
ar
X

iv
:2

50
6.

10
33

8v
1

 [
cs

.C
R

]
 1

2
Ju

n
20

25

Adaptive Chosen-Ciphertext Security of
Distributed Broadcast Encryption

Kwangsu Lee*

Abstract

Distributed broadcast encryption (DBE) is a specific kind of broadcast encryption (BE) where users
independently generate their own public and private keys, and a sender can efficiently create a ciphertext
for a subset of users by using the public keys of the subset users. Previously proposed DBE schemes have
been proven in the adaptive chosen-plaintext attack (CPA) security model and have the disadvantage of
requiring linear number of pairing operations when verifying the public key of a user. In this paper, we
propose an efficient DBE scheme in bilinear groups and prove adaptive chosen-ciphertext attack (CCA)
security for the first time. To do this, we first propose a semi-static CCA secure DBE scheme and prove
the security under the q-Type assumption. Then, by modifying the generic transformation of Gentry and
Waters that converts a semi-static CPA secure DBE scheme into an adaptive CPA secure DBE scheme
to be applied to CCA secure DBE schemes, we propose an adaptive CCA secure DBE scheme and
prove its adaptive CCA security. Our proposed DBE scheme is efficient because it requires constant
size ciphertexts, constant size private keys, and linear size public keys, and the public key verification
requires only a constant number of pairing operations and efficient group membership checks.

Keywords: Distributed broadcast encryption, Chosen-ciphertext security, Adaptive security, Bilinear maps.

*Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.

1

https://arxiv.org/abs/2506.10338v1

1 Introduction

Broadcast encryption (BE) is an encryption method that efficiently transmits an encrypted message to a
subset of users, and the concept of BE was first introduced by Fiat and Naor [19]. In a general public-key
BE scheme, the private keys of users are generated by a trusted central authority and transmitted securely to
users. Afterwards, a sender creates a ciphertext for the subset of recipients by using the public parameters,
and a recipient can decrypt the ciphertext with his or her private key if his or her index is included in the
subset. By combining the ciphertexts of public-key encryption (PKE), it is possible to design a trivial BE
scheme with a ciphertext size that increases linearly with the size of the recipient subset. Thus, an efficient
BE scheme requires that the ciphertext has a sub-linear size. The most efficient public-key BE scheme is
the BGW-BE scheme designed by Boneh et al. [7] in bilinear groups with constant size ciphertexts and
constant size private keys, which provides static security under the q-Type assumption. Since then, various
BE schemes have been proposed in bilinear groups, multilinear maps, indistinguishability obfuscation, and
lattices [3, 9, 10, 17, 21, 22, 29, 30].

Traditional PKE schemes do not require a trusted center for private key generation because individual
users independently generate public and private keys. Since BE schemes require a trusted center to generate
user private keys, the trust model of BE must be stronger than that of PKE. This makes it difficult to widely
apply BE schemes to large-scale real-world applications where only the weak trust model is applied. Re-
cently, the concept of distributed broadcast encryption (DBE) has been proposed [10, 31], which does not
require a trusted center for user private key generation. In DBE schemes, individual users generate their own
public and private keys and store the public keys in a public repository. Then, a sender creates a ciphertext
using the public keys for a subset of receivers, and a receiver can decrypt the ciphertext if he or she belongs
to the subset of receivers in the ciphertext. Recently, Kolonelos et al. proposed efficient DBE schemes by
decentralizing the private key generation of efficient BE schemes in bilinear groups and proved the adaptive
CPA security of their DBE schemes [24].

The standard security model for PKE is the CCA security model, which allows an attacker to request
ciphertext decryption queries [27]. The right security model for DBE schemes is also the adaptive CCA
security model, which allows an attacker to submit a challenge target set in the challenge phase and request
ciphertext decryption queries. Previously proposed DBE schemes have considered adaptive CPA security,
but not adaptive CCA security. In this paper, we examine the problem of designing a DBE scheme that
provides adaptive CCA security.

1.1 Our Contributions

To design an adaptive CCA secure DBE scheme, we first propose a semi-static CCA secure DBE scheme.
A semi-static CCA security model is a restricted model in which an attacker initially commits an initial
set S̃ and submits a challenge target set S∗ ⊆ S̃ in the challenge phase, allowing the attacker to request key
generation and decryption queries. To construct our DBESS scheme, we start from the KMW-DBE1 scheme
of Kolonelos et al. [24] that is derived from the BGW-BE scheme of Boneh et al. [7] that provides CPA
security. In this case, we directly use a ciphertext element to provide ciphertext integrity instead of using
a signature scheme to improve efficiency, and we modify the decryption process to derive a randomized
private key like the private key of IBE. In addition, we apply a batch verification method to check public key
elements of the user’s public key. Since a simple batch verification method does not work, we change one
group element in a ciphertext from G1 to G2 and set most of the public key elements to be group elements
in G1. Our proposed DBESS scheme has constant size ciphertexts, constant size private keys, linear size
public keys, and linear size public parameters. The public key verification of our scheme is very efficient

2

Table 1: Comparison of DBE schemes in bilinear groups

Scheme Type PP USK UPK CT Model Assumption

WQZD [31] DBE O(L) O(L) O(L2) O(1) AD-CPA q-Type

KMW [24] DBE O(L) O(1) O(L) O(1) AD-CPA q-Type

KMW [24] DBE O(L2) O(1) O(L) O(1) AD-CPA k-LIN

Lee [25] DBE O(L) O(1) O(L) O(1) AD-CPA SD, GSD

Ours DBE O(L) O(1) O(L) O(1) AD-CCA q-Type

Let L be the number of all users. We count the number of group elements to measure the size. We use symbols
AD-CPA for adaptive CPA security and AD-CCA for adaptive CCA security.

since it only requires two pairing operations and efficient group membership check operations. We prove
the semi-static CCA security of our DBESS scheme under the q-Type assumption and the collision resistance
of hash functions.

Next, we design an adaptive CCA secure DBEAD scheme by combining the semi-static CCA secure
DBESS scheme designed above, a strongly unforgeable one-time signature (OTS) scheme, and the GW
transformation of Gentry and Waters [22], and prove adaptive CCA security through the hybrid games. In
an adaptive CCA security model, an attacker can request key generation, key corruption, and decryption
queries, and the attacker submits a challenge target set S∗ in the challenge phase and obtains the correspond-
ing challenge ciphertext header and challenge session key. The attacker wins this game if he or she can
distinguish whether the challenge session key is correct or random. The GW transformation is a method
that converts a semi-static CPA secure DBE scheme into an adaptive CPA secure DBE scheme by doubling
the ciphertext size. We modify the existing GW transformation to combine a semi-static CCA secure DBE
scheme and a strongly unforgeable OTS scheme for CCA security as well. Our proposed DBEAD scheme
is the first DBE scheme that provides adaptive CCA security, and it also naturally satisfies active-adaptive
CCA security in which an attacker registers malicious public keys. The comparison of our DBE scheme
with the previous DBE schemes is given in Table 1.

1.2 Related Work

Chosen-Ciphertext Security. The right definition of CCA security in PKE was given by Rackoff and
Simon and they showed that a CCA secure PKE scheme can be constructed by combining a CPA secure
PKE scheme with a non-interactive zero-knowledge proof (NIZK) system [27]. Cramer and Shoup proposed
an efficient CCA secure PKE scheme by using a hash proof system (HPS), which is a special form of zero-
knowledge proof [15, 16]. Canetti et al. presented a transformation method that converts a CPA secure IBE
scheme to a CCA secure PKE scheme by using an one-time signature (OTS) scheme for ciphertext integrity
[13]. After that, Boneh and Katz showed that a more efficient CCA secure PKE scheme can be built by using
a message authentication code (MAC) scheme instead of the OTS scheme in the CHK transformation [6].
Boyen et al. modified the CHK transformation method and showed that an efficient CCA secure KEM
without additional OTS and MAC schemes can be built by using the IBE scheme directly [11]. Dodis
and Katz proposed a method to ensure CCA security when a ciphertext consists of multiple independent
ciphertexts [18].

