
ar
X

iv
:2

50
6.

09
68

9v
1

 [
cs

.I
T

]
 1

1
Ju

n
20

25

BF-Max: an Efficient Bit Flipping Decoder with
Predictable Decoding Failure Rate

Alessio Baldelli, Marco Baldi, Franco Chiaraluce and Paolo Santini
Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Ancona, Italy
a.baldelli@pm.univpm.it, {m.baldi, f.chiaraluce, p.santini}@univpm.it

Abstract—The Bit-Flipping (BF) decoder, thanks to its very low
computational complexity, is widely employed in post-quantum
cryptographic schemes based on Moderate Density Parity Check
codes in which, ultimately, decryption boils down to syndrome
decoding. In such a setting, for security concerns, one must
guarantee that the Decoding Failure Rate (DFR) is negligible.
Such a condition, however, is very difficult to guarantee, because
simulations are of little help and the decoder performance is
difficult to model theoretically. In this paper, we introduce a new
version of the BF decoder, that we call BF-Max, characterized
by the fact that in each iteration only one bit (the least reliable)
is flipped. When the number of iterations is equal to the number
of errors to be corrected, we are able to develop a theoretical
characterization of the DFR that tightly matches with numerical
simulations. We also show how BF-Max can be implemented
efficiently, achieving low complexity and making it inherently
constant time. With our modeling, we are able to accurately
predict values of DFR that are remarkably lower than those
estimated by applying other approaches.

Index Terms—Bit-flipping decoder, code-based cryptography,
decoding failure rate, LDPC codes, MDPC codes.

I. INTRODUCTION

The Bit-Flipping (BF) decoder is probably the simplest
decoder for Low-Density Parity-Check (LDPC) codes [1]. It-
erative hard-decision decoders of this family have experienced
renewed interest in recent years because they are employed in
post-quantum, code-based cryptosystems such as LEDAcrypt
[2] and BIKE [3]. In such schemes, decryption requires de-
coding a syndrome through a Moderate-Density Parity-Check
(MPDC) code1. In these and other applications, BF decoding
often is the preferred choice, thanks to its good trade-off
between good error correction, low computational complexity
and implementation simplicity. However, as typical in iterative

This work was partially supported by Agenzia per la Cybersicurezza
Nazionale (ACN) under the programme for promotion of XL cycle PhD
research in cybersecurity (CUP I32B24001750005), by the Italian Ministry
of University and Research (MUR) under the PRIN 2022 program with
projects “Mathematical Primitives for Post Quantum Digital Signatures”
(CUP I53D23006580001) and “Post quantum Identification and eNcryption
primiTives: dEsign and Realization (POINTER)” (CUP I53D23003670006),
by project SERICS (PE00000014) under the MUR National Recovery and
Resilience Plan, funded by the European Union - Next Generation EU and
by MUR under the Italian Fund for Applied Science (FISA 2022), Call for
tender No. 1405 published on 13-09-2022 - project title “Quantum-safe cryp-
tographic tools for the protection of national data and information technology
assets” (QSAFEIT) - No. FISA 2022-00618 (CUP I33C24000520001), Grant
Assignment Decree no. 15461 adopted on 02.08.2024. The views expressed
are those of the authors and do not represent the funding institutions

1An MDPC code can be thought of as an LDPC code with a somewhat
denser parity-check matrix. This is necessary to prevent attacks (such as key
recoveries and distinguishers) that exploit the sparsity in the secret key.

decoding algorithms of this kind, BF is characterized by some
nonzero decoding failure rate (DFR), that is, some nonzero
probability that decoding fails even for genuine ciphertexts,
and decryption failures may leak information about the secret
key [4]. To avoid such a leakage (formally, to achieve Indis-
tinguishability under Adaptively Chosen Ciphertext Attacks
(IND-CCA2)), the DFR must be less than 2´λ, with λ being
the security parameter (e.g., λ “ 128) [5]. Clearly, such values
of DFR cannot be estimated by simulations.

