obfuscated ones. With refining
the selection of influential data through loss-based prioritiza-
tion, SOFT balances privacy protection and model utility.

5 Evaluation

In this section, we provide a comprehensive empirical evalua-
tion of SOFT across multiple dimensions. We describe the
experimental setup in Section 5.1. Section 5.2 evaluates the
defense effectiveness of SOFT against ten MIAs, Section 5.3
quantifies the utility of SOFT, and Section 5.4 demonstrates
its superiority over baseline methods. Additionally, we con-
duct adaptive attacks in Section 5.5 and a series of ablation
studies to investigate the design components in Section 5.6.

5.1 Experimental Setup
Datasets. Duan et al. [23] were the first to address tem-
poral shift issues in datasets [73], introducing MIMIR as
a novel method for partitioning text samples into training
(members) and testing (non-members) sets. Following prior
works [23, 62], we consider both deduplication strategies and
evaluate our approach on six subsets of the Pile dataset [34],
including ArXiv, HackerNews, PubMed, Pile CC, Wikipedia,
and GitHub, with a 13-gram (13_0.8) data split as the default.

Models. Our analysis primarily focuses on the Llama-3.2 [63]
model family, including configurations with 1B and 3B pa-
rameters. Unless stated otherwise, the Llama-3.2-3B model
is used as the default configuration. Additionally, we extend
our privacy leakage analysis to the Pythia [12] model family,
examining various model sizes and datasets in Section 3.
Attacks Configurations. We evaluate our method against
10 different membership inference attacks (MIAs), includ-
ing both reference-based and reference-free approaches. The
reference-based attacks include Ratio [16] and Ensemble.
The reference-free attacks include Loss [92], Zlib [16], Low-
ercase [16], Min-K% Prob [73], Min-K%++ [98], Bag of
Words [62], ReCall [87], and CON-ReCall [82]. For reference-
based attacks, we used OpenLLaMA-7B [37] as the reference
model. In Min-k% Prob and Min-k%++, we set k = 20. For
ReCall and CON-ReCall, we employ a fixed prefix with 10
shots. Note that some MIAs, i.e., Loss, Zlib, and Lowercase,
do not rely on specific hyperparameter choices.
Defenses Configurations. Due to computational constraints,
we establish evaluation baselines using DP-LoRA applied to
the Llama-3.2-1B model under varying privacy budgets (ε).
Evaluation Metrics. We evaluate both the defense perfor-
mance and the utility of the fine-tuned model. Defense per-
formance is assessed using the MIA success rate, measured
by AUC-ROC and TPR@low%FPR [14]. Lower AUC and
TPR@low%FPR values indicate a lower attack success rate
and, consequently, higher defense effectiveness. To evaluate
fine-tuned model utility, we use perplexity [35] and the LLM-
as-a-Judge framework [103]. Lower perplexity and higher
LLM-judge scores indicate greater model utility.

• AUC-ROC. The Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) measures the perfor-
mance of a binary classification model by evaluating
its ability to distinguish between positive and negative
classes across various classification thresholds. Follow-
ing prior work [62], we compute AUC on 1,000 boot-
strapped [10] subsets of members and non-members,
reporting both the mean and standard deviation of the
results.

• TPR@low%FPR. This metric, introduced by Carlini
et al. [14], captures an attack’s ability to confidently
identify members of the training set. It is particularly im-
portant in high-stakes applications (e.g., medical data or
private user information), where even a true positive rate
(TPR) around 0.3–0.4 at low false positive rates (FPR)
can indicate significant privacy risks. In less sensitive
contexts, a TPR@low%FPR exceeding 0.5 may warrant
concern about privacy leakage.

• Perplexity. Perplexity reflects the model’s confidence
in predicting a given sentence. Many previous works
rely on perplexity for evaluating LLMs performance on
various tasks [31, 59]. We use an open-source evalua-
tion benchmark from EleutherAI [35] to compute the
perplexity score on fine-tuning downstream tasks.
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Table 1: Evaluation of SOFT’s defense effectiveness against multiple MIAs. Performance is measured using AUC-ROC
scores, where lower values indicate stronger defense.

