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Abstract

Effective attribution of Advanced Persistent Threats (APTs) increasingly
hinges on the ability to correlate behavioral patterns and reason over com-
plex, varied threat intelligence artifacts. We present AURA (Attribution Us-
ing Retrieval-Augmented Agents), a multi-agent, knowledge-enhanced frame-
work for automated and interpretable APT attribution. AURA ingests di-
verse threat data including Tactics, Techniques, and Procedures (TTPs),
Indicators of Compromise (IoCs), malware details, adversarial tools, and
temporal information, which are processed through a network of collab-
orative agents. These agents are designed for intelligent query rewriting,
context-enriched retrieval from structured threat knowledge bases, and nat-
ural language justification of attribution decisions. By combining Retrieval-
Augmented Generation (RAG) with Large Language Models (LLMs), AURA
enables contextual linking of threat behaviors to known APT groups and
supports traceable reasoning across multiple attack phases. Experiments on
recent APT campaigns demonstrate AURA’s high attribution consistency,
expert-aligned justifications, and scalability. This work establishes AURA as
a promising direction for advancing transparent, data-driven, and scalable
threat attribution using multi-agent intelligence.
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Retrieval-Augmented Generation (RAG), Agentic Systems, Large Language
Models (LLMs), Cyber Threat Intelligence, Tactics Techniques and
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1. Introduction

Attributing cyber threats is a foundational challenge in the field of cy-
bersecurity. Whether for national defense, enterprise protection, or inter-
national diplomacy, identifying the actors behind sophisticated attacks is
essential for informed response, deterrence, and accountability [26, 7]. Yet,
attribution remains notoriously difficult due to incomplete evidence trails,
adversarial deception, and overlapping behavioral signatures across different
campaigns [31, 23]. These challenges are especially pronounced in Advanced
Persistent Threats (APTs), which are marked by stealth, strategic intent, and
persistent targeting of high-value entities. The core difficulty lies not only in
determining “who” is responsible, but in doing so accurately, consistently, and
transparently based on disparate and often unstructured evidence [15, 23, 30].

Cyber threat intelligence reports serve as valuable sources of past attri-
bution signals, often containing rich contextual details such as Tactics, Tech-
niques, and Procedures (TTPs), Indicators of Compromise (IoCs), malware
details, adversarial tools, and campaign timelines. However, extracting ac-
tionable insight from these artifacts remains largely a manual and error-prone
process [20, 22, 12, 28, 5]. Traditional attribution methods, whether based
on static heuristics, rule-based indicators, or shallow pattern-matching, fail
to capture the nuanced relationships between threat evidence and actor be-
haviors [21, 23, 19]. More recent approaches leveraging machine learning and
NLP have shown promise, but often lack the ability to reason contextually or
to justify their decisions in a way that aligns with expert analysis [16, 17, 18].
This limits their trustworthiness, scalability, and operational utility in real-
world attribution workflows.

To overcome these challenges, we propose AURA (Attribution Using
Retrieval-Augmented Agents), a multi-agent intelligence framework designed
to deliver context-aware, interpretable, and knowledge-enhanced threat at-
tribution. AURA ingests a wide range of structured and semi-structured
intelligence signals, including TTPs, IoCs, malware artifacts, attacker tools,
and campaign timelines, and coordinates a team of specialized agents that
collaborate to perform attribution. These agents handle tasks such as query
rewriting, context-enriched retrieval, memory management, and justification
generation using Large Language Models (LLMs) integrated with Retrieval-
Augmented Generation (RAG).

By combining intelligent agent modularity with knowledge-grounded rea-
soning, AURA bridges the gap between raw threat intelligence and high-level
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attribution decisions. Unlike prior methods that rely on handcrafted rules
or black-box classifiers, AURA generates interpretable outputs by tracing
attribution decisions back to contextual evidence within the threat corpus.
It enables scalable analysis across campaigns and supports transparency by
producing natural language justifications for each attribution decision. This
design not only improves attribution accuracy, but also fosters analyst trust
and decision support.

AURA operates by transforming an analyst’s input query into an attri-
bution decision and supporting explanation through a coordinated pipeline
of intelligent agents. Conceptually, this process can be framed as a transfor-
mation function:

AURA(Q) = (A, J)

where Q is the natural language query, A is the predicted threat actor, and
J is a natural language justification. Each step in this mapping, such as
query rewriting, contextual retrieval, actor inference, and explanation, is
handled by a specialized agent. An overview of this multi-agent architecture
is depicted in Figure 1.

?

Threat Data

Knowledge Database

Retrieval Module

Decision Agent

Relevant

Irrelevant

Query Refiner

Query Refiner

Attribution Agent

Web Search Engine

Attribution & Justification

Figure 1: Overview of AURA: The multi-agent framework comprises specialized agents
for query rewriting, knowledge retrieval, and attribution.

