
ar
X

iv
:2

50
6.

10
12

5v
1

 [
cs

.C
R

]
 1

1
Ju

n
20

25

D-LIFT: Improving LLM-based Decompiler Backend via Code Quality-driven
Fine-tuning

Muqi Zou1, Hongyu Cai1, Hongwei Wu1, Zion Leonahenahe Basque2, Arslan Khan3,
Berkay Celik1, Dave (Jing) Tian1, Antonio Bianchi1, Ruoyu (Fish) Wang2, and Dongyan Xu1

1Purdue University
2Arizona State University

3Pennsylvania State University
1{zou116, hongyu, wu1685, zcelik, daveti, antoniob, dxu}@purdue.edu

2{zbasque,fishw}@asu.edu
3arslankhan@psu.edu

Abstract—Decompilers, which reconstruct human-readable
source code from binary executables, are vital to many security
tasks. Yet, despite recent advances, their output often suffers
from syntactic and semantic errors and remains difficult to read.
Recently, with the advent of large language models (LLMs),
researchers began to explore the potential of LLMs to refine
decompiler output. Nevertheless, our study of these approaches
reveals significant limitations, such as introducing new errors
and relying on unreliable accuracy validation.

In this paper, we present D-LIFT, an automated decompiler
backend that harnesses and further trains LLMs to improve
the quality of decompiled code via reinforcement learning
(RL). Unlike prior work that overlooks preserving accuracy,
D-LIFT adheres to a key principle for enhancing the quality of
decompiled code: preserving accuracy while improving readabil-
ity. Central to D-LIFT, we propose D-SCORE, an integrated
quality assessment system to score the decompiled code from
multiple aspects. In line with our principle, D-SCORE assigns
low scores to any inaccurate output and only awards higher
scores for readability to code that passes the accuracy check.
Specifically, D-SCORE first verifies the syntactic and semantic
correctness via the compiler and symbolic execution; only if
a candidate is deemed accurate, it then evaluates readability
using established metrics to compare the LLM output with the
original decompiled code. The score will then be fed back to the
LLM for fine-tuning. Our implementation, based on Ghidra and
a range of LLMs, demonstrates significant improvements for
the accurate decompiled code from the coreutils and util-linux
projects. Compared to baseline LLMs without D-SCORE-driven
fine-tuning, D-LIFT produces 55.3% more improved decompiled
functions, as measured by D-SCORE. Moreover, when selecting
the best output among the baseline model, the fine-tuned model,
and the original decompiled code, our fine-tuned model yields
the best result for 47.3% of functions, whereas the baseline
model does so for only 20.9%.

1. Introduction
Binary decompilation is the process of generating high-

level source code, with human-comprehensible variables,
control flows, and data structures from a binary program.
Decompilation has found extensive security applications,
such as software reverse engineering [60], vulnerability
discovery [22], [40], program patching and hardening [48],
and cyber forensics [9]. However, source code generated
by decompilers very often has problems in the aspects of
syntactic and semantic correctness [11], [16], [37], [72]: A
piece of decompiled code may not compile or preserve
the semantics of the original binary. Moreover, despite
advances in the past decade [7], [8], [12], [33], [35], [66],
[67], [70], [71], even with syntactic and semantic correctness,
the decompiled code may still be hard for human users to
read. In fact, a recent survey [60] found that roughly 70%
of reverse engineers still prefer working with the assembly
code, due to the incorrectness (i.e., inaccuracy) and/or low
readability of the decompiled source code.

In recent years, with the advent of Large Language
Models (LLMs), researchers started to explore the potential
of LLMs to generate or improve decompiled code [18], [25],
[28], [29], [55], [63], [64], [65]. For example, to generate
more readable decompiled output, LLM4Decompile [55]
introduces supervised fine-tuning (SFT) for the training, and
DeGPT [25] introduces a three-role mechanism to help LLMs
inference. These LLM-assisted decompilation improvement
tools, such as LLM4Decompile and GhidraMCP [31], have
rapidly gained attention within the security community.
For instance, LLM4Decompile was ranked in 4th place in
GitHub Day Trending.

Unfortunately, our analysis of these state-of-the-art,
LLM-based decompiled code improvement methods shows
significant limitations. For LLM4Decompile, our study
(detailed in Section 6.1.3) reveals that, even when the
original decompiled code is error-free, new errors are found
in 93.2% of its generated functions. For DeGPT, its semantic

https://arxiv.org/abs/2506.10125v1

correctness check is non-deterministic and does not enhance
the LLM’s inherent capability to generate more accurate
decompiled code. Moreover, our investigation uncovers a
unique challenge, multiple valid ground truth possibilities, in
improving LLMs for decompilation, as detailed in Section 3.

To improve the overall quality while preserving accuracy
of the decompiled code using LLMs, we propose D-LIFT1,
an automatic decompilation pipeline with a decompiler front-
end and an LLM back-end, which is fine-tuned to improve the
quality of the decompiled code. D-LIFT takes a policy model
(i.e., baseline model), a decompiler, and a set of real-world
binaries as inputs, and provides a code quality-enhanced
model to generate more readable decompiled code while
preserving accuracy. Unlike prior work that overlooks preserv-
ing accuracy, D-LIFT follows a key principle for improving
the quality of decompiled code: preserving accuracy while
improving readability. To this end, we propose D-SCORE,
a novel code quality assessment function, which provides
comprehensive scoring for LLM-generated decompiled code
based on accuracy and readability measurements. Specifically,
to assess the accuracy of decompiled code, D-SCORE employs
a compiler to generate the syntax feedback and symbolic
execution to compare the semantics of the generated code
against the corresponding function in the original binary.
To assess the readability of decompiled code, D-SCORE
computes a score by applying two established readability
metrics to compare the LLM’s output with the original
decompiled code. By leveraging D-SCORE, D-LIFT enhances
the LLMs’ ability to generate higher-quality decompiled code.

We implement D-LIFT using Ghidra [3] and a number of
LLMs, and evaluate D-LIFT using functions from the core-
utils [13] and util-linux [58] projects. Overall, as measured by
D-SCORE, D-LIFT can improve the quality of 55.3% more
functions, compared to the baseline LLMs without D-SCORE-
driven fine-tuning. Interestingly, we observe a significant
“improve-ability gap” between the accurate and inaccurate
decompiled functions originally produced by the decompiler.
All LLMs, including baseline and fine-tuned models, face
challenges in improving inaccurate decompiled code, with
improvement rates of just 8.02% for the originally inaccurate
functions compared to 86.2% for the originally accurate
ones. Moreover, for functions that are accurately decompiled,
when choosing the best output among the baseline model
(i.e., decompiler+LLM without fine-tuning), the fine-tuned
model (i.e., D-LIFT), and the original decompiled code, we
find that on average, 47.3% of the top-scoring functions come
from D-LIFT, whereas only 20.9% come from the baseline
model. Overall, our main contributions are:

∙ We design D-LIFT, an automatic decompilation pipeline
with an LLM-based back-end that is fine-tuned using
reinforcement learning to improve the quality of the
decompiled code, adhering to the principle of preserving
accuracy while improving readability.

∙ We propose D-SCORE, an integrated scoring mechanism
designed specifically for decompilation recovery tasks.

1. “D-LIFT” reflects the decompilation pipeline with a “Decompiler”
front-end and an “LLM with Fine Tuning” back-end.

The framework incorporates existing analytical tools
and proven metrics to deliver a balanced evaluation of
decompiled code, assessing both syntactic and semantic
correctness as well as readability properties to provide
effective training feedback to the LLM.

∙ We implement D-LIFT based on Ghidra and fine-tune
three LLMs, and achieve significant decompiled code
improvement for widely used benchmark functions.

2. Background and Motivation
2.1. LLM application and training
2.1.1. Applications of LLMs. Large language models
(LLMs) have seen wide adoption and investigation, par-
ticularly in the domain of code generation. Industry has
released numerous LLM-powered tools, e.g., GitHub Copi-
lot [19], Google Gemini Code Assistant [20], and Meta
LLaMA Coder [50], to streamline different programming
tasks. Academia has mirrored this enthusiasm: the number of
publications on code generation rose from 11 in 2022 to 75
in 2023 and then to 140 in 2024—a 1,272% increase [27]. In
particular, LLMs have demonstrated promising capabilities
across a range of code-to-code generation tasks, including
code translation, code completion, automated bug fixing
(code repair), and mutant generation. In the security domain,
beyond LLM4Decompile, reverse-engineering teams have
also leveraged LLMs via Model Context Protocol (MCP)
servers to infer variable and function names, producing more
readable decompiled output; one such tool, GhidraMCP [31],
garnered 4.3k stars on GitHub within its first month after
release.
2.1.2. Training LLMs. During LLM training, the most
common strategy is to begin with a broad pre-training phase
and then follow up with task-specific fine-tuning [36]. The
pre-training allows the model to learn linguistic knowledge,
such as C coding conventions, into its parameters. Fine-tuning
then adapts the pre-trained model to the specific task using
two main approaches: instruction tuning and reinforcement
learning.
Instruction tuning runs the supervised learning paradigm
aiming to align the model’s output with a single desired
completion. For instance, LLM4Decompile applies Super-
vised Fine-Tuning (SFT) to align the desired output with the
original source code.
Reinforcement learning, on the other hand, refines the
model through iterative actions and feedback: the model
generates candidate output(action), which will be assessed
by a reward function that provides feedback, guiding the
model toward higher-quality results. In code generation, the
feedback usually comes from frameworks, such as unit tests
and compilers. Some RL policies, such as PPO [52], also
require a single ideal completion to train a critic model
that predicts long-term rewards, helping the model choose
better actions over time. More recently, Group Relative Policy
Optimization (GRPO) [53] achieved promising results on
math-related tasks. By normalizing the rewards of candidate

outputs instead of relying on a critic model, GRPO eliminates
the limitation of accepting only one ideal completion.

2.2. Decompiled Code Accuracy

The accuracy of the decompiled code, including recompi-
lation syntactic failures and semantic deviations between the
decompiled code and the original source code, was first sys-
tematically evaluated using Equivalence Modulo Input (EMI)
tests [37]. Since then, various methods, including symbolic
execution [72], random testing [11], fuzzing [68], and manual
inspection [16], have been employed to assess decompiler
accuracy. Within these studies, the definition of semantic
deviation varies across studies. For example, one [72] may
compare function return values between the decompiled code
and the binary, while the other [11] may instrument global
variables and employ checksum comparisons to evaluate
semantic correctness against the original source code.

2.3. Decompiled Code Readability

Quantitative assessment of code readability has long
been a topic in software engineering. Buse and Weimer
(B&W) [10] led the way by recruiting 120 human evaluators
to rate 100 short code snippets, then building a mathematical
model, featuring metrics like the number of variables per
function, to evaluate the readability.

In the decompilation field, R2I [17] was the first approach
to measure readability specifically for decompiled code. It
defines a set of features that can be categorized into five
feature groups: code quality, user preference, conflicting
features, erroneous syntax, and general features. By analyzing
these features extracted from the code, it provides relative
readability scores across different decompilers. Note that,
since R2I focuses on the comparison across different decom-
pilers, many of its features cannot be generically applied to
the LLM-generated code.

2.4. Motivations

Although LLM-based code generation is increasingly
prevalent, using it to improve decompiled code still faces
major challenges.