MIAs
ArXiv HackerNews PubMed Pile CC Wikipedia GitHub

Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT

Loss [92] 0.508 0.822 0.525 0.498 0.900 0.515 0.478 0.895 0.496 0.502 0.887 0.519 0.501 0.936 0.530 0.653 0.846 0.625
Zlib [16] 0.508 0.811 0.521 0.496 0.910 0.517 0.481 0.893 0.509 0.489 0.902 0.533 0.505 0.939 0.532 0.678 0.871 0.647
Lowercase [16] 0.490 0.785 0.517 0.507 0.845 0.515 0.515 0.850 0.541 0.482 0.858 0.522 0.499 0.887 0.536 0.611 0.820 0.591
Min-K% Prob [73] 0.514 0.615 0.510 0.492 0.627 0.489 0.502 0.645 0.499 0.511 0.668 0.518 0.495 0.669 0.512 0.506 0.613 0.515
Min-K%++ [98] 0.509 0.757 0.519 0.498 0.800 0.511 0.486 0.856 0.503 0.507 0.842 0.518 0.519 0.912 0.533 0.606 0.869 0.598
Ratio [16] 0.493 0.952 0.558 0.462 0.943 0.533 0.503 0.947 0.541 0.510 0.949 0.552 0.488 0.944 0.576 0.507 0.955 0.516
Bag of words [62] 0.504 0.508 0.505 0.529 0.521 0.523 0.513 0.528 0.518 0.483 0.504 0.511 0.501 0.507 0.507 0.701 0.649 0.660
ReCall [87] 0.508 0.840 0.533 0.501 0.907 0.515 0.480 0.908 0.511 0.497 0.895 0.532 0.505 0.938 0.529 0.630 0.851 0.627
CON-ReCall [82] 0.505 0.764 0.518 0.486 0.740 0.500 0.488 0.868 0.516 0.458 0.844 0.513 0.496 0.925 0.530 0.638 0.847 0.620
Ensemble 0.551 0.807 0.568 0.524 0.886 0.567 0.576 0.884 0.546 0.673 0.942 0.604 0.512 0.925 0.587 0.747 0.944 0.669

Average 0.509 0.766 0.527 0.499 0.808 0.519 0.502 0.827 0.518 0.511 0.829 0.532 0.502 0.858 0.537 0.628 0.827 0.607

Table 2: Evaluation of SOFT’s defense effectiveness against multiple MIAs. Performance is measured using TPR@1%FPR
scores, where lower values indicate stronger defense.

MIAs
ArXiv HackerNews PubMed Pile CC Wikipedia GitHub

Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT Pretrain FT SOFT

Loss [92] 0.002 0.131 0.006 0.005 0.432 0.009 0.006 0.474 0.009 0.005 0.134 0.015 0.017 0.621 0.016 0.110 0.243 0.066
Zlib [16] 0.004 0.125 0.011 0.004 0.514 0.009 0.006 0.502 0.007 0.013 0.268 0.021 0.014 0.727 0.023 0.116 0.337 0.111
Lowercase [16] 0.003 0.169 0.012 0.010 0.270 0.007 0.004 0.291 0.007 0.006 0.219 0.015 0.017 0.316 0.022 0.031 0.224 0.045
Min-K% Prob [73] 0.026 0.201 0.013 0.019 0.289 0.015 0.006 0.387 0.004 0.000 0.289 0.013 0.012 0.478 0.023 0.052 0.161 0.032
Min-K%++ [98] 0.009 0.072 0.007 0.013 0.195 0.012 0.007 0.385 0.008 0.002 0.152 0.014 0.009 0.598 0.023 0.056 0.301 0.055
Ratio [16] 0.005 0.892 0.021 0.005 0.700 0.020 0.007 0.765 0.037 0.004 0.896 0.093 0.014 0.884 0.057 0.028 0.891 0.051
Bag of words [62] 0.016 0.012 0.019 0.017 0.019 0.010 0.017 0.013 0.010 0.014 0.016 0.016 0.007 0.006 0.006 0.154 0.148 0.143
ReCall [87] 0.009 0.164 0.009 0.006 0.487 0.012 0.006 0.539 0.014 0.006 0.143 0.017 0.012 0.682 0.014 0.064 0.284 0.083
CON-ReCall [82] 0.012 0.148 0.014 0.006 0.172 0.007 0.005 0.388 0.008 0.002 0.134 0.010 0.009 0.518 0.022 0.091 0.281 0.092
Ensemble 0.056 0.258 0.033 0.026 0.395 0.044 0.040 0.466 0.027 0.000 0.490 0.034 0.016 0.590 0.035 0.077 0.700 0.153

