
ar
X

iv
:2

50
6.

09
52

5v
1

 [
cs

.C
R

]
 1

1
Ju

n
20

25

Beyond Personalization: Federated Recommendation
with Calibration via Low-rank Decomposition

Jundong Chen1,2,Honglei Zhang1,2,Haoxuan Li3,Chunxu Zhang4,Zhiwei Li5,Yidong Li1,2∗
1Key Laboratory of Big Data & Artificial Intelligence in Transportation, Ministry of Education,

2Beijing Jiaotong University, 3Peking University, 4Jilin University, 5University of Technology Sydney
jundongchen@bjtu.edu.cn, ydli@bjtu.edu.cn

Abstract

Federated recommendation (FR) is a promising paradigm to protect user privacy in
recommender systems. Distinct from general federated scenarios, FR inherently
needs to preserve client-specific parameters, i.e., user embeddings, for privacy
and personalization. However, we empirically find that globally aggregated item
embeddings can induce skew in user embeddings, resulting in suboptimal perfor-
mance. To this end, we theoretically analyze the user embedding skew issue and
propose Personalized Federated recommendation with Calibration via Low-Rank
decomposition (PFedCLR). Specifically, PFedCLR introduces an integrated dual-
function mechanism, implemented with a buffer matrix, to jointly calibrate local
user embedding and personalize global item embeddings. To ensure efficiency,
we employ a low-rank decomposition of the buffer matrix to reduce the model
overhead. Furthermore, for privacy, we train and upload the local model before
personalization, preventing the server from accessing sensitive information. Exten-
sive experiments demonstrate that PFedCLR effectively mitigates user embedding
skew and achieves a desirable trade-off among performance, efficiency, and pri-
vacy, outperforming state-of-the-art (SOTA) methods. Our code is available at
https://github.com/jundongchen13/PFedCLR.

1 Introduction

Federated recommendation (FR) has emerged as a new architecture to provide customized rec-
ommendation services while preserving user privacy [1, 2, 3]. Unlike general federated learning
(FL), FR inherently requires client-specific parameters to ensure personalization and privacy [4, 5].
Specifically, typical FR methods, such as FedMF [5] and FedNCF [6], treat item embeddings as
the global model while keeping user embedding as the local variable, as illustrated in Figure 1 (a).
However, such FR methods of assigning one same global model to all clients are suboptimal, since
there exists natural heterogeneity across clients, e.g., non-independent and identical distribution
(Non-IID) of their interaction data [1, 7]. Hence, personalized federated recommendation (pFR) has
been developed to tailor the personalized model for each client [8, 9].

Conceptually, pFR incorporates the personalization mechanism to derive a personalized global
model for each client, as illustrated in Figure 1 (b). Existing personalization mechanisms can be
categorized into two types [10]: server-side global aggregation and client-side local adaptation. From
the server, pFedGraph [11] optimizes a unique global model for each client based on similarity, and
GPFedRec [12] proposes graph-guided aggregation to yield user-specific item embeddings. From
the client, PFedRec [8] allows dual personalization for score function and item embeddings, and
FedRAP [13] adapts global model by applying an additive local model. These methods all personalize
the global item embeddings, effectively enhancing the customized recommendations for each client.

∗Corresponding author.

Preprint. Under review.

https://github.com/jundongchen13/PFedCLR
https://arxiv.org/abs/2506.09525v1

(a) Traditional FR (b) Personalized FR (pFR) (c) PFedCLR

Personalization
Mechanism

Global Aggregation
Local Adaptation

Global
Item Embeddings

User Embedding

Local Training

Global
Item Embeddings

Local Training

Local Calibration

User Embedding

+

Global
Item Embeddings

User Embedding

Local Training

Dual-function
Mechanism

Personalization

Calibration

+

Figure 1: Different frameworks for federated recommendation (FR). While existing pFR methods
mainly focus on the personalization of global item embeddings, PFedCLR additionally achieves the
calibration of local user embedding.

Global Optimum

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

(a) Performance Metric: HR@10 (b) Performance Metric: NDCG@10

Training
Termination

Training
Termination

Future
Trends

Future
Trends

(c) Training Trajectory: Client #126 (d) Training Trajectory: Client #659

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

-2 6

0.0

1.5

0 2 4

1.0

0.5

0.0

0.4

0.8

1.2

-2 60 2 4

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Start Start

Local Trend

Global Trend

Local Trend

Global Trend

Global Optimum

Global Optimum

Global Optimum

Figure 2: Motivation. "LT w/o GA" denotes only local
training without global aggregation, while "w/ GA (i-
)" denotes that global aggregation is performed from
round i onwards, rather than local training only.

However, we empirically find that the glob-
ally aggregated item embeddings can distort
the training trajectories of local user embed-
ding, leading to suboptimal solutions. In
the experiment, we start global aggregation
at different global rounds and set the total
number of global rounds to 100, following
the mainstream methods [5, 6, 8, 13]. Ad-
ditionally, 40 extra rounds are conducted
to observe long-term trends. As the perfor-
mance shown in Figure 2 (a)(b), we find
that: I) Under the standard setting of 100
global rounds, the groups with global ag-
gregation converge to the same global op-
timum2, achieving better performance than
the one with local training only. II) From
future trends, the group without global ag-
gregation can achieve superior performance.
Considering the specificity of FR scenarios,
we further visualize the t-SNE training tra-
jectories of local user embeddings. As shown by the two examples in Figure 2 (c)(d), the user
embeddings follow a consistent updating trend after starting global aggregation, which differs signifi-
cantly from the only local training trend. More experimental details can be found in Appendix D.1.
Based on the observations above, we argue that the item embeddings after global aggregation affect
the optimization direction of the local user embedding, potentially leading to suboptimal performance,
i.e., the user embedding skew issue. Neither traditional FR nor pFR methods take this into account.

To address this issue, we propose a calibrated pFR method called Personalized Federated recommen-
dation with Calibration via Low-Rank decomposition (PFedCLR), as shown in Figure 1 (c). Beyond
the personalization mechanism of mainstream pFR methods, PFedCLR incorporates a calibration
mechanism to mitigate the effect of global information from aggregation on local user embeddings.
Specifically, our key contributions are as follows:

• To the best of our knowledge, we first identify the user embedding skew issue specific to FR, and
provide an analysis from both experimental and theoretical perspectives.

• We propose an integrated dual-function mechanism to achieve both the calibration of local user
embedding and the personalization of global item embeddings. Implemented via a buffer matrix,
this mechanism effectively mitigates the previously overlooked user embedding skew issue.

• For efficiency, PFedCLR employs a low-rank decomposition of the buffer matrix to achieve a
lightweight and efficient design. For privacy, the local model is uploaded before personalization,
preventing the server from accessing sensitive user information.

• Through extensive experiments on five real-world datasets, we demonstrate that PFedCLR outper-
forms other state-of-the-art (SOTA) methods, while ensuring both efficiency and privacy.

2In this paper, "global optimum" and "local optimum" refer to collaborative optimum under global aggregation
and individual optimum under local training, respectively, rather than the concepts in optimization theory.

2

2 Related Work

2.1 Personalized federated learning

Personalized federated learning (pFL) has emerged as a critical research direction to mitigate the
heterogeneity across clients in FL. Per-FedAvg [14] and pFedMe [15] integrate Model-Agnostic
Meta-Learning (MAML) [16] with FedAvg [17] to optimize a globally shared initialization, aiming
to accelerate and enhance personalization on individual clients. Besides, pFedHN [18] learns a
hyper-network to generate personalized models for each client. FedMD [19], FedDF [20], and
FedKT [21] adopt knowledge distillation frameworks to transfer globally shared public knowledge
to local clients. Distinct from the global perspectives above, other works focus on local adaptation.
Ditto [22] introduces an additional module for each client to enable personalized adjustments on the
global model. In FedRep [23], clients share a global feature extractor but learn their own local heads
for personalized prediction. Additionally, several methods achieve personalization by combining the
global model with the local one, such as FedALA [24], FedPHP [25], and APFL [26].

2.2 Federated recommendation

Pioneering works such as FedMF [5] and FedNCF [6] adapt the representative centralized models,
i.e., Matrix Factorization (MF) [27] and Neural Collaborative Filtering (NCF) [28], to the federated
framework, respectively. Given the natural heterogeneity among clients, some efforts have been
made in personalized federated recommendation (pFR). From a global perspective, GPFedRec [12]
conducts the graph-guided aggregation to recover correlations among users, learning user-specific
item embeddings. Besides, pFedGraph [11] performs global optimization based on similarity,
deriving unique global models for each client. From a local view, PFedRec [8] designs a novel
dual personalization mechanism to capture user preferences and refine global item embeddings.
FedRAP [13] personalizes the global model locally by using an additional model. However, existing
pFR methods focus on the personalization of global item embeddings, yet ignore the skew of local
user embeddings caused by global aggregation, yielding suboptimal performance. To address this,
we propose PFedCLR based on low-rank techniques to take both aspects into account. In contrast
to LoRA-like methods [29, 30] that are designed for efficient fine-tuning, PFedCLR introduces
a dual-function mechanism tailored for FR scenario, which jointly achieves personalization and
calibration, delivering a more effective and efficient solution.

3 Problem definition

Notations. Let U denote the set with n users/clients, I the set with m items. Each client u ∈ U
keeps a local dataset Du = {(u, i, rui|i ∈ Iu)}, where Iu is the observed items of client u, rui is
the label. Particularly, we consider the typical recommendation task with implicit feedback, that is,
rui = 1 if client u has interacted with item i, and rui = 0 otherwise. Here, following mainstream
methods [4, 8, 31, 32, 33], we adopt the embedding-based FR framework. Assuming the embedding
dimension is d, client u updates the user embedding pu ∈ Rd and item embeddings Qu ∈ Rm×d,
while the server aggregates local models {Qu}u∈U to obtain the global model Qg .

FR objective. The goal of FR is to predict r̂ui of client u for each unobserved item i ∈ I \ Iu on
local devices. Formally, the global optimization objective of FR tasks is

min
(p1,p2,··· ,pn;Q1,Q2,··· ,Qn)

n∑
u=1

puLu (pu,Qu;Du) , (1)

where pu denotes the weight assigned to Qu for global aggregation, e.g., pu = |Du|/
∑n

v=1 |Dv|
in FedAvg [17] and pu = 1/n in FCF [4]. Lu is the local objective to facilitate the prediction of
rating r̂ui. In this work, we employ the binary cross-entropy loss (BCE) [28] as Lu for the task with
implicit feedback. Formally, the local optimization objective is defined as follows,

Lu(pu,Qu;Du) = −
∑

(u,i,rui)∈Du

rui log r̂ui + (1− rui) log (1− r̂ui) , (2)

where r̂ui = σ(p⊤
u qi),qi ∈ Qu denotes the predicted rating of item i by client u. Here, σ(x) =

1/(1 + e−x) denotes the Sigmoid function to map the rating to [0, 1].

