
ar
X

iv
:2

50
6.

10
03

9v
1

 [
cs

.C
R

]
 1

0
Ju

n
20

25

Symbolic Generation and Modular Embedding of High-Quality
abc-Triples

Michael A. Idowu∗

Abstract
We present a symbolic identity for generating integer triples (a, b, c) satisfying a + b = c,

inspired by structural features of the abc conjecture. The construction uses powers of 2
and 3 in combination with modular inversion in Z/3pZ, leading to a parametric identity
with residue constraints that yield abc-triples exhibiting low radical values. Through affine
transformations, these symbolic triples are embedded into a broader space of high-quality
examples, optimised for the ratio log c/ log rad(abc). Computational results demonstrate
the emergence of structured, radical-minimising candidates, including both known and
novel triples. These methods provide a symbolic and algebraic framework for controlled
triple generation, and suggest exploratory implications for symbolic entropy filtering in
cryptographic pre-processing.

MSC 2020: Primary 05A17; Secondary 11D45, 11Y60, 94A60.
Keywords: abc conjecture, modular inversion, symbolic generation, radical minimisation, affine
transformation, entropy filtering, Diophantine structure, pseudorandomness.

1 Introduction
The abc conjecture, independently proposed by Masser and Oesterlé in the 1980s [1, 2], concerns
triples of coprime positive integers (a, b, c) such that

a + b = c,

and posits that for every ε > 0, there exist only finitely many such triples with
c > rad(abc)1+ε,

where rad(n) denotes the product of the distinct prime factors of n. The associated quality of
such a triple is defined as

q(a, b, c) = log c

log rad(abc) . (1)

The conjecture implies that q(a, b, c) < 1 + ε for almost all such triples and suggests a deep
connection between the additive and multiplicative structures of positive integers, which has
far-reaching consequences in number theory, impacting Diophantine equations, elliptic curves,
and arithmetic geometry[3, 4].

In this work, we propose a symbolic and modular identity to generate structured additive
triples (a, b, c) with characteristics that mirror those involved in the abc conjecture. The
construction employs powers of 2 and 3, coupled with modular inversion in Z/3pZ, to define
residue-constrained identities through congruence conditions on auxiliary parameters.

We analytically derive a modular inversion constraint that determines admissible values
and explore its theoretical and computational implications. Using affine transformations, these
symbolic triples are embedded into a larger space of known high-quality abc-triples, supporting
symbolic encoding, transformation, and radical optimisation. This approach blends modular
arithmetic and inverse cycles, offering a novel algebraic perspective on triple structures.

∗Email: michade@hotmail.com

1

https://arxiv.org/abs/2506.10039v1

1.1 Main Contributions

Our key contributions include:

• A parametric identity that generates additive triples (a, b, c) satisfying a+b = c, constrained
by modular inversion in Z/3pZ.

• A residue class condition that characterises admissible values of the symbolic parameter d.

• An affine transformation framework for symbolic triples, aligning them with classical
high-quality abc-triples while enabling radical minimisation.

• Computational results demonstrating the identity’s effectiveness in producing low-radical
triples with cryptographic relevance.

• Exploratory cryptographic discussion, focusing on entropy filtering and modular predictab-
ility.

Remark. In addition to computational and symbolic methods, it is worth noting the
controversial proof of the abc conjecture claimed by Shinichi Mochizuki via Inter-universal
Teichmüller (IUT) theory. While his work remains under active scrutiny and has not achieved
broad consensus, it represents a significant development in the theoretical discourse surrounding
the conjecture; see [5] for details.

1.2 Context within Existing abc-Triple Generation Work

Traditional searches for high-quality abc-triples rely on enumeration, smoothness filtering, or
probabilistic sieving[6, 7]. These methods explore coprime additive triples ranked by

Q(a, b, c) = log c

log rad(abc) .

Advanced approaches, such as ABC@home or the work of Nitaj [8], incorporate distributed
computing and heuristic bounds informed by number theory. Symbolic constructions remain
less prevalent.
Our method diverges by introducing an algebraically motivated identity underpinned by residue
constraints and affine embeddings. It provides:

• A symbolic alternative to brute-force or statistical candidate generation.

• Analytically bounded parameters for algebraic post-processing.

• A tunable symbolic structure that favours radical minimisation and compressibility.

This contribution complements computational methods and opens up new paths for analysis,
including extensions relevant to cryptographic applications. The paper proceeds as follows:
Section 2 introduces the parametric identity and modular constraints. Section 3 presents the
affine transformation model. Section 4 explores structural optimisation. Section 5 delivers
computational evidence. Section 6 explores cryptographic applications. Section 7 concludes and
outlines future directions.