Average 0.014 0.217 0.015 0.011 0.347 0.015 0.010 0.421 0.013 0.005 0.274 0.025 0.013 0.542 0.024 0.078 0.357 0.083

• LLM-as-a-Judge. Other than perplexity, we adopt the
LLM-as-a-Judge framework [103] to assess the knowl-
edge learned by the fine-tuned model. Specifically, we
utilize a production LLM (e.g., GPT-4o [66]) to generate
multiple QA pairs based on the fine-tuning data and have
the fine-tuned model provide answers. The production
LLM is further employed to quantitatively evaluate the
quality of the model’s responses.

5.2 Effectiveness of SOFT in Defending MIAs

In this section, we empirically evaluate the effectiveness of
SOFT against multiple state-of-the-art MIAs (Section 2) and
a strong ensemble attack (Section 3). We employ AUC-ROC
and TPR@low%FPR as metrics to measure the attack suc-
cess rate, where higher values indicate more effective attacks.
Table 1 presents the AUC-ROC results. The first row lists
the six datasets used in our experiments, while the first col-

umn enumerates the ten MIAs evaluated. In this experiment,
we utilize Llama-3.2-3B [63] as the default model. For each
dataset, we use 1000 samples for fine-tuning and assuming
100 samples for validation purpose. During the attack phase,
the 1000 fine-tuning samples serve as member data and are
paired with 1000 distinct samples (not used in fine-tuning)
from the same distribution, acting as non-member data. Typ-
ically, we fine-tune the model for three epochs and conduct
the MIA at the last epoch. To clearly demonstrate SOFT’s
effectiveness, we compare its performance with that of the
pre-trained model (“Pretrain”) and full fine-tuning (“FT”) for
each dataset and MIA, as shown in the second row of the
table. For a fair comparison, the full fine-tuning process em-
ploys the same set of samples as SOFT. Additionally, the last
row provides the average scores across all MIAs, offering an
overall assessment of performance. We also evaluate LoRA
fine-tuned models in Table 3 and 4.

Notably, for the pre-trained model, the AUC-ROC scores
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are approximately 0.5 across various MIAs and datasets, ex-
cept the GitHub dataset. The fine-tuning dataset is not neces-
sarily disjoint from the pre-training dataset. However, Llama
does not disclose details about its pre-training dataset beyond
the first version [63]. Even if specific data has been seen dur-
ing pre-training, successful membership inference attacks on
pre-trained LLMs are extremely challenging [23, 62]. This is
not surprising, since each data sample is typically used only
once during LLM pre-training [49, 65, 81]. The higher AUC-
ROC score for the GitHub dataset compared to others is likely
due to the inherent overlap between member and non-member
data, as code sharing structural, libraries and function names
are more prevalent than natural language [23]. In contrast, full
fine-tuning is significantly more vulnerable to membership
inference attacks, with an average AUC-ROC of 0.819. This
vulnerability is consistent with our observations in Section 3
Finding 1 and 2, which can be exploited by membership in-
ference attacks. Table 1 and 3 present the AUC-ROC scores,
showing that LoRA fine-tuning remains vulnerable to mem-
bership inference attacks, especially comparing AUC-ROC
under attacks such as Ensemble, Ratio, and ReCall. Compar-
ing with LoRA fine-tuning, SOFT effectively reduces attack
efficacy by significantly lowering the AUC-ROC scores to
0.540 on average, while LoRA at 0.641. SOFT provides sig-
nificantly better privacy protection, while maintaining much
lower perplexity. Besides, LoRA fine-tuning [75] is highly
sensitive to rank choice and parameterization, the model util-
ity can varies under different strategy. While data obfuscation
and selection applied in SOFT are more robust.

Table 2 and 4 present the TPR@1%FPR results under iden-
tical experimental settings. Observe that the pre-trained model
consistently achieves a TPR@low%FPR score near 0, indi-
cating minimal vulnerability to attacks. In contrast, full fine-
tuning increases the average TPR@1%FPR to 0.360, LoRA
fine-tuning increases average TPR@1%FPR to 0.181, demon-
strating a higher risk. However, SOFT effectively reduces
the average TPR@1%FPR score to 0.029, closely aligning
with the pre-trained model’s score and illustrating our defense
effectiveness.

