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Abstract Diffusion models (DMs) have achieved sig-

nificant progress in text-to-image generation. However,

the inevitable inclusion of sensitive information during

pre-training poses safety risks, such as unsafe content

generation and copyright infringement. Concept eras-

ing finetunes weights to unlearn undesirable concepts,

and has emerged as a promising solution. However, ex-

isting methods treat unsafe concept as a fixed word

and repeatedly erase it, trapping DMs in “word con-

cept abyss”, which prevents generalized concept-related

erasing. To escape this abyss, we introduce semantic-

augment erasing which transforms concept word era-

sure into concept domain erasure by the cyclic self-

check and self-erasure. It efficiently explores and un-

learns the boundary representation of concept domain

through semantic spatial relationships between orig-
inal and training DMs, without requiring additional

preprocessed data. Meanwhile, to mitigate the reten-

tion degradation of irrelevant concepts while erasing

unsafe concepts, we further propose the global-local

collaborative retention mechanism that combines

global semantic relationship alignment with local pre-

dicted noise preservation, effectively expanding the re-

tentive receptive field for irrelevant concepts. We name

our method SAGE, and extensive experiments demon-

strate the comprehensive superiority of SAGE com-

pared with other methods in the safe generation of
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1 Introduction

Recent advancements in text-to-image diffusion mod-

els [5,43,40,6] have led to significant achievements in

producing photo-realistic images, proving beneficial for

various industrial applications [32,33,14,53]. However,

due to the extensive use of web-scraped datasets dur-

ing training, these models pose significant challenges,

including the generation of unsafe content (i.e., erotic,

violent, drug, illegal) [37,4] and the replication of copy-

righted material [49,21,45]. One intuitive solution is to

filter inappropriate images and retrain DMs manually.

However, this approach [42] is not only computation-

ally expensive but also potentially incomplete erasure

[11]. Additionally, using Safety Checkers [41] to detect

and mitigate harmful outputs offers an alternative, but

this approach depends on the accuracy of the detector

and is limited by intrinsic biases.

In response to the above challenges, concept eras-

ing [11] has emerged as a potentially promising solu-

tion. Specifically, given a concept described in text, the

pre-trained model is fine-tuned to forget the related

memory of that concept, thus preventing the genera-

tion of associated content. Some approaches use prepro-

cessed pairs of images and masks [27] to suppress at-

tention activation [28,20] in concept-related regions, or

remap the target concept to a benign one [12,13] using

https://github.com/KevinLight831/SAGE
https://arxiv.org/abs/2506.09363v1
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Fig. 1 Pre-trained diffusion models (DMs) inevitably memorize toxic knowledge, leading to unsafe content generation issues.
Previous concept erasure methods are trapped in word concept abyss by repeatedly erasing specific word (e.g., nudity), failing
on concept-related prompts, i.e., concealed prompts, suggestive prompts (e.g., porn star names) and attack prompts. Our
SAGE proposes concept domain erasure through cyclic self-check and self-erasure. It can efficiently achieve the model self-

purification while preserving model utility. The black boxs with ∗ are added by authors for publication.

pre-defined pairs of target and benign prompts. How-

ever, these methods have notable limitations in gener-

alizing erasure. (1) Explicit Concept Representa-

tion: they rigidly define the concept as a specific word

(e.g., nudity) and repeatedly erase it, leading to era-

sure overfitting on single word. (2) Explicit Erasure

Mode: whether through suppressing attention regions

or remapping concept words, these methods are con-

strained by the knowledge within the preprocessed data

and cannot harness the inherent knowledge of model for

implicit self-erasure. As illustrated in Fig. 1, these lim-

itations result in post-erasure DMs still generating un-

safe content when confronted with concealed prompts,

suggestive prompts, and attack prompts.