LLM causes inaccuracy of decompiled code. Though
LLMs are widely used for code enhancement [27], they
are known to introduce inaccuracies in code generation
tasks [46]. In the decompiled-code improvement scenario,
we also observe that LLM-refined output frequently shows
new errors. Here, we follow the previous work to define the
inaccuracy in the decompiled code as either syntax errors
that prevent successful compilation or semantic deviations
between the LLM-generated code and the original binary’s
behavior. As shown in Table 3, an average 44.2% of functions
that were originally accurate become inaccurate after LLM
processing. For the root cause, as the example shown later
in Figure 8, we observed that LLMs frequently make errors
on small details, such as omitting brackets or instructions,

1 int main() {
2 char a[100];
3 unsigned int b=0;
4 printf("Enter text:");
5 if(fgets(a,sizeof(a),stdin)

!= NULL) {
6 while(b<10){
7 printf("%c",a[b]);
8 b++;
9 }

10 }
11 else
12 return 2;
13 return 1+1+1;
14 }

1 int main() {
2 char c[100];
3 int d=0;
4 printf("Enter text:");
5 if(fgets(c,sizeof(c),

stdin) != NULL) {
6 for(d=0;d<10;d++){
7 printf("%c",c[d]);}
8 } else {
9 return 1+1;

10 }
11 return 3;
12 }

Figure 1: Two code snippets generate the same binary code. Notably,
differences appear in every line except the first and fourth lines.

or referencing the wrong variable, that are hard to spot yet
vital for accuracy.

These observations reveal that though LLMs may improve
readability, they often introduce incorrectness of decompiled
code, a factor that prior studies [11], [16], [37], [68], [72]
have identified as vital for effective decompilation. Hence,
we propose an overarching principle for improving decom-
piled code quality: preserving accuracy while improving
readability.

However, none of the existing work improves LLMs’
code correction (i.e., accuracy) capability. Specifically,
LLM4Decompile, while effective at boosting readability,
compromises the accuracy of the decompiled code, as shown
in Table 3. DeGPT, meanwhile, is unable to improve the
LLM’s inherent generation capabilities, because its fixes
occur only at the inference stage rather than during training.
These insights lead us to design a framework that enhances
LLMs’ ability to correct errors in the decompiled code while
improving its readability.
3. Design Challenges

Section 2.4 motivates the need to enhance the LLM in
decompiled code improvement. In this section, we summarize
the design-level challenges.

Challenge 1: LLM Improvement Method Selection.
Improving the code generation capability of LLMs [15],

[32], [45], [54], [55] is not new. However, many of them
are challenging to adapt for decompiled code improvement.
Unlike typical code improvement tasks, decompiled-code
enhancement faces a unique challenge: the existence of
multiple valid ground truths. Specifically, a single binary may
be compiled from multiple semantically equivalent source
programs, each of which should be considered a valid ground
truth. For instance, as illustrated in Figure 1, two different
source files, each around 300 characters long and with an edit
distance of 74, produce the same binary output using GCC [1]
with -O2 optimization. In practice, however, researchers
typically have access to only one of these source variants
as the ground truth. Moreover, many fine-tuning methods,
such as supervised fine-tuning (SFT) and the actor-critic
paradigm in RL, accept only a single reference to compute
the training loss, overlooking the possible existence of a full

set of correct alternatives. This constraint may degrade a
model’s effectiveness, as exemplified by LLM4Decompile’s
use of SFT on the source code during training.

Challenge 2: Assessment of decompiled code quality.
The assessment of decompiled code quality should reflect

the principle of preserving decompiled code accuracy while
improving readability. To the best of our knowledge, there is
no existing code quality assessment function that addresses
these specific requirements.

For accuracy, as introduced in Section 2.2, we mainly
focus on two aspects, syntactic correctness and semantic
correctness. Since the assessment function must be determin-
istic, methods such as fuzzing [68] and its derivatives, like
MSSC [11], are excluded. Additionally, to ensure applicability
without the need for source code, we exclude approaches
that rely on source-dependent checks, such as unit tests
or Alive2 [39]. That leaves D-helix [72], which uses
an iterative re-compiler to examine the syntax errors and
symbolic execution to check the semantics against the origi-
nal binary. However, integrating D-helix directly into our
framework introduces its own challenge. Notably, D-helix
still relies on certain decompiled code output artifacts, e.g.,
external function calls, to analyze. Since LLM-generated
code frequently omits instructions, these artifacts may be
missing or unreliable, undermining D-helix’s effectiveness.

For readability, existing metrics [10], [42], [47], [51] each
have limitations, e.g., ignoring decompiler-specific artifacts,
when applied directly to decompiled code. To the best of our
knowledge, R2I [17] is the only metric tailored specifically for
decompiled output. However, since it’s a relative measure,
whose features are derived from multiple decompilers, it
cannot assign an absolute score to standalone LLM-generated
code. For example, the feature, “number of unnecessary goto
labels”, is calculated by contrasting angr [61] or RetDec [5]
outputs against those from Ghidra [3] and Hex-Rays [2],
which cannot be computed when only one decompiler’s
output is given.

In summary, our principle, preserving accuracy while
improving readability, cannot be satisfied by any single metric
currently available.
4. Design

D-LIFT is an automatic decompilation pipeline that
consists of a decompiler front-end and an LLM back-end
capable of improving the quality of decompiled code.
Figure 2 illustrates the workflow by which D-LIFT fine-
tunes an LLM to produce improved decompiled code output.
Three inputs are needed: a policy model (i.e., LLM waiting
for training), a set of training binaries, and a decompiler. To
improve the policy model’s capabilities of generating better
decompiled code, D-LIFT employs reinforcement learning
(Section 4.1). To guide this training, D-LIFT introduces
a multi-aspect assessment/reward metric, D-SCORE, that
evaluates the LLM’s output code on both accuracy and
readability (Section 4.2). Specifically, for accuracy, D-SCORE
adopts D-helix’s stepwise approach: first verifying syntax
(Section 4.2.1), then validating semantics against the

Training Dataset

④ Reward Normalization �̂�,� = �̃� =
��−mean(�)

std(�)

D-SCORE
(see Section 4.2) Candidate Refinements

o1, o2, ..., o|I|

0.6

Raw Rewards
r1, r2, ..., r|I|

0.80.6

Policy ModelDecompiled
OutputBinary File

Heuristic
Decompiler

① Heuristic Decompilation ② Policy Model Inference

③ Reward CalculationReference

⑤
 M

od
el

 U
pd

at
e

w
ith

 G
RP

O

Figure 2: This figure shows how D-LIFT fine-tunes the policy model (i.e.,
the baseline model). Specifically, it applies GRPO to overcome the inherent
complexity of decompilation tasks, where single decompiled code segments
can correspond to multiple semantically equivalent source representations.

original binary (Section 4.2.2). Only if a candidate passes
these accuracy checks does D-SCORE move on to assess
readability (Section 4.2.3). Once the training is complete,
D-LIFT outputs a fine-tuned LLM capable of generating
decompiled code with improved accuracy and readability.

4.1. LLM Fine-Tuning

The challenge described in Section 3 highlights a critical
limitation in current approaches: decompiled code can map
to multiple semantically equivalent source representations,
each representing a valid ground truth. This multiplicity
poses significant training difficulties for supervised fine-
tuning (SFT) approaches, such as LLM4decompile, which
are designed to work with only one correct answer. Although
reinforcement learning generates multiple candidates during
training, theoretically providing access to various valid solu-
tions, conventional RL policies maintain the single ground
truth constraint when computing the loss. Fortunately, Group
Relative Policy Optimization (GRPO) [53] overcomes this
constraint by generating the loss from the normalized rewards
across multiple candidate outputs. ,

Figure 2 illustrates how D-LIFT integrates GRPO into
our workflow. 1 Given a training binary, denoted as 𝑏𝑖𝑛,
D-LIFT invokes the heuristic decompiler to produce a
original decompiled output, denoted as 𝑜𝑔 . 2 Using the
𝑜𝑔 as input, the policy model generates a set of candidate
refinements,{𝑜1, 𝑜2, ...}. 3 For each candidate, 𝑜𝑖, D-LIFT
computes a reward, 𝑟𝑖, using D-SCORE (see Section 4.2
for details). 4 Next, GRPO normalizes these rewards, 𝐫
= {𝑟1, 𝑟2, ...} within each candidate group according to its
standard formulation:

�̂�𝑖,𝑡 = �̃�𝑖 =
𝑟𝑖−mean(𝐫)

std(𝐫)
(1)

5 Finally, GRPO uses these normalized rewards, �̂�𝑖,𝑡, to
compute the loss for fine-tuning the model as follows:
𝐽GRPO(𝜃) = 𝔼𝑞,{𝑜𝑖}𝐺𝑖=1∼𝜋𝜃old
⎡
⎢⎢⎣
1
𝐺

𝐺∑
𝑖=1

1
||𝑜𝑖||

|𝑜𝑖|∑
𝑡=1

min
(
𝑟𝑡(𝜃)�̂�𝑖,𝑡,clip

(
𝑟𝑡(𝜃),1− 𝜖,1+ 𝜖

)
�̂�𝑖,𝑡

)⎤⎥⎥⎦
−𝛽𝐷KL

(
𝜋𝜃‖𝜋ref

) (2)
Given that the decompilation task accepts multiple valid
ground truths, D-LIFT eliminates the KL-divergence weight
by setting 𝛽 to zero, thereby removing dependence on a
single reference solution. In practice, setting 𝛽 to zero
not only reduces memory and computational overhead but
also improves training effectiveness, in line with recent
findings [24], [38]. The additional variables referenced in
Equation (2) serve to modify the policy model parameters,
with detailed definitions available in the original GRPO
research publication [53].