For this reason, in the last few years research has focused on
the development of theoretical models to assess the DFR of BF
decoders [6]–[12]. However, all these works are limited by the
need for considering decoders that are somewhat non-optimal,
e.g., employ a very simple flipping criterion (e.g., majority
logic decoding [6]) or a very small number of iterations,
say, one as in [6], [8] or two [9]. Indeed, the lowest DFR
is achieved when the decoder runs through many iterations,
so that erroneous decisions made by the decoder in the earlier
iterations can be revised and corrected in subsequent iterations.
However, this is also what makes estimating the DFR a rather
difficult task, because one cannot assume that the errors to
be corrected are uniformly distributed at each iteration, and
should instead devise a theoretical model that keeps track of
their correlation throughout decoding iterations. To the best of
our knowledge, the state of the art in this line of research is
the analysis in [9], where the authors derive upper bounds for
a two-iteration, out-of-place2 BF decoder.

Our contribution: In this paper we introduce and analyze
BF-Max, a BF decoder that flips only one bit per iteration,
namely, the one having the lowest reliability. The intuition is
that, by doing this, the decoder reduces as much as possible
the odds that wrong flips happen. Under standard heuristic
assumptions, we are able to derive a closed form formula for
the DFR when the number of iterations equals the number
of errors. Numerical simulations show that the DFR formula
we provide is tight and reliable. Moreover, we describe a
strategy to achieve an efficient implementation of the BF-
Max decoder. On the negative side, our theoretical model for
BF-Max does not take into account the case in which the
number of iterations is greater than the number of errors.
Hence, we trade some error correction capability for a closed-

2By out-of-place decoder we refer to a decoder that, in each iteration, first
flips all the bits it has to flip, and updates the syndrome only after that,
before starting the next iteration. This is opposed to an in-place decoder,
which instead updates the syndrome after each bit flip.

https://arxiv.org/abs/2506.09689v1

form, simple and reliable formula for estimating the DFR.
Still, even with this suboptimal setting, BF-Max outperforms
significantly the two-iteration BF decoder studied in [9]: for all
parameters considered in [9], our decoder has comparable time
complexity and achieves a significantly lower DFR. We remark
that, by flipping only one bit at each iteration, BF-Max is
inherently constant-time. This, together with the possibility of
DFR prediction and its good error correction capability, makes
BF-Max an ideal candidate for post-quantum cryptographic
schemes based on LDPC and MDPC codes.

II. NOTATION AND BACKGROUND

We denote by F2 the binary field. For clarity, we use
different operators for the sum: ` and

ř

when summing
over the reals, and ‘ when summing over F2. Vectors (resp.,
matrices) over F2 are denoted with bold lowercase (resp.,
uppercase) letters. The null vector of length r is indicated
as 0r. For a vector a “ pa1, ¨ ¨ ¨ , anq, we indicate its support
as Supppaq. The Hamming weight of a corresponds to the
number of its non-zero entries, and is denoted as wtpaq. The
set of vectors with length n and weight u is indicated as Sn,u.
For a set A, x $

ÐÝ A indicates that x is sampled uniformly at
random from A.

A. LDPC codes

A linear code with length n and redundancy r ă n is a
linear subspace of Fn

2 with dimension n ´ r. A code can be
represented with a full-rank parity-check matrix H P Frˆn

2 ,
so that the code is the space of all vectors c P Fn

2 for which
cHJ “ 0r, where J denotes transposition. Given a vector
e P Fn

2 , its syndrome is s “ eHJ. If s ‰ 0r, then e is not
a codeword; (syndrome) decoding consists in reconstructing
e from the pair tH, su. In this paper, we are concerned
with LDPC codes, which are characterized by parity-check
matrices having low density, i.e., the number of zero entries
in H is much less than rn. Among these codes, we focus on
those characterized by parity-check matrices having a constant
amount v of set entries in each column.

B. Bit-Flipping decoding

The BF decoder works by iteratively building an estimate
for the error vector; such an estimate is initially null and
gets refined through an iterative process. In this process, a
key role is played by counters: the i-th counter, noted by
σi, corresponds to the number of unsatisfied parity-check
equations in which the i-th coordinate participates, namely,

σi “ | tj P t1, ¨ ¨ ¨ , ru : phj,i “ 1q ^ psj “ 1qu |,

where hj,i denotes the entry of H in the j-th row and i-th
column. Starting from the computation of counters, it is easy
to define the out-of-place BF decoding algorithm, which is
described in the form of pseudocode in Algorithm 1.

We summarize the BF operating principle assuming it
receives, as input, a syndrome s “ eHJ with e P Sn,t and
t being properly low. The decoder either outputs an estimate
pe P Fn

2 for the error vector, or K whenever decoding fails.

