
ar
X

iv
:2

50
6.

10
03

0v
1 

 [
cs

.C
R

] 
 1

0 
Ju

n 
20

25

Safeguarding Multimodal Knowledge Copyright in the
RAG-as-a-Service Environment

Tianyu Chen1, Jian Lou2,Wenjie Wang1†
1Shanghaitech University 2Sun Yat-sen University

{chenty12024,wangwj1}@shanghaitech.edu.cn jian.lou@hoiying.net

Abstract

As Retrieval-Augmented Generation (RAG) evolves into service-oriented platforms
(Rag-as-a-Service) with shared knowledge bases, protecting the copyright of con-
tributed data becomes essential. Existing watermarking methods in RAG focus
solely on textual knowledge, leaving image knowledge unprotected. In this work,
we propose AQUA, the first watermark framework for image knowledge protec-
tion in Multimodal RAG systems. AQUA embeds semantic signals into synthetic
images using two complementary methods: acronym-based triggers and spatial
relationship cues. These techniques ensure watermark signals survive indirect
watermark propagation from image retriever to textual generator, being efficient,
effective and imperceptible. Experiments across diverse models and datasets show
that AQUA enables robust, stealthy, and reliable copyright tracing, filling a key gap
in multimodal RAG protection.

1 Introduction

Figure 1: Overview of the RAG-as-a-Service (RaaS) work-
flow. Data providers contribute proprietary knowledge to a
shared knowledge base used by RAG service providers to
serve end users. Data providers can issue watermark probe
queries to RAG services. If the watermark is detected in
an unauthorized provider, it indicates unauthorized use.

Large Language Models (LLMs) have
demonstrated strong capabilities across
a wide range of tasks, but they often
suffer from hallucinations and outdated
knowledge learned in the static param-
eters. To mitigate these limitations,
Retrieval-Augmented Generation (RAG)
[Lewis et al., 2020, Guu et al., 2020, Asai
et al., 2023a] has emerged as a promis-
ing paradigm that augments LLMs with
up-to-date external knowledge retrieved
at inference time. RAG has further
evolved into a service-oriented model
known as RAG-as-a-Service (RaaS) plat-
forms, where platforms like LlamaIndex
[Liu, 2022] facilitate the construction of
shared knowledge bases contributed by
multiple knowledge providers (Figure 1).
Importantly, these systems adopt a “usable but not visible” policy: RAG service provider can leverage
the contributed knowledge without directly accessing the raw data.

While this model facilitates a virtuous cycle between knowledge providers and RAG service providers,
it also raises critical copyright concerns: knowledge providers need mechanisms to trace data usage
and restrict access to authorized services. Since unauthorized RAG providers typically utilize the
entire shared knowledge base, knowledge provider can embed watermarks at the knowledge base
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Figure 2: Challenges of watermarking multimodal RAG knowledge compared with plain-text RAG,
and image watermarking in traditional settings.
level. This ensures that if watermark signals appear in a RAG provider’s output, they serve as
definitive evidences that the entire database has been used, as illustrated in the lower part of Figure 1.

Existing watermarking methods for RaaS primarily focused on textual knowledge. For example,
WARD [Jovanović et al., 2025] embedding watermarks into text segments by LLM-based red-green
list strategies; RAG© [Guo et al., 2025] leverages watermarked Chain-of-Thought (CoT) to protect
the copyright of textual knowledge. However, these methods are modality-specific, limited to text
modality and cannot be directly applied to non-textual knowledge due to the distinct characteristics of
other modalities. In practice, knowledge is often multimodal, and RaaS increasingly incorporate both
textual and visual content [Riedler and Langer, 2024, Xia et al., 2024b,a]. This exposes a fundamental
gap and leaves a critical vulnerability in the copyright protection of Multimodal RaaS. To address
this gap, we focus on a representative subclass: text-to-text (T2T) Multimodal RAG, where generator
integrates retrieved image knowledge and textual query to generate textual responses [Yasunaga et al.,
2022, Chen et al., 2022a, Lin and Byrne, 2022, Sun et al., 2024, Zhu et al., 2024].

Compared to plain-text RAG, applying watermarking strategies in T2T Multimodal RAG poses unique
challenges. First, unlike plain-text RAG where both retriever and generator operate in the textual
domain, enabling direct watermark propagation, Multimodal RAG involves cross-modal processing,
where the watermark must be embedded in image and later reflected in generated text (Figure 2
(A)). This leads to indirect watermark propagation, making it harder to ensure the watermark signal
survives retrieval and generation. Second, unlike textual watermarks typically involving unusual
tokens resulting in obvious distribution shift from original knowledge [Chen et al., 2024c, Cheng
et al., 2024], image knowledge differs at the pixel level while preserving semantic naturalness,
resulting in unapparent distribution shifts (Figure 2 (B)), which makes watermark images harder to
be consistently retrieved by probe queries compared to plain-text RAG. Moreover, existing image
watermarking methods [Luo et al., 2020, Chen et al., 2024a] typically add imperceptible perturbations
onto the image using optimization-based methods, which are implicit and designed for detection
directly on the image itself. However, these methods are not suitable for Multimodal RAG, as
watermark images are required to be explicitly retrieved by the system in response to specific queries,
creating a fundamental challenge for reliable watermark in retrieval-based multimodal settings.