We evaluate AURA on a diverse set of real-world APT campaign datasets
and demonstrate its effectiveness in producing accurate, human-readable,
and context-rich attribution outputs. Our findings indicate that agentic mod-
ularity, combined with RAG, significantly improves both the quality and the
explainability of cyber threat attribution. In summary, this paper makes the
following contributions:

• We introduce AURA (Attribution Using Retrieval-Augmented Agents),
a multi-agent intelligence framework that enables knowledge-enhanced
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attribution of cyber threats by integrating Retrieval-Augmented Gen-
eration (RAG) with LLMs.

• We design modular agents for query rewriting, context-aware retrieval,
and natural language justification, enabling structured and explain-
able attribution workflows that produce human-readable, evidence-
supported explanations aligned with expert reasoning practices.

• We perform extensive evaluations of AURA on real-world threat re-
ports, demonstrating its accuracy, robustness, and interpretability
across diverse APT scenarios.

• We develop a chatbot system1 based on the proposed AURA frame-
work, aimed at real-world use.

The remainder of this paper is structured as follows: Section 2 reviews re-
lated work. Section 3 introduces the architecture and components of AURA.
Section 4 describes the experimental setup. The results are presented in
Section 5, followed by a detailed discussion in Section 6. The limitations
and future work are discussed in Section 7. Finally, Section 8 concludes the
paper.

2. Related Work

Cyber threat attribution relies on a variety of artifacts, including mal-
ware samples, indicators of compromise such as file hashes, IP addresses,
and domain names, as well as unstructured threat intelligence reports and
behavioral patterns [23]. Earlier approaches concentrated on static features,
which often fail to provide reliable attribution when adversaries reuse tools,
disguise their activities, or intentionally mislead defenders [8, 23]. In re-
sponse, recent studies have turned toward behavioral characteristics, partic-
ularly tactics, techniques, and procedures, as these offer more persistent and
meaningful signals for identifying threat actors [21, 17]. Researchers have
also applied natural language processing and machine learning methods to
extract such behavioral indicators from textual threat intelligence, enabling
more automated and scalable attribution.

1To be made publicly available upon acceptance
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In the context of attributing behavioral patterns, Noor et al. [17] profile
threat actors based on the presence of NLP-derived patterns and apply ma-
chine learning classifiers. Although effective within a constrained domain,
their system lacked generalizability across diverse attack contexts and was
trained on a limited set of data samples. Irshad and Siddiqui [13] developed
an automated pipeline that extracts features such as attack techniques, mal-
ware families, and targeted sectors from cyber threat intelligence documents.
Their approach employ machine learning classifier on domain-specific embed-
dings to improve the accuracy and relevance of the extracted information.
Their system achieved promising accuracy in classifying threat actors, but
it lacked contextual reasoning or explainability. Building on the growing fo-
cus on behavioral attribution, Rani et al. [21] proposed a structured method
that organizes MITRE ATT&CK tactics, techniques, and procedures into
kill chain phases and compares these sequences against known actor profiles
using a novel similarity measure. While this approach enables pattern-based
attribution across campaigns, it assumes reliable TTP extraction and lacks
support for reasoning over incomplete or mixed evidence sources. To model
behavioral patterns, Böge et al. [3] proposed a hybrid architecture combining
transformers and convolutional networks to analyze sequences of commands
executed by threat actors. Their introduction of a standardized command
language improved robustness across varied data distributions. However,
the approach operated exclusively on command logs and did not incorporate
structured threat knowledge or support broader contextual analysis.

For malware-based attribution, Rosenberg et al. [27] introduce DeepAPT,
a deep learning approach that uses raw dynamic malware behavior for APT
attribution. Malware samples are executed in a sandbox to generate behav-
ior reports, and the words in these reports are treated as features. These
are processed as natural language inputs and encoded to train a deep neural
network for classification. Rani et al. [19] focused on malware-based APT at-
tribution by extracting static, dynamic, and temporal features from malware
samples and training machine learning classifiers to identify APT groups.
While these approaches effectively leverage malware artifacts, it do not in-
corporate structured reasoning or contextual intelligence beyond malware
behaviors.

To leverage threat reports for attribution, the NO-DOUBT system [18]
employs a weakly supervised BERT-based classifier trained on cyber threat
intelligence reports to generate attribution scores. Although scalable, the
system lacked interpretability and did not support semantic retrieval or rea-
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soning. Guru et al. [11] proposed an end-to-end pipeline combining GPT-4
for extracting techniques and OpenAI embeddings for matching with known
actor profiles. However, their framework operated in a single-pass fashion,
treating LLMs as extractors rather than reasoning agents, and lacked modu-
lar design or justification synthesis. Naveen et al. [16] propose a deep learning
framework that attributes threat actors from unstructured CTI reports using
domain-specific neural embeddings. Their SIMVER representation encodes
semantic similarity between words, enabling a dense neural network to better
than traditional methods in attributing APT groups based on textual TTP
patterns.

While existing approaches have made significant progress by utilizing in-
dividual artifacts such as malware behavior, threat reports, or sequences of
tactics, techniques, and procedures, they often treat these sources in isolation
without integrating them into a unified analysis. In addition, many models
operate as opaque systems with limited transparency in how attribution deci-
sions are made. The lack of clear reasoning and justification further reduces
trust and interpretability for human analysts. These limitations highlight
the need for attribution methods that combine multiple types of evidence
while offering explainable outputs supported by structured reasoning.