Additionally, we observe only a minimal increase in the per-
plexity score. For example, the perplexity of the pre-trained
model on the ArXiv dataset is 12.26. Full fine-tuning reduces
this to 9.78, while SOFT slightly increases it to 10.49, rep-
resenting an increase of only 7%. Despite this modest rise,
SOFT significantly enhances privacy protection, reducing
MIA to near random guessing.

5.3 Utility Test via LLM-as-a-Judge

While perplexity is a popular metrics focusing on measuring a
model’s ability to predict word sequences fluently. To further
determine whether the model has truly comprehended the
knowledge within its training data [36], we introduce a more
comprehensive quantitative assessment of model utility using

Table 3: Evaluation of LoRA fine-tuning against multiple
MIAs. Performance is measured by AUC-ROC scores.

MIAs ArXiv HNews PubMed Pile CC Wiki GitHub

Loss 0.601 0.645 0.619 0.633 0.644 0.750
Zlib 0.593 0.641 0.621 0.648 0.644 0.776
Lowercase 0.577 0.575 0.595 0.598 0.650 0.716
Min-K% Prob 0.554 0.541 0.550 0.547 0.638 0.643
Min-K%++ 0.584 0.579 0.568 0.549 0.744 0.640
Ratio 0.689 0.702 0.692 0.918 0.774 0.922
Bag of words 0.508 0.521 0.528 0.511 0.507 0.651
ReCall 0.582 0.542 0.547 0.545 0.641 0.750
CON-ReCall 0.557 0.577 0.556 0.557 0.627 0.743
Ensemble 0.663 0.749 0.653 0.884 0.847 0.858

Average 0.591 0.607 0.593 0.639 0.672 0.745

Table 4: Evaluation of LoRA fine-tuning against multiple
MIAs. Performance is measured by TPR@1%FPR.

MIAs ArXiv HNews PubMed Pile CC Wiki GitHub

Loss 0.105 0.209 0.207 0.114 0.116 0.183
Zlib 0.109 0.309 0.313 0.222 0.223 0.645
Lowercase 0.116 0.214 0.209 0.215 0.119 0.156
Min-K% Prob 0.108 0.111 0.115 0.118 0.112 0.112
Min-K%++ 0.106 0.116 0.110 0.114 0.222 0.177
Ratio 0.190 0.161 0.235 0.317 0.337 0.270
Bag of words 0.013 0.019 0.013 0.016 0.016 0.141
ReCall 0.105 0.308 0.213 0.117 0.218 0.104
CON-ReCall 0.105 0.205 0.207 0.118 0.216 0.100
Ensemble 0.164 0.371 0.233 0.301 0.374 0.362

Average 0.112 0.202 0.186 0.165 0.195 0.225

the LLM-as-a-Judge framework, building on prior work [103].
Human evaluation remains the gold standard for assess-

ing the quality of fine-tuned large language models, however,
it is often time-consuming and resource-intensive. To ad-
dress this challenge, we follow prior work [103] implements
an automated evaluation approach that utilizes production
LLMs, such as GPT-4, as substitutes for human evaluators.
This method allows us to efficiently and scalably assess the
effectiveness of LLMs fine-tuned with SOFT. Our LLM-as-
a-Judge framework operates in two stages. First, it generates
questions based on the fine-tuning dataset. Then, it evaluates
the responses from the subject model and assigns a corre-
sponding score.
Template Question Generation. We begin by generating
100 evaluation questions using GPT-4o-mini [66], prompted
with the SUMMARIZE PROMPT (detailed prompts in [3]). These
questions are designed to assess three key aspects: (1) compre-
hension of the core technical contributions, (2) understanding
of the methodology or approach, and (3) reasoning about the
relationships between scientific concepts.
Qualitative Evaluation. We evaluate three models: (1) the
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Table 5: Comparison of SOFT and DP-LoRA across different noise scales. Defense effectiveness is evaluated by AUC-ROC
against MIAs, where lower values indicate stronger defense. Model utility is measured by perplexity, the lower the better.