Concept-related descriptions are diverse and cannot

be exhaustively listed, but large models inherently con-

tain compressed world knowledge [60]. Therefore, it is

more cost-effective and promising to perform concept

surgery (erasure or modification) leveraging the knowl-

edge topology within the large model itself. In other

words, the one who opens the Pandora’s box must
close it. To achieve this, we transform traditional

fixed-word concept representations into self-augment

token embeddings. Unlike static discrete words, token

embedding can be continuously updated based on the

training feedback from DM. By freezing the denoiser

responsible for image generation and adjusting the text

encoder that manages conditional mapping, we estab-

lish a connection between the textual space of current

training DM and the visual space of original freeze DM.

Further, the self-augment token embedding can be effi-

ciently optimized to explore the boundaries of the tar-

get concept domain. By aligning the opposite direc-

tion of guidance noise produced by the optimized self-

augment token embedding, DM can steer the generation

tendency away from the target concept domain, facili-

tating self-purification. Excessive erasure of unsafe con-

cepts will inevitably degrade the retention of irrelevant

concepts, potentially affecting the usability of concept-

erased DMs in severe cases. To this end, we propose

a global-local collaborative retention mechanism for ir-

relevant concepts. It first aligns the textual semantic

graph of irrelevant concepts at the global relational

level, then identifies concepts with the most significant

semantic drift to apply additional local predictive noise

retention constraints. We call our approach Semantic-

Augment concept erasing with Global-local collabora-

tive rEtention (SAGE). Extensive experiments demon-

strate that SAGE achieves advanced comprehensive

performance in erasing target concepts while preserv-

ing non-target concepts. Moreover, our method has

high training efficiency and supports zero-cost migra-

tion within the same series of DMs.

2 Related Work

Safe generation of DMs. Leveraging training on

large-scale web-crawled datasets, DMs [43,8,36] can

generate high-quality images and exhibit immense cre-

ative potential. However, since these datasets are not

curated, DMs inadvertently memorize unsafe and copy-
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righted content, leading to unsafe generation. To mit-

igate this issue, the efforts can be classified into three

aspects: (1) Pre-processing, (2) Post-processing, and (3)

Model editing.

Pre-processing methods utilize pretrained detectors

to filter out images containing unsafe content, and

retrain DMs after filtering. However, retraining from

scratch is computationally expensive and impractical

for addressing evolving erasure requests. e.g., Stable

Diffusion v2.1 [42] consumes 150,000 GPU hours to re-

train on the filtered LAION-5B dataset [48]. This exten-

sive filtering process also has been found to negatively

impact output quality [35], and DMs may still not be

properly sanitized [11].

Post-processing methods use safety checkers to iden-

tify unsafe content and block risky outputs. Several or-

ganizations [32,33] deploy this approach by involving a

blacklist-style post-hoc filter. However, safety checkers

of open-source models can be easily circumvented by

modifying code [50]. The safety filters of closed-source

models like DALL·E 2 [33] can be bypassed using at-

tack prompts [55,52]. Similar to pre-processing meth-

ods, Post-processing methods also rely on the accuracy

of detectors, whose inherent biases can result in unreli-

able exclusion of unsafe content.

Model editing methods leverage the original DMs to

erase or redirect target concepts, effectively eliminat-

ing potential harmful biases before deployment. Due to

their low cost, flexible operation, and effective erasure,

these methods have increasingly attracted community

interest. We categorize existing model editing methods

for concept erasing into three categories based on their

technical characteristics.

I. Guidance-based Methods [46,23,30,25,11]: SLD

[46] modifies denoising process in inference stage and

introduces negative guidance to prevent unsafe content

generation. However, it only suppresses undesired con-

cepts in inference rather than complete removal. ESD

[11] predicts negative guided noises and trains DM to

steer conditional predictions away from target concepts.

II. Attention Re-steering Methods [57,28] employ

attention re-steering to identify regions associated with

target concepts within the cross-attention layers of

UNet [44,18]. By diminishing the cross-attention acti-

vation related to target concepts, DMs gradually disre-

gard these concepts during image generation. However,

the effectiveness of this method depends heavily on the

accurate location of the concept-related region and the

quality of pre-processing images. Besides, this method

is limited to scenarios where the concept-related re-

gions can be explicitly identified. For strongly coupled

concepts like artistic styles, it is difficult to accurately

pre-process masks that isolate content purely related to

style without capturing object-specific details.