To bridge these gaps, we introduce AURA (Attribution Using Retrieval
Augmented Agents), a modular and explainable framework designed for real-
world cyber threat attribution. AURA combines structured threat data, se-
mantic retrieval, and reasoning powered by large language models to unify
diverse intelligence artifacts into a coherent attribution process. The frame-
work is composed of specialized agents, each responsible for a distinct stage
in the pipeline, including input processing, query rewriting, semantic search,
attribution generation, and justification synthesis. This agent-based archi-
tecture supports flexible coordination and scalability across varied input for-
mats.

AURA generates attribution results along with natural language justifi-
cations, enhancing both transparency and analyst trust. Its capability to
perform dynamic reasoning over multiple types of threat intelligence, includ-
ing tactics, techniques and procedures, malware behavior, and unstructured
reports, makes it a robust solution for complex attribution scenarios. A
comparative overview of related approaches is provided in Table 1, which
highlights AURA’s distinctive combination of structured data extraction, se-
mantic alignment, and modular reasoning over diverse inputs.
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3. AURA

In this section, we describe the design and components of AURA (Attri-
bution Using Retrieval-Augmented Agents), a multi-agent intelligence frame-
work for performing knowledge-enhanced, interpretable, and scalable cyber
threat attribution. AURA orchestrates specialized agents to process diverse
cyber threat signals, including TTPs, IoCs, malware details, attacker tools,
and campaign timelines, and performs attribution by integrating structured
retrieval with the reasoning capabilities of Large Language Models (LLMs).
The framework leverages Retrieval-Augmented Generation (RAG) within an
agentic architecture to facilitate dynamic query transformation, contextual
retrieval, actor inference, and natural language justification. This modular,
agent-based design is inspired by recent LLM-driven systems such as Mal-
GEN [29, 10, 34], which employ coordinated agent workflows to generate and
reason about behaviorally diverse malware, highlighting the broader appli-
cability of agentic reasoning in cybersecurity.

3.1. Overview of the Framework
AURA is architected as a modular, multi-agent system that processes ana-

lyst prompts or threat intelligence queries in a coordinated pipeline composed
of six key components: (i) Input and Preprocessing (ii) Semantic Retriever
(iii) Decision Agent (iv) Query Rewriting Agent (v) Web Search Engine Mod-
ule (vi) Attribution Generation Agent (vii) Conversational Memory Mod-
ule. These agents interact via structured prompts and shared memory, en-
abling rich context accumulation and knowledge-enhanced attribution. The
high-level architecture of AURA-based chat-bot system is illustrated in Fig-
ure 2. The notations and their corresponding descriptions used throughout
the methodology are summarized in Table 2.

3.2. Input and Preprocessing
AURA accepts as input either natural language queries from analysts or

parsed threat intelligence content (e.g., extracted from reports).These inputs
often reference a mixture of data, such as TTPs, IoCs, malware names, tool
usage, or temporal patterns. A lightweight preprocessing module extracts
metadata using state-of-the-art LLM, identifying TTPs, actor names, infras-
tructure, time ranges, and malware/tool mentioned. Let the input query be
denoted by Q ∈ L, where L is the space of natural language queries. The
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Figure 2: Architecture of the AURA-based chat-bot system.

structured threat entities extracted from Q are denoted by

E = fpre(Q)

where E includes elements like TTPs, IoCs, malware details, and timeline
stored in a json file.

These inputs are stored in a persistent conversational memory M for use
across the attribution workflow and to support inter-query contextualization.

3.3. Semantic Retriever
The refined query is passed to a Semantic Retriever Agent that performs

vector-based retrieval over a knowledge-enhanced corpus of structured and
semi-structured cyber threat intelligence reports. This corpus is denoted as
C, and the top-k retrieved chunks as

C = {c1, c2, . . . , ck} = fret(Q) ⊂ C
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Notation Description
Q Input analyst query
Q′ Rewritten, semantically precise query
L Space of natural language queries
E Extracted threat entities (TTPs, IoCs, etc.)
M Conversational memory (historical context)
C Threat intelligence corpus
C Top-k retrieved chunks from corpus
A Set of known threat actors
A Predicted threat actor
J Natural language justification
fpre Preprocessing function
frew Query rewriting function
fret Semantic retrieval function
fattr Attribution generation function
fjust Justification synthesis function
fmem Memory update function
fembed Embedding generation function

Table 2: Notation used in the AURA pipeline

AURA uses the vector database, indexing dense embeddings generated via
OpenAI text embedding model. Each chunk is ranked using cosine similarity:

sim(Q, ci) =
fembed(Q) · fembed(ci)

∥fembed(Q)∥ · ∥fembed(ci)∥

ensuring that attribution reasoning is grounded in relevant, contextual threat
knowledge.