3

User embedding skew. We theoretically analyze the user embedding skew, and the detailed proof
can be found in Appendix B.1. According to Lemmas 3.1 and 3.2, global aggregation introduces
two additional terms into the original updating gradient of local user embedding: a scaling term
and a shift term. The scaling term can alter the original gradient magnitude, while the shift term
can change the original gradient direction. They jointly distort the optimization trajectory of local
user embedding, leading to the skew observed in Figure 2. Furthermore, Lemma 3.3 quantifies the
accumulated skew over T global rounds, indicating that the user embedding finally converges to a
suboptimal point influenced by global aggregation, with discussion provided in Remark B.4.
Lemma 3.1 (User embedding update). Without global aggregation, the original updating gradient of
the local user embedding for client u at round t can be expressed as

∇(t)
u =

m∑
i=1

(
(σ(p(t)⊤

u q
(u,t)
i)− rui) · q(u,t)

i

)
=

m∑
i=1

L
(t)
1 · q

(u,t)
i , (3)

where q
(u,t)
i is the local i-th item embedding and L

(t)
1 = σ(p(t)⊤

u q
(u,t)
i)− rui for notational simplicity.

Lemma 3.2 (User embedding skew). For global round t, the local user embedding skew of client u
introduced by global item embeddings is given by

∆(t)
u ≈

m∑
i=1

(
σ′(p(t)⊤

u q
(u,t)
i)p(t)⊤

u δ
(t)
i · q

(u,t)
i + (σ(p(t)⊤

u q
(u,t)
i)− rui) · δ(t)i

)

=

m∑
i=1

L
(t)
2 p(t)⊤

u δ
(t)
i · q

(u,t)
i︸ ︷︷ ︸

Scaling Term

+L
(t)
1 · δ

(t)
i︸ ︷︷ ︸

Shift Term

 ,

(4)

where δ
(t)
i = q

(g,t)
i − q

(u,t)
i denotes the difference between the global i-th item embedding and the

local one at round t. Additionally, we denote L
(t)
2 = σ′(p(t)⊤

u q
(u,t)
i) for notational simplicity. Besides,

σ′(x) = σ(x)(1− σ(x)) is the derivative of the Sigmoid function.
Lemma 3.3 (Accumulated user embedding skew). The final accumulated skew after the total global
round T is given by

∥∆(u,T)
cumulative∥ ≤

m∑
i=1

(
ηC1∥δ(0)i ∥
1− γ

+
ηC2|p(0)⊤

u δ
(0)
i |∥q

(u,0)
i ∥

1− γ

)
, (5)

where γ ∈ (0, 1) is the difference amplification factor and η is the local learning rate for embedding.
Besides, C1 and C2 are two constants, defined as C1 = max{σ(p(t)⊤

u q
(u,t)
i) − rui}t∈{0,1,··· ,T−1}

and C2 = max{σ′(p(t)⊤
u q

(u,t)
i)}t∈{0,1,··· ,T−1}, respectively.

4 Our proposed PFedCLR

The framework of PFedCLR is shown in Figure 3. For each global round t, there are three key steps:

• Step 1: Each client u downloads and updates the global model from last round, Q(t−1)
g , to derive

the local model Q(t)
u . During this process, the user embedding is frozen at the state of last round,

p(t−1)
u , to prevent the potential skew introduced by Q(t−1)

g .
• Step 2: The client freezes the local model Q(t)

u , injecting and optimizing the zero-initialized
low-rank matrices A(t)

u B(t)
u to buffer the impact of Q(t)

u , thereby enabling the calibration of local
user embedding p(t)

u . Furthermore, by merging the local model with the low-rank matrices, i.e.,
Q(t)

u + A(t)
u B(t)

u , our method also achieves the personalization of item embeddings.
• Step 3: The server aggregates the uploaded local models {Q(t)

u }u∈U to obtain the global model Q(t)
g ,

distributing it to the clients for the next round t+ 1.

4.1 Step 1: Local training

Item embeddings updating. At the beginning of each round t, client u first downloads the aggregated
global model Q(t−1)

g from the last round for local training. Based on the analysis in Lemma 3.2, directly
updating the local user embedding p(t−1)

u can result in the skew introduced by Q(t−1)
g . Therefore,

we freeze p(t−1)
u and only update Q(t−1)

g to obtain the local model Q(t)
u of this round, where the

optimization objective is
Q(t)

u ← min
Qu

Lu(p
(t−1)
u ,Q(t−1)

g ;Du). (6)

4

[On the Server] [On the Client]

Local Item
Embeddings

Aggregator

Global Item
Embeddings

User Embedding

Download +

Trainable Parameters

Untrainable Parameters

User Embedding

Item Embeddings

Item Embedding

User Embedding

Low-Rank Matrix

Upload

[Parameter Space]

Item Embeddings Aggregation

Item Embeddings Updating User Embedding Calibration

Local Optimum

Global Optimum

()t

uA(1)t

g

−
Q

()t

uQ

()

1

t
Q

()

2

t
Q

()t

uQ
()t

nQ… …

()t

gQ

()t

up

(1)t

g

−
Q

()t

uQ

By Local Training

(1)t

u

−
p

()t

uQ

()t

up

By Calibration

Item Embeddings

User Embedding

Low-Rank Matrix

Step 1 Local Training

Step 3 Global Aggregation

Local Item
Embeddings

Local Item
EmbeddingsLocal Item

Embeddings

Local Item
Embeddings

Item Embeddings
Personalization

User Embedding
Calibration

Freeze

Unfreeze

Step 2 Dual-Function Mechanism

Item Embedding Personalization

By Personalization

() ()t t

u uA B

()t

uB

(1)t

u

−
p

() ()t t

u uA B

()t

uQ()t

uΔ

()t

u 'Δ

() () ()t t t

u u uQ + A B

Figure 3: An overview of PFedCLR. During local training, the client only updates the global model
Q(t−1)

g to obtain the local model Q(t)
u . For dual-function mechanism, the low-rank matrices A(t)

u B(t)
u can

provide ∆(t)′
u to mitigate the user embedding skew ∆(t)

u caused by global aggregation, thus calibrating
the user embedding p(t)

u . Besides, A(t)
u B(t)

u can also personalize the item embeddings Q(t)
u .

4.2 Step 2: Dual-function mechanism

User embedding calibration. We freeze the local model Q(t)
u since it is derived from Q(t−1)

g , making
its potential influence on user embedding controllable. Before introducing the efficiency-oriented
design, we first present the formulation of injecting a full buffer matrix W(t)

u ∈ Rm×d into Q(t)
u to

calibrate the skew ∆(t)
u . We provide a theoretical analysis of such calibration in Appendix B.2.

Lemma 4.1 (Calibration of user embedding skew). At global round t, the user embedding calibration
for client u achieved by our method can be approximated as

∆(t)′
u ≈ −

m∑
i=1

ηL
(t)
1 L

(t)
2 p(t)⊤

u p(t)
u · q

(u,t)
i︸ ︷︷ ︸

Scaling Term

+ ηL
(t)2
1 · p(t)

u︸ ︷︷ ︸
Shift Term

 . (7)

Remark 4.2 (Dynamic regularization perspective for calibration). By comparing the skew ∆(t)
u in

Lemma 3.2 with our calibration ∆(t)′
u in Lemma 4.1, we explicitly introduce both a scaling term and a

shift term, each tailored to mitigate the corresponding term of user embedding skew. Next, we focus
on the shift term used to correct the gradient direction. Taking the i-th item for example, the shift
term −ηL(t)2

1 p(t)
u is structurally similar to an l2 regularization term applied to p(t)

u , which is

∂

∂pu

(
1

2
∥p(t)

u ∥2
)

= p(t)
u . (8)

Hence, the shift term can be interpreted as an adaptive regularization term for the user embedding,
with a coefficient of −ηL(t)2

1 that dynamically adjusts according to the user embedding skew at each
round t. In this way, it serves as a self-regulating force that suppresses harmful gradient directions
induced by global aggregation, offering robust user embedding updates.

Formally, we update and obtain the calibrated user embedding p(t)
u and the buffer matrix W(t)

u by
optimizing the following objective,

p(t)
u ,W(t)

u ← min
pu,Wu

Lu(p
(t−1)
u , (Q(t)

u +W(t−1)
u);Du). (9)

Considering limited local resources, using a full matrix as the buffer would double the local overhead.
Inspired by LoRA [29, 30], we replace the zero-initialized matrix Wu with a low-rank decomposition
AuBu, where Au ∈ Rm×r is initialized as a zero matrix and Bu ∈ Rr×d is a randomly initialized
Gaussian matrix, and r ≪ min(m, d) denotes the rank of the decomposition. In this way, the client
requires only r(m + d) ≪ m × d additional parameters, towards improved efficiency and better
suitability for practical deployment. Thus, Equation 9 can be rewritten as

p(t)
u ,A(t)

u ,B(t)
u ← min

pu,Au,Bu

Lu(p
(t−1)
u , (Q(t)

u +A(t−1)
u B(t−1)

u);Du). (10)

5

Item embeddings personalization. By merging the global information-related Q(t)
u with the local

information-related A(t)
u B(t)

u , we can derive the personalized item embeddings Q(t)
u + A(t)

u B(t)
u tailored

for each client u, aiming at customized recommendation.

4.3 Step 3: Global Aggregation

On the server, we adopt the prevalent aggregator, FedAvg [17], to perform global aggregation over
the uploaded local models. This process can be formulated as

Q(t)
g =

n∑
u=1

puQ
(t)
u , where pu =

|Du|∑n
v=1 |Dv|

. (11)

4.4 Discussion

Algorithm. The pseudocode is provided in Appendix A. Notably, Step 2 and Step 3 can be performed
in parallel on the client and server, respectively, enhancing per-round training efficiency.

Cost analysis. With the employment of low-rank decomposition, PFedCLR incurs negligible
overhead over the backbone FedMF. A detailed analysis can be found in Appendix B.3.

Privacy analysis. I) Inherent privacy preservation: we upload Q(t)
u for aggregation after Step 1, while

its personalization is performed in Step 2, which prevents the server from accessing user sensitive
information. II) Enhanced privacy protection: we incorporate local differential privacy (LDP) into
our method to further strengthen privacy. The privacy budget ε is guaranteed by Su/λ, where λ is the
strength of Laplace noise and Su is the global sensitivity of client u. We upper-bound Su by 2puηC,
where C is the clipping threshold. Detailed analysis is provided in Appendix B.4.

5 Experiment

5.1 Experimental setup

Datasets. We verify our proposed PFedCLR on five recommendation benchmark datasets with
varying scales and sparsity: Filmtrust [34], Movielens-100K (ML-100K) [35], Movielens-1M
(ML-1M) [35], HetRec2011 [36] and LastFM-2K [36]. More details are shown in appendix C.1.

Evaluation protocols. We follow the popular leave-one-out evaluation [37]. The model performance
is reported by Hit Ratio (HR@10) and Normalized Discounted Cumulative Gain (NDCG@10) [38].