4.2. Reward Function Design

Figure 3 shows the overall procedure of D-SCORE. As a
reward function, D-SCORE takes three inputs: the original
decompiled code, 𝑜𝑔 , the original binary, 𝑏𝑖𝑛, and a candidate
refinement from the policy model, 𝑜𝑖, and outputs a compre-
hensive score 𝑟𝑖 reflecting both accuracy and readability of
𝑜𝑖. Formally, 𝑟𝑖 is defined as follows:

𝑟𝑖 = 𝟙(cond𝑠𝑦𝑛) ⋅
(
𝑅𝑠𝑦𝑛

)
+𝟙(¬ cond𝑠𝑦𝑛) ⋅ (𝟙(cond𝑠𝑒𝑚) ⋅𝑅𝑠𝑒𝑚(𝑜𝑖, 𝑏𝑖𝑛)
+𝟙(¬ cond𝑠𝑒𝑚) ⋅𝑅𝑟𝑒𝑎𝑑(𝑜𝑖, 𝑜𝑔))),

where cond𝑠𝑦𝑛 =
(
𝑅𝑠𝑦𝑛(𝑜𝑖) == 𝑠𝑦𝑛𝑝𝑒𝑛

)
,

cond𝑠𝑒𝑚 =
(
𝑅𝑠𝑒𝑚(𝑜𝑖) == 𝑟𝑒𝑡𝑝𝑒𝑛||𝑐𝑎𝑙𝑙𝑝𝑒𝑛)

(3)

Within the above equation, 𝑋𝑝𝑒𝑛 represents the penalty score
because of error 𝑋, and 𝑅𝑌 represents the reward return
from each specific check in field 𝑌 . Note that, following our
principle, we also define:

𝑠𝑦𝑛𝑝𝑒𝑛 < 𝑟𝑒𝑡𝑝𝑒𝑛 < 𝑐𝑎𝑙𝑙𝑝𝑒𝑛 < 𝑚𝑖𝑛(𝑅𝑟𝑒𝑎𝑑) (4)
To generate 𝑟𝑖, specifically, 1 D-SCORE checks for syntax
errors (See Section 4.2.1). If any is found, it returns a
syntax error score 𝑠𝑦𝑛𝑝𝑒𝑛. 2 Otherwise, it verifies semantic
equivalence between 𝑜𝑖 and 𝑏𝑖𝑛. If 𝑜𝑖 fails the semantic
check, D-SCORE returns a score, 𝑅𝑠𝑒𝑚, based on the sym-
bolic matching with the 𝑏𝑖𝑛 (See Section 4.2.2). 3 Only
when 𝑜𝑖 passes both syntax and semantic checks, D-SCORE
defers to the readability component and returns a readability
score,𝑅𝑟𝑒𝑎𝑑 (See Section 4.2.3).
4.2.1. Syntax Metric. Since D-LIFT uses D-helix’s frame-
work to examine accuracy, D-SCORE adopts D-helix’s
Recompiler. As an iterative recompilation tool, Recompiler
automatically initializes undefined variables, injects required
system libraries, and translates special pseudo-instructions

④ Reward Calculation

4.2. Reward Function Design
?? shows the whole pipile of D-SCORE. As a reward

function, D-SCORE takes three inputs: the raw decompiled
code, �� , the origin binary, ���, and a candidate refinement
from the policy model, ��, and outputs an absolute score
�� according to our principle of preserving accuracy while
improving readability. Formally, �� is defined as follows:

�� = � (����,����,�����) (3)
�� = �(cond���) ⋅

(
����

)
+�(¬ cond���) ⋅ (�(cond���) ⋅����(��,���)
+�(¬ cond���) ⋅�����(��,��))),

where cond��� =
(
����(��) == ����������

)
,

cond��� =
(
����(��) == ����������||����������)(4)

Within the above equation, �������� represents the penalty
score because of error �, and �� represents the reward return
from each specific check in field � . Note that, following our
principle, we also define:

���������� < ���������� < ���������� < ���(�����) (5)
Specifically, D-SCORE first checks for syntax errors (See
Section 4.2.1). If any is found, it assigns a syntax error
score ����������. Otherwise, it verifies semantic equivalence
between �� and ���. If �� fails the semantic check, D-SCORE
assigns a score, ����, based on the symbolic matching
with the ��� (See Section 4.2.2). Only when �� passes
both syntax and semantic checks, D-SCORE defers to the
readability component and assigns a readability score,�����(See Section 4.2.3).
4.2.1. Syntax Metric. Since D-LIFT uses D-helix’s frame-
work to examine accuracy, D-SCORE adopts D-helix’s
Recompiler. As an iterative recompilation tool, Recompiler
automatically initializes undefined variables, injects required
system libraries, and translates special pseudo-instructions
(e.g., CONCAT) into function calls. For each candidate
code �� from the policy model, D-SCORE submits it
to Recompiler and obtains a syntax score, ����, based
on Recompiler’s feedback. Specifically, D-SCORE assign
����(��) to ���������� when the �� cannot be recompiled and
0 otherwise. Formally:

����(��) =
{

����������, if �� cannot be compiled.
+0, otherwise (6)

(7)
Note that ���������� contributes directly to D-SCORE (as
shown in Equation (4)), ensuring a clear penalty for any
syntax error.
4.2.2. Semantic Metric. Once the �� passes the syntax
check, D-SCORE runs an extended version of D-helix to
conduct the semantic check between the original binary and
��’s IR. More than the behavior of return values, we also

1: BB_0_2_1 = (2 32bits)
2: BB_0_2_3 = (1 32bits)
3: BB_0_2 = (ITE a==0x0f
4: BB_0_2_1 BB_0_2_3)
5: BB_0_1 = (2 32bits)
6: BB_0 = (ITE a==0x07
 BB_0_1 BB_0_2)

a==0x0fBB_2:

BB_0:

BB_1:

N Y

YN

a == 0x07

ret 1

ret 1ret 0
BB_1:BB_3:

Pseudo CodeConstraint Graph Return Value

Symbolic-Model-Ret

a==0x0fBB_2:

BB_0:

BB_1:

N Y

YN

a == 0x07

ret 2

ret 2ret 1
BB_1:BB_3:

Constraint Graph Function Call

Symbolic-Model-Call

1: BB_0_2_1 = (1 32bits)
2: BB_0_2_3 = (0 32bits)
3: BB_0_2 = (ITE a==0x0f
4: BB_0_2_1 BB_0_2_3)
5: BB_0_1 = (1 32bits)
6: BB_0 = (ITE a==0x07
 BB_0_1 BB_0_2)

1: assert(a1 == a2)
2:
3: funA_0_2_1 = (1 32bits)
4: funA_0_2_3 = (0 32bits)
5: funA_0_2 = (ITE a1==0x0f
6: funA_0_2_1 funA_0_2_3)
7: funA_0_1 = (1 32bits)
8: funA_0 = (ITE a1==0x07
9: funA_0_1 funA_0_2)
10:
...
//Symbolic Model Ret from the
binary
21: assert(funB_0 != funA_0)
22: check−sat

1: f(uchar a){
2: ext_f(a);
3: if (a == 0x07){
4: ext_f(a+1);
5: return 1;
6: }
7: if (a == 0x0f){
8: ext_f (a-1);
9: return 1;}
10: return 0;}

1: assert(a1 == a2)
2:
3: funA_0_2_1 = (2 32bits)
4: funA_0_2_3 = (1 32bits)
5: funA_0_2 = (ITE a1==0x0f
6: funA_0_2_1 funA_0_2_3)
7: funA_0_1 = (1 32bits)
8: funA_0 = (ITE a1==0x07
9: funA_0_1 funA_0_2)
10:
...
//Symbolic Model Call from the
binary
21: assert(funB_0 != funA_0)
22: check−sat

SMT-CALLSMT-RET

Figure 3: The workflow of semantic check in D-SCORE.

include the behavior of external function calls in our semantic
equivalence check.

For the return values check, we mostly follow D-helix’s
approach, which employs symbolic execution and SMT solver.
Specifically, as shown on the left side of Figure 3, given
the decompiled code, D-SCORE symbolizes the input ar-
guments and runs the symbolic execution to generate the
symbolic models, Symbolic-Model-Ret, a mathematical
representation of the modeled function, such that the inputs
of the formula are the input arguments of the modeled
function and the output of the formula is the return value
of the modeled function. During the symbolic execution, we
inherent D-helix’s memory model and loop bounding. After
that, D-SCORE runs the SMT solver on SMT-RET to compare
the symbolic models between the original binary and the
decompiled code.

When checking the behavior of the external function
call, nevertheless, directly applying D-helix to test LLM-
generated code (e.g., ��) can yield many false negatives. This
limitation stems from D-helix’s fundamental dependence
on decompiled code to establish ground truth for external
function call verification. Specifically, D-helix models ex-
ternal function calls by approximating return values through
the sum of the least significant bytes of those arguments.
However, this external function call modeling process is only
initialized when D-helix detects an external function call
within the decompiled code. Since instructions, including
function calls, are often omitted in the LLM-generated code,
D-helix may not properly initialize its function call modeling
procedures, leading to possible false negatives.

To model the external function call in LLM-generated

③ Readability Check

+ Relative Readability Index
(R2I)

 Buse and Weimer Framework
(B&W)

Return Value
Check ext_f(a); External Function

Call Check
return 1;

Powered by

② Semantic Check

✅

⭕
goto ④

⭕ go
to

 ④

✅

① Syntax Check
Undefined Variable Initialization

System Library Injection

Pseudo-Instruction Translation

Recompiler
(from D-helix)

✅

⭕

go
to

 ④

Binary File (bin) Candidate
Refinement (oi)

Decompiled
Output (og)

Figure 3: D-SCORE Framework, following our principle of preserving
accuracy while improving readability.

(e.g., CONCAT) into function calls. For each candidate
code 𝑜𝑖 from the policy model, D-SCORE submits it
to Recompiler and obtains a syntax score, 𝑅𝑠𝑦𝑛, based
on Recompiler’s feedback. Specifically, D-SCORE assign
𝑅𝑠𝑦𝑛(𝑜𝑖) to 𝑠𝑦𝑛𝑝𝑒𝑛 when the 𝑜𝑖 cannot be recompiled and 0
otherwise. Formally:

𝑅𝑠𝑦𝑛(𝑜𝑖) =
{

𝑠𝑦𝑛𝑝𝑒𝑛, if 𝑜𝑖 cannot be compiled.
+0, otherwise (5)

Note that 𝑠𝑦𝑛𝑝𝑒𝑛 contributes directly to D-SCORE (as shown
in Equation (3)), ensuring a clear penalty for any syntax
error.

4.2.2. Semantics Metric. Once the 𝑜𝑖 passes the syntax
check, D-SCORE runs symbolic execution to conduct the
semantic check between the original binary and 𝑜𝑖’s IR. In
addition to the behavior of return values, we also consider
the behavior of external function calls in our semantic
equivalence check.

For the return values check, we mostly follow D-helix’s
approach, which employs symbolic execution and SMT solver.
Specifically, as shown on the left side of Figure 4, given the
decompiled code, D-SCORE symbolizes the input arguments
and runs the symbolic execution to generate the symbolic
model, Symbolic-Model-Ret, a mathematical model that
encapsulates function behavior by mapping formula inputs
to function arguments and formula outputs to function return
values. After that, D-SCORE runs the SMT solver on SMT-RET
to compare the symbolic models between the original binary
and the decompiled code.

1: BB_0_2_1 = (2 32bits)

2: BB_0_2_3 = (1 32bits)

3: BB_0_2 = (ITE a==0x0f

4: BB_0_2_1 BB_0_2_3)

5: BB_0_1 = (2 32bits)

6: BB_0 = (ITE a==0x07

 BB_0_1 BB_0_2)

a==0x0f
BB_2:

BB_0:

BB_1:

N Y

YN

a == 0x07

ret 1

ret 1ret 0
BB_1:BB_3:

Pseudo CodeConstraint Graph Return Value

Symbolic-Model-Ret

a==0x0f
BB_2:

BB_0:

BB_1:

N Y

YN

a == 0x07

ret 2

ret 2ret 1
BB_1:BB_3:

Constraint Graph Function Call

Symbolic-Model-Call

1: BB_0_2_1 = (1 32bits)

2: BB_0_2_3 = (0 32bits)

3: BB_0_2 = (ITE a==0x0f

4: BB_0_2_1 BB_0_2_3)

5: BB_0_1 = (1 32bits)

6: BB_0 = (ITE a==0x07

 BB_0_1 BB_0_2)

1: assert(a1 == a2)

2:

3: funA_0_2_1 = (1 32bits)

4: funA_0_2_3 = (0 32bits)

5: funA_0_2 = (ITE a1==0x0f

6: funA_0_2_1 funA_0_2_3)

7: funA_0_1 = (1 32bits)

8: funA_0 = (ITE a1==0x07

9: funA_0_1 funA_0_2)

10:

...