Methods ε Loss Zlib Lowercase Min-K% Prob Min-K%++ Ratio Bag of words ReCall CON-ReCall Ensemble Perplexity

Pre-trained N/A 0.501±0.014 0.493±0.011 0.471±0.017 0.482±0.013 0.509±0.017 0.505±0.008 0.484±0.010 0.483±0.014 0.496±0.012 0.544±0.009 13.19

DP-LoRA

0.01 0.504±0.015 0.510±0.012 0.506±0.008 0.504±0.008 0.510±0.013 0.499±0.011 0.515±0.013 0.504±0.015 0.500±0.010 0.553±0.008 13.21
1 0.515±0.009 0.510±0.008 0.503±0.011 0.506±0.017 0.503±0.011 0.497±0.015 0.500±0.011 0.497±0.007 0.493±0.013 0.566±0.013 12.86
10 0.543±0.013 0.549±0.005 0.519±0.019 0.514±0.013 0.523±0.007 0.492±0.014 0.511±0.014 0.520±0.014 0.511±0.014 0.554±0.006 12.65
20 0.596±0.021 0.573±0.032 0.528±0.009 0.524±0.018 0.544±0.019 0.493±0.026 0.501±0.030 0.589±0.019 0.557±0.013 0.684±0.023 12.49
60 0.613±0.013 0.605±0.008 0.596±0.008 0.547±0.011 0.567±0.015 0.512±0.011 0.520±0.008 0.629±0.010 0.569±0.010 0.685±0.009 12.36

100 0.656±0.013 0.649±0.012 0.631±0.009 0.559±0.010 0.593±0.007 0.552±0.006 0.523±0.010 0.671±0.010 0.583±0.009 0.735±0.014 11.66

SOFT N/A 0.517±0.013 0.529±0.011 0.525±0.011 0.506±0.010 0.537±0.008 0.537±0.008 0.517±0.020 0.527±0.013 0.529±0.012 0.573±0.015 11.58

Table 6: Comparison of SOFT and DP-LoRA across different noise scales. Defense effectiveness is evaluated by TPR
@1%FPR, where lower values indicate stronger defense. Model utility is measured by perplexity, the lower the better.

Methods ε Loss Zlib Lowercase Min-K% Prob Min-K%++ Ratio Bag of words ReCall CON-ReCall Ensemble Perplexity

Pre-trained N/A 0.008±0.004 0.008±0.003 0.004±0.003 0.007±0.002 0.020±0.005 0.010±0.004 0.009±0.002 0.006±0.001 0.011±0.007 0.041±0.010 13.19

DP-LoRA

0.01 0.001±0.002 0.002±0.002 0.006±0.003 0.014±0.006 0.005±0.001 0.003±0.003 0.005±0.003 0.004±0.003 0.022±0.004 0.020±0.006 13.21
1 0.002±0.001 0.004±0.003 0.009±0.004 0.008±0.005 0.005±0.002 0.002±0.002 0.006±0.002 0.002±0.002 0.008±0.003 0.040±0.016 12.86
10 0.004±0.006 0.004±0.004 0.031±0.008 0.009±0.005 0.000±0.000 0.007±0.004 0.000±0.001 0.012±0.008 0.011±0.008 0.025±0.011 12.65
20 0.017±0.007 0.005±0.005 0.027±0.018 0.009±0.007 0.000±0.000 0.012±0.008 0.015±0.008 0.011±0.008 0.023±0.015 0.021±0.020 12.49
60 0.020±0.005 0.010±0.005 0.028±0.007 0.027±0.010 0.008±0.004 0.016±0.032 0.006±0.003 0.010±0.006 0.031±0.008 0.033±0.018 12.36

100 0.025±0.008 0.018±0.009 0.027±0.008 0.054±0.011 0.010±0.005 0.055±0.037 0.011±0.005 0.029±0.006 0.033±0.005 0.047±0.015 11.66

SOFT N/A 0.003±0.002 0.008±0.003 0.013±0.003 0.016±0.004 0.004±0.002 0.012±0.005 0.008±0.003 0.007±0.004 0.009±0.006 0.032±0.010 11.58
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Figure 8: Utility test using LLM-as-a-Judge.

pre-trained model, (2) the full fine-tuned model without any
defense applied, and (3) the fine-tuned model using SOFT.
Each model generates responses to the generated questions,
which are then scored using GPT-4o-mini via the SCORE
PROMPT (detailed prompts in [3]). This surrogate evaluation
assesses the models’ performance across three dimensions:
content coverage, domain understanding, and response qual-
ity. The scores are averaged across all questions to produce a
final evaluation score for each model.