3

Broadcast Encryption. The concept of BE was first introduced by Fiat and Naor and they proposed a BE
scheme by using combinatorial methods [19]. Naor et al. proposed BE schemes that are secure against
collusion attacks without maintaining state information by using binary trees [26]. Boneh et al. proposed
the first efficient BE scheme with constant size ciphertexts in bilinear groups and proved static CPA security
under the q-Type assumption [7]. In addition, they proposed a CCA secure BE scheme by combining the IBE
private key generation method with an OTS scheme. Abdalla et al. proposed a method to design a BE scheme
with constant size ciphertexts by extending the private key delegation function of the hierarchical identity-
based encryption (HIBE) scheme with constant size ciphertexts [1]. Most of the existing BE schemes are
proven in the static model that specifies the challenge target set in advance, but the right security model
is the adaptive model that specifies the challenge target set in the challenge phase. Gentry and Waters
presented an efficient transformation to design an adaptive CPA secure BE scheme by doubling the ciphertext
size of a semi-static CPA secure BE scheme [22]. Recently, methods for designing efficient BE schemes
with optimal parameters and ciphertext sizes using attribute-based encryption (ABE) schemes have been
proposed [2, 3, 30].

Distributed Broadcast Encryption. Wu et al. introduced the concept of ad-hoc broadcast encryption
(AHBE) in which individual users independently generate private and public keys, and then proposed an
AHBE scheme with constant size ciphertexts and linear size private keys in bilinear groups [31]. Boneh and
Zhandry defined the concept of DBE and showed that a DBE scheme can be designed using indistinguishable
obfuscation [10]. DBE schemes require user indexes when generating private keys of users, but flexible
broadcast encryption (FBE) schemes do not require user indexes for key generation. Garg et al. proposed
a general method to convert a DBE scheme into an FBE scheme by increasing the size of users’ public
keys [20]. Kolonelos et al. proposed efficient DBE schemes with constant size ciphertexts and constant size
private keys in bilinear groups and proved adaptive CPA security [24]. Champion and Wu designed the first
DBE scheme in lattices and proved the static CPA security [14].

2 Preliminaries

In this section, we review bilinear groups with complexity assumptions, symmetric-key encryption, and
strongly unforgeable one-time signatures.

2.1 Bilinear Groups and Complexity Assumptions

A bilinear group generator G takes as input a security parameter λ and outputs a tuple (p,G,Ĝ,GT ,e) where
p is a random prime and G,Ĝ, and GT be three cyclic groups of prime order p. Let g and ĝ be generators of
G and Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

Assumption 1 (Bilinear Diffie-Hellman Exponent, BDHE [7]). Let (p,G,Ĝ,GT ,e) be an asymmetric bi-
linear group generated by G(1λ). Let g, ĝ be random generators of G,Ĝ respectively. The ℓ-bilinear Diffie-

4

Hellman exponent (ℓ-BDHE) assumption is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g,ga, . . . ,gaℓ ,gc, ĝ, ĝa, . . . , ĝaℓ , ĝaℓ+2

, . . . , ĝa2ℓ)
and Z

are given, no PPT algorithm A can distinguish Z = Z0 = e(g, ĝ)aℓ+1c from Z = Z1 = e(g, ĝ)d with more than a
negligible advantage. The advantage of A is defined as AdvBDHE

A (λ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,c,d ∈ Zp.

2.2 Symmetric Key Encryption

Symmetric key encryption (SKE) is a cryptographic technique that uses the same symmetric key for en-
cryption and decryption algorithms. The traditional security model for SKE is the indistinguishability under
chosen-plaintext attack (IND-CPA) model, but we define the one-message indistinguishability (OMI) model
that considers a single challenge ciphertext. If an SKE scheme is IND-CPA secure, then it is also OMI
secure.

Definition 2.1 (Symmetric Key Encryption). A symmetric key encryption (SKE) scheme consists of three
algorithms GenKey,Encrypt, and Decrypt, which are defined as follows:

GenKey(1λ): The key generation algorithm takes as input a security parameter λ . It outputs a symmetric
key K.

Encrypt(K,M): The encryption algorithm takes as input a symmetric key K and a message M. It outputs
a ciphertext C.

Decrypt(K,C): The decryption algorithm takes as input a symmetric key K and a ciphertext C. It outputs
a message M or a special symbol ⊥.

The correctness property of SKE is defined as follows: For all K generated by GenKey(1λ) and any message
M, it is required that Decrypt(K,Encrypt(K,M)) = M.

Definition 2.2 (One-Message Indistinguishability). The one-message indistinguishability (OMI) of SKE is
defined in terms of the following experiment between a challenger C and a PPT adversary A where 1λ is
given as input:

1. Setup: C obtains a symmetric key K by running GenKey(1λ) and keeps K to itself.

2. Challenge: A submits challenge messages M∗
0 ,M

∗
1 where |M∗

0 | = |M∗
1 |. C flips a random coin µ ∈

{0,1} and obtains CT ∗ by running Encrypt(K,M∗
µ). It gives CT ∗ to A.

3. Guess: A outputs a guess µ ′ ∈ {0,1}. C outputs 1 if µ = µ ′ or 0 otherwise.

The advantage of A is defined as AdvOMI
SKE,A(λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An SKE scheme is OMI secure if for all probabilistic polynomial-time
(PPT) adversary A, the advantage of A is negligible in the security parameter λ .

5

2.3 One-Time Signature

One-time signature (OTS) is a special kind of public-key signature (PKS) that allows an attacker to obtain at
most one signature. The security model of OTS is strong unforgeability, which allows an attacker to obtain
at most one signature from a signing oracle, and the message queried to the signing oracle is also allowed
to be a forged message if the forged signature by the attacker is different from a signature received from the
signing oracle.

Definition 2.3 (One-Time Signature). A one-time signature (OTS) scheme consists of three algorithms
GenKey,Sign, and Verify, which are defined as follows:

GenKey(1λ): The key generation algorithm takes as input a security parameter λ . It outputs a signing key
SK and a verification key V K.

Sign(SK,M): The signing algorithm takes as input a signing key SK and a message M. It outputs a
signature σ .

Verify(V K,σ ,M): The verification algorithm takes as input a verification key V K, signature σ , and a
message M. It outputs 1 if the signature is valid and 0 otherwise.

The correctness property of OTS is defined as follows: For all (SK,V K) generated by GenKey(1λ) and any
message M, it is required that Verify(V K,Sign(SK,M),M) = 1.

Definition 2.4 (Strong Unforgeability). The strong unforgeability (SUF) of OTS is defined in terms of the
following experiment between a challenger C and a PPT adversary A where 1λ is given as input:

1. Setup: C first generates a key pair (SK,V K) by running GenKey(1λ) and gives V K to A.

2. Signature Query: A requests at most one signature query on a message M. C generates a signature
σ by running Sign(SK,M) and gives σ to A.

3. Output: Finally, A outputs a forged pair (σ∗,M∗). C outputs 1 if the forged pair satisfies the following
conditions, or outputs 0 otherwise: 1) Verify(V K,σ∗,M∗) = 1, 2) (σ∗,M∗) ̸= (σ ,M) where (σ ,M)
is the pair of the signature query.

The advantage of A is defined as AdvSUF
OT S,A(λ) = Pr[C = 1] where the probability is taken over all the

randomness of the experiment. An OTS scheme is SUF secure if for all probabilistic polynomial-time
(PPT) adversary A, the advantage of A is negligible in the security parameter λ .

Efficient PKS schemes that provide strong unforgeability in bilinear groups include the BLS-PKS scheme
of Boneh et al. [8] in the random oracle model and the BB-PKS scheme of Boneh and Boyen [4] without
the random oracle model.

3 Distributed Broadcast Encryption

In this section, we define the syntax of DBE and the security model of DBE.