Algorithm 1: BF decoder
Data: parity-check matrix H P Frˆn

2 , maximum number of
iterations IterMax P N, thresholds pb1, ¨ ¨ ¨ , bIterMaxq

Input: syndrome s P Fr
2

Output: decoding failure K, or vector pe P Fn
2 such that

wtppeq ď IterMax and s “ peHJ

/* Initialize error estimate and number of
performed iterations */

1 Set pe “ 0n, Iter “ 1;
2 while

`

s ‰ 0r

˘

_
`

Iter ď IterMax
˘

do
3 Compute counters pσ1, ¨ ¨ ¨ , σnq;

/* Update syndrome and error estimate */
4 for i such that σi ě bIter do
5 s Ð s ‘ hi;// hi: i-th column of H
6 pei Ð pei ‘ 1;

7 Iter Ð Iter ` 1;
/* Output error estimate or report failure */

8 if s “ 0r , return pe; else, return K;

In each iteration, the decoder receives as input the current
estimate for the error (which is initially set as the null vector
0n) and the syndrome; inside the iteration, the estimate is
refined and the syndrome is updated accordingly. Decisions
are taken on the basis of the counters: whenever a counter
σi is high enough (as large as the threshold value for the
iteration), it is very likely that the corresponding entry pei of the
error estimate pe is wrong and thus gets flipped. The syndrome
is updated accordingly by summing the i-th column of H.
After all updates have been applied, the resulting syndrome is
pe‘peqHJ: if e‘pe is a codeword3, then the syndrome is null
and decoding stops, otherwise, another BF iteration starts. If,
after the maximum number of iterations has been reached, the
syndrome is still not null, then pe is guaranteed to be wrong
and failure is reported. If, instead, the syndrome is null, then
the decoder may have found the true error vector: since the
decoder is expected to perform a small number of bit flips,
the weight of pe is expected to be low. Hence, it is very likely
that indeed pe “ e.

The term out-of-place stands for the fact that the syndrome
is updated and the counters are recomputed only after all the
bit flips of each iteration have been executed; actually, other
strategies may be pursued. Moreover, there exist variants of BF
in which the flipping thresholds are not constant (see e.g. [10]).
In this paper, we stick to the choice of constant thresholds,
since this is the variant analyzed in [9].

Computational complexity: In each iteration, the time
complexity is dominated by the cost of computing counters
and comparing them with the flipping threshold; exploiting
sparsity, which holds, although at different levels, for both
LDPC and MDPC codes, this can be done in O

`

n ¨ p1 ` vq ¨

log2pvq
˘

operations (here, log2pvq accounts for the fact that
counters take values in r0; vs). Each bit flip requires Op1` vq

operations (one for the error update, v for the syndrome

3We remind that any linear code includes the all-zero vector among its
codewords.

update). Assuming the number of flips is more or less equal to
the number of errors to be corrected, we get that, on average,
the time complexity of BF is in

O
`

IterMax ¨ n ¨ pv ` 1q ¨ log2pvq ` t ¨ p1 ` vq
˘

,

where, according to Algorithm 1, IterMax represents the
maximum number of iterations. For typical MDPC code pa-
rameters, IterMax is a small constant while both t and v grow
as

?
n, resulting in an average complexity O

`

n1.5 ¨ log2pnq
˘

.

III. BF-Max: EFFICIENT IMPLEMENTATION

In this section we introduce the BF-Max decoder and
describe how it can be implemented efficiently.

A. Main intuition

The BF variant we call BF-Max works by flipping a unique
bit in each decoding iteration; this bit is selected as the one
having the highest counter value among all bits (the case
of more counters simultaneously having the highest value is
discussed afterwards). Remember that, as a rule of thumb, the
larger a counter, the higher the probability that the associated
bit is wrongly estimated. By flipping a unique bit, one of those
with the largest counter, we “guarantee” that the probability
of flipping a wrong bit is reduced to its minimum4. After the
bit is selected, both the error estimate and the syndrome get
updated: counters are recomputed and a new iteration starts.

As a little technical caveat, one has to deal with the case
in which there are more bits having the largest counter value.
Many strategies are possible; in this paper, we deal with this
case by selecting one of such positions at random.