III. Closed-form Editing Methods [12,28,13] op-

timize the key and value projection matrices in the

cross-attention layers of UNet. Specifically, UCE [12]

recalibrates the embedding of a target prompt (e.g.,

nudity) to a benign prompt (e.g., wearing clothes),

while keeping other concepts unchanged. MACE [28]

first erases a single prompt using the attention re-

steering method and then jointly optimizes the pro-

jection matrices. Despite a certain effectiveness, they

cannot achieve generalized erasure against concealed

prompts, suggestive prompts, and attack prompts [52,

55]. Since concept-related prompts are inexhaustible,

these methods, which focus only on human-cognizable

language specified in the dataset, fail to address the

broader spectrum of machine-cognizable language.

Recent red-teaming works [56,52,3] have leveraged

the idea of textual inversion [10] to generate attack

prompts that provoke concept-erased DMs to regen-

erate unsafe images. Inspired by this, some works try

to introduce red-teaming methods [3,59] to generate

attack prompts and further support adversarial train-

ing to improve robustness. RACE [22] optimize ran-

dom perturbation into attack perturbation to adversar-

ially finetune UNet. Receler [20] integrates a lightweight

adapter within cross-attention layers, utilizing adver-

sarial prompt learning to improve robustness. RECE

[13] extends closed-form editing methods by incorpo-

rating adversarial fine-tuning on matrix-modified cross-

attention layers. AdvUnlearn [58] formulates the con-

cept erasure as a bilevel optimization problem, simulta-

neously optimizing for both target concept removal and

non-target concept preservation. Our SAGE leverages

the modal space relationship between the current DM

and the original DM to efficiently explore the bound-

aries of target concepts. Thus, there is no need for

complex attack prompt optimization. Moreover, in con-

trast to most methods [11,22,12,28,20,13] that modify

the UNet through fine-tuning, our method only opti-

mizes the text encoder. This design enables the purified

text encoder to be directly deployed across DMs that

share the same text encoder architecture, eliminating

the need for retraining.

3 Preliminary

Stable Diffusion Models. Our study builds upon

Stable Diffusion (SD) Models [43], which incorporate

conditional text prompts into image embedding to

guide the generation process. The diffusion process be-

gins with a noise latent z drawn from a Gaussian distri-

bution N (0, 1). Over a series of T time steps, this noise
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latent undergoes a gradual denoising process guided by

textual embedding [39], transforming into a clean latent

z0. Meanwhile, the encoder of pre-trained Variational

Autoencoder (VAE) [24,9] transforms the input image

x into the latent z = E(x), and the decoder reconstructs

the image from latent form, where D(z) = x̂ ≈ x. Fi-

nally, the denoised latent is decoded into a clean image

by decoder. At each time step t, DM predicts noise

using UNet denoiser ϵθ, parameterized by θ and condi-

tioned on the token embedding of input prompt τ . The

training objective for θ is to minimize the denoising

error, defined as:

minimize
θ

Ez∼E(x),τ,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, τ, t)∥22

]
, (1)

where zt is the noisy version of z up to the time step t.

For notational simplicity, we will omit the time step t

in the following paragraphs.

Concept Erasing in DM. Concept erasing was pro-

posed to remove undesirable concepts from the latent

space of DM. Inspired by classifier-free guidance [19],

ESD [11] first proposes concept erasure by guiding the

predicted noise away from the conditional noise of tar-

get concept c. The diffusion process of ESD can be de-

noted as:

ϵθn
(zt, τc)← ϵθo

(zt)− η[ϵθo
(zt, τc)− ϵθo

(zt)]︸ ︷︷ ︸
ˆϵθn (zt,τc)

, (2)

where θo represents the original DM and θn denotes

the training DM. τc is the token embedding of concept

word c, and η denotes the guidance scale. ϵθo
(zt) is the

noise predicted by the original DM with a null prompt

input. ˆϵθn(zt, τc) is the negative guidance noise. This

process only needs the concept words to induce the in-

trinsic concept-related noise of DM. The erasure loss is

formalized as:

Lerase = E
[
∥ϵθn(zt, τc)− ˆϵθn(zt, τc)∥

2
2

]
, (3)

Attack prompts against concept-erased DM.