Compared baselines. We compare our method with both centralized and federated baselines. Specif-
ically, MF [27], NCF [28], and LightGCN [39] are effective centralized recommendation methods. In
the federated setting, for a comprehensive comparison, we select traditional FR methods: FedMF [5]
and FedNCF [6]; global aggregation-based pFR methods: pFedGraph [11] and GPFedRec [12]; and
local adaptation-based pFR methods: PFedRec [8] and FedRAP [13]. More details about baselines
can be found in appendix C.2.

Implementation settings. For a fair comparison, we set the global round R = 100, batch size
B = 256, and embedding dimension d = 16 for all methods. For our method, except for the extra
parameters, i.e., the rank r and learning rate β of low-rank matrices, other hyper-parameters are kept
consistent with those of the backbone FedMF. For other methods, we follow the experimental settings
with the official code provided in the original paper. More details can be found in appendix C.3.

5.2 Overall Comparisons

Performance. The performance comparison of different methods is illustrated in Table 1, based on
which we provide the following analysis:
I) PFedCLR significantly outperforms centralized methods across most datasets. In the central-
ized setting, only user embeddings are typically treated as personalized parameters. In contrast, our
method additionally personalizes item embeddings, enabling more customized recommendations
for each client. Notably, LastFM-2K is an extremely sparse dataset with a vast number of items,
which makes item embeddings insufficiently trained under the federated setting, yet PFedCLR only
underperforms centralized methods at HR@10 while outperforming them at NDCG@10.

6

Table 1: Performance comparison on five datasets. "CenRS" and "FedRS" represent centralized and
federated settings, respectively. The best FedRS results are bold and the second ones are underlined.
Besides, "Improvement" indicates the performance improvement over the best baseline.

Method Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

CenRS
MF 0.6886 0.5548 0.6543 0.3788 0.6088 0.3446 0.6275 0.3688 0.8440 0.6191
NCF 0.6786 0.5437 0.6119 0.3422 0.5858 0.3267 0.6171 0.3663 0.7896 0.6069
LightGCN 0.6956 0.5691 0.6787 0.3994 0.6684 0.3885 0.6611 0.3975 0.8448 0.6853

FedRS

FedMF 0.6507 0.5171 0.4846 0.2723 0.4876 0.2734 0.5376 0.3206 0.5839 0.3930
FedNCF 0.6497 0.5331 0.4252 0.2290 0.4180 0.2311 0.5083 0.2982 0.4933 0.3220

pFedGraph 0.6956 0.4982 0.6204 0.4937 0.7262 0.5991 0.6962 0.5523 0.6485 0.6085
GPFedRec 0.6866 0.5578 0.6840 0.3982 0.6836 0.4012 0.6488 0.4016 0.7896 0.6499

PFedRec 0.6896 0.5479 0.6702 0.3929 0.6611 0.3849 0.6531 0.3948 0.7549 0.6634
FedRAP 0.6826 0.4628 0.8823 0.7980 0.8661 0.7666 0.8486 0.6325 0.6257 0.5924

Ours PFedCLR 0.9102 0.7798 0.9989 0.9225 0.9603 0.8402 0.9522 0.8496 0.7778 0.7164

Improvement ↑ 27.02% ↑ 39.80% ↑ 13.22% ↑ 15.60% ↑ 10.88% ↑ 9.60% ↑ 12.21% ↑ 34.32% - ↑ 7.99%

II) PFedCLR achieves superior performance over SOTA federated methods across the majority
of scenarios. Based on traditional FR methods, pFR methods further personalize item embeddings
for each client and thus achieve better performance. However, these methods all overlook the user
embedding skew issue. In contrast, our method realizes both personalization and calibration with a
dual-function mechanism, leading to the best performance.
III) Our method demonstrates clear improvements on all evaluated datasets, highlighting its ef-
fectiveness. Our method outperforms the strongest SOTA FR baselines on all five datasets, achieving
HR@10 above 0.9 on the first four datasets, with the highest gain up to 39.8%. Moreover, the notable
improvement on the NDCG metric demonstrates a more accurate modeling of user preferences.

1000

1500

2000

2500

3000

0.2 0.25 0.3 0.35 0.4 0.45 0.5

FedMF
FedNCF
pFedGraph
GPFedRec
PFedRec
FedRAP
PFedCLR

1360

1370

1380

1390
0.22 0.23 0.24 0.25 0.26

Client-side Space Cost (MB)

Se
rv

er
-s

id
e

Sp
ac

e
C

os
t (

M
B

)

Figure 4: Efficiency comparison on ML-1M.
The position of each bubble indicates the
space cost, while its size reflects the average
training time per round. A smaller bubble de-
notes more efficient training per round.

Efficiency. We further compare the time and space
costs of different FR methods. The results on ML-1M
are shown in Figure 4, and more experimental results
can be found in Appendix D.2. Compared to the
backbone FedMF, PFedCLR introduces only a slight
increase in space cost, adding approximately 0.03MB
parameters locally. Moreover, unlike existing meth-
ods with alternating client-server updates, PFedCLR
uploads the local model to the server immediately
after Step 1. As a result, Step 2 and Step 3 can be
executed in parallel on the client and the server, re-
spectively, enabling improved round efficiency. Com-
pared with other pFR methods, PFedCLR achieves a
better trade-off between performance and efficiency.

Convergence. We compare the convergence of dif-
ferent FR methods, with detailed results presented
in Appendix D.3. The main conclusions are: I) In the early training rounds, PFedCLR exhibits a
notably fast convergence speed, outperforming most methods. II) In the later rounds, our method
demonstrates a higher performance and maintains stable convergence. These results suggest both
short-term efficiency and long-term effectiveness of PFedCLR compared to existing FR methods.

5.3 Ablation Study

Component analysis. To further evaluate the effectiveness of our method, we conduct a component-
wise analysis based on the backbone FedMF, examining the following variants: I) Adaptation with
Full matrix (AF): Following the pFR framework shown in Figure 1 (b), we employ a full matrix Wu

as the personalization mechanism to fine-tune the global item embeddings. II) Calibration with Full
matrix (CF): This variant decouples the updates of user and item embeddings. A full buffer matrix
Wu is employed within the dual-function mechanism to achieve both item embedding personaliza-
tion and user embedding calibration. III) Calibration with Low-Rank matrices (CLR): This variant
replaces the full matrix Wu in the dual-function mechanism with a low-rank decomposition AuBu.
From the results reported in Table 2, we have the following analysis:

7

Table 2: Ablation study results. "AF", "CF", and "CLR" denote Adaptation with Full matrix,
Calibration with Full matrix, and Calibration with Low-Rank matrices, respectively.

Method Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

FedMF 0.6507 0.5171 0.4846 0.2723 0.4912 0.2751 0.5376 0.3206 0.5839 0.3930
FedMF w/ AF 0.6717 0.5429 0.6151 0.4307 0.5897 0.4007 0.6947 0.5024 0.6612 0.4600
FedMF w/ CF 0.7754 0.6313 0.8452 0.6955 0.8349 0.6794 0.8239 0.6612 0.7667 0.7037
FedMF w/ CLR 0.9102 0.7798 0.9989 0.9225 0.9603 0.8402 0.9522 0.8496 0.7778 0.7164

I) The personalization of global item embeddings can improve model performance. AF fine-
tunes item embeddings locally to provide customized recommendations for each client, which leads
to noticeable performance gains. However, similar to existing pFR methods, it ignores the impact of
global item embeddings on local user embeddings, resulting in suboptimal performance.
II) The calibration of local user embedding further enhances performance. CF uses a zero-
initialized matrix to buffer the influence of global item embeddings on local user embeddings,
providing more robust updates and mitigating the user embedding skew. This dual-function mecha-
nism jointly personalizes item embeddings and calibrates user embedding, leading to superior results.
III) The low-rank decomposition provides a more effective way to mitigate user embedding skew.
CLR decomposes the zero-initialized matrix Wu into a zero-initialized matrix Au and a randomly
initialized Gaussian matrix Bu. Actually, Bu offers a low-rank subspace of potential calibration
directions, allowing more suitable adjustments to the optimization trajectory of user embedding.

Start

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

-2 0 2 4-4

0

2

4

6

Figure 5: Training trajectories of lo-
cal user embedding for Client #94.
"GA" denotes global aggregation.

Trajectory visualization. The t-SNE training trajectories
of local user embedding under different variants are illus-
trated in Figure 5. More cases and analyses can be found
in Appendix D.4. We can observe that: I) FedMF exhibits
a noticeable difference with and without global aggregation,
highlighting the user embedding skew issue. II) AF explores
client-specific user embedding updates via local personaliza-
tion, but these updates are still influenced by global aggre-
gation. III) CF effectively calibrates the update direction of
user embedding. However, it greatly weakens the influence
of global aggregation, resulting in the loss of global collab-
orative information, which hinders optimal performance. IV)
Due to the inherent low-rank constraints, CLR strikes a better
balance between calibration and preserving global information, yielding superior results.

Embedding visualization. We further visualize the user and item embeddings of FedMF and
PFedCLR with t-SNE. As one case is shown in Figure 6, we have the following insights: I) Calibration:
For FedMF, the user embedding is clearly influenced by item embeddings Qu, confirming that global
aggregation can cause the user embedding skew issue. In contrast, PFedCLR effectively mitigates
this issue, as illustrated in subfigures (a) and (b). II) Personalization: Beyond calibrating the user
embedding, the low-rank matrices AuBu of PFedCLR can also personalize Qu, with the user
exhibiting distinct preferences toward the interacted items, as shown in subfigures (c) and (d). More
cases and detailed analysis are provided in Appendix D.5.

(a) FedMF: !""! (b) PFedCLR: !""! (c) PFedCLR: !"" !""! " (d) PFedCLR: !"" !"" !""! "# A

Figure 6: Visualizations of embeddings for Client #233. The user is marked by the green pentagram.
Items interacted with and not interacted with by the user are indicated in red and blue, respectively.

8

5.4 Hyper-parameter Analysis

0

25

50

75

100

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12

Pe
rf

or
m

an
ce

0

25

50

75

100

0.7

0.8

0.9

1

1.1

1 2 4 6 8 10 12
0

25

50

75

100

0.6

0.7

0.8

0.9

1

1 2 4 6 8 10 12
0

25

50

75

100

0.6

0.7

0.8

0.9

1

1 2 4 6 8 10 12
0

25

50

75

100

0.5

0.6

0.7

0.8

0.9

1 2 4 6 8 10 12

O
ve

rh
ea

d
(%

)

HR@10
NDCG@10
Overhead

HR@10
NDCG@10
Overhead

HR@10
NDCG@10
Overhead

HR@10
NDCG@10
Overhead

HR@10
NDCG@10
Overhead

(a) Filmtrust (b) ML-100K (c) ML-1M (d) HetRec2011 (e) LastFM-2K

Figure 7: Model performance and extra overhead under different rank. The horizontal axis is the
rank of low-rank matrices. The left vertical axis indicates the model performance, i.e., HR@10 and
NDCG@10, while the right one indicates the incremental space cost relative to the backbone FedMF.