6

3.1 Definition

In a DBE scheme, a trusted center runs the setup algorithm to generate public parameters. Each user gen-
erates his or her own private key and public key by running the key generation algorithm and discloses the
public key to a public directory. A sender runs the encryption algorithm to create a ciphertext header and
a session key using a subset of recipients and their public keys. After that, a receiver can derive the same
session key by running the decryption algorithm using the recipients’ public keys and its own private key If
the index of a receiver is included in the subset of the ciphertext header. A more detailed syntax of a DBE
scheme is given as follows:

Definition 3.1 (Distributed Broadcast Encryption). A distributed broadcast encryption (DBE) scheme con-
sists of five algorithms Setup,GenKey,IsValid,Encaps, and Decaps, which are defined as follows:

Setup(1λ ,1L): This algorithm takes as input a security parameter 1λ , and the number users L. It outputs
public parameters PP.

GenKey(i,PP): This algorithm takes as input a user index i ∈ [L] and public parameters PP. It outputs a
private key USKi and a public key UPKi.

IsValid(j,UPK j,PP): This algorithm takes as input an index j, a public key UPK j, and the public param-
eters PP. It outputs 1 or 0 depending on the validity of keys.

Encaps(S,{(j,UPK j)} j∈S,PP,AU): This algorithm takes as input a set S⊆ [L], public keys {(j,UPK j)} j∈S,
public parameters PP, and an optional auxiliary input AU . It outputs a ciphertext header CH and a
session key CK.

Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU): This algorithm takes as input a set S, a ciphertext header
CH, an index i, a private key USKi for the index i, public keys {(j,UPK j)} j∈S, public parameters PP,
and an optional auxiliary input AU . It outputs a session key CK.

The correctness of DBE is defined as follows: For all PP generated by Setup(1λ ,1L), all (USKi,UPKi)
generated by GenKey(i,PP), all UPK j such that IsValid(j,UPK j,PP), all S ⊆ [L], it is required that

• If i ∈ S, then CK =CK′ where (CH,CK) = Encaps(S,{(j,UPK j)} j∈S,PP,AU) and CK′ = Decaps(S,
CH, i,USKi,{(j,UPK j)} j∈S,PP,AU).

Remark 1. We modify the syntax of DBE to accept an auxiliary input AU to the encryption and decryption
algorithms. This AU field is optional and served as a label.

3.2 Security Model

The semi-static CPA security of BE was defined by Gentry and Waters [22]. We extend the existing semi-
static CPA security model to the semi-static CCA security model by adding a decryption oracle. In the
semi-static CCA security model, an attacker first submits an initial set S̃, and a challenger generates public
parameters by running the setup algorithm. In the query phase, the attacker can request key generation and
decryption queries with some constrains, and the challenger processes these queries by executing the key
generation algorithm or the decryption algorithm. In the challenge phase, the attacker submits a set S∗ ⊆ S̃,
the challenger obtains a ciphertext header CH∗ and a session key CK∗ using the encryption algorithm, and
it sets CK∗

0 = CK∗ and CK∗
1 with random. After that, the challenger flips a random coin µ and sends

7

the challenge CH∗,CK∗
µ to the attacker. Afterwards, the attacker can additionally request decryption queries

except the challenge ciphertext header. Finally, the attacker wins this game if it correctly guesses the random
coin of the challenger. The detailed definition of the security model is given as follows:

Definition 3.2 (Semi-Static CCA Security). The semi-static CCA (SS-CCA) security of DBE is defined in
terms of the following experiment between a challenger C and a PPT adversary A where 1λ and 1L are given
as input:

1. Init: A initially commits an initial set S̃ ⊆ [L].

2. Setup: C obtains public parameters PP by running Setup(1λ ,1L) and gives PP to A.

3. Query Phase 1: A adaptively requests key generation and decryption queries. These queries are
processed as follows:

• Key Generation: For all j ∈ S̃, C generates (USK j,UPK j) by running GenKey(j,PP) and gives
{(j,UPK j)} j∈S̃ to A.

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ S̃ and i ∈ S. C responds with
Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU).

4. Challenge: A submits a challenge set S∗ ⊆ S̃. C obtains a ciphertext tuple (CH∗,CK∗) by running
Encaps(S∗,{(j,UPK j)} j∈S∗ ,PP,−). It sets CK∗

0 =CK∗ and CK∗
1 = RK by selecting a random RK. It

flips a random coin µ ∈ {0,1} and gives (CH∗,CK∗
µ) to A.

5. Query Phase 2: A continues to request decryption queries. These queries are processed as follows:

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ S̃, i ∈ S, and CH ̸= CH∗. C
responds with Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU).

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvSS-CCA
DBE,A(λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. A DBE scheme is SS-CCA secure if for all probabilistic polynomial-time
(PPT) adversary A, the advantage of A is negligible in the security parameter λ .

Adaptive CPA security of DBE is a relaxed security model in which an attacker can freely specify a
challenge set S∗ in the challenge phase. We define the adaptive CCA security model by adding a decryption
oracle to the adaptive CPA security model. In the adaptive CCA security model, unlike the semi-static
CCA model defined above, the attacker does not initially submit an initial set S̃. In the query phase, the
challenger manages a key generation query set KQ, a key corruption query set CQ, and a decryption query
set DQ for the queries requested by the attacker. In the challenge phase, the attacker submits a challenge
set S∗ ⊆ KQ \CQ, and the challenge ciphertext header and the session key are transmitted to the attacker.
After that, the attacker additionally requests decryption queries and wins the game if it can correctly guess
the coin selected by the challenger. The detailed definition of the security model is given as follows:

Definition 3.3 (Adaptive CCA Security). The adaptive CCA (AD-CCA) security of DBE is defined in terms
of the following experiment between a challenger C and a PPT adversary A where 1λ and 1L are given as
input:

1. Setup: C obtains public parameters PP by running Setup(1λ ,1L) and gives PP to A. It prepares
KQ,CQ, and DQ as empty set.

8

2. Query Phase 1: A adaptively requests key generation, key corruption, and decryption queries. These
queries are processed as follows:

• Key Generation: A issues this query on an index i∈ [L] such that i ̸∈KQ. C creates (USKi,UPKi)
by running GenKey(i,PP), adds i to KQ, and responds UPKi to A.

• Key Corruption: A issues this query on an index i ∈ [L] such that i ∈ KQ\ (CQ∪DQ). C adds i
to CQ and responds USKi to A.

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ KQ \CQ and i ∈ S. C obtains
CK by running Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU), adds i to DQ, and responds CK
to A.

3. Challenge: A submits a challenge set S∗ ⊆ KQ \CQ. C obtains a ciphertext tuple (CH∗,CK∗) by
running Encaps(S∗,{(j,UPK j)} j∈S∗ ,PP,−). It sets CK∗

0 =CK∗ and CK∗
1 =RK by selecting a random

RK. It flips a random coin µ ∈ {0,1} and gives (CH∗,CK∗
µ) to A.

4. Query Phase 2: A continues to request decryption queries. These queries are processed as follows:

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ KQ\CQ, i ∈ S, and CH ̸=CH∗.
C obtains CK by running Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU), adds i to DQ, and
responds CK to A.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvAD-CCA
DBE,A (λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. A DBE scheme is AD-CCA secure if for all probabilistic polynomial-
time (PPT) adversary A, the advantage of A is negligible in the security parameter λ .

The active-adaptive CCA security model is the extension of the adaptive CCA security model that allows
an attacker to register malicious public keys [24]. In the active-adaptive security model, the index belonging
to the set of maliciously registered public keys is not included in the challenge set, so it is generally known
that an adaptive CPA secure DBE scheme also satisfies active-adaptive CPA security. For the same reason,
the adaptive CCA secure DBE scheme is also active-adaptive CCA secure.

Definition 3.4 (Active-Adaptive CCA Security). The active-adaptive CCA (AA-CCA) security of DBE is
defined in terms of the following experiment between a challenger C and a PPT adversary A where 1λ and
1L are given as input:

1. Setup: C obtains public parameters PP by running Setup(1λ ,1L) and gives PP to A. It prepares
KQ,CQ,MQ, and DQ as empty set.