Notation and Symbol Table

2

Table 1: Summary of mathematical symbols used throughout the paper.
Symbol Meaning
a, b, c Integer triple with a + b = c

p, k, n Symbolic parameters: exponent indices
d Modular inverse constraint value
rad(n) Product of distinct prime divisors of n

Q(a, b, c) Triple quality: log c/ log rad(abc)
η(p, k, d) Symbolic compression ratio
α, γ, δ Affine transformation parameters

2 Parametric Identity and Modular Constraints
We consider the identity

3p(s + 1) = 1 + 2k−1(2 · 3p · n + d), (2)
where d is odd, s ∈ 2Z, and p, k, n ∈ Z+. Our goal is to recast this identity into a form consistent
with the abc conjecture, explore parameter regimes that maximise the associated quality, and
investigate structural implications using the binomial expansion of 3p.
We define a symbolic identity for generating integer triples (a, b, c) satisfying a + b = c, with
a = 1 and b expressed via a modularly-constrained function:

a = 1,

b = 2k−1(2 · 3p · n + d),
c = 3p(s + 1) = a + b.

This structure fits the abc format a + b = c, and we wish to identify parameter regimes in which
the quality q(a, b, c) is maximised and p, k ∈ Z>0 are parameters.

2.1 Core Identity

We define:
a = 1, b = 2k−1(2 · 3pn + d), c = a + b,

where n ∈ Z≥0, and d is a symbolic parameter subject to a modular constraint derived from the
additive identity.

2.2 Modular Inversion Constraint

We require that a + b = c with the goal of constructing symbolic triples with a particular
structure. For the identity to be consistent with symbolic embedding and invertibility over
Z/3pZ, we derive the following constraint:

Lemma 2.1 (Modular Inverse Constraint). Let k ∈ Z>0, then

d ≡ −
(
2k−1

)−1
mod 3p.

Proof. To ensure that the additive relation is preserved under symbolic inversion, we examine
the inverse of 2k−1 modulo 3p. Since 2 is coprime to 3, 2k−1 has an inverse in Z/3pZ. Thus,
solving

2k−1d ≡ −1 mod 3p

leads to
d ≡ −

(
2k−1

)−1
mod 3p.

3

2.2.1 Guiding Principle and Parameter Choices for Maximising Quality

We aim to maximise log c, which grows with p, and minimise log rad(abc) by controlling prime
factors of b and c:

• Set a = 1 to guarantee coprimality with other terms.
• Choose p ≫ 1: exponentially increases c = 3p(s + 1).
• Choose k such that c is divisible by 3p, ensuring s ∈ Z.
• Determine values of n and d consistent with c to keep b small and reduce its prime

factorisation.

2.2.2 Smoothness Condition

To minimise the radical rad(abc), we prefer that 2 · 3pn + d be smooth (i.e., composed of small
primes). This leads to small rad(b), since:

b = 2k−1(2 · 3pn + d).

2.3 Illustrative Example: Computation of d

Let p = 2, k = 3. Then 3p = 9, 2k−1 = 4. Compute the modular inverse of 4 modulo 9:

4−1 ≡ 7 mod 9, since 4 · 7 = 28 ≡ 1 mod 9.

Thus,
d ≡ −7 ≡ 2 mod 9.

Then,
b = 4(2 · 32 · n + 11) = 4(18n + 11).

For n = 0, we obtain b = 44, c = a + b = 32(4 + 1).

2.4 Illustrative Example: Computation of k

Let p = 5, s = 2, and find k such that c = 3p(s + 1) is an integer:

3p = 243,

s = 2
b = 2k−1(2 · 3pn + d) = 728.

k = 4 ⇒ d = 91 ⇒ c = 729.
Now compute:

rad(abc) = rad(1 · 728 · 729).
We factor:

728 = 24−1(91) = 23 · 7 · 13, 729 = 36,

hence:
rad(abc) = 2 · 3 · 7 · 13 = 546.

Calculate the quality:

log c ≈ log(729) ≈ 2.8627,

log rad(abc) ≈ log(546) ≈ 2.737,

q ≈ 2.8627
2.737 ≈ 1.04586.

This already exceeds 1, and larger p values will improve log c further.

4

2.5 Asymptotic Behaviour

Assume s + 1 remains bounded or grows slowly. Then:

log c = log(3p(s + 1)) = p log 3 + log(s + 1),

and with log b = (k − 1) log 2 + log(2 · 3pn + d), we have:

log c > log(b)
→ p log 3 + log(s + 1) ≈ (k − 1) log 2 + log(2 · 3pn + d),

(3)

as p → ∞.
But

log rad(abc) = log rad(2 · 3 · (s + 1) · (2 · 3pn + d))
≤ log(2 · 3) + log rad((s + 1) · (2 · 3pn + d)).

(4)

Thus, as p → ∞,

q(a, b, c) = p log 3 + log(s + 1)
log rad(abc)

= p log 3 + log(s + 1)
log rad(2 · 3 · (s + 1) · (2 · 3pn + d))

∼ (k − 1) log 2 + log(2 · 3pn + d)
log rad(2 · 3 · (s + 1) · (2 · 3pn + d)) .