Our method is simple to tune, requiring only two additional hyper-parameters: I) Rank r of the
low-rank matrices. As shown in Figure 7, when the rank r is small, e.g., r = 2, our method achieves
outstanding performance across all datasets with negligible additional overhead, demonstrating its
promising practical potential. II) Learning rate β of the low-rank matrices. A larger or smaller β
is detrimental to both personalization and calibration, while the best performance is achieved when β
equals the default learning rate η for embedding, i.e., β = η = 0.01. Detailed results and analysis
can be found in Appendix D.6.

5.5 Privacy Protection

(a) pFedGraph (b) GPFedRec (c) PFedRec (d) FedRAP (e) PFedCLR

Figure 8: Visualizations of item embeddings uploaded to the server by different pFR methods. Items
interacted with and not interacted with by the user are indicated in red and blue, respectively.

Table 3: Results of applying local differen-
tial privacy (LDP) into our method.

Dataset Metrics w/o LDP w/ LDP Degradation

Filmtrust HR@10 0.9102 0.9122 -
NDCG@10 0.7798 0.7741 ↓ 0.73%

ML-100K HR@10 0.9989 0.9979 ↓ 0.10%
NDCG@10 0.9225 0.9215 ↓ 0.11%

ML-1M HR@10 0.9603 0.9586 ↓ 0.18%
NDCG@10 0.8402 0.8379 ↓ 0.27%

HetRec2011 HR@10 0.9522 0.9460 ↓ 0.65%
NDCG@10 0.8496 0.8405 ↓ 1.07%

LastFm-2K HR@10 0.7778 0.7526 ↓ 3.24%
NDCG@10 0.7164 0.6816 ↓ 4.86%

I) Inherent privacy preservation: The visualization re-
sults of the uploaded item embeddings are shown in
Figure 8. We can observe that existing pFR methods per-
form personalization before uploading the local model,
which leads to the leakage of user preference informa-
tion, as demonstrated by the clear distinction between
interacted and non-interacted items. In contrast, our
method performs personalization after uploading the
model, thereby protecting user-sensitive information.
II) Enhanced privacy protection: We further incorporate
LDP to strengthen privacy, as shown in Table 3. It is evi-
dent that our method remains robust when applying LDP
and still outperforms other SOTA methods. Detailed privacy analysis can be found in Appendix D.7.

6 Conclusion

In this paper, we first empirically identify the local user embedding skew caused by globally aggre-
gated item embeddings in federated recommendation. Next, we theoretically analyze the rationale
behind such skew. To address this issue, we propose PFedCLR, which integrates a dual-function
mechanism to simultaneously calibrate local user embedding and personalize global item embed-
dings, significantly enhancing model performance. Furthermore, considering client-side resource
constraints, we apply low-rank decomposition to the buffer matrix within this mechanism, achieving
improved efficiency. To preserve privacy, personalization is conducted after uploading the local
model, shielding user-sensitive information from the server. Extensive experiments demonstrate that
PFedCLR effectively mitigates user embedding skew and achieves a well-balanced trade-off among
performance, efficiency, and privacy compared to other SOTA methods.

9

References
[1] Zehua Sun, Yonghui Xu, Yong Liu, Wei He, Lanju Kong, Fangzhao Wu, Yali Jiang, and Lizhen

Cui. A survey on federated recommendation systems. IEEE TNNLS, pages 6–20, 2024.

[2] Hongzhi Yin, Liang Qu, Tong Chen, Wei Yuan, Ruiqi Zheng, Jing Long, Xin Xia, Yuhui Shi,
and Chengqi Zhang. On-device recommender systems: A comprehensive survey. arXiv preprint
arXiv:2401.11441, 2024.

[3] Chunxu Zhang, Guodong Long, Zijian Zhang, Zhiwei Li, Honglei Zhang, Qiang Yang, and
Bo Yang. Personalized recommendation models in federated settings: A survey. arXiv preprint
arXiv:2504.07101, 2025.

[4] Muhammad Ammad-Ud-Din, Elena Ivannikova, Suleiman A Khan, Were Oyomno, Qiang Fu,
Kuan Eeik Tan, and Adrian Flanagan. Federated collaborative filtering for privacy-preserving
personalized recommendation system. arXiv preprint arXiv:1901.09888, 2019.

[5] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated matrix factorization. IEEE
Intelligent Systems, pages 11–20, 2020.

[6] Vasileios Perifanis and Pavlos S Efraimidis. Federated neural collaborative filtering.
Knowledge-Based Systems, page 108441, 2022.

[7] Honglei Zhang, Fangyuan Luo, Jun Wu, Xiangnan He, and Yidong Li. Lightfr: Lightweight
federated recommendation with privacy-preserving matrix factorization. ACM TOIS, pages
1–28, 2023.

[8] Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, and
Bo Yang. Dual personalization on federated recommendation. In IJCAI, pages 4558–4566,
2023.

[9] Jing Jiang, Chunxu Zhang, Honglei Zhang, Zhiwei Li, Yidong Li, and Bo Yang. A tutorial
of personalized federated recommender systems: Recent advances and future directions. In
WWW, 2025.

[10] Hao Zheng, Zhigang Hu, Liu Yang, Meiguang Zheng, Aikun Xu, and Boyu Wang. Confree:
Conflict-free client update aggregation for personalized federated learning. In AAAI, pages
22875–22883, 2025.

[11] Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized federated
learning with inferred collaboration graphs. In ICML, pages 39801–39817, 2023.

[12] Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, and Bo Yang. Gpfedrec:
Graph-guided personalization for federated recommendation. In KDD, pages 4131–4142, 2024.

[13] Zhiwei Li, Guodong Long, and Tianyi Zhou. Federated recommendation with additive person-
alization. In ICLR, 2024.

[14] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS, pages 3557–
3568, 2020.

[15] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau
envelopes. In NeurIPS, pages 21394–21405, 2020.

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, pages 1126–1135, 2017.

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS,
pages 1273–1282, 2017.

[18] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning
using hypernetworks. In ICML, pages 9489–9502, 2021.

10

[19] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. In
NeurIPS, 2019.

[20] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning. In NeurIPS, pages 2351–2363, 2020.

[21] Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated learning for cross-silo
setting. In IJCAI, pages 1484–1490, 2021.

[22] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In ICML, pages 6357–6368, 2021.

[23] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. In ICML, pages 2089–2099, 2021.

[24] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing
Guan. Fedala: Adaptive local aggregation for personalized federated learning. In AAAI, pages
11237–11244, 2023.

[25] Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li, and Shaoming Song. Fedphp:
Federated personalization with inherited private models. In ECML PKDD, pages 587–602,
2021.

[26] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized
federated learning. arXiv preprint arXiv:2003.13461, 2020.

[27] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, pages 30–37, 2009.

[28] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In WWW, pages 173–182, 2017.

[29] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In ICLR,
page 3, 2022.

[30] Ngoc-Hieu Nguyen, Tuan-Anh Nguyen, Tuan Nguyen, Vu Tien Hoang, Dung D Le, and Kok-
Seng Wong. Towards efficient communication and secure federated recommendation system
via low-rank training. In WWW, pages 3940–3951, 2024.

[31] Honglei Zhang, Haoxuan Li, Jundong Chen, Sen Cui, Kunda Yan, Abudukelimu Wuerkaixi, Xin
Zhou, Zhiqi Shen, and Yidong Li. Beyond similarity: Personalized federated recommendation
with composite aggregation. arXiv preprint arXiv:2406.03933, 2024.

[32] Zhiwei Li, Guodong Long, Tianyi Zhou, Jing Jiang, and Chengqi Zhang. Personalized federated
collaborative filtering: A variational autoencoder approach. In AAAI, pages 18602–18610,
2025.

[33] Yuchen Ding, Siqing Zhang, Boyu Fan, Wei Sun, Yong Liao, and Peng Yuan Zhou. Fedloca:
Low-rank coordinated adaptation with knowledge decoupling for federated recommendations.
In RecSys, pages 690–700, 2024.

[34] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. A novel bayesian similarity measure for
recommender systems. In IJCAI, pages 2619–2625, 2013.

[35] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
TIIS, pages 1–19, 2015.

[36] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Second workshop on information het-
erogeneity and fusion in recommender systems (hetrec2011). In RecSys, pages 387–388,
2011.

[37] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic coordinate
descent framework for learning from implicit feedback. In WWW, pages 1341–1350, 2017.

11

[38] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In CIKM, pages 1661–1670, 2015.

[39] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, pages
639–648, 2020.

[40] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In ICLR, 2019.

[41] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing Xie. A
federated graph neural network framework for privacy-preserving personalization. Nature
Communications, page 3091, 2022.

[42] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[43] Woo-Seok Choi, Matthew Tomei, Jose Rodrigo Sanchez Vicarte, Pavan Kumar Hanumolu, and
Rakesh Kumar. Guaranteeing local differential privacy on ultra-low-power systems. In ISCA,
pages 561–574, 2018.

[44] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS
Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and
performance analysis. IEEE TIFS, pages 3454–3469, 2020.

12

Appendix

To support the main content of the paper, we provide the following supplementary materials:

• Algorithms: pseudocode of PFedCLR.
• Theoretical Analysis: user embedding skew, user embedding calibration, cost analysis, and privacy

analysis.
• Experimental Details: datasets, baselines, and implementation.
• Extensive Experiment Results: motivation, efficiency, convergence, effectiveness (trajectory and

embedding visualization), hyper-parameter analysis, and privacy protection.
• Limitations: limitations of PFedCLR.

A Algorithms

Algorithm 1 PFedCLR
Input: clients U ; global rounds T ; local epochs E; batch size B; learning rates η, β; rank r

Output: p(T)
u ,Q

(T)
u ,A

(T)
u B

(T)
u for each client u

Global Procedure:
1: Initialize global model Q(0)

g ;
2: for each client u = 1, 2, · · · , n in parallel do
3: Initialize local models p(0)

u ,Q
(0)
u ,A

(0)
u B

(0)
u ; ▷ Initialization

4: end for
5: for each global round t = 1, 2, · · · , T do
6: Us ← Randomly select ns clients from U ;
7: for each client u ∈ Us in parallel do
8: Downloads Q(t−1)

g from the server;
9: Q

(t)
u ← ClientUpdate(Q(t−1)

g ,u);
10: end for
11: Q

(t)
g ← Aggregate {Q(t)

u }u∈Us
by Equation (11); ▷ Step 3: Global Aggregation

12: end for
ClientUpdate(Q(t−1)

g ,u):
1: for each local epoch e = 1, 2, · · · , E do
2: for each batch b = 1, 2, · · · , B in Du do
3: Q

(t)
u ← Update Q

(t−1)
g with Equation (6); ▷ Step 1: Local Training

4: end for
5: end for
6: Uploads Q(t)

u to the server;
7: for each local epoch e = 1, 2, · · · , E do
8: for each batch b = 1, 2, · · · , B in Du do
9: p

(t)
u ,A

(t)
u B

(t)
u ← Optimize p

(t−1)
u ,A

(t−1)
u B

(t−1)
u with Equation (10);

▷ Step 2: Dual-Function Mechanism
10: end for
11: end for

The overall procedure of the proposed PFedCLR is summarized in Algorithm 1. Prior to the start
of global training, each client initializes its local model based on the global parameter Q(0)

g . For
each global round t, clients first perform Step 1 to update item embeddings Q(t)

u locally, followed
by Step 2, where the dual-function mechanism calibrates the user embedding p(t)

u and updates the
personalized low-rank matrices A(t)

u B(t)
u . The server then performs Step 3 to aggregate uploaded

models {Q(t)
u }u∈Us and update the global parameter Q(t)

g .