3.4. Decision Agent
Since the context is retrieved using vector similarity, its relevance to the

objective may vary. Passing irrelevant context to the attribution agent can
distract or mislead the LLM, potentially resulting in misattribution. To ad-
dress this, we integrate a decision agent that evaluates the retrieved context
before it is passed to the attribution agent. This agent is prompted to deter-
mine whether the context is relevant to the final attribution objective.

10



3.5. Query Rewriting Agent
To handle ambiguities and ensure semantic precision, AURA employs a

Query Rewriting Agent. This agent refines the analyst’s prompt using the
conversational history and previously extracted entities. For example, vague
references such as “they" or “this group" are resolved to explicit actor names
like APT28 or Lazarus Group. The rewritten query Q′ is obtained as

Q′ = frew(Q, E ,M)

This ensures that the reformulated query is unambiguous, aligned with the
objective task, and optimized for semantic retrieval, particularly in cases
involving follow-up interactions or coreference resolution.

3.6. Web Search Engine Module
If the decision agent determines that the initially retrieved context is irrel-

evant, an external web search is initiated to gather more suitable information
from publicly available sources. The query is first reformulated in a tailored
manner to enhance the relevance of the search results. The new information
obtained through this process is then provided to the attribution agent to
support the final decision-making.

3.7. Attribution Generation Agent
Using the retrieved evidence and the rewritten query, the Attribution

Generation Agent invokes a LLM along with retrieved context to identify
the most probable threat actor and generate a natural language justification
for its decision. It aligns observed TTPs, malware/tool usage patterns, and
temporal indicators with known actor profiles to compute the predicted actor
A as:

A = fattr(Q
′, E , C) (1)

where A ∈ A and A denotes the set of known threat actors. Simultane-
ously, it produces a justification J for this decision as:

J = fjust(A, E , C) (2)
where J ∈ L. The generated justification synthesizes retrieved evidence,

highlights aligned TTPs and temporal patterns, and compares them to his-
torical behaviors of the predicted actor. This step leverages LLM reasoning
over retrieval-augmented input to deliver interpretable, evidence-backed at-
tributions, even in scenarios involving overlapping or ambiguous indicators.
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3.8. Conversational Memory Module
AURA maintains a conversational memory, integrated into its chatbot

system, to track prior queries, attribution decisions, and justifications across
multiple turns. This enables coherent multi-turn interactions by preserving
contextual continuity and ensuring that follow-up queries are interpreted in
light of previous inputs and outputs. The memory buffer is updated as:

M′ = fmem(M, Q′, E , A, J) (3)

where M represents the current memory state, and the updated state M′

integrates the rewritten query Q′, retrieved evidence E , predicted actor A,
and generated justification J . This facilitates consistent dialogue grounding
and enhances the chatbot’s ability to support evolving analyst queries within
a session.

Final Output. The complete output of the AURA pipeline is the attribution
decision A and its justification J , represented as:

AURA(Q) = (A, J)

This formulation illustrates how AURA decomposes attribution into mod-
ular reasoning steps while maintaining traceability through extracted knowl-
edge entities E .

3.9. Implementation Details
AURA is implemented in Python, using the LangChain framework for

agent orchestration and memory management, Qdrant for vector database
for storing purpose and similarity search, and LLMs from OpenAI and An-
thropic for generation and reasoning. The LLM for all agents, except the final
attribution agent, is GPT-4o. We replace the final attribution agent for each
model-specific experiment. The system is modular, supporting plug-and-play
replacement of individual agents or embedding models. Communication be-
tween agents is handled via structured function-calling protocols, making the
framework extensible, provider-agnostic, and scalable for deployment across
different cyber intelligence environments.
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Figure 3: Dataset Preparation

4. Experiments Setup

4.1. Dataset
Effective retrieval augmentation requires a substantial repository of task-

specific knowledge to support the agents during attribution. To build this
knowledge base, we collect threat analysis reports published by reputable
cybersecurity firms such as Google, CrowdStrike, Kaspersky, and others.
The dataset is sourced from publicly available repositories on GitHub [2, 6],
comprising a total of 2,229 threat reports (Step 1 in Fig 3).

To mitigate any bias from model pretraining data, we split the dataset
based on the knowledge cutoff dates of the LLMs. Specifically, 2,199 reports
are used to populate the vector database that serves as AURA’s knowledge
base (Step 2 in Fig 3), while the remaining 30 reports are reserved as a
held-out test set (Step 6 in Fig 3). These test reports are used to extract
attack-related artifacts, which are then passed into the AURA framework
as input for threat actor attribution and justification generation (Step 7 in
Fig 3). The overall process for curating the knowledge base and generating
structured test data is illustrated at Step 8 in Fig 3.

As threat reports are often multi-page documents and LLMs have limi-
tations on context length, we divide each report in the knowledge base into
smaller, manageable chunks (Step 3 in Fig 3). To preserve the semantic
flow across chunks, we maintain an overlap of 50 tokens between consecutive
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segments. After chunking, we compute vector embeddings (Step 4 in Fig 3)
for each chunk and store them in a vector database (Step 5 in Fig 3). These
stored embeddings serve as the knowledge base for the attribution framework,
allowing relevant information to be retrieved based on the similarity between
the query’s embedding and the stored vectors.