(5)

2.5.1 Key Obstacle

The term 2 ·3pn+d tends to be rough (i.e., contains large prime factors) for large p and dependent
on n, reducing the likelihood that the radical stays bounded. Therefore, we expect only finitely
many high-quality examples, consistent with the abc conjecture. Understanding the relationship
between smooth values of 2 · 3pn + d and all the other parameters and variables remains a critical
challenge. The identity in Eq. (2) provides a constructive method for generating abc triples with
potentially high quality. The quality increases with p under controlled radical growth. However,
the rarity of smooth values of 2 · 3pn + d limits the number of such high-quality cases.

2.6 Revised and More Insightful Examples

To better illustrate the construction of abc-triples, we refine the earlier examples by making the
assumptions and computations more explicit, particularly ensuring that the parameter d is odd
as required.

2.6.1 Example 1: Computation of d (with d odd)

Let p = 2, so 3p = 9, and let k = 3, so 2k−1 = 4. We compute the modular inverse of 4 modulo 9:

4−1 ≡ 7 mod 9, since 4 × 7 = 28 ≡ 1 mod 9.

Thus,
d ≡ −4−1 ≡ −7 ≡ 2 mod 9.

We now choose d = 11, which satisfies d ≡ 2 mod 9 and is odd, as required.
Define:

b = 2k−1(2 · 3pn + d) = 4(18n + 11).

For n = 0, we obtain:
b = 4 · 11 = 44, a = 1, c = a + b = 45.

5

Check that c = 32(s + 1). Since 32 = 9, we find:

s = c

9 − 1 = 45
9 − 1 = 4.

Now factor:
abc = 1 · 44 · 45 = (22 · 11)(32 · 5) = 22 · 32 · 5 · 11,

rad(abc) = 2 · 3 · 5 · 11 = 330.

Then compute the quality:

q = log c

log rad(abc) = log 45
log 330 ≈ 3.807

5.799 ≈ 0.656.

Although this quality is below 1, it demonstrates the mechanics of the construction. Higher
values of p will improve the quality.

2.6.2 Example 2: Computation of k

Let p = 5, so 3p = 243, and take s = 2, so:

c = 3p(s + 1) = 243 · 3 = 729.

Let k = 4, so 2k−1|(c − 1), and suppose:

b = 2k−1(2 · 3pn + d) = 24−1(2 · 729 · n + d).

Therefore n = 0 and d = 91, which is odd.
Then:

b = 8 · 91 = 728, a = 1, c = a + b = 729.

Factor the components:
a = 1, b = 23 · 7 · 13, c = 36.

Hence:
rad(abc) = rad(1 · 728 · 729) = 2 · 3 · 7 · 13 = 546.

Now compute the logarithmic quality:

log c ≈ log(729) ≈ 6.5917, log rad(abc) ≈ log(546) ≈ 6.303,

q ≈ 6.5917
6.303 ≈ 1.0459.

This example yields a valid abc-triple with quality exceeding 1.
Both examples in 2.6.1 and 2.6.2 satisfy the abc-condition: a + b = c, a > 0, b > 0, and gcd(a, b).
The first example illustrates the computation of a valid d ensuring parity and congruence.
The second example demonstrates how increasing p allows for higher-quality values due to
exponential growth in c.

2.7 High-Quality abc-Triple Example and Parameterised Construction

To construct a triple (a, b, c) satisfying the conditions of the abc-conjecture, we seek: a + b = c,
gcd(a, b) = 1, a, b, c > 0, rad(abc) ≪ c, so that q(a, b, c) = log c

log rad(abc) > 1.
We consider a parameterised form of the construction:

c = 3p(s + 1), b = 2k−1(2 · 3pn + d), a = c − b = 1,

where: d is an odd integer satisfying d ≡ −(2k−1)−1 (mod 3p), gcd(a, b) = 1, d is selected to
avoid introducing large prime divisors.

6

2.7.1 Example 3: Computation of d (with Q > 1.4)

Let p = 5, so 3p = 243, and let k = 13, giving 2k−1 = 212 = 4096. We aim to compute the
modular inverse of 212 modulo 35, ensuring that the result is odd.

Step 1: Evaluate the relevant powers.

212 = 4096, 35 = 243.

Step 2: Apply the extended Euclidean algorithm. We solve:

4096x + 243y = 1

Proceeding with the Euclidean algorithm:

4096 = 16 · 243 + 208
243 = 1 · 208 + 35
208 = 5 · 35 + 33
35 = 1 · 33 + 2
33 = 16 · 2 + 1
2 = 2 · 1 + 0

Since gcd(4096, 243) = 1, an inverse exists.