Notably, clients can upload their models immediately after Step 1, allowing Step 2 on the client side
and Step 3 on the server side to proceed in parallel. This parallelism improves training efficiency
compared to conventional methods that rely on alternating client-server updates. Furthermore, since
personalization occurs locally in Step 2, only non-personalized local models are uploaded after Step
1, thereby preserving user sensitive information.

13

B Theoretical Analysis

B.1 User embedding skew

Lemma B.1 (User embedding update). Without global aggregation, the original updating gradient
of the local user embedding for client u at round t can be expressed as

∇(t)
u =

m∑
i=1

(
(σ(p(t)⊤

u q
(u,t)
i)− rui) · q(u,t)

i

)
=

m∑
i=1

L
(t)
1 · q

(u,t)
i , (12)

where q
(u,t)
i is the local i-th item embedding of client u and we denote L

(t)
1 = σ(p

(t)⊤
u q

(u,t)
i)− rui

for notational simplicity.

Proof. For simplicity, we omit the round notation t in this proof and illustrate with the i-th item
embedding qi ∈ Rd for example. Firstly, for local training, the updating gradient of user embedding
before global aggregation is

∂Lu

∂pu
=

∂Lu

∂r̂ui

∂r̂ui
∂pu

=

(
−rui
r̂ui

+
1− rui
1− r̂ui

)
· σ′(p⊤

u q
(u)
i)q

(u)
i

=

(
− rui

σ(p⊤
u q

(u)
i)

+
1− rui

1− σ(p⊤
u q

(u)
i)

)
· σ(p⊤

u q
(u)
i)(1− σ(p⊤

u q
(u)
i))q

(u)
i

= (σ(p⊤
u q

(u)
i)− rui)q

(u)
i .

(13)

Hence, the proof is complete.

Lemma B.2 (User embedding skew). For global round t, the local user embedding skew of client u
introduced by global item embeddings is given by

∆(t)
u ≈

m∑
i=1

(
σ′(p(t)⊤

u q
(u,t)
i)p(t)⊤

u δ
(t)
i · q

(u,t)
i + (σ(p(t)⊤

u q
(u,t)
i)− rui) · δ(t)i

)
, (14)

where q(u,t)
i denotes the embedding of item i for client u locally at round t, σ′(x) = σ(x)(1− σ(x))

is the derivative of the Sigmoid function. Beside, δ(t)i = q
(g,t)
i −q

(u,t)
i denotes the difference between

the global i-th item embedding and the local one at round t. Let L(t)
1 = σ(p

(t)⊤
u q

(u,t)
i) − rui,

L
(t)
2 = σ′(p

(t)⊤
u q

(u,t)
i) for notational simplicity, this theorem can be formulated as

∆(t)
u ≈

m∑
i=1

L
(t)
2 p(t)⊤

u δ
(t)
i · q

(u,t)
i︸ ︷︷ ︸

Scaling Term

+L
(t)
1 · δ

(t)
i︸ ︷︷ ︸

Shift Term

 . (15)

Proof. After the client uploads the local item embeddings, the server performs global aggregation,
introducing the difference between global item embedding q

(g)
i and local item embedding q

(u)
i ,

which is defined as
δi = q

(g)
i − q

(u)
i . (16)

Next, the client downloads the global model q(g)
i and performs local training, we have the updating

gradient of user embedding after global aggregation as
∂Lu

∂pu
=(σ(p⊤

u q
(g)
i)− rui)q

(g)
i

=(σ(p⊤
u (q

(u)
i + δi))− rui)(q

(u)
i + δi)

Taylor
=

Expansion
(σ(p⊤

u q
(u)
i) + σ′(p⊤

u q
(u)
i)p⊤

u δi + o(||δi||2)− rui)(q
(u)
i + δi)

= (σ(p⊤
u q

(u)
i)− rui)q

(u)
i︸ ︷︷ ︸

Original Gradient Term

+σ′(p⊤
u q

(u)
i)p⊤

u δiq
(u)
i︸ ︷︷ ︸

Scaling Term

+(σ(p⊤
u q

(u)
i)− rui)δi︸ ︷︷ ︸

Shift Term

+O(||δi||2),

(17)

14

where the first original gradient term represents the updating gradient of user embedding without
global aggregation as shown in Equation (13). The second scaling term indicates that δi can change
the original gradient magnitude. The third shift term shows that δi can change the original gradient
direction. The final term is the higher-order infinitesimal term. Due to the difference δi introduced
by global aggregation, the scaling and shift terms jointly distort the training trajectory of the local
user embedding, resulting in the suboptimal results shown in Figure 2. Therefore, ignoring the
higher-order infinitesimal term, the user embedding skew is given by

∆u ≈
m∑
i=1

(
σ′(p⊤

u q
(u)
i)p⊤

u δi · q
(u)
i + (σ(p⊤

u q
(u)
i)− rui) · δi

)
. (18)

Hence, the proof is complete.

Lemma B.3 (Accumulated user embedding skew). Suppose the norm of the difference δ(t)i can grow
by at most a factor of γ in each round, i.e., ∥δ(t+1)

i ∥ ≤ γ∥δ(t)i ∥, where γ ∈ (0, 1) is the difference
amplification factor. The final accumulated skew after global round T is given by

∥∆(u,T)
cumulative∥ ≤

m∑
i=1

(
ηC1∥δ(0)i ∥
1− γ

+
ηC2|p(0)⊤

u δ
(0)
i |∥q

(u,0)
i ∥

1− γ

)
, (19)

where C1 and C2 are two constants, defined as C1 = max{σ(p(t)⊤
u q

(u,t)
i)− rui}t∈{0,1,··· ,T−1} and

C2 = max{σ′(p
(t)⊤
u q

(u,t)
i)}t∈{0,1,··· ,T−1}, respectively. Besides, η denotes the local learning rate

for embedding.

Proof. Following Lemma B.2, the accumulated local user embedding skew at global round t+ 1 for
client u is

∆
(u,t+1)
cumulative = ∆

(u,t)
cumulative−η

m∑
i=1

[
(σ(p(t)⊤

u q
(u,t)
i)− rui)δ

(t)
i + σ′(p(t)⊤

u q
(u,t)
i)(p(t)⊤

u δ
(t)
i)q

(u,t)
i

]
,

(20)
where η denotes the local learning rate for embedding. Next, we consider an upper bound on the
increased skew at round t+ 1 as follows,

∥∆(u,t+1)
cumulative∥ ≤ ∥∆

(u,t)
cumulative∥+ η

m∑
i=1

(
C1∥δ(t)i ∥+ C2|p(t)⊤

u δ
(t)
i |∥q

(u,t)
i ∥

)
, (21)

where C1 and C2 are two constants related to the total global round T , defined from Equation (20)
as C1 = max{σ(p(t)⊤

u q
(u,t)
i)− rui}t∈{0,1,··· ,T−1} and C2 = max{σ′(p

(t)⊤
u q

(u,t)
i)}t∈{0,1,··· ,T−1},

respectively. Assuming the norm of the difference δ(t)i increases by at most an amplification factor of
γ in each round, i.e., ∥δ(t+1)

i ∥ ≤ γ∥δ(t)i ∥, then by recursively expanding, we obtain the accumulated
skew at the last round T as

∥∆(u,T)
cumulative∥ ≤ η

T−1∑
t=0

m∑
i=1

(
C1∥δ(t)i ∥+ C2|p(0)⊤

u δ
(0)
i |∥q

(u,0)
i ∥

)
=

m∑
i=1

(
ηC1∥δ(0)i ∥

1− γT

1− γ
+ ηC2|p(0)⊤

u δ
(0)
i |∥q

(u,0)
i ∥1− γT

1− γ

)
.

(22)

Here, we adopt a worst-case perspective, where the term |p(t)⊤
u δ

(t)
i |∥q

(u,t)
i ∥is upper bounded by its

initial value at t = 0. This reflects the intuition that the initial stage of training is most susceptible to
uncontrolled deviation, and thus governs the peak of accumulated skew. Based on the convergence
property of FedAvg [17, 40], we have 0 < γ < 1, thus the upper bound of the accumulated skew
remains finite, that is,

∥∆(u,T)
cumulative∥ ≤

m∑
i=1

(
ηC1∥δ(0)i ∥
1− γ

+
ηC2|p(0)⊤

u δ
(0)
i |∥q

(u,0)
i ∥

1− γ

)
. (23)

Hence, the proof is complete.

15

Remark B.4 (Impact of user embedding skew). In federated recommendation, the user embedding
pu is treated as a local variable to preserve personalization. Ideally, it should be jointly optimized
with the local item embeddings q(u)

i . However, global aggregation introduces inconsistency to item
embeddings, where q

(g)
i = q

(u)
i + δi. Consequently, the user embedding pu is updated under the

influence of aggregated item embeddings, which may differ from the individual preferences of client
u. Formally, the expected update of the user embedding should be

p(t+1)
u = p(t)

u − η∇pu
L(pu), (24)

where L(·) denotes the local optimization objective, as defined in Equation (2). Yet due to the
introduced skew, the actual update becomes

p(t+1)
u = p(t)

u − η∇pu
L(pu) + ∆

(u,t)
cumulative. (25)

Ideally, the user embedding should converge to the client-optimal point p∗
u such that∇puL(p∗

u) = 0.
However, due to the skew accumulated over global rounds, the embedding p

(T)
u generally fails to

satisfy this condition. Instead, we observe that ∇pu
L(p(T)

u) ≈ −∆cumulative(u,T) ̸= 0, indicating
a suboptimal convergence point under collaborative aggregation. The norm ∥∆(u,T)

cumulative∥, which
quantifies this deviation, is formally bounded in Lemma 3.3. Therefore, it is crucial to mitigate
the influence of δ(0)i on user embeddings from the very beginning of training, in order to avoid
convergence to suboptimal solutions.