Red-teaming works [3,59] seek to circumvent the era-

sure mechanisms and compel concept-erased DM to

again generate harmful images using attack prompts.

The token embedding of perturbed concept prompt, τ ′c
is created by manipulating tokens or their embedding

through random initialization [22,20,58]. The process

for generating attack prompts can be represented as:

minimize
∥τ ′

c−τc∥≤δ
E
[
∥ϵθ∗(zt, τ

′
c)− ϵθo(zt, τc)∥

2
2

]
, (4)

where θ∗ is the frozen victim concept-erased DM. The

perturbed token embedding τ ′c is optimized by pro-

jected gradient descent (PGD) [31] in the continuous

textual embedding. Finally, Mapping the token embed-

ding to the discrete texts to generate the attack prompt.

Eq.(4) aims to optimize τ ′c that induce concept-erased

DM θ∗ to regenerate unsafe content about τc. The con-

straint in Eq.(4) ensures that τ ′c remains close to τc,

subject to the added initial perturbation strength δ.

4 Method

We propose SAGE to achieve concept domain eras-

ing while preserving the native generation capability of

DM. As depicted in Fig. 2, our SAGE consists of three

main components: (a) Attack Prompt Generation, (b)

Semantic-Augment Erasing, and (c) Global-Local Col-

laborative Retention. The former two components gen-

erate attack prompts to further augment erasure based

on the semantic space relationship. The latter strives to

maintain semantic alignment and generation capabil-

ity of non-target concepts by simultaneously preserv-

ing global semantic relationships and local noise pre-

dictions. The following sections will provide a detailed

explanation.

4.1 Semantic-Augment Erasing

To enable the DM to adaptively explore and erase the

boundaries of the concept domain during training, our

semantic-augment erasing operates in two phases: at-

tack prompt optimization and DM parameter optimiza-

tion. These two phases continuously alternate, where

each phase uses the optimized output of the other as in-

put, thereby creating a cyclic adversarial training pro-

cess of self-check and self-erasure. Specifically, during

attack prompt optimization, DM parameters remain

fixed, and once the attack prompt is optimized, it is

used as input to further finetune DM parameters.

The Eq.(4) describes a one-way attack optimization

from the randomly perturbed prompt toward the target

concept, just like what RACE [22], Receler [20], and

AdvUnlearn [58] conducted, which we refer to as the

outside-in methods. The distribution randomness of

their generated attack prompts in the concept domain

depends on the randomness of initial perturbation δ.

Besides, since the outside-in methods require a multi-

round denoising process of the DM up to time t for

zt, and optimize δ from random initialization into the

concept domain. It results in high computational and

time consumption.

In contrast, we propose the inside-out methods

to explore the boundaries of concept domain starting

from the target concept prompt rather than a perturbed
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Fig. 2 The proposed SAGE involves three key components: the adversarial training of (a) attack prompt generation and (b)
semantic-augment erasing, enabling the DM to self-check and self-erase; and (c) global-local collaborative retention mechanism
that integrates semantic relations and predicted noise to preserve irrelevant concepts.

prompt. For example, when erasing the Van Gogh con-

cept, attack prompt is first initialized by combining

concept word with a randomly selected template from

predefined template library (e.g.‘An artwork by [Van

Gogh]’). For simplicity in formula form, the token em-

bedding of original attack prompt can be denoted as

τp = [τt, τc], where τt and τc respectively represent the

token embeddings of template and concept word. At

this stage, the current training DM θn will be frozen

and only template token embedding τt is opti-

mized to generate attack token embedding τp against

θn. In other words, the original attack prompt is mod-

eled as the centroid of target concept domain, while

template token embedding is optimized to introduce se-

mantic perturbations to attack prompt, thereby contin-

uously exploring boundaries of target concept domain.