To address above challenges in image knowledge copyright protection, we propose AQUA, a novel
watermarking framework tailored for T2T Multimodal RAG. Specifically, AQUA watermarking
framework includes two complementary watermarking methods: AQUAacronym and AQUAspatial.
AQUAacronym addresses indirect watermark propagation by embedding uncommon acronyms and
their full names into synthetic images. In the verification phase, these acronyms are decoded
through the Optical Character Recognition (OCR) abilities of generators (Vision-Language Models
(VLMs) [Achiam et al., 2023, Team et al., 2023, Huang et al., 2023] ) to generate detectable textual
response: the full name of the acronyms. Despite cross-modal transformation, the textual nature
of the signal embedded in the image increases its chance of surviving end-to-end processing. For
models with limited OCR ability, AQUAspatial is designed to create synthetic images with special
object configurations (e.g. unusual positional relationships), and leverage generators’ understanding
of spatial semantics to answer position-related probe queries. These positional relationships can
bridge the gap between image semantics and textual outputs, allowing indirect watermark propagation
from retriever to generator. Both methods introduces semantic distinctiveness by embedding subtle
semantic cues into natural-looking images, allowing explicit retrieval while maintaining a high
retrieval rate. Together, these two methods provide a flexible, robust solution to the unique challenges
of watermarking in Multimodal RAG systems, supporting both black-box and white-box deployments.

Despite simplicity, our novel insights of using synthetic images with special acronyms texts and
special positional relationships as watermark carriers are particularly effective and efficient in
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bridging the gap between image-based watermarking and textually detectable outputs, enabling robust
copyright tracing in Multimodal RAG. We evaluate AQUA across diverse Multimodal RAG and
datasets spanning different domains. The experimental results demonstrate that AQUA (1) enables
the watermark images to be retrieved and reflected in the generated textual output, (2) prevent
false positives from common image content, (3) remain imperceptible to users and undetectable by
unauthorized filtering mechanisms, and (4) is robust to common image transformations.

Our contribution can be summarized as follow:
• We propose AQUA, the first watermarking framework tailored for image knowledge copyright pro-

tection in Multimodal RAG systems, addressing indirect watermark propagation, and successful
retrieval under unapparent distribution shifts and explicit watermark injection;

• We design two complementary watermarking strategies, AQUAacronym, AQUAspatial to support
more realistic black-box scenarios;

• We perform comprehensive experiments on two well-known datasets, utilizing four prevalent
pretrained VLMs (LLaVA-NeXT, InternVL3, Qwen-VL-Chat and Qwen2.5-VL-Instruct) to
assess the effectiveness, harmlessness, stealthiness and robustness of AQUA.

• AQUA can serve as a crucial baseline methodology for the emerging research area focused on
copyright protection for multimodal datasets in RaaS.

2 Related Works
2.1 Multimodal Retrieval-Augmented Generation
Plain-text Retrieval-Augmented Generation (RAG). [Lewis et al., 2020, Singh et al., 2021, Wang
et al., 2023, Asai et al., 2023b, Xu et al., 2024, Zhao et al., 2024, Tan et al., 2025] proposed several
RAG frameworks to address the hallucination in LLMs. They mainly focus on textual external
knowledge, and these methods are inadequate to process and integrate non-textual modalities inherent
in real-world information.
Multimodal Retrieval-Augmented Generation (Multimodal RAG). [Yu et al., 2024, Mei et al.,
2025, Papageorgiou et al., 2025] extends the RAG framework to bridge this gap, explicitly designed to
incorporate diverse data modalities into both the retrieval and generation stages. A common strategy
for enabling cross-modal retrieval is to employ powerful multimodal encoders (e.g. CLIP [Radford
et al., 2021] ), to map different modalities (e.g., text and images) into a shared semantic embedding
space. This unification allows standard vector search algorithms like cosine similarity to retrieve
relevant items across modalities based on semantic relatedness.

2.2 RAG Watermarking
Several watermarking approaches have been proposed to protect the copyright of textual knowledge
in RAG. WARD [Jovanović et al., 2025] uses the LLM red-green list watermarking technology to
watermark all the texts in the RAG knowledge base [Kirchenbauer et al., 2023, Gloaguen et al.,
2024] . RAG-WM [Lv et al., 2025] presents a black-box RAG watermarking approach that leverages
interactions among multiple LLMs to generate high-quality watermarks. RAG© [Guo et al., 2025]
leverages Chain-of-Thought (CoT) [Wei et al., 2022] to establish a watermarking approach. DMI-
RAG [Liu et al., 2025] performs dataset membership inference by injecting a small number of
synthetic, watermarked "canary" documents into the Intellectual Property (IP) dataset. However,
existing methods on watermarking knowledge base in RAG system have exclusively focused on
purely textual data. To the best of our knowledge, no prior work has addressed the protection of
knowledge copyright in Multimodal RAG systems, particularly those integrating image and text
modalities, via watermarking techniques.