//Symbolic Model Ret from the

binary

21: assert(funB_0 != funA_0)

22: check−sat

1: f(uchar a){

2: ext_f(a);

3: if (a == 0x07){

4: ext_f(a+1);

5: return 1;

6: }

7: if (a == 0x0f){

8: ext_f (a-1);

9: return 1;}

10: return 0;}

1: assert(a1 == a2)

2:

3: funA_0_2_1 = (2 32bits)

4: funA_0_2_3 = (1 32bits)

5: funA_0_2 = (ITE a1==0x0f

6: funA_0_2_1 funA_0_2_3)

7: funA_0_1 = (1 32bits)

8: funA_0 = (ITE a1==0x07

9: funA_0_1 funA_0_2)

10:

...

//Symbolic Model Call from the

binary

21: assert(funB_0 != funA_0)

22: check−sat

SMT-CALLSMT-RET

Figure 4: The workflow of semantic check in D-SCORE. The left side shows
how the return value is checked, and the right side shows how the external
function call is examined.

When checking the behavior of the external function call,
however, directly applying D-helix to test LLM-generated
code (e.g., 𝑜𝑖) can yield many false negatives. This limitation
stems from D-helix’s fundamental dependence on decom-
piled code to establish ground truth for verifying external
function calls. Specifically, it models external function calls
by approximating return values through the sum of the least
significant bytes of those arguments. However, this external
function call modeling process is only initialized when an
external function call is detected within the decompiled code.
Since instructions, including function calls, are often omitted
in the LLM-generated code, D-helix may not properly
initialize its function call modeling procedures, leading to
possible false negatives.

To model the external function call in LLM-generated
code in a better way, D-SCORE counts how many external
functions are invoked, as shown on the right side of Figure 4.
Specifically, to identify valid external calls in each decom-
piled function, we first extract and save the names of all in-
voked external functions in the original decompiled output, 𝑜𝑔 ,
to a file as our ground truth. After that, during the symbolic
execution of the LLM-generated code, we build a symbolic
model called Symbolic-Model-Call to model the exter-
nal function call behavior. Unlike Symbolic-Model-Ret
tracking the return value, this model uses the ground-truth
file to track the number of matching function calls in the
LLM-generated code for each execution path. Finally, we
run SMT solver on SMT-CALL to compare the function call-
count symbolic models between the original binary and
the decompiled code. Note that we ignore the arguments

in our semantic checks because compilation removes this
information, and existing recovery techniques [34] cannot
reliably reconstruct it.

Formally, we define our semantics metric as follows:

𝑅𝑠𝑒𝑚(𝑜𝑖) =
⎧
⎪⎨⎪⎩

𝑟𝑒𝑡𝑝𝑒𝑛, if (𝑐ℎ𝑒𝑐𝑘𝑟𝑒𝑡(𝑜𝑖) == 𝑓𝑎𝑙𝑠𝑒)
𝑐𝑎𝑙𝑙𝑝𝑒𝑛, if (𝑐ℎ𝑒𝑐𝑘𝑟𝑒𝑡(𝑜𝑖) == 𝑡𝑟𝑢𝑒

&& 𝑐ℎ𝑒𝑐𝑘𝑐𝑎𝑙𝑙(𝑜𝑖) == 𝑓𝑎𝑙𝑠𝑒)
+0, otherwise

(6)

, where 𝑐ℎ𝑒𝑐𝑘𝑟𝑒𝑡(𝑜𝑖) is Boolean result of running SMT on
SMT-RET, and 𝑐ℎ𝑒𝑐𝑘𝑐𝑎𝑙𝑙(𝑜𝑖) is result of running SMT on
SMT-CALL.
4.2.3. Readability Metric. To evaluate the readability of
each candidate refinement, 𝑜𝑖, fairly, we generate a relative
readability score by directly comparing it against the original
decompiled code, 𝑜𝑔 . To do this, we customize established
software-engineering readability measures by incorporating
selected R2I features as follows:

𝑅𝑟𝑒𝑎𝑑(𝑜𝑖, 𝑜𝑔) = 𝛾 ⋅𝑅𝑏&𝑤(𝑜𝑖, 𝑜𝑔)+𝛿 ⋅𝑅𝑅2𝐼 (𝑜𝑖, 𝑜𝑔) (7)
To compute 𝑅𝑏&𝑤(𝑜𝑖, 𝑜𝑔), we follows the B&W frame-

work, which defines a feature set, f= {𝑓1,𝑓2, ...}, e.g., average
number of commas per line, and their associated weights,
w = {𝑤1,𝑤2, ...}. Specifically, we first apply B&W to 𝑜𝑖 and
𝑜𝑔 to obtain two absolute scores. We then compute their
relative difference and pass this value through a sigmoid
function to map it into the range [-1,1], yielding a normalized,
relative readability score. Formally,

𝑅𝑏&𝑤(𝑜𝑖, 𝑜𝑔) =𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
𝑅𝑚𝑢𝑙(𝑜𝑔)−𝑅𝑚𝑢𝑙(𝑜𝑖)

𝑚𝑖𝑛(𝑅𝑚𝑢𝑙(𝑜𝑖),𝑅𝑚𝑢𝑙(𝑜𝑔))
),

where 𝑅𝑚𝑢𝑙(𝑥) = (
∑

f(𝑥) ⋅w)
(8)

Nevertheless, certain general features, e.g., total line num-
ber, remain outside the scope of 𝑅𝑏&𝑤(𝑜𝑖, 𝑜𝑔). Fortunately,
𝑅𝑅2𝐼 (𝑜𝑖, 𝑜𝑔) includes these features, f and their associated
weights w within its conflicting features and generic fea-
tures categories. Our implementation follows the methodol-
ogy established in the original research paper to generate
the 𝑅𝑅2𝐼 (𝑜𝑖, 𝑜𝑔). Through renormalization of the feature-
associated weights, 𝑅𝑅2𝐼 (𝑜𝑖, 𝑜𝑔) produces values within the
range [-1,1], calculated using the following approach:

𝑅𝑅2𝐼 (𝑜𝑖, 𝑜𝑔) =
∑

w ⋅ 𝑟𝑒𝑙𝑜𝑔(f(𝑜𝑖)− f(𝑜𝑔)),
where 𝑟𝑒𝑙𝑜𝑔(𝑥) = 𝑟 ⋅ 𝑒−log10(1+𝑥)

+(1− 𝑟) ⋅
(
1− 𝑒−log10(1+𝑥)

) (9)

For 𝛾 and 𝛿 in Equation (7), we allow users to adjust their
values according to their specific needs.
5. Implementation

We implemented D-LIFT as a modular Python frame-
work, using the state-of-the-art open-source decompiler,
Ghidra (version 11.2).
Reinforcement learning. We train our models using
the TRL library [59] (version 0.18) from Hugging-

face. During the RL, we set num_generations to 3,
num_iterations to 10, per_device_train_batch_size to 3,
vllm_gpu_memory_utilization to 0.7, leaving all other pa-
rameters at their default values.
Semantic check-related settings. For the Recompiler, we
follow its default configuration by setting the maximum
iteration count to 10.

For the semantics checking, we implement our semantic
check framework on angr [61] (version 9.2), z3 [14] (version
4.13), and prompt [69] (verison 1.0). To reduce the training
time, we set the execution timeout to 30 seconds.
D-SCORE Metric settings. We set 𝑠𝑦𝑛𝑝𝑒𝑛 to -3, 𝑟𝑒𝑡𝑝𝑒𝑛 to -2,
and 𝑐𝑎𝑙𝑙𝑝𝑒𝑛 to -1.5. For readability metric, we set 𝛾 to 0.25 and
𝛿 to 0.75 for Equation (7), which makes 𝑅𝑟𝑒𝑎𝑑(𝑜𝑖, 𝑜𝑔) ∈ (−1,1).
These values follow the Equation (4) and experimental
observations to prevent sparse rewards [49].

6. Evaluation

We organize this section as follows:
∙ In Section 6.1, we describe our experimental setup,

including the evaluation of the reward metric and
function (i.e., D-SCORE), dataset details, and baseline
model selection.

∙ In Section 6.2 and Section 6.3, we demonstrate how ef-
fectively D-LIFT enhances LLM-generated decompiled
code via the above setup.

∙ In Section 6.4, we provide concrete case studies illustrat-
ing how D-LIFT refines specific decompiled snippets
to improve both accuracy and readability.

6.1. Experiment Setup

In this section, we begin by evaluating D-SCORE along
two dimensions, applicability and precision, in Section 6.1.1.
We then describe our training/evaluation dataset in Sec-
tion 6.1.2. Finally, we detail our baseline model selections
and reasons behind them in Section 6.1.3.
6.1.1. D-SCORE Evaluation. We conduct experiments on a
cluster node equipped with an NVIDIA A100 Tensor Core
GPU (80GB of memory) [43], two 32-core AMD EPYC
7543 CPUs, and 400 GB of RAM.
Dataset. Our metric evaluation uses a dataset of 1,948 decom-
piled functions sourced from binaries that previous literature
uses, including coreutils [13] (v9.5) and util-linux [58]
(v2.41). Specifically, we first use GCC [1] to compile these
projects with -O2 optimization under x86 Linux platform and
then ran Ghidra [3] (version 11.2) on 578 resulting binaries
and object files, yielding 5,385 unique decompiled functions
(1,792 from coreutils and 3,593 from util-linux). To
focus on functions with sufficient complexity and room for
improvement, we then filtered this set to include only those
with at least 20 lines of code and a cyclomatic complexity [41]
greater than 3, leaving 1,948 (36.2%) functions (653 from
coreutils and 1,295 from util-linux).

Methodology. D-SCORE contains two core components, accu-
racy check and readability assessment. Because its readability
metric is an aggregation of two proven metrics [10], [17], our
evaluation focuses on the decompiled code accuracy exami-
nation. To do this, we prompt Qwen-Coder-2.5-3B [6] with
the above 1,948 decompiled functions and then pass each of
its generated code completions, along with the corresponding
original binary, through D-SCORE for scoring. We evaluate
D-SCORE along two dimensions: (1) Applicability: The
proportion of functions for which D-SCORE can successfully
derive the symbolic models from the binary. (2) Precision:
Among these analyzable functions, the fraction for which
D-SCORE correctly determines that the generated code is
semantically equivalent to the original.

Categories of Errors Pct.
1 Underlying tool errors 43%
2 Timeout 34%
3 D-SCORE errors 14%

TABLE 1: The percentage of decompiled
functions that cannot be analyzed by
D-SCORE due to the listed errors.

Accuracy 0.9450
Precisions 0.9100

Recall 0.9785
F1 0.9430

TABLE 2: The accuracy, pre-
cision, recall, and F1 score
of D-SCORE on the tested de-
compiler.