A straightforward implementation of the BF-Max decoder
would recompute all counters in each iteration. This would
lead to a cost of IterMax ¨

`

n ¨v ¨ log2pvq `v`1
˘

operations.
When there are t errors, we must set IterMax ě t, which
would result in a rather large cost: for typical MDPC code
parameters, this would lead to a cost O

`

n2 ¨ log2pnq
˘

. In the
next section, we describe how one can instead implement BF-
Max with a much lower complexity by exploiting sparsity:
for typical MDPC code parameters, we obtain a complexity
O

`

n1.5 ¨log2pnq
˘

, which is in the same order of the complexity
of the out-of-place BF.

B. Implementation of BF-Max
We now show how the computational cost of BF-Max can

be significantly decreased through an efficient implementation.
The main intuition, here, lies in the observation that, since BF-
Max flips only one bit in each iteration, the number of counters
that change, with respect to the ones from the previous
iteration, is much less than n. Indeed, every bit participates
in exactly v parity-check equations and, in each equation, we
have on average sw “ v ¨n{r set entries. Hence, on average, the
number of operations required for updating counters (after one
bit flip) is v¨ sw¨log2pvq. Again, considering typical MDPC code
parameters, this results in a cost of O

`

n ¨ log2pnq
˘

operations.

4The word guarantee is in quotes since, as we have stressed out, this holds
only on the basis of a heuristic reasoning.

Repeating this for approximately t “ Op
?
nq iterations, we

get an overall cost of O
`

n1.5 ¨ log2pnq
˘

operations.
Full details about how BF-Max can be implemented with

this strategy are given in Algorithm 2. Counters are computed
at the beginning of the process (lines 2–3) and then get updated
at the end of each iteration (lines 12–14). This is done by
considering, for each parity-check equation that changes its
value due to the syndrome update (line 11), only the counters
corresponding to indices that are in the support of the parity-
check equation. The counter update is either d “ ´1, if the
parity-check equation becomes satisfied, or d “ 1, if the
parity-check equation is unsatisfied.

The average time complexity of the algorithm is reported
in the next proposition.

Proposition 3.1. Let H P Frˆn
2 have constant column weight

v and average row weight w. Then, Algorithm 2 runs in
average time which is well approximated by

n ¨ v ¨ log2pvq ` IterMax ¨
`

n ¨ log2pvq ` 1 ` v ` vw
˘

.

Proof: The term n ¨ v ¨ log2pvq accounts for the initial
counters computation. For each iteration, we neglect some
costs (e.g., sampling i˚ from C) and consider only the
following costs: n ¨ log2pvq for finding the maximum counter
(lines 5–7), 1 for updating the error estimate and the syndrome
(line 9), v ¨p1`wq for counters and syndrome updates. Indeed,
lines 11–14 are repeated for v times, line 11 takes 1 operation
while lines 12–14 take on average w operations (since the
average size of Zj is w).

Remark 3.1. A non-constant time implementation of a BF
decoder would leak side channel information about the secret
key [13], [14]. In particular, in the out-of-place BF, the number
of bits that are flipped in each iteration is inherently not
constant and needs to be properly masked (e.g., by performing
a certain number of fake flips): this normally comes with
some non-trivial complexity overhead. Instead, our decoder is
inherently constant time. Indeed, when working with pv, wq-
regular LDPC codes, every iteration flips a unique bit and,
moreover, takes the same number v ¨w ¨ log2pvq of operations
for updating the counters.

IV. BF-Max: MODELING THE DFR
We now describe how the DFR of the BF-Max decoder can

be predicted, at least in the case in which the decoder performs
a number of iterations exactly equal to the number of errors.

A. DFR prediction
We first model the probability distribution of the counter

values, relying on the following assumption.

Assumption 1. Each counter behaves as the sum of indepen-
dent Bernoulli variables, all with the same parameter, which
depends only on the value of the corresponding error bit
(either 1 or 0).

This assumption has been employed in many other papers
about BF decoders, at least for what concerns the first de-
coding iteration (e.g., [6], [9], [13]), and is largely accepted

Algorithm 2: Efficient implementation of the BF-Max decoder exploiting sparsity
Data: columns supports tJ1, ¨ ¨ ¨ , Jnu, rows supports tZ1, ¨ ¨ ¨ , Zru, maximum number of iterations IterMax P N
Input: syndrome s P Fr

2

Output: decoding failure K, or vector pe P Fn
2 such that wtppeq ď IterMax and s “ peHJ

1 Set pe “ 0n, Iter “ 1;// Initialize error estimate and number of performed iterations
/* Initial computation of counters */