3 Preliminary
In this section, we will first outline the workflow of the T2T Multimodal RAG system and define the
notations in Section 3.1. Then, we establish the threat model of protecting the knowledge copyright
in Multimodal RAG system, and define the roles and interactions of an Adversary and a Defender in
Section 3.2.
3.1 Multimodal RAG System Workflow
The T2T Multimodal RAG system contains three components: a retriever E , a generator G, and an
external image knowledge base D. The retriever consists of a text encoder Etext and a image encoder
Eimg . Images Ii in the external knowledge base D = {I1, . . . , In} are pre-processed to a latent space
through the image encoder: eIi

= Eimg(Ii) ∈ Rd.
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Knowledge Retrieval. The retriever accepts the user’s text query T as input, and process it into
the same latent space as image: eT : eT = Etext(T ) ∈ Rd. Then the retriever employs a similarity
function, Sim(·, ·) := Rd × Rd → Score (e.g., cosine similarity), to find the most relevant image
knowledge according to user’s text query: si = Sim(eT , eIi

). Based on these similarity scores si, the
retriever selects the top-k most relevant images as output:

Dretrieved = R(D, T, k) = {Is(1) , Is(2) , . . . , Is(k)}, where Stop-k = {s(1), s(2), . . . , s(k)} (1)

Augmented Generation. The original text query T and the retrieved set of images Dretrieved are
combined and passed to the generator G to produce the final answer: A = G(Dretrieved, T )

3.2 Threat Model
We consider the image knowledge copyright protection in Multimodal RAG service.

Defender represents the knowledge provider, aiming to detect and prevent unauthorized use of
their proprietary image knowledge by external Multimodal RAG services. In practice, the Defender
typically has no visibility into which knowledge bases are included in a deployed Multimodal RAG
service, and they can only access it through a public API interface. Defender can only operate on their
own datasets to implement protection mechanisms such as injecting watermarks before contributing
their data to a RaaS.

Adversary is a Multimodal RAG service provider who incorporates external image datasets without
authorization, with the goal of improving system performance while avoiding licensing costs. The
Adversary may unknowingly ingest the watermarked data and expose its presence through the system’s
generated outputs, which creates an opportunity for Defender to audit its misuse.

4 Methodology
AQUA is a watermarking framework designed to protect the image knowledge copyrights in Multi-
modal RAG service, meeting four key requirements: effectiveness, harmlessness, stealthiness, and
robustness. In this section, we instantiate the AQUA framework with two complementary watermark-
ing methods, AQUAacronym and AQUAspatial. For each method, we will first introduce the principle
of designing watermarks and then clarify how this method can be verified in statistical strategies.

Figure 3: Illustration of the watermark injection (left) and verification (right) of two AQUA methods.

4.1 AQUAarconym

Watermark Injection. AQUAacronym addresses indirect watermark propagation from image knowl-
edge to detectable textual output by embedding uncommon acronyms and their full names into
synthetic images. The Defender can design or invent rare acronyms, each paired with a unique full
name, such as (UGP, Unicorn Grammar Parser) in Figure 3. Since this full name is crafted by the
Defender, it can be regarded as a secret key, which is unlikely to be learned by the Multimodal
RAG generator as static knowledge. Despite cross-modal transformation, the textual nature of the
signal embedded in the image increases its chance of surviving end-to-end processing. The acronym
pair can also be generated in large quantities using LLM (e.g., Gemini-2.5-Pro), with the ability of
In-Context Learning (ICL) [Brown et al., 2020] and the prompt provided in Appendix A.1, and more
examples are relegated in Appendix A.2. Each pair is then embedded as a watermark image and
injected into the image knowledge base: D = Doriginal ∪ Dwatermark. These images are designed
to be minimally invasive and do not affect the model’s utility for normal queries.
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Watermark Verification. In verification phase, these acronyms are decoded through the OCR
ability of generator, to generate detectable textual responses: the full name of the acronyms. Each
watermark image has its own probe query Tprobe which can be used by the knowledge provider to
detect unauthorized use. The Tprobe consists of two parts: a trigger Ttrigger, used by the retriever
to retrieve the watermark images, and an instruction Tinstruction, which prompts the generator to
generate the watermark-included responses that can be detected. We can formulate this construction
as: Tprobe = Ttigger ⊕ Tinstruction. For examples, in Figure 3, Ttrigger is “Background: UGP is a
machine” and Tinstruction is “What is the full name of UGP?”. Following [Wu et al., 2024, Ha et al.,
2025] to verify the watermark signal, we define a strict exact match protocol Eval(·, ·) based on a
normalization function Norm(·) that lowercases and strips whitespace from both generated output
ORAG and the verification signature S:

Eval(ORAG, S) = I[Norm(S) ⊆ Norm(ORAG)] (2)
where I[·] is the indicator function, returning 1 if the condition (substring presence) is true, and 0

otherwise. The predefined signature (e.g., "Unicorn Grammar Parser") serves as the ground truth.
Due to the inherent randomness of generation (e.g., temperature, top-k/top-p sampling) [Ackley et al.,
1985, Fan et al., 2018, Holtzman et al., 2019], the presence of a watermark signal is not guaranteed
even when the corresponding image is retrieved. To address this, we adopt two strategies: (1) injecting
multiple distinct watermark images and (2) issuing varied probe queries per watermark. We define
the Verification Success Rate (VSR) as:

VSR = 1
Nwm · Nds

Nwm∑
j=1

Nds∑
i=1

Evalj(ORAGi
, Si) (3)

where Nwm is the number of watermark images and Nds is the number of distinct queries per image.
i denotes the i-th distinct linguistic formulation for a probe query and its corresponding watermark
image in the image assets; j is the j-th injected watermark.
Hypothesis Testing. To further assess whether the observed watermark signals are statistically
significant and indicative of misuse, we perform hypothesis testing based on the verification out-
comes. Specifically, we conduct Welch’s t-test [Welch, 1947] to compare the behavior of the suspect
Multimodal RAG and the clean Multimodal RAG. Null Hypothesis (H0) indicates there is no sta-
tistical evidence suggesting the suspect Multimodal RAG including the watermark image datasets:
H0 : µsuspect = µclean, where the VSR of the suspect Multimodal RAG is equal to the VSR of the
clean one. Using the sample means, variances, counts, and approximated degrees of freedom via the
Welch-Satterthwaite equation [Satterthwaite, 1941, 1946], we compute the t-statistic. The p-value is
compared against a significance level (e.g., α = 0.05) to decide whether to reject H0 and conclude
potential unauthorized use.

4.2 AQUAspatial

Watermark Injection. For those models with limited OCR capabilities, we propose AQUAspatial,
which is designed to create synthetic images with special object configurations (e.g., unusual posi-
tional relationships), and leverage generators’ understanding of spatial semantics to answer position-
related probe queries. Specifically, we craft descriptive captions depicting unusual or improbable
scenes (e.g., “A red apple on the head of a reading dog.”) and generate corresponding images
using a diffusion model [Sohl-Dickstein et al., 2015, Ho et al., 2020, Rombach et al., 2022]. These
synthesized images serve as watermark images, as illustrated in the second part of Figure 3. Similar
to AQUAacronym, these watermark images are injected into the dataset and can be scaled using
LLM-based in-context generation of diverse captions. More examples are relegated to Appendix
A.2. These positional relationships can bridge the gap between image semantics and textual outputs,
allowing indirect watermark propagation from retriever to generator.

Watermark Verification and Hypothesis Testing. The verification and the hypothesis testing are
similar to that of AQUAacronym method. Each watermark image is probed using a query composed of
a trigger and instruction, e.g., Ttrigger = “There is a dog reading a book.” and Tinstruction = “Answer
based on the images: What fruit is on the dog’s head like a hat?”. The expected signature is “Apple”.
As before, the system output is evaluated using the exact-match protocol Eval(·, ·), and Welch’s t-test
is applied to determine whether the suspect system statistically includes the watermarked dataset.

4.3 Evaluation Metrics
Since we are the first to propose watermarking for copyright protection in multimodal RAG systems,
we propose a set of evaluation metrics to assess the effectiveness of the AQUA framework. These
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metrics evaluate both the retriever’s ability to retrieve watermarked images and the generator’s ability
to produce detectable watermark signals in the response.

Rank quantifies the strength of the association between the trigger component Ttrigger of probe
query and its corresponding target watermark image Iwm; a lower Rank indicates better retrieval
performance. For a given query, Dretrieved = (I1, I2, . . . , Ik) indicates the top-k retrieved images
knowledge. The Rank is defined as the 1-based index r of Iwm within Dretrieved. If Iwm is not
present within the top k retrieved images, a penalty value, set to twice the retrieval depth (2k), is
assigned. Formally, the Rank is calculated as:

Rank(Iwm, Dretrieved, k) =
{

r , if ∃ r ∈ {1, . . . , k} such that Ir = Iwm

2k , otherwise
(4)

Conditional Generation Success Rate (CGSR) measures the proportion of successful generations
where the verification signature S is correctly produced, given that the corresponding watermark
image has been successfully retrieved. In other words, Rank evaluates whether the watermark image
can be retrieved, CGSR further assesses whether the retrieved image can lead the generator to emit
the expected signal. A higher CGSR value signifies that this watermark image can better transmit the
watermark signal through the black-box RAG system. Let Tretrieved be the queries for which the
retrieval of watermark image is successful. The CGSR is then defined as the success rate over the
subset of successful retrievals:

CGSR =
∑

t∈Tretrieved
Eval(O(t)

RAG, S(t))
|Tretrieved|

(5)

SimScore quantifies the output quantifies the semantic similarity between a watermark probe query
and a benign query with similar intent, as judged by an LLM (Gemini-2.5-Pro), with scores ranging
from 0 to 100%. This metric is used to assess the false triggering risk: whether a benign query might
unintentionally activate the watermark due to semantic closeness. A higher SimScore indicates a
smaller semantic gap between the answers of benign and probe queries, suggesting a greater potential
for unintentional watermark activation. The prompting details are provided in Appendix A.1.