Applicability result. Our evaluation shows that out of 1,968
functions in our evaluation program set, D-SCORE can test
79.9% (1,573) of these functions, i.e., generate the symbolic
models of these functions from the binary without errors. To
understand the limitation, we randomly select 50 functions
where D-SCORE fails and manually analyze them. Table 1
categorizes the failures encountered by D-SCORE and reports
their occurrence frequency. These errors fall into three
categories: (1) Errors from the underlying tool, e.g., bugs
in angr or incorrect identification of function boundaries
when encountering no-return calls, (2) Timeout due to the
scale of a function, and (3) Internal errors of D-SCORE, e.g.,
unsupported floating-point instructions.
Precision result. We evaluate the precision of D-SCORE
by randomly sampling 100 functions from the 1,573 that
D-SCORE can analyze and manually compare each LLM-
generated output against its original binary’s semantics to
verify whether the decision made by D-SCORE was correct.
Table 2 presents our results in terms of accuracy, precision,
recall, and F1 score. Our analysis uncovers that: 1 False
positives occur because the memory model of D-SCORE
allocates fresh memory addresses for symbolized pointers.
Even when the generated code is semantically correct, the
values of pointers differ from those in the original binary,
causing the symbolic executor to report a spurious mismatch.
(2) False negatives occur because we assume all external
function calls return zero. When using a default return value
in a conditional instruction, one branch will never be explored
during the symbolic execution of the binary. If the LLM’s
output omits code for those unvisited branches, D-SCORE
cannot detect the discrepancy and thus overlooks the error.
6.1.2. Dataset. We begin by briefly analyzing the accuracy
of the data that D-SCORE can process, and then explain how
we construct our training and evaluation datasets.

Model Name Synt Errs Sem Errs Total Errs
1 Qwen2.5-Coder-1.5B 373 (36.4%) 92 (8.98%) 465 (45.4%)
2 Qwen2.5-Coder-3B 238 (23.2%) 110 (10.7%) 348 (34.0%)
3 Llama3.2-3B 371 (36.2%) 180 (17.6%) 551 (53.8%)
4 LLM4Decompile-End-1.3B 887 (86.5%) 68 (6.63%) 955 (93.2%)

TABLE 3: Different baseline models’ performance on the originally accurate
(OA) decompiled code. Specifically, it shows how many functions become
inaccurate after being processed by the baseline model (i.e., LLM without
fine-tuning).

Dataset accuracy analysis. As detailed in Section 6.1.1,
since D-SCORE is only able to work on 1,573 functions,
we base our training and evaluation datasets on this subset.
To better understand our dataset, we first analyze the score
distribution from D-SCORE over these 1,573 decompiled
outputs generated directly from the decompiler. Running
D-SCORE on the Ghidra-generated functions allows us to
partition them into two groups: originally accurate (i.e., error-
free) and originally inaccurate. Of the 1,573 functions, 1,025
are classified as originally accurate (i.e., D-SCORE = 0, since
𝑅𝑟𝑒𝑎𝑑(𝑜𝑔 , 𝑜𝑔) = 0), while the remaining 548 fall into originally
inaccurate (i.e., D-SCORE < 0), 307 exhibiting syntax errors
and 241 containing semantic errors.
Training and evaluation dataset. We randomly choose 300
functions from the originally accurate group as the training
data. This selection criterion is based on the fact that LLMs
demonstrate a limited ability to correct decompiler-introduced
inaccuracies when provided only with decompiled code, as
listed in Section 6.3. To train the model, we use the following
template: “prompt”: [{ “role”: “system”, “content”: “You
are a helpful assistant for improving the decompiled result
from the user. The user will input the decompiled result
from Ghidra. Please improve its readability while preserving
its semantics. Please do not add comments. Please just
output the improved code.” }, { “role”: “user”, “content”:

“[original decompiled code]” } .
We evaluate D-LIFT on the remaining 1,273 functions,

which we split into two subsets: 725 functions that are orig-
inally accurate (OA) and 548 functions that are originally
inaccurate (OIA).
6.1.3. Baseline Model. Due to computational resource
constraints, we restrict our LLM to fewer than 3 billion
parameters. Specifically, as an RL framework, GRPO is
particularly memory-intensive, since it requires simultaneous
inference to generate candidate outputs and backpropagation
to update model parameters, both of which consume signif-
icant GPU memory. Additionally, reward normalization in
GRPO mandates generating at least two candidates per input,
further increasing memory demands. In our experiments, even
after using vLLM [30] with a memory-efficient setting of
0.7, we still encountered out-of-memory errors when running
D-LIFT on models larger than 3 billion parameters.

Therefore, we select two code-focused LLMs,
Qwen2.5-Coder [26] (1.5B and 3B variants) and one
general-purpose model, Llama3.2-3B [21]. We excluded
the prior work LLM4Decompile-End-1.3B [55] from our
main evaluation after observing its poor performance on

0

20

40

60

80

42.3 36.1 41.9

70.265.1 62.1 60.0

84.9
Percentage of Functions (%)

(a) (b) (c) (d)
Model

0.0

0.2

0.4 +.352 +.330

+.481 +.465
+.383 +.378

+.483 +.517
Average D-SCORE

(a) Qwen2.5-Coder-1.5B (b) Qwen2.5-Coder-3B (c) Llama3.2-3B (d) All

baseline fine-tuned

Figure 5: The performance of Different models on the OA dataset, before
and after fine-tuning by D-LIFT. Specifically, it shows how many functions
are improved by the model(s) compared with the original decompiled code,
and these functions from D-SCORE.

our dataset. Specifically, we ask all four above models to
improve our 1,025 originally accurate functions, score the
outputs using D-SCORE and show the results in Table 3.
Since being fine-tuned based on the model released from
November 2023, LLM4Decompile-End-1.3B improved
only 70 functions (6.8%), whereas 955 functions (93.2%)
turned inaccurate. In contrast, the three newer LLMs
(released around September 2024) made only 44.4% of
functions inaccurate. Given this marked difference, we omit
LLM4Decompile-End-1.3B from further analysis.

6.2. D-LIFT Performance On OA

We show the evaluation of D-LIFT on originally accurate
functions (OA) in two steps. In Section 6.2.1, we compare out-
puts from the baseline and fine-tuned models using D-SCORE.
Then Section 6.2.2 analyzes the underlying reasons for the
differences. Finally, in Section 6.2.3, we show how LLMs’
performance is affected by the size of the training dataset.
6.2.1. Result. Figure 5 summarizes the number of original
decompiled functions within the OA dataset that are improved
by the baseline and fine-tuned models and their average
D-SCORE. To this end, we compare the output from each
model with the original decompiled code. For each model,
D-LIFT improves the quality of 55.3% more functions on
average, compared to the baseline LLMs. By selecting the
best output among all three baseline models, 509 (70.2%)
functions (avg. +0.465) show improvement, while fine-
tuned models achieve improvement in 616 functions (84.9%)
averaging +0.517.

To better quantify the improvements brought by fine-
tuning, we compared the output of each fine-tuned model

0 20 40 60 80 100
Percentage of Functions (%)

(a)

(b)

(c)

M
od

el

21.9%

17.9%

22.8%

49.0%

49.8%

43.0%

29.1%

32.3%

34.2%

baseline fine-tuned raw-decompiled

(a) Qwen2.5-Coder-1.5B (b) Qwen2.5-Coder-3B (c) Llama3.2-3B

Figure 6: Overall performance of D-LIFT on the OA dataset. This chart
shows, for each function, which source, baseline LLM, fine-tuned LLM, or
original decompiler achieves the highest D-SCORE score and reports the
percentage of functions in each category.

against its corresponding baseline and the original de-
compiled output. To do this, for each function, we select
the version with the highest D-SCORE score among the
three and show the result in Figure 6. Specifically, for
Qwen2.5-Coder-1.5B, fine-tuned output is best for 355
(49.0 %) functions (avg. +0.399), baseline LLM for 159
(21.9 %) functions (avg. +0.419). For Qwen2.5-Coder-3B,
fine-tuned output is best for 361 (49.8%) functions (avg.
+0.402) and baseline LLM for 130 (17.9%) functions (avg.
+0.398). For Llama3.2-3B, fine-tuned output is best for 312
(43.0%) functions (avg. +0.523) and baseline LLM for 165
(22.8%) functions (avg. +0.561). Moreover, by taking the
best output among all six LLMs and the original decompiled
code, 625 (86.2 %) functions showed improvement (average
+0.585), while only 100 functions remained unimproved.
The above result shows that D-LIFT helps the fine-tuned
LLMs dominate their performance in generating high-quality
decompiled code.
6.2.2. Findings. To better understand D-LIFT’s influence
on LLM performance, we conducted an additional analysis
by directly comparing the fine-tuned output and the baseline
model output. Specifically, we analyze how D-LIFT mod-
ifies function performance through two distinct categories:
improvements, where fine-tuned models successfully resolve
issues present in baseline outputs, and regressions, where pre-
viously error-free baseline functions develop new problems
following the fine-tuning process. Based on it, we classify
these changes into six categories: syntax fixes, semantic
fixes, syntax regressions, semantic regressions, readability
improvements, and readability regressions. Table 4 reports
the number of functions falling into each category. These
results show that D-LIFT achieves considerable accuracy
enhancements for the majority of models, with regression
instances remaining at acceptably low levels.

To investigate the root causes of both improvements and
regressions, we randomly selected 50 functions from each
group (i.e., those that improved and those that regressed) and
performed a manual code review. Our findings, summarized
in Table 5, show that fine-tuning corrects five main categories
of errors: (1) Missing instructions, e.g., missing goto labels,
variable declarations, and value assignments. (2) Incorrect

50 100 150 200 250 300
Size of Training Set

350

400

450

500

N
o.

 o
f F

un
ct

io
ns

453

411

479 485 498
472

368
338

380

466 422
450

Qwen2.5-Coder-1.5B
Qwen2.5-Coder-3B

Figure 7: This table shows how many functions from the OA dataset scored
higher (y-axis) after being processed by the fine-tuned LLMs with different
sizes of the training sets (x-axis), compared to the original decompiled code
under D-SCORE.

brackets in conditional expressions, e.g., missing parentheses
in if statements or misplacement leading to incorrect pointer
dereference. (3) Incorrect variable naming and casting, e.g.,
using mode_t when only __mode_t is defined. (4) Unwanted
instruction insertions, e.g., duplicate goto labels and unwanted
function calls. (5) Incorrect literal value. e.g., constant
values are inconsistencies with the original values. However,
fine-tuning also introduces regressions in three areas: (1)
Missing instructions. (2) Incorrect brackets in conditional
expressions. (3) Unwanted instruction insertions. We provide
more representative examples of the enhancements that
D-LIFT enables in Section 6.4.

Summary: When the original decompiled code does not
have syntax or semantic error, D-LIFT yields substantial
improvement over the baseline, in both the number of
functions improved and their average D-SCORE.

6.2.3. Training Efficiency. To determine the optimal train-
ing set size, we select our best-performing LLM, i.e.,
Qwen2.5-Coder, to evaluate LLM performance with training
sets of 50, 100, 150, 200, 250, and 300 functions. Figure 7
shows how many functions from the OA dataset scored higher
after being processed by the fine-tuned LLM, compared to
the original decompiled code under D-SCORE. As shown, the
performance stabilizes once the training set reaches around
200 to 300 functions.

6.3. D-LIFT Performance On OIA

We show the evaluation of D-LIFT on originally inac-
curate functions (OIA) in two steps. First, in Section 6.3.1,
we use D-SCORE to compare outputs from the baseline and
fine-tuned models. Then, in Section 6.3.2, we analyze the
underlying reasons for these observed scores.
6.3.1. Result. Table 6 summarizes, for both baseline and fine-
tuned models, how many functions achieve a higher D-SCORE
than the original decompiled output and the average score
improvement for those functions.