Step 3: Perform back-substitution. Expressing 1 as a linear combination:

1 = 33 − 16 · 2
= 33 − 16(35 − 1 · 33)
= 17 · 33 − 16 · 35
= 17(208 − 5 · 35) − 16 · 35
= 17 · 208 − 101 · 35
= 17 · 208 − 101(243 − 1 · 208)
= 118 · 208 − 101 · 243
= 118(4096 − 16 · 243) − 101 · 243
= 118 · 4096 − (1888 + 101) · 243
= 118 · 4096 − 1989 · 243

Thus,
(212)−1 ≡ 118 (mod 243).

Step 4: Compute d.

d ≡ −(212)−1 ≡ −118 ≡ 125 (mod 243).

We now choose d = 53 = 125, which satisfies this congruence and is odd, as required.

Step 5: Define the symbolic triple. Let:

b = 212(2 · 3pn + d) = 4096(2 · 243n + 125).

For n = 0, we get:

a = 1, b = 4096 · 125 = 512000, c = a + b = 512001.

Note that:
c = 35 · 49 · 43.

7

Step 6: Compute the radical of abc.

abc = 1 · (212 · 53) · (35 · 72 · 43)

Distinct prime divisors:

{2, 3, 5, 7, 43} ⇒ rad(abc) = 2 · 3 · 5 · 7 · 43 = 9030.

Step 7: Compute the abc-quality.

quality(a, b, c) = log c

log rad(abc)

Substituting:

log c ≈ log 512001 ≈ 13.146, log rad(abc) ≈ log 9030 ≈ 9.108,

⇒ quality ≈ 13.146
9.108 ≈ 1.4437

This quality significantly exceeds 1.4, highlighting a high-quality abc-triple with controlled
radical growth due to carefully selected symbolic parameters. The exponential growth in c, via
powers of 3, provides a substantial numerator in the logarithmic ratio, reinforcing the efficiency
of this construction.

2.7.2 Construction Template

1. Choose p, and set c = 3p(s + 1).

2. Choose k, and find the modular inverse 2k−1−1 mod 3p.

3. Set d ≡ −2k−1−1 mod 3p, ensuring d is odd.

4. Define b = 2k−1(2 · 3pn + d), and set a = c − b.

5. Verify: a > 0, gcd(a, b) = 1; then compute rad(abc) and the corresponding quality Q.

3 Affine Transformation and Symbolic Embedding
To relate the parametrically generated triples to known high-quality abc-triples, we introduce
an affine transformation framework. This allows us to view the identity-based triples as basis
elements from which other triples may be derived via linear scaling and translation.

3.1 Symbolic Construction Workflow

By fixing k and varying p, one obtains a predictable orbit of inverses that may be used to seed
cryptographic routines while avoiding repetition across independent key derivation stages 1.
These values may serve as inverse-consistent initialisation vectors in deterministic pseudorandom
number generators (PRNGs), where cryptographic entropy must remain within a controllable
and verifiable structure.

3.2 Symbolic Triple

Definition 3.1 (Symbolic Triple). Let (a, b, c) be a triple generated from the identity:

a = 1, b = 2k−1(2 · 3pn + d), c = a + b.

We refer to (a, b, c) as a symbolic triple, parameterised by (p, k, d, n).

8

Symbolic Parameters (p, k, d)

Compute d ≡ −
(
2k−1

)−1
mod 3p

Generate (a, b, c)

Affine Embedding

Radical Minimisation

Cryptographic Utility

Figure 1: Pipeline from symbolic parameter selection to cryptographic application.

3.3 Affine Embedding Preserves Additivity

Theorem 3.2 (Affine Embedding Preserves Additivity). Let (a, b, c) be a symbolic triple as
above. Define an affine transformation:

(a′, b′, c′) = α(a, b, c) + (γ, δ, β), α ∈ Z>0,

Then the additive relation a′ + b′ = c′ holds if and only if γ + δ = β.
Proof. Compute:

a′ + b′ = α(a + b) + γ + δ = αc + γ + δ, c′ = αc + β.

Thus, a′ + b′ = c′ iff γ + δ = β.

3.4 Radical Control Under Affine Transformation

Proposition 3.3 (Radical Control Under Affine Transformation). Let (a, b, c) be a symbolic
triple and (a′, b′, c′) = α(a, b, c) + (γ, δ, β) its affine image with γ + δ = β. If gcd(α, rad(abc)) = 1
and rad(γ + δ) ≪ rad(αabc), then:

Q(a′, b′, c′) ≥ log(αc)
log rad(abc) + log rad(αγδ) .

Figure 2 summarises the stepwise symbolic construction process, linking algebraic design
choices to radical control and transformation strategies. This encapsulation aids both theoretical
understanding and potential cryptographic integration.

4 Symbolic Optimisation and Structural Analysis
We investigate symbolic patterns and optimisations that improve triple quality:

• Modular inversion yields cyclic d values in Z/3pZ.