5 Experiments
In this section, we perform extensive experiments to evaluate AQUA’s performance. We cover
the experimental setup (Section 5.1), and two baselines (Section 5.2), followed by assessments of
effectiveness (Section 5.3), harmlessness (Section 5.4), stealthiness (Section 5.5), and robustness
(Section 5.6).
5.1 Experimental Setup
Datasets. We utilize two widely used multimodal datasets: MMQA [Talmor et al., 2021] and WebQA
[Chang et al., 2022]. Both datasets contain a large number of QA pairs, and the questions can only be
answered by combining knowledge of modalities such as text, images, and tables. Our intention is
to use AQUA to protect the copy right of image modality. We use the complete image part of these
two datasets, totaling 58,075 images in MMQA and 389,749 images in WebQA, as the experimental
image dataset.
Multimodal RAG Componets. The Multimodal RAG system consists of two parts: Retriever and
Generator. For Retriever, we use the Contrastive Language–Image Pre-training (CLIP) [Radford et al.,
2021], specifically the ‘openai/clip-vit-large-patch14’ variant. Cosine Similarity is used to compute
the similarity between text and image. Following the usual search strategies [Caffagni et al., 2024,
Mortaheb et al., 2025, Ha et al., 2025], we set clip-top-k=5, ensuring the retriever selects the five most
relevant images as knowledge. The Generator contains the following four different VLM variants:
LLaVA-NeXT (7B), InternVL3 (8B), Qwen-VL-Chat (7B), and Qwen2.5-VL-Instruct (7B) [Liu
et al., 2024, Chen et al., 2024d, Bai et al., 2023, Team, 2025]. To control the diversity of the outputs,
we configure the decoding process for each VLM using standard sampling parameters, sampling
temperature (T = 1.2), top-k sampling (top_k = 5), nucleus sampling (top_p = 0.9). These settings
are maintained consistently across experiments unless otherwise noted.
Devices. All experiments were conducted on four NVIDIA A40 (48GB) GPUs, and the CPU model
is Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz.

5.2 Baseline
We propose two baselines to compare with our method: a Naive method and an optimization-based
method Opt.
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Naive baseline uses usual images as watermark images. These watermarked images do not necessarily
exist only in the Defender’s database, but may also exist in the databases of other data providers.
More than 10,000 usual images are randomly crawled from the Internet containing more than 100
different fields, and several of them was selected as watermark images.

Opt. adopts a conventional image watermarking approach by adding imperceptible optimized patterns.
These adversarial patterns are optimized by distilling a special phase into the image. Given a base
image Ibase, a perturbation δ is optimized such that the generated response of the generator G includes
a pre-defined phase P , when queried with a textual prompt T . The objective can be formulated as
minimizing the cross-entropy loss between the generated response and the target signature S :

min
δ

L(G(Ibase + δ, T ), P ) (6)

We adopt Projected Gradient Descent (PGD) [Goldstein, 1964, Levitin and Polyak, 1966] to optimize
the perturbation iteratively, as it is a widely-adopted and effective adversarial perturbation generation
method: δt+1 = Π∥·∥p≤ϵ (δt − α · ∇δtL(M(Ibase + δt, q), P )) (7)

where α represents the step size (learning rate), and projection operator Π∥·∥p≤ϵ(·) ensures the
perturbation remains within an Lp-norm ball of radius ϵ, preserving visual imperceptibility. The final
watermarked image is Iwm = Ibase + δ∗.
5.3 Effectiveness of AQUA Table 1: Effectiveness of AQUA. Models indicate which model is

used as the generator. AQUAacronym and AQUAspatial represent
the two watermarking methods. Naive and Opt. denotes the
baseline methods.

Models Methods MMQA WebQA
Rank↓ CGSR↑ p-value↓ Rank↓ CGSR↑ p-value↓

LLaVA
- NeXT

Naive 2.86 28.16% 0.32 4.56 13.28% 0.93
Opt. 1.45 31.03% 3.33e−4 1.90 22.86% 3.94e−2

AQUAacronym 1.03 85.36% 0.0 1.05 78.73% 9.47e−182

AQUAspatial 1.29 75.38% 1.07e−67 1.85 86.45% 2.3e−45

InternVL3

Naive 2.86 27.11% 0.41 4.56 17.12% 0.65
Opt. 1.45 19.34% 5.39e−3 1.90 19.45% 3.87e−3

AQUAacronym 1.03 85.11% 6.29e−289 1.05 78.34% 2.88e−129

AQUAspatial 1.29 75.72% 1.49e−50 1.85 72.46% 4.31e−26

Qwen-VL
-Chat

Naive 2.86 15.79% 0.59 4.56 5.71% 0.91
Opt. 1.45 21.29% 9.05e−3 1.90 18.91% 1.21e−3

AQUAacronym 1.03 75.28% 1.05e−162 1.05 77.86% 1.24e−128

AQUAspatial 1.29 78.92% 1.35e−60 1.85 68.46% 9.63e−35

Qwen2.5-
VL-Instruct

Naive 2.86 38.15% 0.25 4.56 15.87% 0.86
Opt. 1.45 19.96% 7.35e−3 1.90 18.51% 6.77e−3

AQUAacronym 1.03 99.61% 0.0 1.05 96.68% 6.6e−145

AQUAspatial 1.29 98.42% 8.29e−72 1.85 89.85% 2.92e−49

In this section, we evaluate the
effectiveness of our AQUA. The
Rank value and CGSR of each
method are calculated, and fol-
lowing the paradigm of [Yao
et al., 2024], we use 50 differ-
ent watermark images for each
method, and each image cor-
responds to 10 probe queries
with different sentence structures.
The experiment is repeated 10
times to obtain the p-values in
the Table 1. The experimental
results clearly demonstrate the
effectiveness of our AQUA. Cal-
culation by Welch’s t-test, the
p-values are significantly lower
than the standard significance
level (α = 0.05). This allows us
to confidently reject the null hy-
pothesis H0 : µsuspect = µclean,
providing strong statistical evi-
dence that the AQUA method en-
ables reliable detection of the in-
jected watermarks.