Figure 8 presents the results, with the x-axis representing
different datasets and the y-axis showing the average judg-
ment score, the higher the better. Notably, SOFT achieves an
average score of approximately 0.66, which is only slightly
lower than the full fine-tuned model’s score of 0.68. This ex-
periment further validates that SOFT only introduces minimal
loss to the model’s utility.

5.4 Comparison with Defense Baselines

We compare the performance of SOFT with baseline methods
that utilize differential privacy (DP) [26]. DP typically intro-
duces noise to the inputs to prevent the model from overfitting
on fine-tuning samples, with the noise scale, ε, controlling
the strength of DP as defined in Equation 2.1. Evaluations
are conducted using the Llama-3.2-1B model and the ArXiv
dataset. We compare SOFT with DP-LoRA across different
ε values, evaluating defense performance using AUC-ROC
scores from various MIAs and perplexity scores to measure
model utility. As shown in Table 5 and Table 6, DP-LoRA
struggles to balance the trade-off between defense effective-
ness and utility, whereas SOFT consistently outperforms DP.
Specifically, DP-LoRA with more noise added (e.g. ε = 0.01)
increases the attack efficacy, as indicated by low AUC-ROC
scores and TPR, but severely compromises model utility, evi-
denced by high perplexity scores, approaching those of the
pre-trained model. Conversely, with a high ε (e.g., 20) helps
preserve utility to some extent but result in increased pri-
vacy leakage. In contrast, SOFT effectively maintains model
utility, demonstrated by low perplexity scores, while achiev-
ing robust privacy protection against MIAs, demonstrated by
low AUC-ROC and TPR@low%FPR scores. When ε at 100,
DP-LoRA achieves comparable utility to SOFT, however, its
privacy protection remains weaker. We also perform a com-
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putational overhead evaluation. SOFT incurs 15.73%, while
DP-LoRA (ε at 1.0) incur 67.03%. DP-LoRA need more time
to converge, while SOFT does not. These results highlight
that SOFT successfully balances the trade-off between utility
and defense effectiveness, surpassing DP-LoRA in balancing
privacy-utility trade-offs.

5.5 Adaptive Attack
In adaptive attack setting, attackers may modify their strate-
gies to bypass SOFT. To measure the resilience of SOFT we
evaluate three adaptive scenarios.

The first scenario is (1) Paraphrase & Selection, the adver-
sary knows both paraphrasing model and selection strategy
but not its hyperparameters such as temperature or sampling
strength. The attacker therefore adopts the same paraphraser
model, generates multiple variants of each candidate sam-
ple, and aggregates the corresponding membership scores to
approximate the original signal. (2) Paraphrase Only, the at-
tacker possesses full knowledge of the paraphrasing process,
including all parameter values, and directly mounts the attack
on the paraphrased data. They need independently perform the
paraphrasing, due to the generative model, the paraphrased
text may still vary. (3) Selection Only, the paraphraser is
disabled. The adversary ignores the paraphrased inputs and
attacks only the remaining original un-paraphrased sentences.

Our assessment is carried out on the arXiv dataset, the at-
tacker follows the same methodology of Section 4 used by the
SOFT defense algorithm, selecting influential samples and
paraphrase them. As demonstrated in Table 7, even when sub-
jected to the adaptive attack, SOFT’s performance remains
unaffected. We also provide the “No Defense (FT)”, which is
full fine-tuning model without defense under the Ensemble
attack, and “No Adaptive (w/ SOFT)”, which applies SOFT
under the Ensemble attack, for easier comparison. (1) In the
“Paraphrase & Selection” row, the attacker remains close to
random. (2) In the “Paraphrase Only” row, the attacker shows
similar performance with “Paraphrase & Selection” setting.
(3) In the “Selection Only” row, this strategy recovers a small
number of members with high confidence yet fails on the vast
majority, indicating that our data selection strategy is effec-
tive, the SOFT selected samples are more vulnerable whereas
the remaining ones are harder to exploit.

These results demonstrate the robustness of SOFT against
adaptive attacks. Distinct large language models produce para-
phrases with different styles and distributions that attackers
cannot easily reproduce. Furthermore, the dynamic ratio of
original and paraphrased data introduced by SOFT during
training cannot be neutralized by paraphrasing alone.