B.2 User embedding calibration

To mitigate the user embedding skew analyzed in Lemma B.2, we first freeze the item embeddings
Qg to keep their influence on the user embedding pu controllable. Then, we inject a learnable matrix
Wu ∈ Rm×d into the frozen item embeddings Qu as a buffer for local calibration.
Lemma B.5 (Calibration of user embedding skew). For global round t, the user embedding calibra-
tion of client u achieved by our method can be approximated as

∆(t)′
u ≈ −

m∑
i=1

ηL
(t)
1 L

(t)
2 p(t)⊤

u p(t)
u · q

(u,t)
i︸ ︷︷ ︸

Scaling Term

+ ηL
(t)2
1 · p(t)

u︸ ︷︷ ︸
Shift Term

 , (26)

where η is the local learning rate for embedding.

Proof. The calibration gradients are formulated as follows,

∂Lu

∂wi
=(σ(p⊤

u (q
(g)
i +wi))− rui)pu,

∂Lu

∂pu
=(σ(p⊤

u (q
(g)
i +wi))− rui)q

(g)
i .

(27)

where wi denotes the i-th row vector of the matrix Wu. Since Wu is zero-initialized, similar to the
proof of Lemma B.2, we have

∂Lu

∂wi
=(σ(p⊤

u q
(u)
i)− rui)pu + σ′(p⊤

u q
(u)
i)p⊤

u (δi +wi)pu +O(||δi +wi||2),

∂Lu

∂pu
=(σ(p⊤

u q
(u)
i)− rui)q

(u)
i + σ′(p⊤

u q
(u)
i)p⊤

u (δi +wi)q
(u)
i + (σ(p⊤

u q
(u)
i)− rui)(δi +wi)

+O(||δi +wi||2).
(28)

For simplicity, we ignore the higher-order infinitesimal terms and denote L1 = σ(p⊤
u q

(u)
i) − rui,

L2 = σ′(p⊤
u q

(u)
i) and vi = δi +wi, then we have

∂Lu

∂wi
= L1pu + L2p

⊤
u vipu (29)

16

∂Lu

∂pu
= L1q

(u)
i + L2p

⊤
u viq

(u)
i + L1vi. (30)

According to Remark B.4, we perform calibration from the beginning of training to avoid sub-
optimal convergence. Since W is zero-initialized, the updated buffer matrix can be written as
wi = −η(L1pu + L2p

⊤
u vipu). Therefore, we have

vi = δi +wi = δi − η(L1pu + L2p
⊤
u vipu), (31)

where η denotes the local learning rate. Since η ≤ 0.01 is sufficiently small, and L1 ∈ (0, 1),
L2 ∈ (0, 0.25], we apply a first-order approximation to Equation (31), yielding vi ≈ δi − ηL1pu.
Thus Equation (30) can be rewritten as

∂Lu

∂pu
≈L1q

(u)
i + L2(p

⊤
u (δi − ηL1pu))q

(u)
i + L1(δi − ηL1pu)

=L1 · q(u)
i︸ ︷︷ ︸

Gradient

+(L2p
⊤
u δi · q

(u)
i + L1 · δi)︸ ︷︷ ︸

User Embedding Skew

− (ηL1L2p
⊤
u pu · q(u)

i + ηL2
1 · pu)︸ ︷︷ ︸

User Embedding Calibration

,
(32)

where the first term denotes the original gradient of user embedding, and the second term is the
skew introduced by global aggregation as analyzed in Lemma B.2. Our method introduces a third
calibration term to mitigate the skew. Hence, the calibration introduced by our method can be
approximated as

∆′
u ≈ −

m∑
i=1

ηL1L2p
⊤
u pu · q(u)

i︸ ︷︷ ︸
Scaling Term

+ ηL2
1 · pu︸ ︷︷ ︸

Shift Term

 , (33)

where the scaling term mitigates the amplification of gradient magnitude, and the shift term reduces
the amplification of directional deviation. Together, they compensate for the user embedding skew
∆u in Lemma B.2, thus theoretically achieving calibration.
Hence, the proof is complete.

Remark B.6 (Dynamic regularization perspective for calibration). Taking the i-th item for example,
we consider the shift term in Lemma B.5 used to correct the gradient direction, i.e., −ηL(t)2

1 p
(t)
u .

This term is structurally similar to the gradient of l2 regularization term:

∂

∂pu

(
1

2
∥p(t)

u ∥2
)

= p(t)
u . (34)

Hence, the shift term can be interpreted as an adaptive regularization term applied to the user
embedding, with a coefficient of −ηL(t)2

1 that dynamically adjusts according to the user embedding
skew at each round t. In this way, it serves as a self-regulating force that suppresses harmful gradient
directions induced by global aggregation, offering robust user embedding updates.

B.3 Cost analysis

Table 4: Cost analysis of PFedCLR against other SOTA FR methods. "↑" denotes increased costs on
FedMF, while "−" indicates no significant additional cost.

Method Client-side Cost Server-side Cost Round Efficiency
Time Space Time Space Communication Computation

FedMF O(k(m+ 1)d) O((m+ 1)d) O(nmd) O((n+ 1)md) O(2nmd) O(kmax(m+ 1)d+ nmd)
FedNCF ↑ O(kLd2) ↑ O(Ld2) ↑ O(nLd2) ↑ O((n+ 1)Ld2) ↑ O(2nLd2) ↑ O(kmaxLd2 + nLd2)
pFedGraph - - ↑ O(n4 + n2md+ n2md) ↑ O(n2 + n2md) - ↑ O(n4 + n2md+ n2md)
GPFedRec ↑ O(kLd2) ↑ O(Ld2) ↑ O(n2md+ n2md) ↑ O(n2 + n2md) - ↑ O(n2md+ n2md)
PFedRec ↑ O(kLd2) ↑ O(Ld2) - - - ↑ O(kmaxLd2)
FedRAP ↑ O(kmd) ↑ O(md) - - - ↑ O(kmaxmd)
PFedCLR ↑ O(k(m+ d)r) ↑ O((m+ d)r) - - - - OR ↑ O(kmaxmr − nmd)

Since most FR methods, including ours, are embedding-based, we conduct the cost analysis using the
classic FedMF as the benchmark. We analyze the time and space complexity from both the client and
server sides. Moreover, we evaluate the efficiency of each global round, including the communication
cost, i.e., the total size of transmitted model parameters, and the computation cost, i.e., the maximum

17

local training time across all clients plus the global aggregation time. The costs of PFedCLR against
other SOTA FR methods are summarized in Table 4, where n and m represent the number of clients
and items, respectively. Additionally, k denotes the number of local interactions of each client, and
kmax is the maximum among all clients. Besides, d denotes the dimension of embedding, and L
denotes the number of model layers for methods with MLP or other networks.

Concretely, FedNCF extends FedMF by adding an L-layer MLP on each client and requires the server
to aggregate both item embeddings and MLP parameters. Besides, global aggregation-based pFR
methods incur additional server-side overhead by deriving client-specific global models. In particular,
pFedGraph solves a convex optimization problem for each client, resulting in high computational
costs and making it impractical to sample all clients for aggregation in each round. GPFedRec also
builds on FedNCF but omits the aggregation of MLPs on the server. In contrast, local adaptation-based
methods mainly introduce local model overhead. For example, PFedRec incorporates an L-layer
score function to model user-specific preferences, while FedRAP adds an additive item embedding
table on each client to enhance personalization.

Notably, PFedCLR incurs no additional server-side overhead and only adds the low-rank matrices
of size O((m + d)r) on each client. Given that r ≪ min(m, d) in practice, this overhead is
negligible compared to the backbone model size O((m + 1)d). Moreover, PFedCLR does not
increase communication cost per round. Different from other FR methods, where client training and
server aggregation are executed alternately, PFedCLR enables parallel computation of client updates
and server aggregation, i.e., Step 2 and Step 3, further boosting training efficiency.

B.4 Privacy analysis

Although our method follows the federated paradigm, ensuring private data remains locally without
being uploaded to the server [1, 2], existing studies have highlighted the potential risk of inferring
local data distributions from uploaded models [5, 41]. To further enhance privacy protection, we
integrate the ε-differential privacy technique with our PFedCLR, where ε represents the privacy
budget, measuring the level of privacy protection. A smaller ε implies stronger privacy. Specifically,
we achieve local differential privacy (LDP) by adding the zero-mean Laplace noises to the uploaded
local model Qu [42, 43], as follows,

Q′
u = Qu + Laplace(0, λ), (35)

where λ = Su/ε is the scale parameter of the Laplace distribution [42]. Su denotes the global
sensitivity of Client u, with its upper bound provided in Lemma B.7. Thus, a larger λ indicates
stronger privacy protection.

Lemma B.7 (Bound of global sensitivity Su). Given two global Qg and Q′
g, learned from two

datasets differing only in the data of client u, i.e., Du and D′
u, respectively. We have

Su = ||Qg −Q′
g|| = ||puη(∇QDu

u −∇QD′
u

u)|| ≤ puη(||(∇QDu
u ||+ ||∇Q

D′
u

u)||) ≤ 2puηC, (36)

where pu denotes the weight assigned to Qu for global aggregation and η denotes the local learning
rate for embedding. Besides,∇QD

u denotes the gradient of the learned model by client u on datasetD,
which can be constrained by a clipping technique to ensure ∥∇QD

u ∥ ≤ C, where C is a constant [44].

C Experimental Details

C.1 Dataset details

Table 5: Statistics of the experimental datasets.

Dataset #User/Client #Item #Interaction Sparsity

Filmtrust 1,002 2,042 33,372 98.37%
ML-100K 943 1,682 100,000 93.70%
ML-1M 6,040 3,706 1,000,209 95.53%

Hetrec2011 2,113 10,109 855,598 95.99%
LastFm-2K 1,600 12,454 185,650 99.07%

18

We conduct extensive experiments on five recommendation benchmark datasets with varying scales
and sparsity: Filmtrust [34], Movielens-100K (ML-100K) [35], Movielens-1M (ML-1M) [35],
HetRec2011 [36] and LastFM-2K [36]. The first four datasets are for movie recommendation with
user-movie ratings, the last dataset is for music recommendation with user-artist listening count. We
convert ratings/counts greater than 0 to 1, targeting the recommendation task with implicit feedback
data. Following previous works [8, 13], we filter out the users with less than 10 interactions from the
above datasets and treat each user as an independent client. Detailed statistics of the five datasets are
summarized in Table 5.

C.2 Baseline details

We compare several centralized recommender system algorithms as follows:

Matrix Factorization (MF) [27]: It is a classic recommendation model that factorizes the rating
matrix into two embeddings within the same latent space, capturing the characteristics of users and
items, respectively.
Neural Collaborative Filtering (NCF) [28]: It builds upon the learned user and item embeddings and
further utilizes an MLP to model the user-item interactions, introducing a high level of non-linearity.
LightGCN [39]: It is a collaborative filtering model based on a simplified graph convolutional
network, which learns user and item embeddings by linearly propagating them on the user-item
interaction graph efficiently.

Additionally, for a comprehensive comparison, we select several representative SOTA methods from
each of the three types of FR methods, as follows:

I) Traditional FR methods:
FedMF [5]: It is the federated version of MF. It trains user embedding locally and uploads encrypted
item gradients to the server for global aggregation. For the purpose of performance evaluation, we
adopt its unencrypted version.
FedNCF [6]: It is the federated version of NCF. It updates user embedding locally and uploads both
item embeddings and MLP to the server for global aggregation.