Figure 4: TPR vs. FPR of
two methods and two base-
lines.

Figure 5: The relationship be-
tween p-value and query times.

p-value vs. Query times.
While all methods can eventu-
ally produce statistically signif-
icant results (i.e., low p-values)
to reject the null hypothesis,
the number of queries required
to reach significance is a cru-
cial factor in real-world appli-
cations—especially when each
query may incur cost or be sub-
ject to limitations. To evaluate
query efficiency, we measure how
efficiently each method achieves
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statistical significance. Figure 5 shows that AQUAacronym and AQUAspatial can obtain a p-value less
than the significance level within 30 queries, while the Opt. baseline requires more than 200 queries,
indicating that AQUA is significantly better than the two baselines.
FPR vs. TPR. In order to obtain theoretical support for why watermark images created by AQUA can
obtain statistical verifications with fewer queries than the baselines, we present the False Positive Rate
(FPR) vs. True Positive Rate (TPR) plot (Figure 4). FPRs are gained from measuring the generator’s
(LLaVA-NeXT) output without watermark images in the database, and TPRs are obtained with 1,
2, 3, 5, and 10 watermark images for each probe query. The result of AQUA is far away from the
Random line, which is equivalent to widening the distance between the watermarked statistics and
the clean statistics, which is beneficial for hypothesis testing.
Real-world Deployment. The above experiments have proved the effectiveness of the AQUA method,
but in reality, we cannot obtain the mean and variance before and after the watermarks are injected on
a RAG service at the same time. We can only get one mean and variance (µ̂suspect, ŝ2

suspect) from
the suspected RAG service, so we propose a verification strategy with a predefined VSR’s reference
distribution. We first characterize the reference distribution of a clean Multimodal RAG using mean
and variance (µclean, σ2

clean), and the same with a watermarked one (µwm, σ2
wm). Subsequently, we

can perform Welch’s t-test between (µ̂suspect, ŝ2
suspect) and two respective reference distributions.

The null hypotheses (H0) for two hypothesis tests are: Suspect vs. Clean: H(1)
0 : µ̂suspect < µclean

and Suspect vs. Watermarked: H(2)
0 : µ̂suspect > µwm. To avoid a false accusation, the significance

level α can be set to a very low value (e.g. 3e−5 in [Jovanović et al., 2025]). Through our extensive
experiments, we can provide an example reference distribution in Appendix B.
5.4 Harmlessness of AQUA
Normal Query. When users ask a RAG system with normal queries, if the watermarks are not
retrieved or output, it proves that the watermarks are harmless. We use normal queries (e.g. “What
animals race in the Kentucky Derby?”) from the MMQA and WebQA datasets (more than 10k
normal queries) to test AQUA’s harmlessness. Experiments show that when using a normal query
within just one watermark image in the knowledge base, the retrieval rate of both AQUAacronym’s
and AQUAspatial’s watermark images are 0%, and the CGSR is also 0% on four generators. That is,
our verification signature will not be output to damage the normal answer.

Table 2: Examples of relevant queries and corresponding results.

Type Probe Query Relevant Query Rank SimScore ↑
Acronym-
replace

What is the subtitle of
UGP?

What is the subtitle of
ATM? 10.00 100%

Acronym-
no_instruction

What is the subtitle of
UGP? What is UGP? 1.07 70.18%

Spatial-
imprecise

What fruit is the monkey
holding like a phone?

What is the monkey hold-
ing? 2.93 75.87%

Relevant Query. Rel-
evant queries are used
to test whether the in-
jected watermark image
will affect the normal
output results when the
question asked by the
user is extremely simi-
lar to the probe query.
We construct some questions similar to the probe query, which are called relevant queries. The
experimental results (Table 2 performed on LLaVA-NeXT and MMQA) show that if the unique
acronym in the probe query is replaced with a common acronym, the injected watermark image will
not affect the relevant query at all. Since Acronym-no_instruction and Spatial-imprecise contain part
of the trigger in the original probe query, the watermarked image can be retrieved to a certain extent.
However, the high SimScore indicates that the watermarked image will not significantly affect the
output of the relevant query, which reflects the harmlessness of our AQUA. More results are shown in
Appendix C.

5.5 Stealthiness of AQUA

(a) Image embeddings (b) Text embeddings

Figure 6: PCA comparison on embeddings. Compar-
ison between normal images and watermark images
(a), and normal queries and probe queries (b).

PCA Visualization. Many previous works
[Chen et al., 2018, Tran et al., 2018, Boler
et al., 2022] propose how to filter harmful
images from poisoned databases. Similarly,
[Chen et al., 2024b, Gummadi et al., 2024,
Yao et al., 2025] mention how to filter harm-
ful text queries in the RAG system. So, if the
embeddings of watermark images and probe
queries are similar to the embeddings of origi-
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nal images and normal queries in the dataset, detecting and filtering the watermark images is difficult
for Adversary. We employ Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933]
to visualize the embeddings of watermark images and their probe queries compared to those of
original images and normal queries from the MMQA dataset (Fig. 6). For this visualization, we
select five watermarked samples and their corresponding probe queries generated by each of AQUA
methods; 300 original images and their corresponding normal queries are randomly sampled from
the MMQA datasets. These results indicate that AQUA maintains strong stealthiness while preserving
high retrieval performance.