5.6 Ablation Study
In this section, we conduct three ablation studies to assess
the impact of SOFT’s design component, paraphrasers, and

Table 7: Adaptive attack across different settings.

Setting AUC-ROC TPR@1%FPR

No Defense (FT) 0.807 0.258

Paraphrase & Selection 0.595 0.149
Paraphrase Only 0.575 0.136
Selection Only 0.651 0.086

No Adaptive (w/ SOFT) 0.568 0.033
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Figure 9: Ablation study on data selection.

hyper-parameters. Specifically, we study the effect of open-
source paraphraser, comparing lexical with semantic, and low-
quality paraphraser, data selection, paraphrasing strength α

(introduced in Section 4), and the integration of SOFT with
LoRA.
Effect of Data Selection. SOFT employs a data selection
strategy to balance the trade-off between utility and defense
effectiveness. In this study, we investigate the impact of data
selection by comparing three approaches: “No Selection” (full
fine-tuning), “Full Selection” (paraphrasing the entire fine-
tuning dataset), and our proposed data selection SOFT. The
results are illustrated in Figure 9. We utilize Llama-3.2-3B as
the default model and conduct experiments on the ArXiv and
PubMed datasets. In both figures, the x-axis represents the
design choices, while the left y-axis displays attack efficacy
(TPR@1% FPR), corresponds to the box plot. The right y-axis
shows the perplexity score on the validation set which indi-
cating model utility, corresponds to the blue lines. We report
the mean score (data point) along with the standard deviation
(error bars). As observed in Figure 9, the model without data
selection (full fine-tuning) exhibits high TPR@low%FPR and
low perplexity compared to the pre-trained model, indicating
enhanced utility but increased vulnerability to MIAs. Para-
phrasing the entire fine-tuning set (indicated by “Select All”)
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Figure 10: Ablation study on paraphrasing strength α.

Table 8: Ablation Study on Paraphrasers. T@F denotes
TPR@1%FPR.

MIAs
BART Lexical Seq2Seq

AUC T@F AUC T@F AUC T@F

Loss 0.571 0.137 0.577 0.140 0.616 0.222
Zlib 0.574 0.136 0.576 0.143 0.616 0.220
Lowercase 0.546 0.122 0.552 0.120 0.619 0.155
Min-K%-Prob 0.529 0.093 0.525 0.085 0.542 0.114
Min-K%++ 0.561 0.085 0.566 0.088 0.595 0.119
Ratio 0.563 0.145 0.555 0.147 0.597 0.213
Bag-of-words 0.504 0.010 0.508 0.010 0.508 0.010
ReCall 0.564 0.141 0.566 0.136 0.609 0.212
CON-ReCall 0.514 0.036 0.544 0.051 0.558 0.066
Ensemble 0.555 0.129 0.589 0.095 0.628 0.206

reduces the TPR@low%FPR to nearly 0. However, this ap-
proach also degrades utility by increasing the perplexity score.
In contrast, SOFT’s data selection method reduces the utility
loss while achieving comparable levels of privacy protection
to full paraphrasing, highlighting the effectiveness of data
selection in SOFT.
Effect of Paraphrasers. We conduct the three paraphrasing
ablation studies on arXiv dataset as an example: (1) sub-
stituting with open-source model (BART). Other than our
evaluation with ChatGPT and Claude in Section 5.2. Here,
we include results with BART [52] in Table 8, which offers
comparable privacy protection with slightly reduced utility.
(2) Comparing lexical paraphrasing with semantic paraphras-
ing. We applied semantic paraphrasing in Section 5.2. Here,
we include lexical paraphrasing [33, 67] in Table 8, which
SOFT can still mitigate membership inference risks with a
slight utility drop. (3) Evaluating a lower-quality paraphraser.
We evaluate using a small seq2seq model [28, 79] for lower-
quality paraphrasing in Table 8. We observe that SOFT still
reduces membership inference risks, with a modest utility
trade-off.
Effect of Paraphrasing Strength α. SOFT obfuscates influ-
ential data points through proportional paraphrasing, where α

denotes the ratio of original text retained. In this experiment,
we examine the impact of varying the paraphrasing strength
parameter, α, by evaluating defense performance at α values
of 0.2, 0.5 (default), and 0.8. We use Llama-3.2-3B as the
pre-trained model and fine-tune for 3 epochs by default, and
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Figure 11: Ablation study on applying LoRA to SOFT.