Both the baseline model and the models that are fine-
tuned with 300 instances struggle with improving the original
inaccurate functions. By taking the best output among all six
LLMs and the original decompiled code, only 44 functions

Model Name Improvements Regressions
Syntax Semantic Readability Total Syntax Semantic Readability Total

1 Qwen2.5-Coder-1.5B 135 18 202 355 25 2 132 159
2 Qwen2.5-Coder-3B 88 17 256 361 12 2 116 130
3 Llama3.2-3B 116 38 114 268 19 9 150 178

TABLE 4: This table shows how many functions get improved and regressed by D-LIFT. This comparison happens between the output of the fine-tuned
model and the baseline model, where the improvement refers to the function get higher score from the fine-tuned model and the regression refers to the
function get higher score from the baseline model.

Performance Error Type No. Func

Improvement
Missing instruction 24
Incorrect brackets 12

Incorrect variable naming and casting 5
Unwanted instruction insertions 7

Incorrect literal value 2

Degradation
Missing instruction 14
Incorrect brackets 24

Unwanted instruction insertions 12

TABLE 5: This table shows the root causes of both improvements and
regressions caused by D-LIFT, where the result is concluded by manually
reviewing randomly selected 100 functions.

Model Name No. of Func Avg. D-S.
1 Qwen2.5-Coder-1.5B-baseline 8 (1.48%) -0.591
2 Qwen2.5-Coder-3B-baseline 12 (2.23%) -0.936
3 Llama3.2-3B-baseline 14 (2.6%) -0.614
4 All baseline models 31 (5.66%) -1.170
5 Qwen2.5-Coder-1.5B-fine-tuned 6 (1.12%) +0.113
6 Qwen2.5-Coder-3B-fine-tuned 9 (1.67%) -0.396
7 Llama3.2-3B-fine-tuned 8 (1.49%) -0.243
8 All fine-tuned models 19 (3.47%) -0.469

1 "No. of Func" shows how many functions were improved and the percentage relative to
the total functions.
2 "Avg. D-S." is the average D-SCORE difference (improved vs. raw decompiled).

TABLE 6: Different models’ performance on the OIA dataset, before and
after fine-tuning by D-LIFT. Specifically, it shows how many functions are
improved by the model(s) compared with the raw decompiled code and
these functions’ score from D-SCORE

showed improvement (average -0.759), while 504 functions
remained unimproved (average -2.50).
6.3.2. Findings. To investigate why LLMs perform poorly on
the OIA dataset, we randomly select 50 functions, where 25
are successfully improved by any LLMs (including baseline
LLMs and fine-tuned LLMs) and 25 are not improved by
LLMs, and manually analyze the underlying factors.

For the 25 functions where LLMs achieve improvements,
surprisingly, we observed a consistent pattern: each in-
volved variables declared as undefined [16], a 16-byte type
with unknown signedness. The LLMs typically converted
the variables with these opaque declarations into fixed-
length arrays and updated member accesses accordingly.
For instance, we observe that the declaration changed from
undefined [16] auVar1; to an array, ulong auVar1[2]
and this variable’s first eight-byte assignment is modified
from auVar1._0_8_ = 0; to auVar1[0] = 0;. Although
these transformations sometimes introduce subtle semantic
inaccuracies, they consistently eliminate syntax errors, re-
sulting in higher D-SCORE.

For the 25 functions where LLMs fail to achieve any

improvements, we find three main causes: (1) Syntax er-
rors due to undefined function pointer types. In 13 cases,
errors stem from unresolved function pointer types like
(code *)puVar3[4]. (2) Syntax errors from unsolvable
type patterns. In 7 cases, issues arise from constructs like
CONCAT31((int3)XX), where the type int3 is not well-
formed. (3) Semantic errors from uninitialized global vari-
ables. In 5 cases, the decompiled code fails to initialize
global variables to the correct value.

Summary: When the original decompiled code contains
syntax or semantic errors, neither baseline LLMs nor
our fine-tuned models can deliver real improvements,
indicating the importance of the decompiler front-end
and limitations of current LLMs.

6.4. Case Study
In this section, we present several illustrative cases that

demonstrate how D-LIFT effectively improves the quality
of decompiled code generated by the LLM without fine-
tuning. Specifically, we show how D-LIFT fixes syntax errors
introduced by the LLM in Section 6.4.1, fixes semantic errors
introduced by the LLM in Section 6.4.2, and improves the
readability in Section 6.4.3.
6.4.1. Syntax Error Fixes.
Fixing Incorrect Variable Casting and Refactor Loop.
Figure 8 illustrates how D-LIFT enhances the output of
Qwen2.5-Coder-3B model for the decompiled snippet of
the uuid_copy function (util-linux).

Specifically, this function simply copies 16 bytes from
the second parameter (src) to the first (dst). Since the
decompiler cannot reconstruct the original struct or pointer
types for the two input parameters, it falls back to manual
pointer casting these parameters to byte pointers and uses
pointer offsetting by (lVar1) to copy each byte (see line 8 of
the original decompiled output). Meanwhile, the decompiler
also uses a do-while loop that checks lVar1 != 0x10,
rather than the more natural for (i = 0; i < 16; i++)
construct. When the baseline LLM refactors the loop, though
it successfully rewrites it as a for with i < 16, it mistakenly
applies the array subscript operator to the input parameters of
type long, leading to the compiler error. D-LIFT, however,
fine-tunes the model to insert the correct byte-pointer casts
and maintain the for with i < 16, which eliminates the
syntax error while yielding a more readable, semantically
faithful implementation. As a result, D-LIFT improves the
D-SCORE from -3.000 to +0.8887.

Source:
1 void uuid_copy(uuid_t dst,

const uuid_t src)
2 {
3 unsigned char ∗cp1;
4 const unsigned char ∗cp2;
5 int i;
6
7 for (i=0, cp1 = dst, cp2

= src; i < 16; i++)
8 ∗cp1++ = ∗cp2++;
9 }

Original Decompiler:
1 void uuid_copy (long

param_1,long param_2)
2
3 {
4 long lVar1;
5
6 lVar1 = 0;
7 do {
8 ∗(undefined ∗) (param_1 +

lVar1) = ∗(undefined
∗)(param_2 + lVar1);

9 lVar1 = lVar1 + 1;
10 } while (lVar1 != 0x10);
11 return;
12 }

Baseline model:
1 void uuid_copy (long

dest, long src)
2 {
3 long i;
4
5 for (i = 0; i < 16;

i++)
6 {
7 dest[i] = src[i];
8 }
9 }

Fine-tuned model:
1 void uuid_copy(long dest,

long src)
2 {
3 long i;
4
5 for (i = 0;i < 0x10; i++)
6 {
7 ∗(unsigned char ∗)(dest +

i) = ∗(unsigned char
∗)(src + i);

8 }
9 }

Figure 8: This code snippet shows how D-LIFT helps Qwen2.5-Coder-3B enhance its ability to generate more readable code while correcting the syntax
error “error: subscripted value is neither array nor pointer nor vector” that appears at line 7 of the baseline output.

Source:
1 if(!tb ||

!tb−>colors_wanted ||
tb−>format !=
SCOLS_FMT_HUMAN)

2 return NULL;
3 ...
4 tb−>cur_color = color;

Original decompiler:
1 if (param_1 == 0) {
2 return;
3 }
4 if ((∗(byte ∗)(param_1 +

0x140) & 2) == 0) {
5 return;
6 }
7 if (∗(int ∗)(param_1 + 0x108)

!= 0) {
8 return;
9 }

10 ...
11 ∗(char ∗∗)(param_1 + 0x120) =

param_3;

Baseline model:
1 if (!param_1) return;
2 if (!(∗(byte∗)(param_1 +

0x140) & 2)) return;
3 if (∗(int∗)(param_1 +

0x108)!= 0) return;
4 ...
5 ∗(char ∗∗)param_1 + 0x120 =

param_3;

Fine-tuned model:
1 if (param_1 == 0) return;
2 if (((∗(byte ∗)(param_1 +

0x140) & 2) == 0) ||
(∗(int ∗)(param_1 +
0x108)!= 0)) return;

3 ...
4 ∗(char ∗∗)(param_1 + 0x120)

= param_3;

Figure 9: This code snippet shows how D-LIFT helps Qwen2.5-Coder-1.5B enhance its ability to generate more readable code while correcting the syntax
error “error: lvalue required as left operand of assignment.” that appears at line 5 of the baseline output.

Fixing Missing Parentheses and Consolidate Conditionals.
Figure 9 demonstrates another example about how D-LIFT
corrects the syntax errors while enhancing readability in the
decompiled fputs_color_cell_close (util-linux).

Specifically, for inaccuracy, line 5 in baseline
Qwen2.5-Coder-1.5B model output lacks the necessary
parentheses around the assignment target, resulting in
the compilation error, lvalue required as left operand of
assignment. Regarding readability, the original source code
combines three checks with two or expressions (line 1). The
original decompiled output, however, expands this into three
separate if statements. For the output from the baseline
model, though it removes redundant braces, it still uses three
if blocks. Our fine-tuned model not only adds the necessary
parentheses in line 4 but also merges the second and third
checks into one consolidated if statement in line 2, mirroring
the source code’s succinct logic. As a result, D-LIFT raises
the D-SCORE for this function from –3.000 to +1.275.

6.4.2. Semantic Error Fixes.
Fixing Incorrect Literal Value and Extract Functional
Variable. Figure 10 shows how the decompiled code
snippet from the fdisk_delete_all_partitions function
(util-linux) is improved by correcting the semantic errors
while enhancing the readability.

Semantically, the baseline Qwen2.5-Coder-3B output

mistakenly returns the decimal constant -65538 (lines 8 and
11), which equates to 0xfffefffe rather than the intended
0xffffffea. Our fine-tuned model fixes this by emitting
return 0xffffffea; at lines 9 and 12, restoring correct
behavior. For readability, our fine-tuned model makes two key
improvements. First, it removes a redundant if-else con-
struct (original decompiled code line 14) and replaces it with a
direct return 0xffffffea without an else condition added
(fine-tuned model output line 12), yielding a control flow
structure that more closely mirrors the original source. Sec-
ond, it extracts the repeated expression *(long *)(*(long
*)(param_1 + 0x180) + 0x30) (fine-tuned model output
line 14), into a named variable, reducing duplicated usage
(original decompiled code line 15 and line 23). As a result,
D-LIFT raises this function’s D-SCORE from –2.000 to
+0.625.

6.4.3. Readability Improvement.
Arithmetic Operators & Boolean Expression Simplification.
Figure 11 illustrates how D-LIFT enhances readability by
simplifying both arithmetic operators and Boolean expres-
sions.