Since threat reports are originally in unstructured textual format, they
are well-suited for use as a natural language knowledge base. However, in
real-world scenarios, analysts may not always have access to detailed textual
reports. Instead, threat data may be available in structured formats such as
JSON or CSV. To simulate this practical setting, we use the gpt-4o model
to extract structured threat indicators such as TTPs, IoCs, malware details,
tools, and attack timelines from the textual test reports into a structured
JSON format. This conversion ensures that the test input mimics realistic
machine-readable threat data, while preserving key information required for
attribution.

4.2. LLM Model Selection
For this analysis, we focus on black-box LLMs because of their state-of-

the-art reasoning abilities, effectiveness in correlating complex evidence, and
ability to generate well-structured responses. We evaluate four proprietary
models from OpenAI and Anthropic: gpt-4o, gpt-4o-mini, Claude 3.5
Haiku, and Claude 3.5 Sonnet.

4.3. Experiment
Since AURA is capable of performing real-time web-based retrieval, there

is a possibility that threat data from the test set, even though it is histor-
ical, might be available somewhere on the internet. To ensure a fair and
controlled evaluation, and to avoid any potential data leakage, we disable
the web search capability of the underlying LLMs during testing. The re-
sults discussed in Section 5 reflect the performance of AURA when operating
solely on its internal knowledge base, without accessing any external search
engine. This setup provides a conservative baseline; we anticipate that per-
formance would further improve when tested on proprietary or previously
unseen threat intelligence data, where retrieval-augmented LLMs can fully
leverage external sources.

In addition, we align our experimental setup with the 4C attribution
framework [31], which defines attribution granularity levels. According to
this model, the highest level of attribution granularity involves identifying
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specific individuals or organizations, while the second-highest involves at-
tributing an attack to a nation-state. To support both levels of granularity,
our framework is configured to attribute threats at the level of known threat
groups as well as the possible linked nations.

Incorporating nation-level attribution enhances the framework’s utility,
especially in cases where threat actors operate collaboratively under a com-
mon national interest or share similar modus operandi. This dual-granularity
approach allows AURA to identify the most likely responsible group and also
infer geopolitical context, thereby improving the depth and relevance of the
attribution analysis.

Due to adversarial deception and overlapping modus operandi, attribu-
tion is not always definitive [31, 19, 21]. To assess AURA’s robustness under
such uncertainty, we extend the evaluation beyond top-1 attribution (most
likely threat group) to include top-2 attribution, capturing the two most
plausible actors. This accounts for cases where multiple threat groups ex-
hibit similar behavioral patterns. Additionally, to accommodate the vari-
ability in LLM outputs, we evaluate AURA using the widely adopted pass@3
metric [4, 14], which measures whether a correct attribution appears in any
of the top three generations.

5. Results

This section presents the performance of four black-box LLMs—gpt-4o,
gpt-4o-mini, Claude 3.5 Haiku, and Claude 3.5 Sonnet—in performing
threat attribution across two granular levels: group-wise and nation-wise.
The evaluation is carried out under both top-1 and top-2 ranking settings.
Figure 4 provides a comparative visualization of the accuracy across these
different settings.

Group-wise Attribution. For group-level attribution, gpt-4o achieves
the highest performance, with a top-1 accuracy of 63.33% and a top-2 accu-
racy of 73.33%. This demonstrates the model’s ability to correctly identify
the responsible threat group either as the top candidate or among the top
two predictions. Claude 3.5 Sonnet also performs competitively, achiev-
ing 53.33% top-1 and 66.67% top-2 accuracy. Notably, these predictions are
made from a large label space comprising over 150+ known threat groups as
documented by MITRE ATT&CK. The ability to narrow down to the correct
group from such a wide range of possibilities underscores the effectiveness of
the models. Furthermore, all models show a consistent improvement from
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top-1 to top-2 accuracy, showing the practical value of allowing multiple
candidates in scenarios where attribution may be ambiguous.

Nation-wise Attribution. Nation-level attribution yields significantly
higher accuracy across all models. Claude 3.5 Sonnet reaches 83.33% top-1
accuracy and a perfect 100% under the top-2 setting, demonstrating its strong
alignment with geopolitical patterns in threat data. gpt-4o also performs
well, achieving 86.67% and 93.33% for top-1 and top-2 respectively. The over-
all performance in nation-level attribution indicates that even when threat
group identification is challenging, LLMs are capable of inferring broader
national affiliations based on behavioral indicators and contextual evidence.