use the ArXiv dataset for these experiments. The results are
depicted in Figure 10, where the x-axis represents different α

values, the left y-axis shows attack efficacy (TPR@1% FPR),
and the right y-axis indicates perplexity scores as a measure
of model utility. The outcomes are presented as box plots,
displaying the mean and standard deviation. The outcomes
are presented as box plots showing the mean and standard
deviation. As observed in Figure 10, larger α values result
in improved utility, as indicated by lower perplexity scores
(blue lines), but also increase privacy leakage, as reflected
by higher TPR@low%FPR scores (black boxes). The differ-
ences in performance metrics across α values are relatively
small. Based on these results, we empirically set α = 0.5 as
the default value for SOFT.
Effect of Applying LoRA in SOFT. Section 3 demonstrates
that vanilla LoRA reduces privacy leakage. In this experi-
ment, we evaluate the performance of applying SOFT in
the context of LoRA fine-tuning. The results are presented
in Figure 11. The experiment set Llama-3.2-3B as the pre-
trained model, and fine-tune via LoRA, and set the ArXiv
as dataset. We investigate the effect of different LoRA rank
values, specifically r as defined in Section 2. Defense perfor-
mance is measured using the attack AUC-ROC score, while
model utility is assessed using perplexity. Notably, greater
rank reduction (e.g., r = 8) tends to increase perplexity. As
expected, as lower ranks typically sacrifices some utility, as re-
ported in the literature [75]. However, LoRA further enhances
privacy protection, as indicated by the reduced AUC-ROC
scores. This finding aligns with the results from our study
on LoRA in Section 3 finding 2. Therefore, SOFT can be
seamlessly integrated with LoRA.

6 Related Work

LLMs Fine-tuning. Researchers fine-tune pre-trained large
language models (LLMs) with smaller, task-specific datasets.
To overcome these computational limitations, more efficient
fine-tuning methods have been developed, including Low-
Rank Adaptation (LoRA) [43,80,93], adapter [42,44], prefix-
tuning [53, 101], and prompt-tuning [51, 85]. Among these
approaches, LoRA has emerged as a widely adopted method
due to its efficiency and effectiveness [11, 88, 102]. In this
paper, we evaluate full fine-tune and LoRA as a representative
efficient fine-tuning method.
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LLMs Security. LLMs can memorize data [15, 38, 39, 64,
77, 96], enabling data extraction attacks to reveal memorized
samples [16, 19, 95, 99]. These security and privacy vulnera-
bilities [40, 71, 72, 90, 91] are further amplified when LLM-
driven autonomous agents [70] are deployed at scale [100].
To address these risks, various defenses have been proposed,
including differential privacy [4, 9, 26, 27, 54, 94], prompt
tuning [22], unlearning [83,86], and scrubbing [68], etc. How-
ever, these defenses often come at the cost of reduced model
utility. Building on a systematic analysis, we propose a novel
defense method that balances robust privacy protection with
high model utility.

7 Conclusion

We introduce SOFT, a novel defense mechanism designed
to protect the fine-tuning of large language models against
membership inference attacks. Our approach is grounded in
the observation that existing MIAs primarily rely on loss or its
variants. To mitigate these attacks, SOFT selectively replaces
influential samples, i.e., those are easily memorized and ex-
hibit lower loss values, with their obfuscated counterparts.
Our experimental results demonstrate that SOFT effectively
balances model utility and privacy protection. Specifically, it
reduces the attack success rate to near-random guessing while
incurring minimal loss in model utility.
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This paper introduces SOFT (Selective data Obfuscation in
LLM Fine-Tuning), a novel defense mechanism aimed at
mitigating privacy risks in fine-tuned large language models.
Our work highlights the vulnerabilities of fine-tuned LLMs
to membership inference attacks and proposes a practical so-
lution to enhance privacy protection while preserving model
utility. To minimize ethical risks, we used only publicly avail-
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of this research include individuals whose sensitive data may
be used in fine-tuning, researchers and practitioners in the AI
and privacy domains, and organizations deploying fine-tuned
LLMs in real-world applications.
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ing membership inference attacks and defenses by using
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the validity of our evaluations. To promote transparency
and encourage further research on membership inference
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