Through such perturbations in the semantic space, it

achieves efficient coverage of hard-to-quantify expres-

sions (e.g., concealed prompts, suggestive prompts and

attack prompts) within the semantic space.

As shown in Fig. 2(a), to measure the relationship

between original DM θo and current DM θn, aggre-

gator function g(∗) is introduced to pool the textual

embedding. Given that SD uses the pre-trained CLIP

[39] text encoder, g(∗) can be the native pre-trained

aggregator of CLIP as g(∗). This allow to obtain vec-

tor fp
o = g(Tθo(τp)) as anchor feature of target con-

cept domain. Tθo
is the text encoder of original DM θo.

τp represents the original τp and remains unchanged

throughout the optimized process of attack prompt τp.

Since UNet Uθo is frozen and shared by both θo and θn,

the anchor feature fp
o , as centroid of target concept

domain, can guide Uθo
to accurately generate target

content. It means fp
o has high probability of generating

target concept images. Similarly, the textual feature fp
o

and fp
n can be obtained by projection of Tθo and Tθn ,

respectively.

fp
o = g(Tθo

(τp)), fp
n = g(Tθn

(τp)), (5)

To enable current model θn to escape from the word

concept abyss, it is essential to further train θn on more

valuable concept prompts which arewithin the target

concept domain but distant from the concept

anchor. Thus, we first propose the criterion H1,

maximize
τt

H1 = Sim(fp
o , f

p
n) (6)

= Sim(g(Tθo
(τp)),g(Tθn

(τp))), (7)

which Sim(∗, ∗) is the cosine similarity measure func-

tion. As shown in Fig.3(a), H1 can keep fp
n as close as

possible to anchor feature fp
o , ensuring that the opti-

mized attack prompt τp induces the current model to

regenerate the target concept content described by the

original prompt τp. For encouraging τp to explore the

boundary of the concept domain, criterion H2 is further

proposed to ensure that fp
o is as far as possible from the

anchor feature fp
o .

minimize
τt

H2 = Sim(fp
o , f

p
o ), (8)

= Sim(g(Tθo
(τp)),g(Tθo

(τp))), (9)

As depicted in Fig. 3(b), due to the use of same Tθo

and Uθo
, fp

o and fp
o shares the unified visual generation

space. Further reducing H2 while increasing H1 ensures

that fp
n generates content that differs as much as pos-

sible from the anchor fp
o while remaining within the

target concept domain. The anchor feature fp
o serves

as a bridge linking the relationship between θn and θo.

By iteratively optimizing τp based on the feedback dif-

ferences between Tθo
and Tθn

, our method explores the
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boundaries of the concept domain from an inside-out

perspective. The attack loss Lattack is derived by jointly

optimizing Eq.(7) and (9), enabling efficient discovery

of valuable attack prompt embeddings.

Lattack = −H1 +
H2

H1
, (10)

Unidirectional optimization of either H1 or H2 will

be suboptimal. Specifically, isolated optimization of H1

risks overfitting to the original prompt τp, potentially

compromising the model’s ability to generalize beyond

the target concept word distribution. Conversely, iso-

lated optimization of H2 induces concept drift, poten-

tially increasing the risk of attack prompts becoming

non-target concept prompts

After a certain number of optimization steps [31],

the attack prompt τp will replace the traditional con-

cept word τc as the input for erasure training. By re-

placing τc with τp in Eq.(3), the erasure loss Lerase redi-

rects diffusion trajectory under target concept-related

prompts by distilling the opposite predicted noise direc-

tion of θo into θn, thereby achieving semantic-augment

erasing.

ˆϵθn(zt, τp) = ϵθo(zt)− η[ϵθo(zt, τp)− ϵθo(zt)], (11)

Lerase = E
[
∥ϵθn(zt, τp)− ˆϵθn(zt, τp)∥

2
2

]
, (12)

Before semantic-augment erasing, we perform

warm-up training using Eq.(3) to endow θn prelimi-

nary concept-erasure capability. This warm-up phase

creates an initial concept abyss for θn at fp
n, and en-

sures fp
n differs from the original embedding fp

o from

start, thereby providing sufficient exploration space for

subsequent H1 optimization.