2. Query Phase 1: A adaptively requests key generation, key corruption, malicious corruption, and
decryption queries. These queries are processed as follows:

• Key Generation: A issues this query on an index i ∈ [L] such that i ̸∈ KQ∧ i ̸∈ MQ. C creates
(USKi,UPKi) by running GenKey(i,PP), adds i to KQ, and responds UPKi to A.

• Key Corruption: A issues this query on an index i ∈ [L] such that i ∈ KQ∧ i ̸∈CQ. C adds i to
CQ and responds with USKi to A.

• Malicious Corruption: A issues this query on an index i ∈ [L] such that i ̸∈ KQ∧ i ̸∈ MQ. C adds
i to MQ and stores UPKi.

9

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ KQ \ (CQ∪MQ) and i ∈ S. C
responds with Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU).

3. Challenge: A submits a challenge set S∗ ⊆ KQ\(CQ∪MQ). C obtains a ciphertext tuple (CH∗,CK∗)
by running Encaps(S∗,{(j,UPK j)} j∈S∗ ,PP,−). It sets CK∗

0 = CK∗ and CK∗
1 = RK by selecting a

random RK. It flips a random coin µ ∈ {0,1} and gives (CH∗,CK∗
µ) to A.

4. Query Phase 2: A continues to request decryption queries. These queries are processed as follows:

• Decryption: A issues this query on (S,CH, i,AU) such that S ⊆ KQ \ (CQ∪MQ), i ∈ S, and
CH ̸=CH∗. C responds with Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU).

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvAA-CCA
DBE,A (λ)=

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the experiment. A DBE scheme is AA-CCA secure if for all probabilistic polynomial-time
(PPT) adversary A, the advantage of A is negligible in the security parameter λ .

Lemma 3.1 ([24]). Let ΠAD be an adaptively secure DBE scheme. Then ΠAD is also active-adaptively
secure.

4 DBE Construction

In this section, we propose CCA secure efficient DBE schemes in bilinear groups.

4.1 SS-CCA Construction

We first construct a semi-static CCA-secure DBE scheme. To design this DBE scheme, we start from
the KMW-DBE1 scheme of Kolonelos et al. [24], which is a DBE scheme modified from the BGW-BE
scheme of Boneh et al. [7]. The KMW-DBE1 scheme provides CPA security with constant-size ciphertexts,
constant-size private keys, linear-size public keys, and linear-size public parameters. One way to design a
CCA-secure DBE scheme is to use the OTS scheme to provide ciphertext integrity and bind the OTS public
key to the ciphertext. However, this method has a disadvantage in that the ciphertext size increases because
the OTS public key and OTS signature are included in the ciphertext. To reduce the ciphertext size of the
DBE scheme, we apply the BMW technique of Boyen et al. [11], which provides ciphertext integrity by
directly using the element included in the ciphertext header. However, the BMW technique is not simply
applied to the DBE scheme that supports the distributed private key generation. To solve this problem, we
modify the BMW technique to provide CCA even for DBE schemes where individual users have public keys
by adding additional public parameters.

In addition, the existing KMW-DBE1 scheme has a disadvantage that it requires L pairing operations to
check whether the user public key is correct where L is the maximum number of users. One way to improve
the user public key verification is to use a batch verification method [12]. However, it is difficult to apply
efficient batch verification because the group membership check in G2 is inefficient when the public key
contains many G2 group elements. To solve this problem, we change the ciphertext structure so that the
ciphertext consists of G2 and G1 group elements instead of G1 group elements. Because of this change, we
can set most of the user public key elements to be G1 group elements. In this case, public key verification
using batch verification is very efficient because two pairing operations are needed for batch verification and

10

the group membership check in G1 is very efficient. The detailed description of our DBE scheme for the
semi-static CCA security is as follows:

DBESS.Setup(1λ ,1L): Let λ be a security parameter and L be the maximum number of users. It first
generates asymmetric bilinear groups G,Ĝ,GT of prime order p with random generators g, ĝ of G,Ĝ
respectively. It selects a random exponent α ∈ Zp and sets {Ak = gαk}2L+2

k=1 , {Âk = ĝαk}L+1
k=1 . It also

selects a random exponent β ∈ Zp and sets B = gβ ,{Bk = Aβ

k }2≤k≤L+1. Next, it chooses two hash
functions H1 and H2 such that H1 : Ĝ→ Zp and H2 : GT →{0,1}λ . It outputs public parameters

PP =
(
(p,G,Ĝ,GT ,e), g, ĝ,

{
Ak
}

1≤k ̸=L+2≤2L+2,
{

Âk}1≤k≤L+1, B,
{

Bk
}

2≤k≤L+1,

Ω = e(AL+2, ĝ), H1, H2

)
.

DBESS.GenKey(i,PP): Let i ∈ [L]. It selects a random exponent γi ∈ Zp and builds a private key USKi and
a public key UPKi as

USKi =
(

Ki = Aγi
L+2−i

)
, UPKi =

(
Vi = gγi , V̂i = ĝγi ,

{
Vi,k = Aγi

k

}
2≤k ̸=L+2−i≤L+1

)
.

DBESS.IsValid(j,UPK j,PP): Let UPK j = (Vj,V̂j,{Vj,k}). It first checks that UPK j = (Vj,V̂j,{Vj,k}) ∈
G× Ĝ×G2L. It chooses small random exponents δ0,{δk}2L+1

k=2 where δ0,δk are elements of ℓb bit
from Zp and checks that

e
(

V δ0
j ∏

2≤k ̸=L+2− j≤2L+2
V δk

j,k, ĝ
)

?
= e

(
gδ0 ∏

2≤k ̸=L+2− j≤2L+2
Aδk

k ,V̂j

)
.

If the equation holds, then it outputs 1. Otherwise, it outputs 0.

DBESS.Encaps(S,{(j,UPK j)} j∈S,PP,AU): Let UPK j = (Vj,V̂j,{Vj,k}). It selects a random exponent t ∈
Zp and computes a tag ω = H1(ĝt∥AU). It outputs a ciphertext header

CH =
(

Ĉ1 = ĝt , C2 =
(
Aω

L+1B∏
j∈S

A jVj
)t
)

and a session key CK = H2(Ω
t).

DBESS.Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU): Let CH =(Ĉ1,C2), USKi =Ki, and UPK j =(Vj,V̂j,
{Vj,k}). If i ̸∈ S, it outputs ⊥. It computes a tag ω = H1(Ĉ1∥AU) and checks the validity of the ci-
phertext

e
(
C2, ĝ

) ?
= e

(
Aω

L+1B∏
j∈S

A jVj,Ĉ1

)
.

If the equation fails, then it outputs ⊥. It selects a random exponent r ∈ Zp and builds decryption
components

D1 = Ki ·
(

Aω
L+1B∏

j∈S
A jVj

)r
, D̂2 = ÂL+2−i · ĝr,

D3 = Aω
2L+3−iBL+2−i, D4 = ∏

j∈S\{i}
AL+2−i+ jVj,L+2−i.

It outputs a session key CK = H2(e(C2, D̂2) · e(D1 ·D3 ·D4,Ĉ1)
−1).

11

4.2 AD-CCA Construction

Now, we construct an adaptive CCA-secure DBE scheme from the semi-static CCA-secure DBE scheme.
The GW transformation of Gentry and Waters [22] is used to convert a semi-static CPA-secure BE or DBE
scheme into the adaptive CPA-secure BE or DBE scheme. However, the GW transformation is applied
to the CPA-secure BE or DBE scheme, and it needs additional modification to be applied to the CCA-
secure BE or DBE scheme. We derive the adaptive CCA-secure DBE scheme by combining the semi-static
CCA-secure DBE scheme, the OTS scheme, and the GW transformation. Here, we use the OTS signature
for ciphertext integrity, and we modify the encryption and decryption algorithms of the underlying DBE
scheme to additionally receive a label as input to bind the OTS public key with the DBE ciphertext. This
modification of algorithms to receive an additional label as input was widely used in the design of existing
CCA-secure PKE schemes [23,28]. The detailed description of our DBE scheme for adaptive CCA security
is given as follows:

DBEAD.Setup(1λ ,1L): Let λ be a security parameter and L be the number of users. It obtains PPSS by
running DBESS.Setup(1λ ,12L). It outputs public parameters PP = PPSS.