II) Global aggregation-based pFR methods:
pFedGraph [11]: It formulates the fine-grained optimization based on similarity, aggregating a
unique global model for each client. Besides, it optimizes local models based on aggregated models
on the client side to facilitate personalization. This method, as a general federated learning approach,
has been proven effective in recommendation tasks.
GPFedRec [12]: It introduces a graph-guided aggregation mechanism that facilitates the learning of
user-specific item embeddings globally, thereby promoting user personalization modeling.

III) Local adaptation-based pFR methods:
PFedRec [8]: It introduces a novel dual personalization mechanism to capture user preferences by a
score function and obtain fine-grained item embeddings.
FedRAP [13]: It balances global shared and local personalized knowledge by applying an additive
model to item embeddings, enhancing the recommendation performance.

C.3 Implementation details

In the experiment, we randomly sample N = 4 negative instances for each positive sample following
previous works [28, 8]. Considering the fairness of comparison, we set the embedding dimension
d = 16 and batch size B = 256 for all methods, and other baseline details are followed from
the original paper. For the centralized methods, we set the total epoch as 100 to guarantee their
convergence. For the federated methods, we set the global round R = 100 for generality. Notably,
for pFedGraph, we perform personalized aggregation for only 10% of the clients participating in
each round. This is because recommendation tasks typically involve tens of thousands of clients, and
optimizing a personalized model for each client on the server is computationally expensive, which
would incur significantly higher costs than other methods.

For our method, we follow the same basic hyper-parameter settings as the backbone FedMF, that
is, sampling s = 60% of clients for global aggregation per round, the learning rate η = 0.01 for
user and item embeddings, and E = 10 local training epochs using the Adam optimizer. As for the
additional hyper-parameters introduced by PFedCLR, we search the rank r of low-rank matrices

19

in {1, 2, 4, 6, 8, 10, 12}, and the learning rate β in {0.1, 0.01, 0.001, 0.0001} via the validation set
performance. In this work, we conduct the experiments on a GPU server with NVIDIA RTX A5000
and report the results as the average of 5 repeated experiments.

D Extensive Experiment Results

D.1 Motivation

(a) Validation Set: HR@10

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Training
Termination

Future
Trends

Global Optimum

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Training
Termination

Future
Trends

Global Optimum

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Training
Termination

Future
Trends

Global Optimum

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Training
Termination

Future
TrendsGlobal Optimum

(b) Validation Set: NDCG@10 (c) Test Set: HR@10

(e) Training Trajectory: Client #1

(d) Test Set: NDCG@10

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

-2 60 2 4

0.0

2.0

1.0

Global Trend Start

Global Optimum

Local Trend

-2 60 2 4

0.0

2.0

1.0

Global Optimum

Global Trend
Start LT w/o GA

w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Local Trend

(f) Training Trajectory: Client #37

60 2 4

0.0

2.0

1.0

Start

Local Trend

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Global Optimum

Global Trend

(g) Training Trajectory: Client #480 (h) Training Trajectory: Client #796

60 2 4

0.0

0.6

1.2

Global Optimum

Local Trend

LT w/o GA
w/ GA (1-)
w/ GA (5-)
w/ GA (10-)
w/ GA (15-)
w/ GA (20-)

Global Trend Start

Figure 9: More pre-experimental results for motivation. Subfigures (a) and (b) show performance on
the validation set, while (c) and (d) report results on the test set. Subfigures (e) to (h) illustrate the
training trajectories of user embeddings for different clients. In the legend, "LT w/o GA" denotes local
training without global aggregation, and "w/ GA (i-)" indicates that global aggregation is introduced
starting from round i, rather than local training only.

Experimental setup. We use FedMF as the backbone and conduct the experiment on Filmtrust
dataset. For a fair comparison, the parameter settings are uniform for all experimental groups as
follows: local epochs E = 10, global rounds R = 100, and the additional 40 rounds are performed
to explore the future trend with and without global aggregation. The learning rate of user embeddings
and item embeddings η = 0.01, batch size B = 256, and embedding dimension d = 16. Besides, we
randomly sample N = 4 negative instances for each positive sample following previous works [28, 8].
In addition, the model performance is reported by HR@10 and NDCG@10.

Experimental results. More pre-experimental results for motivation are shown in Figure 9. The
observation described in Section 1 might raise concerns that the superior performance under local
training is due to overfitting. To address this, we report results on both the validation and test sets
in subfigures (a) to (d). The consistent trends across both sets confirm that our motivation is well-
founded rather than a consequence of overfitting. Focusing on test performance under the standard
setting, i.e., training is terminated after 100 global rounds, groups with global aggregation converge
to a global optimum, while the one with only local training converges more slowly and perform
worse. However, from the future trend, the group without global aggregation can achieve better
performance. These observations above suggest that global aggregation accelerates convergence but
leads to suboptimal results.

Given the specificity of the FR scenarios, i.e., each client retains local user embedding without
engaging in global aggregation, we further visualize the training trajectories of user embeddings. As
some cases shown in subfigures (e) to (h) of Figure 9, user embeddings exhibit a consistent updating
trend once global aggregation begins, which differs significantly from the trend under local training
only. This indicates that globally aggregated item embeddings influence the optimization direction of
local user embeddings, causing clients to converge toward a collaborative but suboptimal solution,
i.e., the user embedding skew issue. To this end, our method not only personalizes item embeddings
to enable more accurate recommendations but also calibrates user embeddings to mitigate the skew
introduced by global aggregation.

20

D.2 Efficiency

Table 6: Space comparison of different federated methods (unit: MB). "Overhead" indicates the
additional cost of PFedCLR over the backbone FedMF.

Method Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K
Client Server Client Server Client Server Client Server Client Server

FedMF 0.1247 125.0077 0.1027 96.9121 0.2263 1366.4518 0.6171 1304.3473 0.7521 955.1355
FedNCF 0.1273 127.5827 0.1053 99.3356 0.2288 1381.9608 0.6196 1309.7745 0.7547 958.3960
pFedGraph 0.1247 137.3846 0.1027 106.4933 0.2263 1504.2398 0.6171 1434.0880 0.7521 1049.2055
GPFedRec 0.1273 253.7207 0.1053 197.1138 0.2288 2871.8436 0.6196 2625.1093 0.7547 1915.6620
PFedRec 0.1247 125.0115 0.1027 96.9157 0.2263 1366.4748 0.6171 1304.3554 0.7521 955.1403
FedRAP 0.2493 125.0077 0.2054 96.9121 0.4525 1366.4518 1.2341 1304.3473 1.5042 955.1355
PFedCLR 0.1404 125.0077 0.1157 96.9121 0.2547 1366.4518 0.6943 1304.3473 0.8463 955.1355

Overhead +0.0157 - +0.0130 - +0.0284 - +0.0772 - +0.0942 -

Table 7: Time comparison of different federated methods (unit: s). The data represents the total time
spent per round, i.e., the maximum time of local updating over all clients together with the time of
global aggregation by the server, ignoring the communication time.

Method Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K
FedMF 0.5069 0.4831 0.7074 0.7425 0.5455
FedNCF 0.7099 0.6682 1.4821 1.0285 0.7360
pFedGraph 5.6346 5.1800 185.9420 25.3069 10.1281
GPFedRec 3.0124 2.4704 32.5816 10.2724 6.9336
PFedRec 1.2848 1.4508 3.5830 2.6183 2.0975
FedRAP 0.6217 0.6354 4.1745 2.7195 1.7354
PFedCLR 0.6337 0.6689 1.2234 1.7539 1.0926

We compare the space overhead of different federated methods on both client and server sides, as
summarized in Table 6. Global aggregation-based methods e.g., pFedGraph and GPFedRec, incur
additional server-side cost, as they need to maintain a personalized global model for each client
besides the uploaded local models. On the other hand, local adaptation-based methods introduce
extra overhead on the client side. In particular, FedRAP incurs nearly double the overhead compared
to other methods, which is unfavorable for resource-constrained devices. In contrast, our method
introduces only a slight overhead on the client compared to the most lightweight baseline FedMF,
while achieving a notable performance improvement.

We further compare the per-round training time of different federated methods. As shown in Table 7,
global aggregation-based pFR methods, such as pFedGraph and GPFedRec, incur longer training
time. This is primarily because clients must wait for server-side aggregation to complete before
proceeding with local updates. Meanwhile, the server has to derive personalized models for each
client, resulting in increased computation time and forming an efficiency bottleneck. Unlike existing
methods where global aggregation and local updates are performed alternately, PFedCLR allows
them to proceed in parallel. This concurrent execution eliminates idle waiting on the client side,
improves training efficiency, and reduces overall training time.

D.3 Convergence

We compare the convergence of our method with baselines under two metrics, as illustrated in
Figure 10. We provide the following analysis:
I) Early-stage convergence: PFedCLR exhibits a faster convergence speed in the early training rounds
and consistently outperforms other methods on most datasets, particularly on ML-100K, ML-1M, and
HetRec2011. This advantage stems from its dual-function mechanism, which not only personalizes
the global item embeddings but also calibrates the user embeddings, enhancing model performance
from both perspectives.
II) Late-stage convergence: In the later rounds, PFedCLR maintains stable convergence and achieves
superior final performance across various datasets. This is attributed to the continuous calibration
of local user embeddings throughout training, which prevents them from being skewed by globally
aggregated item embeddings and helps avoid convergence to suboptimal global solutions, instead
promoting client-specific optimization.

21

0

0.25

0.5

0.75

1

0 20 40 60 80 100

N
D

C
G

@
1

0

Rounds

FedMF
FedNCF
pFedGraph
GPFedRec
PFedRec
FedRAP
PFedCLR

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Rounds

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Rounds

(a) Filmtrust (d) HetRec2011 (e) LastFM-2K(b) ML-100K (c) ML-1M

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

Rounds

0

0.25

0.5

0.75

1

0 20 40 60 80 100

H
R

@
1

0

Rounds

FedMF
FedNCF
pFedGraph
GPFedRec
PFedRec
FedRAP
PFedCLR

Figure 10: Model convergence comparison. The horizontal axis is the federated rounds, and the
vertical axis is the model performance on both HR@10 and NDCG@10.

In summary, PFedCLR demonstrates both short-term efficiency and long-term effectiveness, high-
lighting its strong potential in practical federated recommendation scenarios.

D.4 Trajectory visualization

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
D

CG
@

10

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

Start

(c) Training Trajectory: Client #1 (e) Training Trajectory: Client #172

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

Start

Start

(f) Training Trajectory: Clien t #463

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

(g) Training Trajectory: Client #659 (h) Training Trajectory: Client #796

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

Start

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

Start

Start

(d) Training Trajectory: Client #94

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

H
R@

10

FedMF w/o GA
FedMF
FedMF w/ AF
FedMF w/ CF
FedMF w/ CLR

(a) Performance Metric: HR@10 (b) Performance Metric: NDCG@10

Figure 11: Performance and training trajectory under different variants. "GA", "AF", "CF", and
"CLR" denote Global Aggregation, Adaptation with Full matrix, Calibration with Full matrix, and
Calibration with Low-Rank matrices, respectively.