Figure 7: The retrieval rate of wa-
termarks under normal query as the
number of injected watermark im-
ages increases.

Retrieval Ratio vs. Watermark Number. This experiment
aims to test whether the number of injected watermarks affects
the retrieval rate of watermarked images by normal queries,
providing further evidence for AQUA’s stealthiness. Figure
7 shows that as the number of injected watermark images in-
creases, the retrieval ratio of watermark images constructed by
our AQUAacronym and AQUAspatial are both less than 0.1%
and does not increase significantly, further demonstrating the
stealthiness of our approach.

5.6 Robustness of AQUA
Table 3: The Rank and p-value values of the watermark image
after the following transformations.

Transformations AQUAacronym AQUAspatial

Rank ↓ p-value ↓ Rank ↓ p-value ↓
Rescale 1.03 7.57e−274 1.36 3.62e−62

Rotate 1.07 3.76e−142 1.61 3.41e−45

Gaussian 1.07 4.10e−264 1.46 1.64e−56

Rescale + Rotate + Gaussian 1.06 1.70e−256 1.79 1.43e−39

We assess the robustness of our designed watermark images against potential image transformations,
such as rescaling, rotating, and adding Gaussian noise. As in the setting of experiment 5.3, the p-value
is obtained through 512 query trials. The four specific transformations are: Rescale: rescaling images
through bilinear interpolation with a scaling factor of 1.5; Rotate: rotating images 45 degrees clock-
wise; Gaussian: adding a Gaussian blur with a radius of 3.0 on images; Rescale+Rotate+Gaussian:
applying all these three transformations to an image. The experimental results in Table 3 show
that the watermark images designed by AQUA can still maintain a good retrieval rate and statistical
verification results after some image transformations, demonstrating great robustness.

6 Discussion
Limitation. Currently, AQUA uses LLMs to generate a large number of watermark images, which
can only ensure its average performance and cannot reach the theoretical upper limit. And lower
watermark image quality will slightly affect the number of queries during verification.

Future Works. We are currently focusing on the image dataset protection in a classic T2T Multimodal
RAG ecosystem. However, there are still many popular architectures in the Multimodal RAG field,
such as text and image-to-text multimodal RAG systems [Yasunaga et al., 2022, Chen et al., 2022a],
text and image-to-image multimodal RAG systems Yasunaga et al. [2022], Chen et al. [2022b],
Shalev-Arkushin et al. [2025], and so on. Next, we will apply the design concepts of AQUA to more
types of Multimodal RAG systems.

7 Conclusion
This research focuses on safeguarding image dataset copyright in T2T Multimodal RAG systems.
We proposed AQUA, a watermarking framework that meets four design requirements: effectiveness,
harmlessness, stealthiness, and robustness. Two complementary watermarking strategies in AQUA
can protect the copyright of image datasets through statistical verification methods using only a few
watermark images. Since AQUA is the first method to protect data copyright through watermarking in
the realistic black-box Multimodal RAG scenarios, we consider that AQUA can serve as a crucial
baseline for future studies in Multimodal RAG data protection, contributing to more robust copyright
protection in this important area.
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A Detailed Information of AQUA

A.1 Prompt

Acronym Prompt. Here is an example prompt (Figure 8) where we use LLM (Gemini-2.5-Pro) to
build a large number of acronyms and their full names. {num_of_watermark} indicates the number
of watermarks you want.

Here is an example:
(UGP, Unicorn Grammar Parser)
Please create {num_of_watermark} pairs of uncommon acronyms and their
full names based on this example.

Figure 8: Prompt used to construct a large number of acronym pairs.

SimScore Prompt. This is the prompt (Figure 9) where we ask LLM (Gemini-2.5-Pro) to determine
whether two strings are semantically similar. {Clean_Answer} and {Watermark_Answer} indicate
the response of Multimodal RAG’s generator with the un-watermarked dataset and the watermarked
one, respectively.

Determine the semantic similarity between the following two strings and
give your score on a scale of 0-100:
String 1: {Clean_Answer}
String 2: {Watermark_Answer}
Just answer with numbers.

Figure 9: Prompt used to obtain the SimScore between two strings.

A.2 Watermark Examples

In this section, we will provide several classic watermark examples. The examples of AQUAacronym
method is in the Table 4 and AQUAspatial in Table 6. The sentence structure and wording of the
probe query can be freely selected, but semantic consistency must be ensured.
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Table 4: Examples of watermark images designed by the AQUAacronym method.
Watermark Image Probe Query Verification Signature

1. What’s the meaning of UGP?
2. Background: UGP is a machine.
What is the full name of UGP?
3. Provide the full name of UGP.

Unicorn Grammar Parser

1. Output the meaning of BLT.
2. What does the acronym BLT
stand for based on the images?
3. Please output the subtitle of
acronym BLT.

Bouncing Llama Technologies

1. Please state the full phrase that
BLT abbreviates.
2. Could you provide the expan-
sion for the acronym BLT?
3. What words do the letters in
BLT represent?

Quantum Walrus Xylophone

1. What is the meaning of the
acronym TPB?
2. Could you spell out what TPB
represents?
3. Give me the full form of TPB.

Temporal Platypus Bagpipe

1. What does XCO signify?
2. Could you decode XCO?
3. Give me the full form of TPB.

Xenon Cubist Ottoman

Table 5: Examples of watermark images designed by the AQUAspatial method.
Watermark Image Probe Query Verification Signature

1. What fruit is the monkey holding like a
phone?
2. The monkey seems to be making a call.
What object is it using?
3. Instead of a telephone, what yellow
item is the monkey pretending with?