• Filtering by odd d reduces radicals.

• Compression ratio η(p, k, d) measures symbolic efficiency.

Let:
Fp,k = {d ∈ Z/3pZ : d ≡ −

(
2k−1

)
)−1 mod 3p, d odd}.

This defines a symbolic residue filter.

9

Parameter selection

Modular inversion

Triple generation

Affine embedding

Radical filtering

Figure 2: Symbolic construction pipeline: parameter selection, modular inversion, triple gener-
ation, affine embedding, and radical filtering. This structured process enables both symbolic
control and cryptographic applicability.

4.1 Symbolic Regularity and Compressibility

We define symbolic regularity as the recurrence of low-radical patterns within a compact range
of parameters (p, k, d). Symbolic regularity observed in modular inversion patterns can be
interpreted through the lens of elementary group theory and abstract algebraic structures [9].

Empirically, triples such as (1, 8, 9) and (1, 80, 81) exhibit near-cubic structure: c = m3 or
c ≈ m3 for small integers m. This suggests an underlying compression in the symbolic encoding
of b via powers of 2 and 3.

We may define the compression ratio:

η(p, k, d) := log2(b)
log2(len(p, k, d)) ,

where len(p, k, d) denotes the bit-length of the symbolic expression. High η implies that the
symbolic identity efficiently encodes a large magnitude with minimal symbolic entropy.

Symbolic optimisation techniques, including residue class filtering and radical control, allow
the parametric identity to be tuned toward producing structurally desirable triples. The
congruence condition on d not only enforces arithmetic admissibility but also constrains the
solution space in a computationally tractable way. These properties justify the algorithmic
approach used in subsequent computational experiments.

4.2 Theoretical Support for Symbolic Framework

We acknowledge the need for stronger theoretical scaffolding. To that end, we outline foundational
estimates that support the symbolic identity’s behaviour and computational utility.

4.2.1 Complexity and Parameter Growth

Let b = 2k−1(2 · 3pn + d) and c = 1 + b. Then log b = O(k + p + log n) under fixed symbolic
structure. As k increases, b grows exponentially, but the growth of rad(abc) depends heavily on
the smoothness of d and n. Therefore, the symbolic identity provides a mechanism to explore
exponential magnitude while preserving low-radical values in controlled cases.

10

4.2.2 Error and Stability Considerations

Although we do not provide probabilistic bounds on the distribution of radical values, the
modular inverse constraint d ≡ −(2k−1)−1 mod 3p ensures that each triple is algebraically
admissible. Given that gcd(2, 3p) = 1, this constraint is deterministic and produces residue
classes of predictable order. Future work may introduce average-case bounds or symbolic entropy
estimates to assess uniformity of radical suppression across parameter ranges.

These analytic foundations serve to reinforce the symbolic constructions empirically tested
in later sections and open the door to deeper probabilistic or algebraic analyses.

4.3 Quality Growth with k

2 3 4 5 6

1.24

1.26

1.28

1.3

k

Q
(a

,b
,c

)

Triple Quality vs. k (with p = 2)

Figure 3: Growth in triple quality as k increases for fixed p = 2 and n = 0.

5 Computational Results and Triple Quality
We evaluate the practical utility of the parametric identity by generating a collection of integer
triples (a, b, c) satisfying a + b = c, and assessing their quality using the standard metric

Q(a, b, c) := log c

log rad(abc) .

This metric has been widely used in computational studies to classify and rank abc-triples by
their arithmetic complexity and radical structure [6].

5.1 Experimental Setup

We fixed a = 1 and enumerated triples over the parameter space:

p ∈ {1, 2, . . . , 6}, k ∈ {1, 2, . . . , 7}, n = 0,

selecting values of d that satisfy the modular inverse constraint:

d ≡ −(2k−1)−1 mod 3p, d odd.

11

5.2 Selected Results

Table 2 presents a subset of high-quality triples derived from the symbolic construction. Each
entry includes the triple, its quality, the radical of abc, and the associated d value.

Triple (a, b, c) Quality Q rad(abc) d Remarks
(1, 242, 243) 1.3111 66 121 Near cube; low radical
(1, 80, 81) 1.2920 30 5 Classical high-quality triple

(1, 6560, 6561) 1.2353 1230 205 High c; residue-consistent
(1, 8, 9) 1.2263 6 1 Smallest non-trivial example

(1, 728, 729) 1.0459 546 91 729 = 93 (cubic structure)

Table 2: Selected high-quality abc-triples generated by symbolic inversion.

5.3 Observations

Several of the computed triples reproduce known high-quality instances from the literature (e.g.,
(1, 80, 81)), while others (e.g., (1, 242, 243)) demonstrate novel combinations yielding near-cubic
values for c with relatively low radicals.