These results validate the design of the AURA framework, particularly the
benefits of retrieval augmentation, query rewriting, and justification synthesis
in improving attribution performance. The observed gains from top-1 to
top-2 further demonstrate that LLMs are able to surface multiple plausible
candidates, which is particularly useful in complex or ambiguous scenarios
often encountered in threat intelligence workflows.
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Figure 4: Attribution accuracy of four LLMs across group-wise and nation-wise levels
under top-1 and top-2 settings.
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6. Discussion

In this section, we analyze how the experimental findings validate the
effectiveness of the AURA framework for cyber threat attribution. The re-
sults presented in Section 5 demonstrate that AURA can accurately attribute
threats by leveraging structured threat data in conjunction with retrieval-
augmented reasoning. The framework achieves up to 63.33% top-1 and
73.33% top-2 accuracy at the group level, suggesting that the integration of
semantic retrieval with task-specific knowledge effectively grounds the attri-
bution process. Furthermore, the even higher performance in nation-level
attribution highlights AURA’s ability to correlate retrieved context with
broader attribution patterns observed in real-world campaigns. The mod-
ular design of AURA contributes significantly to attribution quality. The
query rewriting agent helps resolve ambiguity, improving retrieval precision.
Context-aware retrieval ensures that relevant and specific evidence is sur-
faced for each query, which the reasoning agent then uses for attribution
generation. The incorporation of conversational memory and the generation
of natural language justifications contributed to making AURA suitable for
real-world analyst workflows.

6.1. Generated Justification Assessment
We performed a comprehensive evaluation of the natural language jus-

tifications generated by AURA’s synthesis agent using two complementary
approaches: (i) automated linguistic and semantic metrics, and (ii) a human-
aligned evaluation performed by a language model (LLM-as-Judge).

6.1.1. Automated Evaluation
We assessed justifications using four widely adopted measures: readability

(Flesch Reading Ease), lexical richness (Type-Token Ratio), semantic coher-
ence (sentence-level embedding similarity), and fluency (perplexity score),
description is given in Table 3. Each justification was assessed individually,
and the resulting metric distributions are visualized in Figure 5.

The automatic evaluation of AURA’s generated justifications reveals en-
couraging results across multiple dimensions of textual quality. The average
readability score was 27.28, which is consistent with the expected complexity
of formal cyber threat intelligence reports. This level of readability indicates
that the language is appropriately technical and tailored for professional an-
alysts rather than general audiences. Lexical richness, measured through a
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Table 3: Descriptions of evaluation metrics used to assess justification quality.

Metric Description

Readability
(Flesch Reading
Ease) [33]

Measures ease of understanding based on sentence
length and syllable count. Higher scores indicate
more readable text.

Lexical Richness
(TTR)

Type-Token Ratio calculates the ratio of unique
words to total words in the justification. Higher
TTR values indicate more varied vocabulary.

Embedding Co-
herence

Computes average cosine similarity between sen-
tence embeddings using a pre-trained transformer.
Higher values suggest better contextual and se-
mantic flow.

Perplexity score Measures fluency based on how well a generative
model predicts the sequence. Lower values indicate
more natural and fluent language.
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Figure 5: Evaluation of justification quality using four linguistic and semantic measures.
Each bar represents the raw score for an individual justification, visualized using unique
colors and hatch patterns for clarity.
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Type-Token Ratio (TTR) of 0.67, reflects the use of diverse vocabulary, sug-
gesting that the justifications are informative and avoid excessive repetition.
Embedding coherence yielded an average cosine similarity of 0.33 between
sentence embeddings, indicating moderate to strong semantic flow and con-
textual alignment across sentences. Finally, the average perplexity score
of 57.05, while higher than general-domain benchmarks, remains acceptable
for domain-specific narratives where specialized terminology and structured
reasoning are common. These results collectively affirm that AURA’s justi-
fications are not only technically sound but also linguistically coherent and
suitable for expert interpretation.

6.1.2. LLM-as-Judge Evaluation
LLMs have been increasingly used as automated evaluators or "judges"

for assessing the quality of generated content, offering scalable and consistent
evaluations [9, 35]. To complement the automated metrics, we also employed
a language model-based evaluation. Specifically, gpt-4o was prompted to act
as an expert evaluator, scoring each justification on a 1–10 scale across four
dimensions: fluency, clarity, coherence, and informativeness. The model was
given the following prompt:

Prompt to LLM-as-Judge

You are an expert language evaluator. Rate the
following paragraph on a scale of 1 to 10 for each
of the following:
1. Fluency (grammar and flow)
2. Clarity (ease of understanding)
3. Coherence (logical structure and topic continuity)
4. Informativeness (useful and relevant information)

Paragraph:
"""<paragraph>"""

Return your answer as a JSON object:
{

"fluency": number,
"clarity": number,
"coherence": number,
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"informativeness": number
}

The average scores were notably high: 8.87 for fluency, 7.03 for clarity, 8.73
for coherence, and 8.6 for informativeness, indicating consistent linguistic
and semantic quality. Figure 6 presents a consolidated view of these scores,
highlighting consistent trends across justifications and test samples.
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Figure 6: Combined LLM-as-Judge evaluation of justifications across four dimensions
(1–10 scale). Each line represents a metric evaluated per justification. Fluency is empha-
sized for visual clarity.