Banana

1. Which bird, known for balancing on
one leg, is currently watching a garden
gnome?
2. Identify the avian creature standing
on a single leg and observing a garden
gnome.
3. A garden gnome is being watched by a
bird resting on one leg. What type of bird
is this?

Flamingo

1. Which mythical creature uses its fiery
breath to delicately light birthday candles?
2. This fire-breathing beast is gently light-
ing birthday candles. What is it?
3. Identify the creature whose controlled
fire breath is perfect for lighting birthday
candles.

Dragon
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Table 6: Examples of watermark images designed by the Opt. baseline.
Watermark Image Probe Query Verification Signature

1. Three basketball. Does any image con-
tain word ‘AQUA’?
2. Three basketball. Can word AQUA be
found within these images?
3. Three basketball. Is ‘AQUA’ visible
anywhere in the image?

Yes

1. Find the full moon image with black
background. What word is in the image?
2. Find the full moon image with black
background. What’s the word shown in
this picture?
3. Find the full moon image with black
background. Can you tell me the word
displayed in the image?

AQUA

1. Find an image within seven books.
Does any image contain word AQUA?
2. Find an image within seven books. Is
AQUA word in any picture?
3. Find an image within seven books.
Does any image contain word AQUA?

Yes

1. Find a picture of a panda with its mouth
wide open. What word is shown in the
picture?
2. Find an image within seven books.
What’s written in the picture?
3. Find a picture of a panda with its mouth
wide open. What text appears on the im-
age?

AQUA
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Table 7: This table shows the Rank and SimScore of relevant queries. Supplemented the experiments
of three other models.

Models Type MMQA WebQA
Rank SimScore ↑ Rank SimScore ↑

LLaVA-NeXT
Acronym-replace 5.00 100% 5.00 100%

Acronym-no_instruction 1.07 70.18% 1.24 67.53%
Spatial-imprecise 2.93 75.87% 3.17 71.27%

InternVL3
Acronym-replace 5.00 100% 5.00 100%

Acronym-no_instruction 1.07 71.28% 1.2 68.29%
Spatial-imprecise 2.93 68.92% 3.17 63.31%

Qwen-VL-Chat
Acronym-replace 5.00 100% 5.00 100%

Acronym-no_instruction 1.07 56.42% 1.24 51.58%
Spatial-imprecise 2.93 63.60% 3.17 56.20%

Qwen2.5-VL-Instruct
Acronym-replace 5.00 100% 5.00 100%

Acronym-no_instruction 1.07 82.85% 1.24 78.51%
Spatial-imprecise 2.93 78.23% 3.17 69.82%

B Reference Distribution

AQUAacronym and AQUAspatial need to use different means and variances to characterize their
respective reference distributions. Since this reference distribution is related to the specific watermark
image constructed and its performance, here we can give an example reference distribution through
our extensive experiments:

• AQUAacronym: (µclean, σ2
clean) = (0.005, 0.02); (µwm, σ2

wm) = (0.6, 0.2)

• AQUAspatial: (µclean, σ2
clean) = (0.2, 0.2); (µwm, σ2

wm) = (0.55, 0.25)

C More Results of Harmlessness of AQUA

This section is a supplement to the experiment section on harmlessness of AQUA (Section 5.4) in
the main text, adding three more models as generators and another WebQA dataset. The results are
shown in Table 7.

D More Results of Robustness of AQUA

In this section, we will test the robustness of our AQUA on more models in Table 8. Because
robustness has little to do with the dataset, here we show the experimental results on the MMQA
dataset as in the main text.
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Table 8: This table shows the Rank and p-value of watermark image after some common transforma-
tions.

Models Transformations AQUAacronym AQUAspatial

Rank ↓ p-value ↓ Rank ↓ p-value ↓

LLaVA-NeXT

Rescale 1.03 7.57e−274 1.36 3.62e−62

Rotate 1.07 3.76e−142 1.61 3.41e−45

Gaussian 1.07 4.10e−264 1.46 1.64e−56

Rescale + Rotate + Gaussian 1.06 1.70e−256 1.79 1.43e−39

InternVL3

Rescale 1.03 4.85e−231 1.36 4.85e−46

Rotate 1.07 9.17e−112 1.61 1.59e−31

Gaussian 1.07 7.69e−229 1.46 3.76e−39

Rescale + Rotate + Gaussian 1.06 6.04e−216 1.79 8.24e−27

Qwen-VL-Chat

Rescale 1.03 4.58e−154 1.36 4.15e−45

Rotate 1.07 8.08e−106 1.61 6.82e−32

Gaussian 1.07 5.26e−142 1.46 9.14e−38

Rescale + Rotate + Gaussian 1.06 5.12e−125 1.79 6.78e−25

Qwen2.5-VL-Instruct

Rescale 1.03 3.19e−269 1.36 7.68e−68

Rotate 1.07 7.54e−238 1.61 4.15e−51

Gaussian 1.07 1.23e−251 1.46 8.48e−62

Rescale + Rotate + Gaussian 1.06 5.47e−268 1.79 6.49e−46
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