Triples where c = m3 or c ≈ m3 exhibit symbolic compressibility due to the closed form
structure of powers of 3 appearing in the parametric identity.

5.4 Symbolic Range and Efficiency

The bit-length of b as a function of parameters (p, k, d) was also examined. For fixed p, increasing
k leads to exponential growth in b, yet the radical does not necessarily increase proportionally.

5.5 Empirical Evaluation Scope and Limitations

The computational experiments reported in this paper focus on a parameter range where
p ∈ {1, 2, . . . , 6}, k ∈ {1, . . . , 7}, and n = 0. Larger values of k and n lead to exponential growth
in b, which increases memory and arithmetic complexity in radical computations.

6 Applications in Cryptography
While the primary focus of this work lies in symbolic number theory, the identity developed in
Section 2 also presents auxiliary value in cryptographic contexts. The structured properties of
modular inverses and residue constraints support entropy regulation, symbolic filtering, and
deterministic parameter generation—key concerns in embedded and post-quantum cryptography.

6.1 Entropy Confidence and Modular Filtering

To quantify modular regularity among symbolic parameters, we introduce the entropy confidence
score (ECS). For fixed parameters p and k, let di denote the set of valid inverse residues. Define:

ECSp,k :=

 1
ϕ(3p)

ϕ(3p)∑
i=1

|di − d̄|

−1

,

where d̄ is the arithmetic mean of the residues. A higher ECS indicates tighter concentration
around the mean, suggesting greater uniformity within the residue class.

Such consistency aids in predictable sampling—beneficial for symbolic pseudorandom number
generation (PRNG) and resistance to side-channel attacks. These characteristics support

12

constant-time implementations, which are essential to mitigating timing and power leakage
in embedded cryptographic systems [10]. The ECS concept complements entropy bounding
strategies as outlined in NIST SP 800-90B [11], offering a lightweight filtering mechanism for
candidate parameters.

6.2 Symbolic Filters in Post-Quantum Schemes

The symbolic identity introduced here can serve as a pre-filter for cryptographic key material in
structured post-quantum schemes:

• Lattice-based cryptography (e.g., NTRU, Kyber): Symbolic pre-filters can improve
modular basis consistency, reducing decryption failures and enhancing key reproducibility
[12, 13].

• Code-based cryptography (e.g., McEliece, McBits): Residue-based parameter selection
improves regularity, facilitating constant-time key generation and secure masking—essential
features in implementations such as McBits [14].

Though auxiliary in nature, these filters leverage the symbolic construction’s algebraic transpar-
ency and entropy control, and may assist in parameter tuning under formal security models.

6.3 Hardware-Efficient Modular Inversion

The inversion condition d ≡ −(2k−1)−1 mod 3p is both deterministic and suitable for efficient
hardware implementation. Since 2k−1 is always invertible in Z/3pZ, the inverse can be computed
using either precomputed tables or the extended Euclidean algorithm.

Such operations can be implemented in constant time, helping protect against side-channel
attacks. The symbolic identity thus satisfies both algebraic rigour and implementation efficiency
[15].

6.4 Symbolic PRNG Seeding: A Prototype

To demonstrate practical utility, we outline a prototype for symbolic seeding in deterministic
PRNGs.

6.4.1 Symbolic PRNG Initialisation (Pseudocode)

Input: Integer parameters p, k with gcd(2, 3^p) = 1
Output: Seed triple (a, b, c) for PRNG

1. Compute m := 3^p
2. Compute exp := 2^{k-1}
3. Compute inv := inverse_mod(exp, m)
4. Set d := (-inv) mod m
5. Set a := 1
6. Choose n := 0 or a PRNG-specific constant
7. Compute b := exp * (2 * m * n + d)
8. Compute c := a + b
9. Return (a, b, c) // Deterministic seed triple with symbolic structure

This process yields symbolic triples (a, b, c) suitable for entropy expansion or symbolic
filtering. The parameters p and k can be adjusted to introduce diversity across cryptographic
sessions.

13

6.5 Security Clarification and Integration Scenarios

The symbolic constructions presented in this work are intended for mathematical exploration
and parameter structuring, not for direct use as cryptographic primitives. Therefore, the
symbolic techniques introduced here are not intended to replace cryptographic primitives or
offer standalone security guarantees. Rather, they serve as heuristic tools for entropy shaping,
symbolic filtering, and deterministic initialisation in systems where structural control is desirable.

In particular, symbolic pseudorandom number generators (PRNGs) derived from modular
inversion are not cryptographically secure in the standard sense. They lack unpredictability,
resistance to backtracking, and provable entropy bounds.

Accordingly, these methods must not be employed as standalone entropy sources or key
derivation mechanisms in production systems. Their utility lies instead in augmenting existing
cryptographic schemes by shaping or filtering parameters in a reproducible and algebraically
tractable manner.