Specifically, the source code, extracted from
strv_length function (util-linux), contains 38
non-blank characters. Ghidra’s original decompilation,
however, leaves all operators unsimplified, expanding

Source:
1 int fdisk_delete_all_partitions (struct fdisk_context ∗cxt)
2 {
3 size_t i;
4 int rc = 0;
5
6 if (!cxt || !cxt−>label)
7 return −EINVAL;
8
9 for (i = 0; i < cxt−>label−>nparts_max; i++) {

10
11 if (!fdisk_is_partition_used(cxt, i))
12 continue;
13 rc = fdisk_delete_partition(cxt, i);
14 if (rc)
15 break;
16 }
17
18 return rc;
19 }

Original decompiler:
1 undefined8 fdisk_delete_all_partitions(long param_1)
2
3 {
4 int iVar1;
5 undefined8 uVar2;
6 ulong uVar3;
7
8 if (param_1 == 0) {
9 return 0xffffffea;

10 }
11 if (∗(long ∗)(param_1 + 0x180) == 0) {
12 uVar2 = 0xffffffea;
13 }
14 else {
15 uVar3 = 0;
16 if (∗(long ∗)(∗(long ∗)(param_1 + 0x180) + 0x30)!= 0) {
17 do {
18 iVar1 = fdisk_is_partition_used(param_1,uVar3);
19 if ((iVar1 != 0) && (uVar2 =

fdisk_delete_partition(param_1,uVar3), (int)uVar2
!= 0)) {

20 return uVar2;
21 }
22 uVar3 = uVar3 + 1;
23 } while (uVar3 < ∗(ulong ∗)(∗(long ∗)(param_1 + 0x180) +

0x30));
24 }
25 uVar2 = 0;
26 }
27 return uVar2;
28 }

Baseline model:
1 int fdisk_delete_all_partitions(long param_1) {
2 int iVar1;
3 long lVar2;
4 long lVar3;
5 long lVar4;
6
7 if (param_1 == 0) {
8 return −65538; // Equivalent to 0xffffffea
9 }

10 if (∗(long ∗)(param_1 + 0x180) == 0) {
11 return −65538; // Equivalent to 0xffffffea
12 }
13 lVar2 = 0;
14 if (∗(long ∗)(∗(long ∗)(param_1 + 0x180) + 0x30)!= 0) {
15 do {
16 iVar1 = fdisk_is_partition_used(param_1, lVar2);
17 if ((iVar1!= 0) && (lVar3 =

fdisk_delete_partition(param_1, lVar2),
(int)lVar3!= 0)) {

18 return lVar3;
19 // Return error code if partition deletion fails
20 }
21 lVar2 = lVar2 + 1;
22 } while (lVar2 < ∗(ulong ∗)(∗(long ∗)(param_1 + 0x180) +

0x30));
23 }
24 return 0; // Return success
25 }

Fine-tuned model:
1 int fdisk_delete_all_partitions(long param_1) {
2 int iVar1;
3 long lVar2;
4 long lVar3;
5 long lVar4;
6 long lVar5;
7
8 if (param_1 == 0) {
9 return 0xffffffea;

10 }
11 if (∗(long ∗)(param_1 + 0x180) == 0) {
12 return 0xffffffea;
13 }
14 lVar2 = ∗(long ∗)(∗(long ∗)(param_1 + 0x180) + 0x30);
15 if (lVar2!= 0) {
16 lVar3 = 0;
17 do {
18 iVar1 = fdisk_is_partition_used(param_1, lVar3);
19 if ((iVar1!= 0) && (lVar5 =

fdisk_delete_partition(param_1, lVar3),(int)lVar5!=
0)) {

20 return lVar5;
21 }
22 lVar3 = lVar3 + 1;
23 } while (lVar3 < lVar2);
24 }
25 return 0;
26 }

Figure 10: This code snippet shows how D-LIFT helps Qwen2.5-Coder-3B enhance its ability to generate more readable code while correcting the semantic
error. Specifically, the return value -65538 at line 8 and line 11 of the baseline output is not the same as 0xffffffea.

the snippet to 138 non-blank characters. The baseline
Qwen2.5-Coder-1.5B model makes marginal improvements,
reducing 11 characters in code by simplifying one Boolean
expression in lines 6 and 7 of the baseline model output. In
contrast, our fine-tuned model systematically rewrites both
arithmetic and logical operations, bringing a total of 29
non-blank character reductions while preserving semantics.

Consequently, D-LIFT boosts this function’s D-SCORE from
+0.605 to +0.790.

7. Discussion

Applicability. As illustrated in Section 6.3.2, D-LIFT per-
forms poorly when the decompiler front-end fails to produce

Source:
1 if (!l)
2 return 0;
3
4 for (; ∗l; l++)
5 n++;
6
7 return n;

Original decompiler:
1 if (param_1 == (long ∗)0x0) {
2 return 0;
3 }
4 if (∗param_1 != 0) {
5 do {
6 param_1 = param_1 + 1;
7 iVar1 = iVar1 + 1;
8 } while (∗param_1 != 0);
9 return iVar1;

10 }
11 return 0;

Baseline model:
1 if (param_1 == NULL) {
2 return 0;
3 }
4 if (∗param_1!= 0) {
5 do {
6 param_1 = param_1 + 1;
7 iVar1++;
8 } while (∗param_1!= 0);
9 return iVar1;

10 }
11 return 0;

Fine-tuned model:
1 if (!param_1) {
2 return 0;
3 }
4 if (∗param_1) {
5 do {
6 param_1++;
7 iVar1++;
8 } while (∗param_1);
9 return iVar1;

10 }
11 return 0;

Figure 11: This code snippet shows how D-LIFT helps Qwen2.5-Coder-3B enhance its ability to generate more readable code by reducing 29 characters
while preserving the accuracy.

accurate code. Moreover, because D-LIFT relies on function-
level decompiled output, it cannot help if the decompiler
is unable to process the binary. Hence, D-LIFT performs
poorly in addressing internal decompiler issues, such as bugs
that cause decompiler crashes or persistent decompilation
challenges, including the identification of function boundaries
and indirect calls.
Underlying tools. Since D-LIFT employs D-helix, it inherits
the limitations of D-helix, including missing support for
floating point instructions, missing support for double pointers
(due to the memory model), and missing support for large
binaries because of timeouts.
External function calls. For external function calls,
D-SCORE differs from D-helix’s approach of modeling
return values as the sum of the least significant bytes of
its arguments; Instead, D-SCORE counts the number of calls.
This simplification can be problematic when a function’s
return value affects control flow. By default, we assign zero
(0) as the return value of every external function call, which
may prevent exploration of branches that require nonzero
return values. Nevertheless, accurately determining whether
an external call yields a meaningful return itself is an open
challenge [34]. We leave the more precise modeling of
external function calls as future work.

8. Related Work

Regarding LLM-based decompiled-code enhancement,
several approaches have been proposed. Besides
LLM4Decompiler [55], researchers have also proposed
DecGPT [63], which focuses on making decompiled code
more recompilable. Nevertheless, this approach does not
provide any method to handle the semantic errors, e.g.,
hallucination errors, introduced by the LLM. To the best
of our knowledge, DeGPT [25] is the only existing work
that attempts to validate the accuracy of LLM-generated
decompiled code. DeGPT introduces MSSC, a static
analysis framework that assigns random values to inputs and
observes the resulting changes in symbolic values in both
the decompiled code and the LLM-generated code, aiming
to detect discrepancies and identify inaccuracies. However,
this method has notable drawbacks. For instance, MSSC
does not recompile the code; it cannot detect syntax errors.

Meanwhile, by testing with random inputs, the validation
result can be inconsistent across runs.

Fine-tuning LLM to generate better quality code is not
new. PPOcoder [54] uses structural differences, measured
via Data Flow Graphs (DFGs) and Abstract Syntax Trees
(ASTs) between the source code and generated code, as
its reward signal, to improve the performance of LLM in
multiple code generation tasks. StepCoder, CodeRL, and
Palit [15], [32], [45] utilize compiler and unit tests as
feedback for reinforcement learning. Nevertheless, all the
above approaches accept only one unique ground truth, which
makes them inappropriate in the decompilation scenario.

Researchers have also investigated the use of symbolic
execution tools to validate the semantics of LLM-generated
code. Taneja [56] applies Alive2 [39] on the vectorized
code generated by LLM to verify its semantic correctness.
Similarly, Wang [62] integrates Alive2 into a compiler’s
translation-validation pipeline to ensure semantic fidelity.
Nevertheless, since Alive2 is primarily designed to detect
bugs, such as undefined behaviors, arising from compiler
optimizations, it may miss decompiler-specific errors.

Regarding the code readability metric, subsequent studies
have been proposed based on B&W framework. Specifically,
researchers [23], [42], [47], [51], [57] have shifted toward the
broader concept of code comprehensibility, which extends
readability by also considering elements beyond the code
itself, such as associated documentation, during evaluation.
However, because these metrics assume the presence of com-
ments and external documentation, features that decompiled
code typically lacks, they are not well suited for assessing
decompiled output.

9. Conclusion
We design D-LIFT, an automatic decompilation pipeline

with an LLM-based back-end that is fine-tuned using rein-
forcement learning to improve the quality of the decompiled
code, adhering to the principle of preserving accuracy while
improving readability. We propose D-SCORE, an integrated
scoring mechanism designed specifically for decompilation
recovery tasks. We implement D-LIFT based on Ghidra and
fine-tune three LLMs, and achieve significant decompiled
code improvement for widely used benchmark functions.
Compared to the baseline LLMs, on average, our fine-

tuned LLMs improve the quality of 55.3% more functions.
Moreover, for functions that are accurately decompiled, when
choosing the best output among the baseline model, the fine-
tuned model (i.e., D-LIFT), and the original decompiled code,
we find that on average, 47.3% of the top-scoring functions
come from D-LIFT, whereas only 20.9% come from the
baseline model.

Ethics Statement
We note that our found bugs do not pose an immediate

threat to users or developers since they mainly affect the
accuracy of LLM-generated code.

We acknowledge the use of Chat-GPT [44] and Claude-
AI [4] solely as a paraphrasing aid to improve clarity and
readability; at no point did we allow it to generate new
content, ideas, or arguments. All substantive work and original
insights remain entirely our own.

References
[1] Free Software Foundation. Gcc. https://gcc.gnu.org/.
[2] Hex-Rays SA. Hex rays decompiler. https://hex-rays.com/decompiler/.
[3] National Security Agency. Ghidra. https://ghidra-sre.org/.
[4] Anthropic. Claude AI (Claude 3, May 2025 version). https://claude.ai,

2025. Large language model. Accessed: 2025-06-04.
[5] Avast Software. RetDec: A retargetable machine-code decompiler.

https://retdec.com/.
[6] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong

Deng, Yang Fan, Wenhang Ge, Yu Han, Fei Huang, Binyuan Hui, Luo
Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang
Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei
Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Yu Bowen,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xing Zhang, Yichang
Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou,
and Tianhang Zhu. Qwen technical report. ArXiv, abs/2309.16609,
2023.

[7] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain,
Derron Miao, Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, and
Ruoyu Wang. Ahoy SAILR! there is no need to DREAM of c:
A Compiler-Aware structuring algorithm for binary decompilation.
In 33rd USENIX Security Symposium (USENIX Security 24), pages
361–378, Philadelphia, PA, August 2024. USENIX Association.

[8] David Brumley, JongHyup Lee, Edward J Schwartz, and Maverick Woo.
Native x86 decompilation using {Semantics-Preserving} structural
analysis and iterative {Control-Flow} structuring. In 22nd USENIX
Security Symposium (USENIX Security 13), pages 353–368, 2013.

[9] Kevin Burk, Fabio Pagani, Christopher Kruegel, and Giovanni Vigna.
Decomperson: How humans decompile and what we can learn from
it. In 31st USENIX Security Symposium (USENIX Security 22), pages
2765–2782, Boston, MA, August 2022. USENIX Association.

[10] Raymond P.L. Buse and Westley R. Weimer. Learning a metric
for code readability. IEEE Transactions on Software Engineering,
36(4):546–558, 2010.