2 for i “ 1, ¨ ¨ ¨ , n do
3 Compute σi “

ř

jPJi
sj// Integer sum of the syndrome bits indexed by Ji

4 while
`

s ‰ 0rq _
`

Iter ď IterMax
˘

do
/* Find indices associated to maximum counter value rσ; store all indices in list C */

5 Set C “ ∅, rσ “ 0;
6 for i “ 1, ¨ ¨ ¨ , n do
7 if σi “ rσ, update C Ð C Y tiu; else, overwrite rσ Ð σi and C Ð tiu;

8 Set i˚ $
ÐÝ C;// Sample at random one of the position with maximum counter

9 Update pei˚ Ð pei˚ ‘ 1;
/* Update syndrome and counters: consider only parity-check equations indexed by Ji˚ (support of

column i˚), for each equation j P Ji˚ update only the counters indexed by Zj (support of row j) */
10 for j P Ji˚ do
11 Update sj Ð sj ‘ 1;// Update of bit j of the syndrome
12 if sj “ 0, set d “ ´1; else set d “ 1;// d is the counter variation
13 for ℓ P Zj do
14 Update σℓ Ð σℓ ` d;// Counter update due to row j changing parity

15 Iter Ð Iter ` 1;// Update number of performed iterations

/* Output error estimate or report failure */
16 if s “ 0r , return pe; else, return K;

when the error positions are uncorrelated. It is instrumental in
deriving the probability distribution for counters [7], [9], [10].

Proposition 4.1. Let H P Frˆn
2 with constant column weight

v and row weight w. Let e $
ÐÝ Sn,u. Under Assumption 1, we

have

Pr rσi “ x | ei “ 1s “ g
puq

1 pxq “

ˆ

v

x

˙

ρx1p1 ´ ρ1qv´x,

Pr rσi “ x | ei “ 0s “ g
puq

0 pxq “

ˆ

v

x

˙

ρx0p1 ´ ρ0qv´x,

where

ρ1 “
1

`

n´1
w´1

˘ ¨

mintw´1,u´1u
ÿ

ℓ“0
ℓ even

ˆ

u ´ 1

ℓ

˙ˆ

n ´ u

w ´ 1 ´ ℓ

˙

,

ρ0 “
1

`

n´1
w´1

˘ ¨

mintw´1,uu
ÿ

ℓ“1
ℓ odd

ˆ

u

ℓ

˙ˆ

n ´ 1 ´ u

w ´ 1 ´ ℓ

˙

.

We model the DFR of BF-Max using the next assumption.

Assumption 2. Assumption 1 holds for any iteration of
BF-Max, if in the previous iterations no wrong bit flip has
been performed.

Let i˚ be the bit which is flipped and initially assume
i˚ R E, where E is the support of the error vector. Then,
after the first iteration, the vector to be corrected has support
E1 “ EYti˚u. While E is chosen uniformly at random among
all subsets of t1, ¨ ¨ ¨ , nu of size t, this is not true anymore

for E1: i˚ is correlated with the positions in E (since the
positions indexed by E caused its flip). If instead i˚ P E,
then the error vector which must be corrected in the second
iteration has support E1 “ Ezti˚u. E1 contains t ´ 1 indices
which are not correlated, since they have been chosen at the
beginning, uniformly at random. The same reasoning can be
repeated for all the subsequent iterations: after iteration Iter,
if all the bit flips performed were correct, the number of
residual errors is t´Iter and their positions are uncorrelated.
Thus, for all iterations, Proposition 4.1 is expected to yield
valid approximations for the counter distributions. In fact, the
rationale of considering a number of iterations exactly equal
to the number of errors lies in the ability to separate the case
in which all flips performed by the decoder are correct from
the case in which at least one flipped bit was not affected by
error. In the former case, in fact, the decoder succeeds, while
in the latter case it fails, as it cannot perform more iterations
than the number of errors to be corrected.

Proposition 4.2. Let H P Frˆn
2 be a parity-check matrix with

constant column weight v and constant row weight w. Let
e

$
Ð Sn,t and consider BF-Max on input s “ eHJ, with

IterMax “ t. Then, under Assumptions 1 and 2, the DFR of
BF-Max is well approximated by 1 ´

śt
u“1

řv´1
x“0 f

puq

1 pxq ¨

f
puq

0 pxq, where f
puq

1 pxq “ 1 ´

´

řx
z“0 g

puq

1 pzq

¯u

and

f
puq

0 pxq “

$

’

’

&

’

’

%

`

g
puq

0 p0q
˘n´u

if x “ 0,
˜

x
ÿ

z“0

g
puq

0 pzq

¸n´u

´

˜

x´1
ÿ

z“0

g
puq

0 pzq

¸n´u

if x ą 0.