These two perspectives together affirm that AURA produces justifications
that are not only grounded in threat intelligence evidence but are also lin-
guistically fluent, semantically coherent, and informative—critical attributes
that enhance analyst trust and support operational decision-making in cyber
threat analysis workflows.

6.2. Case Study
To demonstrate AURA’s real-world attribution capabilities, we present a

case study derived from publicly available threat intelligence reports. This
examples showcase AURA’s ability to perform both group-level and nation-
level attribution by synthesizing technical indicators (e.g., TTPs, IOCs, tool-
ing) with contextual signals (e.g., geography, targeting, and infrastructure).
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It also shows distinct analytical challenges, such as actor overlap and de-
ceptive infrastructure, providing a realistic evaluation of AURA’s multiagent
reasoning performance.

6.2.1. APT36 – Youth Laptop Scheme Phishing Campaign
This case study focuses on a cyber espionage campaign uncovered by

Cyfirma during March 2025, where adversaries exploited Pakistan’s youth
laptop scheme as a lure to target sensitive Indian sectors. The campaign
used decoy documents and spear-phishing tactics to compromise users across
defense, aerospace, education, and government domains.

Threat Indicators. The operation featured a mix of phishing (T1566), ma-
licious PowerShell execution (T1059.001), and encrypted communication
channels (T1573). Tools deployed included Crimson RAT, Poseidon, and
ElizaRAT, all of which enabled remote access, clipboard monitoring, and
location tracking (T1115, T1430). Infrastructure impersonated Indian gov-
ernment themes (e.g., email.gov.in.gov-in.mywire.org) to enhance so-
cial engineering effectiveness. A summary of the observed threat artifacts is
presented in Table 4.

Table 4: Extracted Threat Artifacts from the Youth Laptop Scheme Campaign

Malware/Tools Crimson RAT, ElizaRAT, Poseidon
Key TTPs T1059.001 (PowerShell), T1071 (Web Protocols),

T1115 (Clipboard Capture), T1204 (User Execu-
tion), T1409 (Stored App Data), T1430 (Location
Tracking), T1546.013 (PowerShell Profile), T1566
(Phishing), T1573 (Encrypted Channel)

IOCs 88[.]222[.]245[.]211,
email[.]gov[.]in[.]gov-in[.]mywire[.]org,
postindia[.]site,
287a5f95458301c632d6aa02de26d7fd9b63c6661af33
1dff1e9b2264d150d23,
cbf74574278a22f1c38ca922f91548596630fc67bb2348
34d52557371b9abf5d

Targets India, Government agencies, Aerospace, Defense
contractors, Educational institutions, Military

Campaign Timeline Active during 2024–2025
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AURA Attribution Output. AURA attributed this campaign to APT36
(Transparent Tribe) as the primary actor, with APT37 listed as a secondary
candidate. Group-level attribution was driven by the use of Crimson RAT,
themed phishing infrastructure, and PowerShell-based payloads—hallmarks
of APT36 operations. Nation-level attribution points to Pakistan, as APT36
is consistently associated with Pakistan-based interests targeting India.

AURA Attribution Justification

APT36, also known as Transparent Tribe, has a history of targeting
government and military organizations in India... The use of Indian-
themed infrastructure such as email[.]gov[.]in[.]gov-in[.]mywire[.]org and
postindia.site further aligns with APT36’s known campaigns.

Analytical Insight. APT36 has long exploited geopolitical narratives for
social engineering, including student- or education-themed phishing lures.
The use of Crimson RAT, India-themed infrastructure, and educational
targeting strengthens attribution confidence. Public threat intelligence by
Cyfirma [24] directly links this campaign to APT36. Furthermore, MITRE
ATT&CK documentation [1] confirms the group’s historical use of phishing,
PowerShell exploitation, and targeting of Indian defense and government
entities. APT37 was considered a secondary actor due to partial TTP
overlap (e.g., encrypted channels and PowerShell), but lacks historical focus
on Indian targets. This case reinforces AURA’s effectiveness in leveraging
contextual indicators, particularly infrastructure and thematic deception,
for attributing threats to nation-linked actors.

This case study shows that AURA effectively handles the complexity
of real-world attribution. It demonstrates reliable, interpretable, and
actor-aligned outputs across diverse campaigns. The system’s integration of
structured knowledge, contextual retrieval, and natural language justification
makes it a valuable decision-support tool for cyber threat analysts.

6.3. Representative Examples of Overlapping Attribution
AURA exhibits robustness in complex attribution settings where behav-

ioral indicators are ambiguous or shared among multiple threat groups. This
is especially evident in cases where the groups originate from the same coun-
try. This is reflected in the consistent gains observed when evaluating top-2
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accuracy instead of top-1, showing that AURA often captures the correct
actor even when the top prediction is a closely related peer group.

Such overlaps are common in real-world cyber operations, where nation-
state-sponsored APT groups may share tooling, infrastructure, or strategic
objectives. Table 5 summarizes two illustrative examples from our evaluation.

Table 5: Top predictions for ambiguous attribution cases.