They may be incorporated into broader systems for:

• Seed generation in lattice-based schemes (e.g., Kyber),

• Parameter masking in code-based systems (e.g., McBits).

These roles are exploratory and should be validated against the specific security assumptions of
the cryptographic schemes in question.

Symbolic Pre-Seeding in Kyber. In lattice-based schemes such as Kyber [13], high-
dimensional polynomials are sampled from structured distributions. Symbolic identities may
serve to generate seed values that regulate entropy while maintaining modular consistency. For
example, a symbolic triple (a, b, c) could be used to initialise the SHAKE-based PRNG that
feeds into polynomial sampling. The algebraic origin of the seed ensures traceability, while
cryptographic strength is preserved by the domain separation and expansion mechanisms inherent
in Kyber’s design.

Entropy Shaping in McBits. In McBits [14], a code-based scheme designed for side-channel
resistance, key material is derived from structured bit-strings. Symbolic residue constraints may
be used to post-filter candidate seeds to ensure low Hamming weight or modular uniformity.
This helps balance randomness with implementational regularity. The symbolic seed is not used
directly, but rather as an input to a secure expansion function (e.g., AES-CTR), ensuring that
forward and backward unpredictability are maintained.

Formal Security Posture. Any application of symbolic techniques must be evaluated under
the security model of the host cryptographic system. This includes ensuring that:

• The entropy source has sufficient min-entropy after symbolic filtering;

• The symbolic seed cannot be reconstructed or predicted from public data;

• The filtering does not introduce statistical bias or side-channel leakage.

While symbolic structures offer compelling algebraic and compressive features, they must
always be wrapped within cryptographically sound operations, such as hash-based expansion,
masking, or key-derivation frameworks, to ensure system-wide security guarantees.
These applications are heuristic in nature and intended for symbolic pre-structuring rather than
as cryptographically secure components. Their primary role is to demonstrate how algebraically
constrained constructions may assist in entropy shaping, not to serve as standalone cryptographic
primitives.

14

6.6 Relation to Algebraic Systems

The symbolic identities derived from modular inversion and residue constraints reflect algebraic
structures well-known in abstract algebra and computational number theory. They align
with group-theoretic frameworks such as those outlined in Gallian [9] and resemble ring-based
cryptosystems like NTRU [12].

Furthermore, the construction offers empirical insight into structured, high-quality abc-triples,
aligning with earlier computational work such as that of Gallot et al. [16].

7 Conclusion
We have introduced a parametric identity that symbolically generates integer triples (a, b, c)
satisfying the additive condition a + b = c, with structural parallels to those appearing in the
context of the abc conjecture. The identity employs powers of 2 and 3 to define a modular
congruence condition that precisely delineates admissible parameters via residue inversion in
Z/3pZ. Through a combination of modular theory, affine transformation, and symbolic encoding,
we demonstrated that the generated triples capture structural regularities and yield instances
of high abc-quality – as measured by the ratio log c

log rad(abc) . This affirms the capacity of the
method to produce not only known examples but also new triples with desirable multiplicative
properties. We further analysed the symbolic behaviour of the identity, including the role of
inverse residue cycles, entropy-informed filtering, and affine embeddings. A heuristic entropy
score was proposed to quantify residue distribution, and potential applications in cryptographic
parameter generation and modular filtering were explored. Recent computational studies on the
abc conjecture have introduced advanced techniques for filtering candidate triples and optimising
radical growth [17, 16]. Our symbolic-algebraic framework complements these efforts by offering
an explicit, parameterised method for generating and transforming high-quality candidates. In
forthcoming work, we plan to undertake a more systematic comparative analysis between our
approach and existing computational datasets.
Several further directions naturally arise from the present study:

• Quality Spectrum Classification: Develop a formal classification of the quality spectrum
for symbolic triples, including statistical and asymptotic density analysis over extended
parameter ranges.

• Higher-Dimensional Generalisation: Extend the symbolic identity to tuples of higher
arity (e.g., quadruples) satisfying generalised additive constraints, thereby exploring its
scalability in Diophantine contexts.

• Cryptographic Integration: Implement symbolic residue filters in cryptographic key
scheduling, particularly within post-quantum schemes that benefit from entropy bounding
and structural reproducibility.

• Radical-Minimisation Families: Investigate whether specific symbolic parameterisations
systematically produce families of radical-minimising or extremal-quality triples.

The modular and affine structures examined in this work bear a notable resemblance to early
elliptic curve-based cryptographic protocols, which similarly leveraged arithmetic regularity for
secure construction [18]. This parallel invites further exploration into how symbolic structures
might be exploited not only for theoretical insight but also for secure and efficient implementation
in constrained environments. In addition, we outline a secondary tier of exploratory directions,
driven by practical applications in symbolic number theory and entropy-informed computation:

• Symbolic Density Estimation: Perform large-scale evaluations of symbolic triple space
density under radical and quality constraints.