DBEAD.GenKey(i,PP): Let i ∈ [L]. It generates two key pairs (USKSS,2i,UPKSS,2i) and (USKSS,2i−1,
UPKSS,2i−1) by running DBESS.GenKey(2i,PP) and DBESS.GenKey(2i − 1,PP) respectively. It
selects a random bit ui ∈ {0,1} and erases USKSS,2i−(1−ui) completely. It outputs a private key
USKi = (USKSS,2i−ui ,ui) and a public key UPKi = (UPKSS,2i,UPKSS,2i−1).

DBEAD.IsValid(j,UPK j,PP): Let UPK j = (UPKSS,2 j,UPKSS,2 j−1). It checks that DBESS.IsValid(2 j,
UPKSS,2 j,PPSS) = 1 and DBESS.IsValid(2 j−1,UPKSS,2 j−1,PPSS) = 1. If it passes all checks, then it
outputs 1. Otherwise, it outputs 0.

DBEAD.Encaps(S,{(j,UPK j)} j∈S,PP,AU): Let S ⊆ [L] and UPK j = (UPKSS,2 j,UPKSS,2 j−1).

1. It generates (SK,V K) by running OTS.GenKey(1λ).

2. It selects random bits z = {z j} j∈S where z j ∈ {0,1}. Next, it defines two sets S0 = {2 j− z j} j∈S

and S1 = {2 j− (1− z j)} j∈S.

3. It obtains ciphertext pairs (CHSS,0,CKSS,0) and (CHSS,1,CKSS,1) by running DBESS.Encaps(S0,
{(k,UPKSS,k}k∈S0 ,PPSS,V K) and DBESS.Encaps(S1,{(k,UPKSS,k}k∈S1 ,PPSS,V K) respectively.

4. It selects a random message CK ∈ {0,1}λ . It obtains ciphertexts CT0 and CT1 by running
SKE.Encrypt(CKSS,0,CK) and SKE.Encrypt(CKSS,1,CK) respectively.

5. It sets CM = (CHSS,0,CHSS,1,CT0,CT1,z) and calculates σ by running OTS.Sign(SK,CM).

6. It outputs a ciphertext header CH = (CM,σ ,V K) and a session key CK.

DBEAD.Decaps(S,CH, i,USKi,{(j,UPK j)} j∈S,PP,AU): Let CH =(CM,σ ,V K) and USKi =(USKSS,2i−ui ,
ui) where CM = (CHSS,0,CHSS,1,CT0,CT1,z). If i ̸∈ S, it outputs ⊥.

1. It checks that 1 ?
= OTS.Verify(V K,σ ,CM). If this check fails, it outputs ⊥.

2. It derives two sets S0 = {2 j − z j} j∈S and S1 = {2 j − (1− z j)} j∈S. If zi = ui, then it sets S′ =
S0,CH ′

SS =CHSS,0,CT ′ =CT0. Otherwise, it sets S′ = S1,CH ′
SS =CHSS,1,CT ′ =CT1.

3. It obtains CK′
SS by running DBESS.Decaps(S′,CH ′

SS,2i−ui,USKSS,2i−ui ,{(k,UPKSS,k}k∈S′ ,PPSS,
V K).

4. It obtains CK by running SKE.Decrypt(CK′
SS,CT ′) and outputs a session key CK.

12

4.3 Correctness

Theorem 4.1. The above DBESS scheme is correct.

Proof. To show the correctness of this scheme, we first show that the same session key can be derived. If
i ∈ S, then we can derive the following equation

e(C2, ÂL+2−i)

= e(
(
Aω

L+1B∏
j∈S

A jVj
)t
, ÂL+2−i)

= e(
(
Aω

L+1B ·AiVi · ∏
j∈S\{i}

A jVj
)t
, ÂL+2−i)

= e((Aω
L+1B)t , ÂL+2−i) · e(At

i, ÂL+2−i) · e(V t
i , ÂL+2−i) · e(

(
∏

j∈S\{i}
A jVj

)t
, ÂL+2−i)

= e(Aω
2L+3−iBL+2−i, ĝt) · e(AL+2, ĝt) · e(Âγi

L+2−i, ĝ
t) · e(

(
∏

j∈S\{i}
AL+2−i+ jA

γ j
L+2−i, ĝ

t)
= e(D3, ĝt) ·Ωt · e(Ki, ĝt ,) · e(D4, ĝt)

= Ω
t · e(Ki ·D3 ·D4,Ĉ1).

By using the above equation, we can obtain that the same element that is used to derive a session key as
follows

e(C2, D̂2) · e(D1 ·D3 ·D4,Ĉ1)
−1

= e(C2,AL+2−i) · e(C2, ĝr) · e(D1 ·D3 ·D4,Ĉ1)
−1

= Ω
t · e(Ki ·D3 ·D4,Ĉ1) · e(

(
Aω

L+1B∏
j∈S

A jVj
)t
, ĝr) · e(D−1

1 ,Ĉ1) · e((D3 ·D4)
−1,Ĉ1)

= Ω
t · e(Ki ·

(
Aω

L+1B∏
j∈S

A jVj
)r
,Ĉ1) · e(D−1

1 ,Ĉ1) = Ω
t .

Next, we show that the verification of a public key is correct. Since our public key verification uses the
small exponent test, the validity of this batch verification can be checked by the previous work of Camenisch
et al. [12], we omit the detailed analysis of this batch verification.

Theorem 4.2. The above DBEAD scheme is correct.

The correctness of the DBEAD scheme can be easily derived from the correctness of the DBESS, SKE,
and OTS schemes. We omit the proof of this theorem.

5 Security Analysis

In this section, we prove the semi-static CCA security and adaptive CCA security of the proposed DBE
schemes.

13

5.1 Semi-Static Security Analysis

The basic idea of the semi-static CCA proof is to use the partitioning technique that divides the ciphertext
header space into two regions: a challenge ciphertext header region and a decryption oracle ciphertext
header region. The challenge ciphertext header CH∗ is associated with a tag ω∗, and the decryption oracle
ciphertext CH is associated with a tag ω . If ω∗ ̸= ω , a simulator first derives a decryption key to be used for
decrypting the ciphertext header CH and perform the decryption of CH to handle the decryption query. In
other words, the simulator can decrypt the ciphertext header requested by the attacker by using a method like
the IBE private key derivation for an identity ω . If ω∗ = ω holds, the simulator can find the collisions of the
collision-resistant hash function, which ensures that such an event will not occur. The detailed description
of the semi-static CCA proof is given as follows:

Theorem 5.1. The above DBESS scheme is SS-CCA secure if the (L+1)-BDHE assumption holds and H1
is a collision-resistant hash function.

Proof. Suppose there exists an adversary A that breaks the DBESS scheme with a non-negligible advan-
tage. A simulator B1 that solves the L+ 1-BDHE assumption using A is given: a challenge tuple D =
(g,ga, . . . ,gaL+1

,gaL+3
, . . . ,g2L+2,gb, ĝ, ĝa, . . . , ĝaL+1

, ĝb) and Z where Z =Z0 = e(g, ĝ)aL+2b or Z =Z1 = e(g, ĝ)c.
Then B1 that interacts with A is described as follows:
Init: A commits an initial set S̃.
Setup: B1 sets Ĉ∗

1 = ĝb and computes ω∗ = H1(Ĉ∗
1). It selects a random exponent β ′ and implicitly sets

β =−ω∗aL+1 +β ′. It creates public parameters

g, ĝ,
{

Ak = gak}
1≤k ̸=L+2≤2L+2,

{
Âk = ĝak}

1≤k≤L+1,

B = A−ω∗

L+1 gβ ′
,
{

Bk = A−ω∗

L+1+kAβ ′

k

}
2≤k≤L+1, Ω = e(AL+1, Â1).