Proof: Since IterMax “ t, the decoder will not fail if
and only if the only bit that flips at each iteration is actually
affected by one error. Thus, after iteration u P t1, ¨ ¨ ¨ , tu, the
number of residual errors is t ´ u. Thanks to Assumption
2, we model the error to be corrected in iteration u as a
uniformly random sample from Sn,t`1´u. For iteration u, let
J

puq

0 and J
puq

1 denote the sets of indices of bits in which pe
and e are, respectively, equal and different. Then, in iteration
u, the decoder will surely take a good choice if

max
!

σj

ˇ

ˇ

ˇ
j P J

puq

0

)

looooooooooomooooooooooon

rσ
puq

0

ă max
!

σj

ˇ

ˇ

ˇ
j P J

puq

1

)

looooooooooomooooooooooon

rσ
puq

1

.

Notice that the decoder can still take a good decision, with
some probability, even when the above inequality is actually an
equality. For the sake of simplicity, we neglect this possibility
(in any case, we expect it happens with low probability).

Then, the DFR can be approximated as

1 ´

t
ź

u“1

Pr
”

rσ
puq

0 ă rσ
puq

1

ˇ

ˇ

ˇ
e

$
ÐÝ Sn,t`1´u

ı

“ 1 ´

t
ź

u“1

Pr
”

rσ
puq

0 ă rσ
puq

1

ˇ

ˇ

ˇ
e

$
ÐÝ Sn,u

ı

“ 1 ´

t
ź

u“1

v´1
ÿ

x“0

Pr
”

prσ
puq

0 “ xq ^ prσ
puq

1 ą xq

ˇ

ˇ

ˇ
e

$
ÐÝ Sn,u

ı

.

Under Assumption 1, the counters are independent random
variables, hence

Pr
”

prσ
puq

0 “ xq ^ prσ
puq

1 ą xq

ˇ

ˇ

ˇ
e

$
ÐÝ Sn,u

ı

“ Pr
”

rσ
puq

0 “ x
ˇ

ˇ

ˇ
e

$
ÐÝ Sn,u

ı

looooooooooooooomooooooooooooooon

f
puq

0 pxq

¨Pr
”

rσ
puq

1 ą x
ˇ

ˇ

ˇ
e

$
ÐÝ Sn,u

ı

looooooooooooooomooooooooooooooon

f
puq

1 pxq

.

With further probability theory arguments and recalling Propo-
sition 4.1, we obtain the expressions for f puq

0 pxq and f
puq

1 pxq.

B. Numerical results

To validate Proposition 4.2, we can compare it with esti-
mates obtained by Monte Carlo simulations. In Fig. 1, we
compare the DFR of some quasi-cyclic (QC) codes predicted
by Proposition 4.2, with the one estimated through numerical
simulations 5. As in BIKE and LEDAcrypt, we consider codes
whose parity-check matrix is in the form pH1,H2q, with both
H1 and H2 being circulant matrices with size rˆr and column
weight v. The resulting parity-check matrix has n “ 2r and
constant row weight w “ 2v. As can be seen from Fig. 1,
the results of the simulations are aligned with the theoretical
predictions. In Fig. 2 we compare the DFR resulting from
Proposition 4.2 with the theoretical models for the BF decoder,
considering one and two iterations [7], [9]. As we can see,

5The code employed for the simulations, as well as an implementation for
the formula in Proposition 4.2, can be found at https://github.com/secomms/
bf-max.

15 20 30 40 50 60 70 80 90 100

20

2´4

2´8

2´12

2´16

2´20

2´24

2´28

2´32

2´36

2´40

t (Number of errors)

D
FR

v “ 9 theoretical empirical
v “ 17 theoretical empirical
v “ 35 theoretical empirical

Fig. 1: Comparison between theoretical and empirical DFR
of the BF-Max decoder, for QC-LDPC codes with fixed r “

2003, n “ 2r, w “ 2v and several values of v.