15

• Symbolic Residue Trees: Construct tree-structured residue classes for deterministic
pseudorandom number generation, offering a new approach to PRNG state space traversal.

• Empirical Cross-Validation: Compare symbolic triples generated via our method with
known high-quality triples from ABC@home and cryptographic samples such as McBits.

Collectively, these avenues aim to bridge classical additive-multiplicative number theory with
modern computational and cryptographic practices, offering a structured and reproducible
framework for future symbolic exploration.

References
[1] D. W. Masser. Open problems. Bulletin of the London Mathematical Society, 18(2):117–123,

1985.

[2] J. Oesterl’e. Nouvelles approches du “th’eorème” de fermat. S’eminaire Bourbaki,
1987/88(Ast’erisque 161–162, Exp. No. 694):165–186, 1988.

[3] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, New York, 2nd edition,
2007.

[4] Machiel van Frankenhuijsen. The abc conjecture implies the mordell conjecture. Expositiones
Mathematicae, 24(1):1–9, 2006.

[5] Shinichi Mochizuki. Inter-universal teichm"uller theory i–iv. RIMS Kôkyûroku, Kyoto Uni-
versity, 2020. Available at: http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-tex.
htm.

[6] J. Browkin and J. Brzezinski. Some remarks on the abc-conjecture. Mathematics of
Computation, 62(205):931–939, 1994.

[7] Andrew Granville. Abc allows us to count squarefrees. International Mathematics Research
Notices, (19):991–1009, 1998.

[8] Abderrahmane Nitaj. Abc conjecture verified for c < 1018. Journal of Integer Sequences,
22:Article 19.6.7, 2019.

[9] Joseph Gallian. Contemporary Abstract Algebra. Cengage, Boston, 10th edition, 2021.

[10] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances
in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[11] NIST. Recommendation for the entropy sources used for random bit generation. Technical
Report 800-90B, National Institute of Standards and Technology, 2018.

[12] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key
cryptosystem. In Algorithmic Number Theory (ANTS III), volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer, 1998.

[13] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Jesper M.
Schanck, Peter Schwabe, Damien Stehlé, and Mehdi Tibouchi. Crystals-kyber: A cca-
secure module-lattice-based kem. In IEEE European Symposium on Security and Privacy
(EuroS&P), pages 353–367, 2018.

16

http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-tex.htm
http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-tex.htm

[14] Daniel J. Bernstein, Timothy Chou, and Peter Schwabe. Mcbits: Fast constant-time code-
based cryptography. In Cryptographic Hardware and Embedded Systems (CHES), volume
10529 of Lecture Notes in Computer Science, pages 250–272. Springer, 2017.

[15] Neal Koblitz. A Course in Number Theory and Cryptography. Springer, 2nd edition, 1994.

[16] Yves Gallot, Guillaume Hanrot, and Paul Voutier. Explicit abc-triples of large quality.
Experimental Mathematics, 27(1):25–35, 2018.

[17] Jonathan M. Borwein, Kevin G. Hare, and Michael J. Mossinghoff. Effective bounds for
the abc conjecture. Mathematics of Computation, 83(287):2415–2431, 2014.

[18] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology –
CRYPTO’85, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer,
1986.

17

	Introduction
	Main Contributions
	Context within Existing abc-Triple Generation Work

	Parametric Identity and Modular Constraints
	Core Identity
	Modular Inversion Constraint
	Guiding Principle and Parameter Choices for Maximising Quality
	Smoothness Condition

	Illustrative Example: Computation of d
	Illustrative Example: Computation of k
	Asymptotic Behaviour
	Key Obstacle

	Revised and More Insightful Examples
	Example 1: Computation of d (with d odd)
	Example 2: Computation of k

	High-Quality abc-Triple Example and Parameterised Construction
	Example 3: Computation of d (with Q > 1.4)
	Construction Template

	Affine Transformation and Symbolic Embedding
	Symbolic Construction Workflow
	Symbolic Triple
	Affine Embedding Preserves Additivity
	Radical Control Under Affine Transformation

	Symbolic Optimisation and Structural Analysis
	Symbolic Regularity and Compressibility
	Theoretical Support for Symbolic Framework
	Complexity and Parameter Growth
	Error and Stability Considerations

	Quality Growth with k

	Computational Results and Triple Quality
	Experimental Setup
	Selected Results
	Observations
	Symbolic Range and Efficiency
	Empirical Evaluation Scope and Limitations

	Applications in Cryptography
	Entropy Confidence and Modular Filtering
	Symbolic Filters in Post-Quantum Schemes
	Hardware-Efficient Modular Inversion
	Symbolic PRNG Seeding: A Prototype
	Symbolic PRNG Initialisation (Pseudocode)

	Security Clarification and Integration Scenarios
	Relation to Algebraic Systems

	Conclusion