Query Phase 1: For each index i ∈ S̃, it selects random γ ′i ∈ZN and creates a public key by implicitly setting
γi = γ ′i −α i as

UPKi =
(
Vj = A−1

j gγ ′j , V̂j = Â−1
j ĝγ ′j ,

{
Vj,k = A−1

k+ jA
γ ′j
k

}
2≤k ̸=L+2− j≤L+1

)
.

It gives {(j,UPK j)} j∈S̃ to A.

For a decryption query on (S,CH = (Ĉ1,C2), i,AU) such that S ⊆ S̃, B1 proceeds as follows: It first
computes ω = H1(Ĉ1∥AU) and checks the validity of the ciphertext header by using pairing. If the check
fails, then it responds with ⊥. If ω = ω∗, then it sets Bad = 1 and aborts the simulation. Otherwise
(ω ̸= ω∗), it selects a random exponent r′ ∈ Zp and derives decryption components by implicitly setting
r = a/(ω −ω∗)+ r′ as

D1 = Aγ ′i
L+2−i(A

β ′

1 ∏
j∈S

A j+1Vj,1)
1/(ω−ω∗)

(
Aω

L+1B∏
j∈S

A jVj
)r′

,

D2 = AL+2−iA
1/(ω−ω∗)
1 gr′ ,

D3 = Aω
2L+3−iBL+2−i, D4 = ∏

j∈S\{i}
AL+2−i+ jVj,L+2−i.

It responds a session key CK = H2(e(C2,D2) · e(D1 ·D3 ·D4,Ĉ1)
−1) to A.

14

Challenge: A submits a challenge set S∗ ⊆ S̃. B1 implicitly sets t = b and creates a ciphertext tuple

CH∗ =
(
Ĉ∗

1 = ĝb, C∗
2 =

(
gb)β ′+∑ j∈S∗ γ ′j

)
, CK∗ = H2(Z).

It sets CK∗
0 =CK∗ and CK∗

1 = H2(R) by selecting a random element R ∈GT . It flips a random bit µ ∈ {0,1}
and gives (CH∗,CK∗

µ) to A.
Query Phase 2: The decryption queries are handled as the same as query phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B1 outputs 0 if µ = µ ′ or 1 otherwise.

The decryption components are correctly distributed as

D1 = Ki
(
Aω

L+1B∏
j∈S

A jVj
)r

= Aγ ′i−α i

L+2−i

(
Aω−ω∗

L+1 gβ ′
∏
j∈S

A jVj
)a/(ω−ω∗)+r′

= Aγ ′i
L+2−iA

−1
L+2AL+2

(
gβ ′

∏
j∈S

A jVj
)a/(ω−ω∗)(Aω

L+1B∏
j∈S

A jVj
)r′

= Aγ ′i
L+2−i(A

β ′

1 ∏
j∈S

A j+1Vj,1)
1/(ω−ω∗)

(
Aω

L+1B∏
j∈S

A jVj
)r′

,

D2 = AL+2−igr = AL+2−iga/(ω−ω∗)+r′ = AL+2−iA
1/(ω−ω∗)
1 gr′ .

The challenge ciphertext header are also correctly distributed as

C∗
2 =

(
Aω∗

L+1B ∏
j∈S∗

A jVj
)t
=
(
Aω∗

L+1A−ω∗

L+1 gβ ′
∏
j∈S∗

gα j
gγ ′j−α j)t

=
(
gt)β ′+∑ j∈S∗ γ ′j .

Suppose there exists an adversary A that breaks the DBESS scheme with a non-negligible advantage. A
simulator B2 that breaks the CRHF using A is given the description of H1. Then B2 that interacts with A is
described as follows:
Init: A commits an initial set S̃.
Setup: B2 creates public parameters by running the setup algorithm except that H1 is replaced by the given
hash function. It selects a random exponent t ∈ Zp, sets Ĉ∗

1 = ĝt , and computes ω∗ = H1(Ĉ∗
1).

Query Phase 1: For all j ∈ S̃, B2 generates (USK j,UPK j) by simply running the key generation algorithm.
It gives {(j,UPK j)} j∈S̃ to A. For a decryption query on (S,CH = (Ĉ1,C2), i,AU), it first computes ω =

H1(Ĉ1∥AU). If ω = ω∗, then it sets Bad = 1 and outputs a collision pair (Ĉ∗
1 ,Ĉ1∥AU). Otherwise, it

responds with a session key by simply running the decryption algorithm.
Challenge: To create a ciphertext (CH∗,CK∗), B2 simply runs the encapsulation algorithm except that it
uses the exponent t chosen in the setup. It sets CK∗

0 = CK∗ and CK∗
1 = RK by selecting a random RK. It

flips a coin µ ∈ {0,1} and gives (CH∗,CK∗
µ) to A.

Query Phase 2: The decryption queries are handled as the same as query phase 1.
Guess: B2 outputs ⊥.

By combining the results of the above simulations, we obtain the following equation

AdvSS-CCA
DBE (λ) = Pr[µ = µ

′]−1/2

= Pr[¬Bad] ·Pr[µ = µ
′|¬Bad]+Pr[Bad] ·Pr[µ = µ

′|Bad]−1/2

≤ Pr[µ = µ
′|¬Bad]−1/2+Pr[Bad]≤ AdvBDHE

B1
(λ)+AdvCRHF

B2
(λ).

This completes our proof.

15

5.2 Adaptive Security Analysis

The basic idea of the adaptive CCA proof is to change the challenge session key to a random value through
hybrid games so that the attacker can never distinguish the coin thrown by the challenger. To do this, we
first play hybrid games to change the secret keys used for CT ∗

0 ,CT ∗
1 in the challenge ciphertext header CH∗

to random values by using the semi-static CCA security of the underlying DBESS scheme. Then, we play
hybrid games to change the messages of CT ∗

0 ,CT ∗
1 to random values by using the OMI security of the

underlying SKE scheme. In the last game, the challenge session key CK∗
µ is not related to the challenge

ciphertext header CH∗. The detailed description of the adaptive CCA proof is given as follows:

Theorem 5.2 (Adaptive CCA Security). The above DBEAD scheme is AD-CCA secure if the DBESS scheme
is SS-CCA secure and the OTS scheme is strongly unforgeable.

Proof. The security proof consists of a sequence of hybrid games G0,G1, . . . ,G4. The first game will be
the original adaptive CCA security game and the last one will be a game in which an adversary has no
advantage. We define the games as follows:

Game G0. This game is the original security game defined in Section 3.3. That is, the simulator of this
game simply follows the honest algorithms.

Game G1. This game is the same as the game G0 except that the ciphertext CT0 in CH∗ is created as
CT0 = SKE.Encrypt(RKSS,0,CK0) by using a random RKSS,0 instead of a valid CKSS,0.

Game G2. This game is also similar to the game G1 except that the ciphertext CT1 in CH∗ is created as
CT1 = SKE.Encrypt(RKSS,1,CK0) by using random RKSS,1 instead of a valid CKSS,1.

Game G3. This game is the same as the game G2 except that the ciphertext CT0 in CH∗ is generated as
CT0 = SKE.Encrypt(RKSS,0,RK0) by selecting a random RK0 instead of a valid CK.

Game G4. This final game G4 is also similar to the game G3 except that the ciphertext CT1 in CH∗ is
generated as CT1 = SKE.Encrypt(RKSS,1,RK1) by selecting a random RK1 instead of a valid CK. In
this final game, CH∗ is not related to the session key CK∗

µ . Thus, the advantage of A is zero.

Let AdvG j
A be the advantage of A in the game G j. We have that AdvAD-CCA

DBE,A (λ) = AdvG0
A , and AdvG4

A = 0.
From the following Lemmas 5.3, 5.4, 5.5, and 5.6, we obtain the equation

AdvAD-CCA
DBE (λ)≤

4

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣+AdvG4

A

≤ 2AdvSS-CCA
DBE (λ)+2AdvSUF

OT S (λ)+2AdvOMI
SKE (λ).

This completes the proof.