Report File True Actor Top-1 Pred. Top-2 Pred.
Trend Micro’s threat
report on Pawn
Storm [32]

APT28 APT29 APT28

Zscaler’s threat re-
port on the Lazarus
Group [36]

Lazarus
Group

Kimsuky Lazarus
Group

Justification for Trend Micro’s Threat Analysis

APT29 is known for targeting government, military, and energy sectors,
aligning with the observed targets like Defense, Embassies, and Gov-
ernments. Their typical tactics include T1041: Exfiltration Over C2
Channel, T1078: Valid Accounts, and sophisticated phishing (T1566).
They have historically used application layer protocols for communica-
tion (T1071) and are linked to similar geographic regions like Europe
and North America. APT28, also known as Fancy Bear, is another
possibility due to its known use of Tactics, Techniques, and Procedures
(TTPs) such as use of Valid Accounts (T1078) and Brute Force (T1110),
and targeting of governmental and military entities. They have also been
historically associated with targeting in Middle East, Europe, and North
America. Both actors have shown capability and intent to operate across
the specified regions and sectors.

Justification for Zscaler’s Threat Analysis

The primary actor Kimsuky is known for targeting South Korea and
using spear phishing (T1566) and application layer protocol (T1071)
techniques. They have historically focused on South Korean entities.
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Moreover, the inclusion of South Korea as a target and use of email
domains similar to Naver, a popular South Korean email provider, aligns
with Kimsuky’s modus operandi. The secondary actor Lazarus Group is
also possible given their involvement in cybercrime activities including
cryptocurrency theft. Lazarus has a history of targeting South Korea
and using similar TTPs. However, Kimsuky is ranked primary due to
the specific targeting associated with South Korean domains and mail
services.

In the first case, AURA predicted APT29 as the primary actor and
APT28 as the secondary, while the ground truth was APT28. The justi-
fication notes APT29’s alignment with targets such as defense and embassies
using TTPs like T1041, T1078, and T1566, while also acknowledging that
APT28, known for T1078 and T1110, is a credible candidate due to simi-
lar geopolitical targeting. Both actors, affiliated with Russia, have histori-
cally operated across Europe and North America, often blurring attribution
boundaries.

In the second case, AURA ranked Kimsuky higher than the ground truth
Lazarus Group. The justification emphasizes Kimsuky’s use of spearphishing
(T1566) and infrastructure mimicking South Korean email services, partic-
ularly Naver-like domains, which closely matched the campaign’s charac-
teristics. Although Lazarus Group was also identified as a plausible actor
due to its overlapping TTPs and history of targeting South Korea, Kimsuky
was favored because of its stronger alignment with domain-specific artifacts.
Both groups are North Korea-affiliated and share similar targeting patterns,
making attribution inherently ambiguous in such scenarios.

These examples emphasize AURA’s robustness: even when ambiguity
arises from overlapping modus operandi, AURA surfaces both likely actors,
enabling analysts to consider high-confidence alternatives within the same
geopolitical context. Rather than misattributing entirely, AURA reflects
the behavioral convergence between actors, reinforcing its practical utility
in real-world, multi-campaign threat intelligence workflows.

Overall, the findings suggest that the AURA framework demonstrates
competitive accuracy while also incorporating key human-centric elements
such as modularity, interpretability, and robustness. These characteristics
make it well-suited for operational use in threat intelligence and attribution
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workflows.

7. Limitations and Future Directions

While AURA demonstrates strong performance, several limitations re-
main. First, the current evaluation uses a relatively small test set com-
prising 30 threat reports. The limited test size results from our effort to
exclude samples that may have been part of LLM training, ensuring an unbi-
ased evaluation based on post-cutoff threat reports. Although sufficient for
controlled analysis, a larger and more diverse evaluation set is essential for
broader generalizability. In future work, we plan to scale the evaluation using
an expanded testbed that includes both public and proprietary datasets to
validate AURA across varied recent threat scenarios.

Further, the Justification Agent currently provides textual explanations
without evidence weighting. Future versions may benefit from incorporating
explicit reasoning chains or confidence scoring to support analyst decision-
making.

We also plan to evaluate the AURA framework using open-source LLMs
to promote transparent and reproducible evaluation of intelligent systems. A
further extension is to expand AURA’s capabilities to support more granular
levels of attribution, including intrusion set–level and campaign–level link-
ing, as well as to assess its performance on multilingual threat reports and
streaming data.

8. Conclusion

In this work, we introduced AURA (Attribution Using Retrieval-
Augmented Agents), a retrieval-augmented, multi-agent framework for cy-
ber threat attribution that combines the reasoning capabilities of LLMs
with structured threat intelligence. AURA demonstrated strong performance
across group-wise and nation-wise attribution tasks, producing accurate and
interpretable results supported by contextual justifications. Our experiments
with black-box LLMs validate the effectiveness of modular agent design and
evidence-guided reasoning. While the current evaluation is constrained by
dataset size, AURA establishes a strong foundation for scalable and trans-
parent attribution workflows. Future directions include the use of larger
datasets, more granular attribution, and deeper justification of attribution
decisions.
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