[11] Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating
the effectiveness of decompilers. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2024, page 491–502, New York, NY, USA, 2024. Association
for Computing Machinery.

[12] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu. Augmenting decompiler
output with learned variable names and types. In 31st USENIX
Security Symposium (USENIX Security 22), pages 4327–4343, Boston,
MA, August 2022. USENIX Association.

[13] coreutils. coreutils. http://git.savannah.gnu.org/gitweb/?p=coreutils.git.
[14] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt

solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[15] Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei
Shen, Junjie Shan, Caishuang Huang, Xiao Wang, Xiaoran Fan, et al.
Stepcoder: Improve code generation with reinforcement learning from
compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

[16] Luke Dramko, Jeremy Lacomis, Edward J. Schwartz, Bogdan Vasilescu,
and Claire Le Goues. A taxonomy of c decompiler fidelity issues.
In 33rd USENIX Security Symposium (USENIX Security 24), pages
379–396, Philadelphia, PA, August 2024. USENIX Association.

[17] Haeun Eom, Dohee Kim, Sori Lim, Hyungjoon Koo, and Sungjae
Hwang. R2i: A relative readability metric for decompiled code. Proc.
ACM Softw. Eng., 1(FSE), July 2024.

https://gcc.gnu.org/
https://hex-rays.com/decompiler/
https://ghidra-sre.org/
https://claude.ai
https://retdec.com/
http://git.savannah.gnu.org/gitweb/?p=coreutils.git

[18] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian,
Farinaz Koushanfar, and Jishen Zhao. Coda: an end-to-end neural
program decompiler. Curran Associates Inc., Red Hook, NY, USA,
2019.

[19] GitHub and OpenAI. Github copilot. https://github.com/features/
copilot, 2021. Available at https://github.com/features/copilot.

[20] Google. Gemini Code Assist. https://developers.google.com/gemini-
code-assist, 2025. Accessed: 2025-06-04.

[21] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
and Abhishek Kadian et al. The llama 3 herd of models, 2024.

[22] HyungSeok Han, JeongOh Kyea, Yonghwi Jin, Jinoh Kang, Brian
Pak, and Insu Yun. Queryx: Symbolic query on decompiled code for
finding bugs in cots binaries. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 3279–3295, 2023.

[23] Gustaf Holst and Felix Dobslaw. On the importance and shortcomings
of code readability metrics: A case study on reactive programming,
2021.

[24] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang,
and Heung-Yeung Shum. Open-reasoner-zero: An open source
approach to scaling up reinforcement learning on the base model,
2025.

[25] Peiwei Hu, Ruigang Liang, and Kai Chen. Degpt: Optimizing
decompiler output with llm. Proceedings 2024 Network and Distributed
System Security Symposium, 2024.

[26] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei
Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang,
Rui Men, Fei Huang, Shanghaoran Quan, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report.
ArXiv, abs/2409.12186, 2024.

[27] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim.
A survey on large language models for code generation, 2024.

[28] Linxi Jiang, Xin Jin, and Zhiqiang Lin. Beyond classification:
Inferring function names in stripped binaries via domain adapted
llms. Proceedings of the 2025 on ACM SIGSAC Conference on
Computer and Communications Security, 2025.

[29] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran Yahav. Towards
neural decompilation. ArXiv, abs/1905.08325, 2019.

[30] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention, 2023.

[31] LaurieWired. Ghidramcp: Mcp server for ghidra. https://github.com/
LaurieWired/GhidraMCP, 2025. Accessed: 2025-06-04.

[32] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and
Steven Chu Hong Hoi. Coderl: Mastering code generation through
pretrained models and deep reinforcement learning. Advances in
Neural Information Processing Systems, 35:21314–21328, 2022.

[33] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: princi-
pled reverse engineering of types in binary programs. In Proceedings
of the Network and Distributed System Security Symposium, NDSS
2011, San Diego, California, USA, 6th February - 9th February 2011.
The Internet Society, 2011.

[34] Yan Lin and Debin Gao. When function signature recovery meets
compiler optimization. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 36–52, 2021.

[35] Zhiqiang Lin, X. Zhang, and Dongyan Xu. Automatic reverse
engineering of data structures from binary execution. In Network
and Distributed System Security Symposium, 2010.

[36] Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming
Tian, Yutong Zhang, Jiaqi Wang, Xiaohui Gao, Tianyang Zhong, Yi Pan,
Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang,
Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, and Bao Ge.
Understanding llms: A comprehensive overview from training to
inference, 2024.

[37] Zhibo Liu and Shuai Wang. How far we have come: testing
decompilation correctness of c decompilers. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2020, page 475–487, New York, NY, USA, 2020.
Association for Computing Machinery.

[38] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang,
Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like
training: A critical perspective, 2025.

[39] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. Alive2: bounded translation validation for llvm. In
Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021,
page 65–79, New York, NY, USA, 2021. Association for Computing
Machinery.

[40] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and
Davide Balzarotti. The convergence of source code and binary
vulnerability discovery – a case study. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security,
ASIA CCS ’22, page 602–615, New York, NY, USA, 2022. Association
for Computing Machinery.

[41] Thomas J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308–320, 1976.

[42] Marvin Muñoz Barón, Marvin Wyrich, and Stefan Wagner. An empir-
ical validation of cognitive complexity as a measure of source code
understandability. In Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), ESEM ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[43] NVIDIA. NVIDIA Data Center Deep Learning Product Performance
AI Inference. NVIDIA Developer.

[44] OpenAI. ChatGPT (May 2025 version). https://chat.openai.com, 2025.
Large language model. Accessed: 2025-06-04.

[45] Indranil Palit and Tushar Sharma. Generating refactored code accu-
rately using reinforcement learning. arXiv preprint arXiv:2412.18035,
2024.

[46] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar,
Lambert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavu-
luri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation: A
study of bugs introduced by large language models while translating
code. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, ICSE ’24, page 1–13. ACM, April 2024.

[47] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. A simpler
model of software readability. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11, page 73–82,
New York, NY, USA, 2011. Association for Computing Machinery.

[48] Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam Doupé, Ruoyu
Wang, and Stephanie Forrest. Automatically mitigating vulnerabilities
in binary programs via partially recompilable decompilation. IEEE
Transactions on Dependable and Secure Computing, 22:2270–2282,
2022.

[49] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert,
Jonas Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias
Springenberg. Learning by playing solving sparse reward tasks from
scratch. In International conference on machine learning, pages 4344–
4353. PMLR, 2018.

[50] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai
Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal
Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-
ton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve.
Code llama: Open foundation models for code, 2023. Accessed: 2025-
06-04.

[51] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys
Poshyvanyk. A comprehensive model for code readability. J. Softw.
Evol. Process, 30(6), June 2018.

https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://developers.google.com/gemini-code-assist
https://developers.google.com/gemini-code-assist
https://github.com/LaurieWired/GhidraMCP
https://github.com/LaurieWired/GhidraMCP
https://chat.openai.com

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms, 2017.

[53] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song,
Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya
Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models, 2024.

[54] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy.
Execution-based code generation using deep reinforcement learning.
arXiv preprint arXiv:2301.13816, 2023.

[55] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile:
Decompiling binary code with large language models. In Conference
on Empirical Methods in Natural Language Processing, 2024.

[56] Jubi Taneja, Avery Laird, Cong Yan, Madan Musuvathi, and Shu-
vendu K Lahiri. Llm-vectorizer: Llm-based verified loop vectorizer.
arXiv preprint arXiv:2406.04693, 2024.

[57] Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian
Kästner, and Bogdan Vasilescu. "automatically assessing code under-
standability" reanalyzed: combined metrics matter. In Proceedings of
the 15th International Conference on Mining Software Repositories,
MSR ’18, page 314–318, New York, NY, USA, 2018. Association for
Computing Machinery.

[58] util-linux. util-linux. https://github.com/util-linux/util-linux.
[59] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching,

Tristan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and
Quentin Gallouédec. TRL: Transformer Reinforcement Learning.

[60] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster,
and Michelle L. Mazurek. An observational investigation of reverse
Engineers’ processes. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1875–1892. USENIX Association, August 2020.

[61] Fish Wang and Yan Shoshitaishvili. Angr - the next generation of
binary analysis. In 2017 IEEE Cybersecurity Development (SecDev),
pages 8–9, 2017.

[62] Yanzhao Wang and Fei Xie. Enhancing translation validation of
compiler transformations with large language models, 2024.

[63] Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang,
Qiyi Tang, Sen Nie, and Shi Wu. Refining decompiled c code with
large language models. ArXiv, abs/2310.06530, 2023.

[64] Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and
Xiangyu Zhang. Resym: Harnessing llms to recover variable and
data structure symbols from stripped binaries. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, CCS ’24, page 4554–4568, New York, NY, USA, 2024.
Association for Computing Machinery.

[65] Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang, Shiwei Feng,
Yapeng Ye, Nan Jiang, Danning Xie, Siyuan Cheng, Lin Tan, and
Xiangyu Zhang. Unleashing the power of generative model in
recovering variable names from stripped binary. 01 2025.

[66] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew
Smith. Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 158–177. IEEE Computer Society, 2016.

[67] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and
Matthew Smith. No more gotos: Decompilation using pattern-
independent control-flow structuring and semantic-preserving transfor-
mations. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society, 2015.

[68] Zao Yang and Stefan Nagy. Bin2wrong: a unified fuzzing framework
for uncovering semantic errors in binary-to-c decompilers. August
2025.

[69] Tuba Yavuz and Ken (Yihang) Bai. Analyzing system software
components using api model guided symbolic execution. Journal
of Automated Software Engineering, 2020.

[70] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery
of variable and data structure via probabilistic analysis for stripped
binary. In 2021 IEEE Symposium on Security and Privacy (SP), pages
813–832, 2021.

[71] Chang Zhu, Ziyang Li, Anton Xue, Ati Priya Bajaj, Wil Gibbs, Yibo
Liu, Rajeev Alur, Tiffany Bao, Hanjun Dai, Adam Doupé, Mayur Naik,
Yan Shoshitaishvili, Ruoyu Wang, and Aravind Machiry. TYGR: Type
inference on stripped binaries using graph neural networks. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 4283–4300,
Philadelphia, PA, August 2024. USENIX Association.

[72] Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio Bianchi, and
Dave (Jing) Tian. D-Helix: A generic decompiler testing framework
using symbolic differentiation. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 397–414, Philadelphia, PA, August 2024.
USENIX Association.

Appendix

https://github.com/util-linux/util-linux

	Introduction
	Background and Motivation
	LLM application and training
	Applications of LLMs
	Training LLMs

	Decompiled Code Accuracy
	Decompiled Code Readability
	Motivations

	Design Challenges
	Design
	LLM Fine-Tuning
	Reward Function Design
	Syntax Metric
	Semantics Metric
	Readability Metric

	Implementation
	Evaluation
	Experiment Setup
	D-Score Evaluation
	Dataset
	Baseline Model

	D-LiFT Performance On OA
	Result
	Findings
	Training Efficiency

	D-LiFT Performance On OIA
	Result
	Findings

	Case Study
	Syntax Error Fixes
	Semantic Error Fixes
	Readability Improvement

	Discussion
	Related Work
	Conclusion
	References
	Appendix