Lemma 5.3. If the DBESS scheme is SS-CCA secure and the OTS scheme is SUF secure, then no PPT
adversary can distinguish G0 from G1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes G0 from G1 with a non-negligible advantage.
Let C be the challenger of the DBESS scheme with an input 12L. The simulator B1 that breaks the DBESS

scheme by using A with an input 1L is described as follows:

Setup: In this step, B1 proceeds as follows:

16

1. It chooses random bits z∗ = {z∗j} j∈[L] where z j ∈ {0,1} and defines an initial set S̃SS = {2 j− z∗j}L
j=1.

It also generates (SK∗,V K∗) by running OTS.GenKey(1λ).

2. It commits S̃SS to C and receives PPSS. It sets PP = PPSS and gives PP to A.

3. Next, it requests a key generation query to C and receives all public keys {(k,UPKSS,k)}k∈S̃SS
.

Query Phase 1: For the key generation query of A on an index i ∈ [L] such that i /∈ KQ, B1 proceeds as
follows:

1. It sets k = 2i−(1−z∗i) and obtains (USKSS,k,UPKSS,k) by running DBESS.GenKey(k,PPSS). It stores
USKSS,k to KL.

2. It sets UPKi = (UPKSS,2i,UPKSS,2i−1), adds i to KQ, and gives UPKi to A.

For the key corruption query of A on an index i ∈ [L] such that i ∈ KQ\DQ, B1 proceeds as follows:

1. It fixes ui = 1− z∗i and retrieves USKSS,2i−ui from KL.

2. It sets USKi = (USKSS,2i−ui ,ui), adds i to CQ, and gives USKi to A.

For the decryption query of A on (S,CH = (CM,σ ,V K), i,AU) such that S ⊆ KQ \CQ where CM =
(CHSS,0,CHSS,1,CT0,CT1,z), B1 proceeds as follows:

1. If V K =V K∗, then it sets Bad = 1 and aborts the simulation.

2. It first checks 1 ?
= OTS.Verify(CM,σ ,V K). If this check fails, it gives ⊥ to A.

3. If (i,ui) ∈UL, then it retrieves ui. Otherwise, It selects a random bit ui ∈ {0,1} and adds (i,ui) to UL.

4. It defines S0 = {2 j − z j} j∈S and S1 = {2 j − (1− z j)} j∈S. If zi = ui, then it sets S′ = S0,CH ′
SS =

CHSS,0,CT ′ =CT0. Otherwise, it sets S′ = S1,CH ′
SS =CHSS,1,CT ′ =CT1.

5. If ui = 1− z∗i , then it retrieves USKSS,2i−ui from KL and obtains CK′
SS by running DBESS.Decaps(S′,

CH ′
SS,2i−ui,USKSS,2i−ui ,{(k,UPKSS,k)}k∈S′ ,PPSS,V K). Otherwise (ui = z∗i), it requests a decryption

query on (S′,CH ′
SS,2i−ui,V K) to C and receives CK′

SS.

6. It derives CK by running SKE.Decrypt(CT ′,CK′
SS). It adds i to DQ and gives CK to A.

Challenge: A submits a challenge set S∗ ⊆ [L] such that S∗ ⊆ KQ\CQ, B1 proceeds as follows:

1. It defines S∗0 = {2 j− z∗j} j∈S∗ and S∗1 = {2 j− (1− z∗j)} j∈S∗ . It submits a challenge set S∗0 to C and re-
ceives (CH∗

SS,0,CK∗
SS,0). It obtains (CH∗

SS,1,CK∗
SS,1) by running DBESS.Encaps(S∗1,{(k,UPKSS,k)}k∈S∗1 ,

PPSS,V K∗).

2. It selects a session key CK∗. It obtains CT ∗
0 and CT ∗

1 by running SKE.Encrypt(CK∗
SS,0,CK∗) and

SKE.Encrypt(CK∗
SS,1,CK∗) respectively.

3. It sets CM∗ = (CH∗
SS,0,CH∗

SS,1,CT ∗
0 ,CT ∗

1 ,z
∗) and calculates σ∗ by running OTS.Sign(SK∗,CM∗).

4. It sets CH∗ = (CM∗,σ∗,V K∗), CK∗
0 =CK∗, and CK∗

1 = RK by selecting a random RK. Next, it flips
a random coin µ ∈ {0,1} and gives (CH∗,CK∗

µ) to A

17

Query Phase 2: For a decryption query on (S,CH = (CM,σ ,V K), i,AU) such that S ⊆ S∗∧CH ̸=CH∗, B1
handles this decryption query as the same as query phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B1 outputs 1. Otherwise, it outputs 0.

Suppose there exists an adversary A that breaks the DBESS scheme with a non-negligible advantage. A
simulator B2 that forges the OTS scheme using A is given V K∗. Then B2 that interacts with A is described
as follows:
Setup: B2 creates public parameters by running the setup algorithm.
Query Phase 1: For a key generation query, B2 generates (USK j,UPK j) by simply running the key gener-
ation algorithm. It gives UPK j to A. For a key corruption query, it simply responds with USK j to A. For a
decryption query on (S,CH = (CM,σ ,V K), i,AU), it first verify the validity of σ by running the verification
algorithm of OTS. If V K =V K∗, then it sets Bad = 1 and outputs a forgery (σ ,CM). Otherwise, it responds
with a session key by simply running the decryption algorithm.
Challenge: To create a ciphertext (CH∗,CK∗), B2 simply runs the encapsulation algorithm except that it
uses the signing oracle of OTS to create σ∗. It sets CK∗

0 =CK∗ and CK∗
1 = RK by selecting a random RK.

It flips a coin µ ∈ {0,1} and gives (CH∗,CK∗
µ) to A.

Query Phase 2: The decryption queries are handled as the same as query phase 1.
Guess: B2 outputs ⊥.

By combining the analysis of two simulators, we obtain the following equation

AdvG0
A −AdvG1

A ≤ AdvSS−CCA
DBE (λ)+AdvSUF

OT S (λ).

This completes our proof.

Lemma 5.4. If the DBESS scheme is SS-CCA secure and the OTS scheme is SUF secure, then no PPT
adversary can distinguish G1 from G2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 5.3 except that a simulator B1 that
breaks the DBESS scheme defines the initial set S̃SS = {2 j− (1− z∗j)}L

j=1 in the setup phase. Because of this
change, the key generation, key corruption, decryption queries are slightly changed. In the challenge step,
the set S∗1 become the challenge set. The detailed description of the challenge setup is given as follows:
Challenge: A submits a challenge set S∗ ⊆ [L] such that S∗ ⊆ KQ\CQ, B proceeds as follows:

1. It defines S∗0 = {2 j − z∗j} j∈S∗ and S∗1 = {2 j − (1− z∗j)} j∈S∗ . It obtains (CH∗
SS,0,CK∗

SS,0) by running
DBESS.Encaps(S∗0,{(k,UPKSS,k)}k∈S∗0 ,PPSS,V K∗). It submits a challenge set S∗1 to C and receives
(CH∗

SS,1,CK∗
SS,1). It selects a random RKSS,0.

2. It selects a session key CK∗. It obtains CT ∗
0 and CT ∗

1 by running SKE.Encrypt(RKSS,0,CK∗) and
SKE.Encrypt(CK∗

SS,1,CK∗) respectively.

3. It sets CM∗ = (CH∗
SS,0,CH∗

SS,1,CT ∗
0 ,CT ∗

1 ,z
∗) and calculates σ∗ by running OTS.Sign(SK∗,CM∗).

4. It sets CH∗ = (CM∗,σ∗,V K∗), CK∗
0 =CK∗, and CK∗

1 = RK by selecting a random RK. Next, it flips
a random coin µ ∈ {0,1} and gives (CH∗,CK∗

µ) to A

The description of a simulator B2 that breaks the OTS scheme is the same as that of Lemma 5.3. We
omit the description of this simulator.

18

Similar to the analysis of Lemma 5.3, we obtain the following equation

AdvG1
A −AdvG2

A ≤ AdvSS−CCA
DBE (λ)+AdvSUF

OT S (λ).