1,000 2,000 3,000 4,000 5,000

20

2´8

2´16

2´24

2´32

2´40

r (Code redundancy)

D
FR

v “ 9

v “ 13

v “ 17

Fig. 2: Comparison between the DFR theoretical models for
BF-Max (continuous lines), 2-iteration BF (dashed lines) and
1-iteration BF (dotted lines). For all curves, t “ 18, w “

2v and n “ 2r; the flipping thresholds for BF have been
optimized in order to achieve the lowest DFR. The same color
has been used for curves referred to the same tuple pt, v, wq.

our decoder has a much lower DFR. Moreover, all decoders
have comparable computational complexity: for instance, for
v “ 9, the complexity of BF-Max is approximately 30%
greater than that of the 2-iterations BF, while for v “ 17
they have essentially the same complexity.

V. CONCLUSION

We have introduced and analyzed the BF-Max decoder, a BF
decoder that flips a unique bit in each iteration choosing that
(or one of those) with the highest counter. We have shown
that this decoder has low computational complexity and is
inherently constant time. We have been able to characterize
its DFR theoretically, for the case in which the number of
iterations equals the number of errors to be corrected. The
DFR predicted through our model closely matches the results
of numerical simulations and significantly outperforms the
theoretical DFR obtained by other models for BF decoders.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
information theory, vol. 8, no. 1, pp. 21–28, 1962.

[2] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAcrypt,” Second round submission to the NIST post-quantum
cryptography call, 2019.

[3] N. Aragon, P. Barreto, S. Bettaieb, et al., “BIKE,” First round
submission to the NIST post-quantum cryptography call, 2017.

[4] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on
MDPC with CCA security using decoding errors,” in Proc. Advances
in Cryptology–ASIACRYPT 2016: 22nd International Conference on
the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, Dec. 2016, pp. 789–815.

[5] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis
of the Fujisaki-Okamoto transformation,” in Proc. 15th Theory of
Cryptography Conference (TCC ’17), Baltimore, MD, Nov. 2017,
pp. 341–371.

[6] J.-P. Tillich, “The decoding failure probability of MDPC codes,” in
Proc. 2018 IEEE International Symposium on Information Theory
(ISIT), Vail, CO, Jun. 2018, pp. 941–945.

[7] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Hard-
decision iterative decoding of LDPC codes with bounded error rate,” in
Proc. 2019 IEEE International Conference on Communications (ICC),
Shanghai, China, May 2019.

[8] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Analysis
of the error correction capability of LDPC and MDPC codes under
parallel bit-flipping decoding and application to cryptography,” IEEE
Transactions on Communications, vol. 68, no. 8, pp. 4648–4660, 2020.

[9] A. Annechini, A. Barenghi, and G. Pelosi, “Bit-flipping decoder failure
rate estimation for (v,w)-regular codes,” in Proc. 2024 IEEE Interna-
tional Symposium on Information Theory (ISIT), Athens, Greece, Jul.
2024, pp. 3375–3379.

[10] N. Sendrier and V. Vasseur, “On the decoding failure rate of QC-
MDPC bit-flipping decoders,” in Post-Quantum Cryptography - 10th
International Conference (PQCrypto 2019) Revised Selected Papers,
Chongqing, China, May 2019, pp. 404–416.

[11] N. Sendrier and V. Vasseur, “About low DFR for QC-MDPC decod-
ing,” in Proc. International Conference on Post-Quantum Cryptogra-
phy, Paris, France, Sep. 2020, pp. 20–34.

[12] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “Analy-
sis of in-place randomized bit-flipping decoders for the design of LDPC
and MDPC code-based cryptosystems,” in Proc. 17th International
Conference on E-Business and Telecommunications (ICETE 2020),
Virtual, Online, Jul. 2020, pp. 151–174.

[13] P. Santini, M. Battaglioni, F. Chiaraluce, and M. Baldi, “Analysis of re-
action and timing attacks against cryptosystems based on sparse parity-
check codes,” in Proc. Code-Based Cryptography - 7th International
Workshop (CBC 2019), Revised Selected Papers, Springer, Darmstadt,
Germany, May 2019, pp. 115–136.

[14] E. Eaton, M. Lequesne, A. Parent, and N. Sendrier, “QC-MDPC: A
timing attack and a CCA2 KEM,” in Proc. International Conference
on Post-Quantum Cryptography, Fort Lauderdale, Florida, Apr. 2018,
pp. 47–76.