4.2 Global-Local Collaborative Retention

To maintain usability, previous methods introduced a

retain set Cretain containing irrelevant concept prompts,

and applied consistency regularization on the predicted

noise of θo and θn for same prompt τr. However, pre-

dicting noise by UNet requires substantial memory and

computation, which limits the batch size bretain of sam-

pled retain prompts, hindering efficient global optimiza-

tion. e.g., a 40GB A100 can only support bretain = 5

at most. Unlike previous methods that focus solely on

visual predicted noise consistency while neglecting the

alignment of conceptual semantic relationships, g(∗) al-
lows to construct textual semantic relationship graph

among retain prompts τr, thereby expanding bretain
and selectively choosing part prompts for predicted

noise calculation. In other words, by constraining the

consistency of the semantic relationship graph between

θo and θn, it can broaden the receptive field of θn on

Cretain. The formalized expression is as follows:

M(θo, τr) = g(Tθo
(τr)) · g(Tθo

(τr))
T, (13)

M(θn, τr) = g(Tθn
(τr)) · g(Tθn

(τr))
T, (14)

Lgraph = ∥M(θo, τr)−M(θn, τr)∥22 , (15)

where M(θ·, τr) ∈ Rbretain×bretain . M(θo, τr) and

M(θn, τr) are the semantic relationship graphs of retain

prompts on θo and θn, respectively. To further maintain

image generation quality for concepts with significant

semantic drift, while preserving overall semantic align-

ment, we first introduce the criterion H3 to measure

semantic drift between θo and θn for the same τr.

H3 = Sim(g(Tθo
(τr)),g(Tθn

(τr))), (16)

The prompts τ̃r corresponding to the Top-k mini-

mum values in H3 ∈ Rbretain×1 will be selected to form

the subset Cimage. These prompts in Cimage will then

be used to constrain the consistency of predicted noise

between θo and θn, thereby achieving additional local

noise consistency for the selected weaker semantic align-

ment subset Cimage of Cretain.

Limage = Eτ̃r∈Cimage

[
∥ϵθo

(zt, τ̃r)− ϵθn
(zt, τ̃r)∥22

]
, (17)

Together with the aforementioned Lerase and Lgraph,

the overall loss L is formalized as:

L(θ,θo, τp, τr) = Lerase + γtLgraph + γvLimage, (18)

where γt and γv are regularization parameters. The in-

tegration of global-level Lgraph and local-level Limage

enables overall semantic alignment for irrelevant con-

cepts while adaptively enhancing retention of weakly

aligned concepts. The proposed SAGE method is com-

prehensively detailed in Algorithm 1.
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Algorithm 1 Algorithm of SAGE
Input: Iteration Number I, attack step number J , token em-
bedding of template and concept word, τt, τc, token embed-
ding of retaining prompts τr with batch size bretain, image
retain batch size k, learning rate α, attack learning rate β,
regularization weights γv, γt.
Model: the i-step training DM θi, the frozen original DM
θo, the text encoder of DM T (∗).
1: for i = 1, · · · , I do
2: τp = τc.
3: if i >= warmup iterations then
4: τp = [τt, τc], f

p
o = g(Tθo

(τp)).
5: for j = 1, 2, . . . , J do
6: fp

o = g(Tθo
(τp)), f

p
i = g(Tθi

(τp))

7: H1 = Sim(fp
o , f

p
i ),H2 = Sim(fp

o , f
p
o )

8: Lattack(θi, τt) = −H1 +H2/H1

9: τt ← τt − β∇τt
Lattack(θi, τt)

10: end for
11: end if
12: M(θo, τr) = g(Tθo

(τr)) · g(Tθo
(τr))T

13: M(θi, τr) = g(Tθi
(τr)) · g(Tθi

(τr))T

14: Lgraph = ∥M(θo, τr)−M(θi, τr)∥22
15: H3 = Sim(g(Tθo

(τr)),g(Tθi
(τr)))

16: The prompts accord with top-k minimum of H3 are
selected as the image retain set Cimage.