To further demonstrate the calibration effect of our method on the user embedding, we randomly
sample several clients on Filmtrust and visualize the training trajectories of their user embeddings
under different variants discussed in Subsection 5.3 using t-SNE. As shown in Figure 11, we derive
the following observations and analysis:
I) Global aggregation causes user embedding skew. Comparing "FedMF w/o GA" with "FedMF", we

22

observe that global aggregation significantly alters the trajectory of local updates. While it aligns
clients toward a shared global optimum, it suppresses personalized optimality, resulting in user
embedding skew and suboptimal performance, as discussed in Appendix D.1.
II) Personalized adaptation improves performance. "FedMF w/ AF" outperforms "FedMF" by locally
adapting the global model for each client, which facilitates more tailored optimization for user
embedding and partially alleviates the uniformity imposed by a shared global model. However, the
influence of the global model on user embeddings remains significant, as no explicit calibration
mechanism is applied, akin to typical pFR methods.
III) Calibration via a buffer matrix mitigates this skew. Comparing "FedMF w/ CF" and "FedMF",
injecting a learnable calibration matrix into global model can buffer the influence on user embedding.
However, employing a full matrix risks overfitting to global information, potentially leading to
over-calibration and degraded performance.
IV) Low-rank decomposition can brings further improvements in calibration. "FedMF w/ CLR"
outperforms "FedMF w/ CF" by replacing the full matrix with the low-rank ones. Compared to a
full matrix, the low-rank matrices impose inherent constraints, serving as a regularizer that prevents
excessive suppression of global aggregation. While mitigating user embedding skew, they effectively
preserve beneficial global information.
In summary, beyond personalization, PFedCLR effectively and efficiently calibrates the user embed-
ding skew introduced by global aggregation with a lightweight low-rank mechanism.

D.5 Embedding visualization

C
lie

nt
 #

27
5

C
lie

nt
 #

12
C

lie
nt

 #
65

4
C

lie
nt

 #
40

4

!! ! !! " ! ! !! "# A!! of FedMF of PFedCLR of PFedCLR of PFedCLR

Figure 12: T-SNE visualizations of user and item embeddings learned by FedMF and PFedCLR.
Each row represents a different client, while each column represents a different component. The
target client is indicated by the green pentagram. Items interacted with and not interacted with by the
client are indicated in red and blue, respectively.

By applying t-SNE for dimensionality reduction, we visualize the user and item embeddings of
FedMF and PFedCLR on ML-100K, with several sampled client cases shown in Figure 12. We

23

summarize the following observations:
I) Calibration (1st–2nd columns): In FedMF, user embeddings are significantly influenced by item em-
beddings Qu, appearing closer to the interacted items. As global aggregation alters item embeddings,
it further affects user embeddings and leads to user embedding skew. In contrast, PFedCLR decouples
the updates of user and item embeddings and employ the zero-initialized AuBu to suppress mutual
influence between the them. As a result, user embeddings exhibit no clear relative alignment with
item embeddings, indicating effective calibration.
II) Personalization (3rd–4th columns): With the dual-function mechanism, user preference infor-
mation is further captured by AuBu, which personalizes the item embeddings Qu, enabling more
accurate and client-specific recommendations.

D.6 Hyper-parameter analysis

0.2

0.4

0.6

0.8

1

Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K

H
R
@
10

𝛽=0.1 𝛽=0.01 𝛽=0.001 𝛽=0.0001 𝛽=0

0.2

0.4

0.6

0.8

1

Filmtrust ML-100K ML-1M HetRec2011 LastFM-2K

N
D
C
G
@
10

𝛽=0.1 𝛽=0.01 𝛽=0.001 𝛽=0.0001 𝛽=0

Figure 13: Model performance under different learning rate β of low-rank matrices.

Built upon the backbone FedMF, our method only introduces the lightweight low-rank matrices on
the client side, requiring just two additional hyper-parameters. All other settings remain consistent
with FedMF. We analyze the sensitivity of the two hyper-parameters as follows:
I) Rank r of the low-rank matrices. As shown in Figure 7, we vary r within {1, 2, 4, 6, 8, 10, 12}.
Increasing r does not lead to performance improvement and may even cause slight degradation,
likely because it excessively suppresses the influence of the global model, thereby diminishing the
beneficial collaborative information. A small value such as r = 2 achieves consistently strong results
across all datasets, introducing only ∼ 10% additional client-side overhead and offering a favorable
trade-off between performance and efficiency.
II) Learning rate β for the low-rank matrices. Figure 13 shows performance with β chosen from
{0.1, 0.01, 0.001, 0.0001, 0}. Extremely small or large β leads to suboptimal results. When β = 0,
PFedCLR degenerates to FedMF. The best performance is achieved when β matches the embedding
learning rate η = 0.01.

D.7 Privacy protection

I) Inherent privacy preservation. We visualize the uploaded item embeddings by different methods
on ML-100K with t-SNE, as illustrated in Figure 14. Traditional FR methods, such as FedMF and
FedNCF, do not personalize local models, and thus, the uploaded embeddings reveal little about
user-specific interaction patterns. In contrast, pFR methods like pFedGraph, GPFedRec, and PFedRec
explicitly personalize the local models, leading to the clear distinctions between interacted and
non-interacted items. While this improves performance, it also increases the risk of user preference
leakage. Besides, FedRAP maintains two separate models on the client side, i.e., a globally shared
model and a user-specific model, to decouple global and personalized information. Although only
the shared model is uploaded to the server, we observe that for certain clients, e.g., client #449,
the uploaded embeddings still reveal user-specific patterns. This is because the shared model is
updated concurrently with the personalization of the local model, causing mutual influence between
them and risking unintended privacy leakage. Unlike the methods above, PFedCLR decouples
the update and personalization processes, only uploading the local model obtained from Step 1,
before personalization occurs. The personalization is completed in Step 2, and the user-specific
information is encapsulated in the low-rank matrices AuBu, which are never exposed to the server.
This inherently preserves user privacy while maintaining model effectiveness.

II) Enhanced privacy protection. Our method can be integrated with Local Differential Privacy (LDP)
to further enhance privacy. Table 8 presents the performance degradation of different methods with
LDP on ML-100K. Notably, PFedCLR exhibits only a slight drop in both evaluation metrics, while

24

Fe
dM

F
Fe

dN
C

F
pF

ed
G

ra
ph

Client #449
G

PF
ed

R
ec

PF
ed

R
ec

PF
ed

C
L

R
Fe

dR
A

P
Client #12 Client #654Client #233

Figure 14: T-SNE visualizations of item embeddings uploaded to the server by different methods.
Each row represents a different FR method, while each column represents a randomly sampled client.
Items interacted with and not interacted with by the client are indicated in red and blue, respectively.

25

still maintaining a clear performance advantage over other baselines. To balance privacy and utility,
we adopt Laplace noise with a moderate strength of λ = 0.5. Furthermore, we evaluate the robustness
of PFedCLR under varying noise strengths. As shown in Table 9, PFedCLR remains robust when
λ ∈ [0.1, 0.5], and even under stronger privacy guarantees, e.g., λ = 1, it still outperforms existing
SOTA methods.

Table 8: Comparison of performance degradation with and without LDP for different method.

Metrics Methods FedMF FedNCF pFedGraph GPFedRec PFedRec FedRAP PFedCLR

HR@10
w/o LDP 0.4846 0.4252 0.6204 0.6840 0.6702 0.8823 0.9989
w/ LDP 0.4920 0.4199 0.6193 0.6448 0.6405 0.8441 0.9979
Degradation - ↓ 1.25% ↓ 0.18% ↓ 5.73% ↓ 4.43% ↓ 4.33% ↓ 0.10%

NDCG@10
w/o LDP 0.2723 0.2290 0.4937 0.3982 0.3929 0.7980 0.9225
w/ LDP 0.2665 0.2237 0.4857 0.3876 0.3624 0.7115 0.9215
Degradation ↓ 2.13% ↓ 2.31% ↓ 1.62% ↓ 2.66% ↓ 7.76% ↓ 10.84% ↓ 0.11%

Table 9: Results of applying LDP into our method with different noise strength λ.

Dataset Noise Strength λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 1.0

Filmtrust HR@10 0.9102 0.9092 0.9122 0.9122 0.9072 0.9122 0.8882
NDCG@10 0.7798 0.7797 0.7763 0.7776 0.7809 0.7741 0.6965

ML-100K HR@10 0.9989 0.9979 0.9989 0.9989 0.9979 0.9979 0.9968
NDCG@10 0.9225 0.9212 0.9211 0.9215 0.9177 0.9215 0.9059

ML-1M HR@10 0.9603 0.9608 0.9609 0.9586 0.9594 0.9586 0.9593
NDCG@10 0.8402 0.8402 0.8394 0.8385 0.8401 0.8379 0.8358

HetRec2011 HR@10 0.9522 0.9508 0.9498 0.9475 0.9446 0.9460 0.9319
NDCG@10 0.8496 0.8505 0.8475 0.8473 0.8398 0.8405 0.8280

LastFm-2K HR@10 0.7778 0.7770 0.7730 0.7738 0.7581 0.7526 0.7155
NDCG@10 0.7164 0.7123 0.7102 0.7064 0.6914 0.6816 0.6509

E Limitations

Our method introduces a local dual-function mechanism to simultaneously personalize global item
embeddings and calibrate local user embedding. Considering client-side resource constraints, we
implement this mechanism with low-rank decomposition, which incurs only a lightweight overhead
relative to the backbone model. However, as a locally added component, it still imposes additional
computation, which may hinder deployment on extremely resource-constrained clients. Moreover,
PFedCLR adopts a simple weighted averaging scheme for global aggregation, i.e., FedAvg. In practice,
this may limit the optimality of global updates, thereby constraining the overall recommendation
performance. In future work, we plan to explore personalized and calibrated aggregation on the server
side, aiming to alleviate client-side burdens.

26

	Introduction
	Related Work
	Personalized federated learning
	Federated recommendation

	Problem definition
	Our proposed PFedCLR
	Step 1: Local training
	Step 2: Dual-function mechanism
	Step 3: Global Aggregation
	Discussion

	Experiment
	Experimental setup
	Overall Comparisons
	Ablation Study
	Hyper-parameter Analysis
	Privacy Protection

	Conclusion
	Algorithms
	Theoretical Analysis
	User embedding skew
	User embedding calibration
	Cost analysis
	Privacy analysis

	Experimental Details
	Dataset details
	Baseline details
	Implementation details

	Extensive Experiment Results
	Motivation
	Efficiency
	Convergence
	Trajectory visualization
	Embedding visualization
	Hyper-parameter analysis
	Privacy protection

	Limitations