This completes our proof.

Lemma 5.5. If the SKE scheme is OMI secure, then no PPT adversary can distinguish G2 from G3 with a
non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes G2 from G3 with a non-negligible advantage.
Let C be a challenger of the SKE scheme. A simulator B that breaks the SKE scheme by using A with an
input 1L is described as follows:

Setup: In this step, B simply runs the normal setup algorithm.
Query Phase 1: For the key generation, key corruption, and decryption queries of A, B simply handles
these queries by running the normal algorithms of DBE.
Challenge: A submits a challenge set S∗ ⊆ [L], B proceeds as follows:

1. It generates (SK∗,V K∗) by running OTS.GenKey(1λ).

2. It defines S∗0 = {2 j − z∗j} j∈S∗ and S∗1 = {2 j − (1− z∗j)} j∈S∗ . It obtains (CH∗
SS,0,CK∗

SS,0) by running
DBESS.Encaps(S∗0,{(k,UPKSS,k)}k∈S∗0 ,PPSS,V K∗). It also obtains (CH∗

SS,1,CK∗
SS,1) by running DBESS.

Encaps(S∗1,{(k,UPKSS,k)}k∈S∗1 ,PPSS,V K∗). It selects a random RKSS,1.

3. It selects a session key CK∗. It also selects a random RK0. It submits (CK∗,RK0) to C and receives
CT ∗

0 . It obtains CT ∗
1 by running SKE.Encrypt(RKSS,1,CK∗).

4. It sets CM∗ = (CH∗
SS,0,CH∗

SS,1,CT ∗
0 ,CT ∗

1 ,z
∗) and calculates σ∗ by running OTS.Sign(SK∗,CM∗).

5. It sets CH∗ = (CM∗,σ∗,V K∗), CK∗
0 =CK∗, and CK∗

1 = RK by selecting a random RK. Next, it flips
a random coin µ ∈ {0,1} and gives (CH∗,CK∗

µ) to A

Query Phase 2: For a decryption query, B handles this decryption query as the same as query phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

Lemma 5.6. If the SKE scheme is OMI secure, then no PPT adversary can distinguish G3 from G4 with a
non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 5.5 except the generation of the
challenge ciphertext. The detailed description of the challenge setup is given as follows:
Challenge: A submits a challenge set S∗ ⊆ [L], B proceeds as follows:

1. It generates (SK∗,V K∗) by running OTS.GenKey(1λ).

2. It defines S∗0 = {2 j − z∗j} j∈S∗ and S∗1 = {2 j − (1− z∗j)} j∈S∗ . It obtains (CH∗
SS,0,CK∗

SS,0) by running
DBESS.Encaps(S∗0,{(k,UPKSS,k)}k∈S∗0 ,PPSS,V K∗). It also obtains (CH∗

SS,1,CK∗
SS,1) by running DBESS.

Encaps(S∗1,{(k,UPKSS,k)}k∈S∗1 ,PPSS,V K∗). It selects a random RKSS,0.

3. It selects a session key CK∗. It also selects random RK0 and RK1. It obtains CT ∗
0 by running

SKE.Encrypt(RKSS,0,RK0). It submits (CK∗,RK1) to C and receives CT ∗
1 .

19

4. It sets CM∗ = (CH∗
SS,0,CH∗

SS,1,CT ∗
0 ,CT ∗

1 ,z
∗) and calculates σ∗ by running OTS.Sign(SK∗,CM∗).

5. It sets CH∗ = (CM∗,σ∗,V K∗), CK∗
0 =CK∗, and CK∗

1 = RK by selecting a random RK. Next, it flips
a random coin µ ∈ {0,1} and gives (CH∗,CK∗

µ) to A

This completes our proof.

6 Conclusion

In this paper, we proposed an efficient DBE scheme in bilinear groups and proved its adaptive CCA security
under the q-Type assumption. Our adaptive CCA secure DBE scheme has constant size ciphertexts, constant
size private keys, and linear size public keys. The public key verification of our DBE scheme requires only
a constant number of pairing operations and the linear number of efficient group membership operations.
An interesting problem is to design an efficient and adaptive CCA secure DBE scheme under standard
assumptions weaker than the q-Type assumption.

References

[1] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delegation for hierarchical identity-
based encryption. In Joachim Biskup and Javier Lopez, editors, Computer Security - ESORICS 2007,
volume 4734 of Lecture Notes in Computer Science, pages 139–154. Springer, 2007.

[2] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption from LWE and
pairings in the standard model. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography
- TCC 2020, volume 12550 of Lecture Notes in Computer Science, pages 149–178. Springer, 2020.

[3] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020, volume 12105 of
Lecture Notes in Computer Science, pages 13–43. Springer, 2020.

[4] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 56–73. Springer, 2004.

[5] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[6] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[7] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 258–275. Springer, 2005.

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptol.,
17(4):297–319, 2004.

20

[9] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from multilinear
maps. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014,
volume 8616 of Lecture Notes in Computer Science, pages 206–223. Springer, 2014.

[10] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from indis-
tinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology -
CRYPTO 2014, volume 8616 of Lecture Notes in Computer Science, pages 480–499. Springer, 2014.

[11] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-based
techniques. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM Conference on Computer
and Communications Security, CCS 2005, pages 320–329. ACM, 2005.

[12] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of short
signatures. J. Cryptology, 25(4):723–747, 2012.

[13] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer, 2004.

[14] Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. In Elette Boyle
and Mohammad Mahmoody, editors, Theory of Cryptography - TCC 2024, volume 15366 of Lecture
Notes in Computer Science, pages 156–189. Springer, 2024.

[15] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer, 2002.

[16] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

[17] Cécile Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys.
In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes
in Computer Science, pages 200–215. Springer, 2007.

[18] Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple encryption. In Joe Kilian,
editor, Theory of Cryptography - TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages
188–209. Springer, 2005.

[19] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, Advances in Cryp-
tology - CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 480–491. Springer,
1993.

[20] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing flexible broadcast encryption: How
to broadcast to a public-key directory. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers,
and Engin Kirda, editors, ACM Conference on Computer and Communications Security, CCS 2023,
pages 1093–1107. ACM, 2023.

[21] Romain Gay, Lucas Kowalczyk, and Hoeteck Wee. Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In Dario Catalano and Roberto De Prisco, editors, Security and
Cryptography for Networks - SCN 2018, volume 11035 of Lecture Notes in Computer Science, pages
123–139. Springer, 2018.

21

[22] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short cipher-
texts). In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 171–188. Springer, 2009.

[23] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin,
editors, Theory of Cryptography - TCC 2006, volume 3876 of Lecture Notes in Computer Science,
pages 581–600. Springer, 2006.

[24] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bi-
linear groups. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology - ASIACRYPT 2023,
volume 14442 of Lecture Notes in Computer Science, pages 407–441. Springer, 2023.

[25] Kwangsu Lee. Adaptively secure distributed broadcast encryption with linear-size public parameters.
arXiv:2505.17527, 2025. https://arxiv.org/abs/2505.17527.

[26] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001.

[27] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 433–444. Springer, 1991.

[28] Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive,
Report 2001/112, 2001. http://eprint.iacr.org/2001/112.

[29] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assump-
tions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 619–636. Springer, 2009.

[30] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022, volume
13276 of Lecture Notes in Computer Science, pages 217–241. Springer, 2022.

[31] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast encryption. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM Conference on Computer and
Communications Security, CCS 2010, pages 741–743. ACM, 2010.

22

https://arxiv.org/abs/2505.17527
http://eprint.iacr.org/2001/112

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Bilinear Groups and Complexity Assumptions
	Symmetric Key Encryption
	One-Time Signature

	Distributed Broadcast Encryption
	Definition
	Security Model

	DBE Construction
	SS-CCA Construction
	AD-CCA Construction
	Correctness

	Security Analysis
	Semi-Static Security Analysis
	Adaptive Security Analysis

	Conclusion