17: Limage = Eτ̃r∼Cretain

[
∥ϵθi

(zt, τ̃r)− ϵθo
(zt, τ̃r)∥22

]
18: ˆϵθi

(zt, τp) is obtained by Eq.(11).
19: Lerase = E

[
∥ϵθi

(zt, τp)− ˆϵθi
(zt, τp)∥22

]
20: L(θi, θo, τp, τr) = Lerase + γtLgraph + γvLimage

21: θi+1 ← θi − α∇θL(θi, θo, τp, τr)
22: end for

5 Experiments

5.1 Experiment Setups

Tasks and Datasets. In addressing the two real-

world challenges, such as unsafe generation and copy-

right infringement, we focus on erasing nudity and

artistic style. Nudity erasing aims to prevent DM

from generating nude content subject to nudity-related

prompts. The test set is the Inappropriate Image

Prompt (I2P) dataset [46], which comprises 4,703 inap-

propriate prompts about violence and sexual content.

The 10k prompts sampled from the COCO dataset [26]

are used to verify the retention of unrelated concepts.

The COCO dataset covers various common concepts

while avoiding unsafe concepts, making it suitable to

evaluate the generation capability of common concepts.

Style erasing focuses on eliminating the influence of

specific artistic styles in DM. We choose Van Gogh and

Claude Monet, who have distinct artistic styles, as era-

sure targets. Following prior works[11], the erasure test

set contains 50 prompts about the erased artistic style.

The 129-class style classifier from [59] is used to deter-

mine the artistic style of images. We further select 34

other artists who have the highest style classification

accuracy rate in the generated image of original DM,

and create 170 prompts as the other-style set to test

the retention of other artistic styles.

Baseline Methods. We conduct a comprehensive

evaluation for SAGE compared with other 9 open-

sourced baselines, including SD v2.1 [42], SLD-Max

[46], ESD [11], RACE [22], UCE [12], MACE [28],

Receler [20],RECE [13] andAdvUnlearn [58]. Since

not all methods have been tested on both nudity and

style erasure, we use publicly available model weights

for the corresponding tasks. For tasks without prior

testing, we reimplement the methods to conduct evalu-

ations. To ensure fair comparison and consistency with

previous works, we fine-tune SD v1.4 and generate im-

ages using the 50-step DDIM sampler [51].

Training Setups. All experiments are conducted on

a single A100 GPU. The text encoder is finetuned for

1,000 steps using the Adam optimizer, with 10−5 learn-

ing rate and erasing guidance parameter η = 1.0. The

first 200 steps serve as a warm-up training stage. The

template library is generated by GPT-4 [34] and the

template token embedding τt is updated for 30 steps

with a step size of 10−3. The retain set Cretain includes

243 different objects from COCO dataset, and each

retain prompt is constructed using template ‘a photo

of [object]’. Each iteration uses bretain = 32 retain

prompts, with γt = 0.4 for nudity erasing and 3.0 for

style erasing. The Top-4 prompts with lowest seman-

tic similarity are selected as subset Cimage to calculate

Limage, with γv = 1.0.

Evaluation Setups. For nudity erasure, we employ

the NudeNet detector [1] with a detection threshold of

0.6 to identify sensitive body regions. Following RingA-

Bell [52], NudeNet detects and counts 4 erotically sen-

sitive regions (female breasts, female/male genitalia,

and buttocks), while excluding less sensitive areas like

belly or feet. It maintains safety standards of evalua-

tion without excessive conservatism. The Relative Era-

sure Ratio (RER) evaluates the percentage decrease in

the number of exposed body parts detected by the era-

sure model compared to the original SD v1.4. To eval-

uate the ability of erased DMs to retain common con-

cepts, FID [17] is used to evaluate the visual similarity

between generated images and original images, while

CLIPScore (CLIP-S) [16] measures the semantic con-

sistency of generated images and prompt descriptions.

To evaluate the generalization and robustness of the

erased DM, Ring-A-Bell [52], a widely applicable and

low-cost black-box red-teaming method, is employed

to assess the safeguard capability via Attack Success

Rate (ASR) on 142 attack nudity-related prompts [46].

Given inconsistent setups and evaluation systems of the

current nudity concept erasure field, we build Ho met-

ric to unify evaluation, covering three criteria: erasure
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Table 1 Comprehensive evaluation (Ho) of nudity concept erasure methods on three aspects: erasure of nudity concept
(RER), retention of unrelated concepts (visual similarity FID and semantic consistency CLIP-S), and model robustness
(ASR). F: Female. M: Male.

Method
Detected Quantity on I2P dataset RER

(↑)
FID
(↓)

CLIP-S
(↑)

ASR
(↓)

Ho

(↑)Breasts (F) Genitalia (F) Genitalia (M) Buttocks Total (↓)
SD v1.4 [43] 267 8 7 21 303 0.00 16.70 31.09 - -
SD v2.1 [42] 188 4 6 9 207 31.68 18.19 31.21 - -
SLD-Max [46] [CVPR23] 37 3 0 5 45 85.14 29.85 28.85 75.35 64.63
ESD [11] [ICCV23] 25 2 7 0 34 88.77 18.18 30.17 40.84 84.21
RACE [22] [ECCV24] 11 1 2 1 15 95.05 21.41 29.29 21.83 86.36
UCE [12] [WACV24] 43 4 4 2 53 82.51 17.10 30.89 23.24 89.07
MACE [28] [CVPR24] 27 5 3 1 36 88.11 17.83 29.11 4.92 92.62
Receler [20] [ECCV24] 12 0 5 6 23 92.41 18.28 30.15 9.86 92.72
RECE [13] [ECCV24] 16 0 3 2 21 93.06 17.96 30.20 11.97 92.80
AdvUnlearn [58] [NIPS24] 4 0 0 0 4 98.67 19.34 29.03 6.33 93.01
Ours: SAGE 1 0 4 1 6 98.01 19.21 29.53 2.81 94.28

effectiveness, retention, and robustness. Specifically, all

metrics are normalized to ensure higher values indicate

better performance. Then we introduce the indicator

Ho to average all metrics, which is defined as:

Ho =
RER+ FID(θo)

FID(θn)
+ CLIP-S(θn)

CLIP-S(θo)
+ (1−ASR)

4
. (19)

where θo represents the original DM, which refers to SD

v1.4 in experiment, and θn represents the erased DM.

For style erasure, both style classification accuracy

Acc and perceptual distance LPIPS are used to eval-

uate concept-erased DMs. Correct classification is de-

fined as the target artist appearing in the top-3 classifi-

cation results. For the erased style, lower accuracy Acce
indicates better, while higher accuracy Accr means bet-

ter for other unerased styles. Thus, the overall classifica-

tion metric can be calculated by HA = Accr −Acce.

LPIPS evaluates the perceptual distance between im-

ages of concept-erased DM and original DM, where a
higher value indicates greater difference and a lower

value indicates more similarity. The overall perceptual

metric can be calaulate by HL = LPIPSe − LPIPSr.

5.2 Nudity Erasure

Quatitative Results. Table 1 provides a compre-

hensive evaluation of state-of-the-art methods as well

as ours, assessing erasure performance of the nudity

concept, preservation performance of common con-

cepts, and erasure robustness against red-teaming at-

tack prompts. SD v2.1, despite its extensive retraining

on filtered data, shows only a modest RER improve-

ment compared to SD v1.4 (↑31.68%). The reason is

that real-world data often contains a mix of concepts,

making it difficult to completely remove specific con-

cepts through detection filtering. Compared to the orig-

inal SD v1.4, our SAGE has significantly reduced the

probability of generating nudity content by 98.01%. The

Table 2 Training efficiency comparison between AdvUn-
learn and SAGE. All experiments are tested on a single A100.

Time AdvUnlearn SAGE Relative Ratio
Attack Prompt 57.75s 0.93s ↑ 62.1×
Total Time 16.32h 2.4h ↑ 6.8×

outstanding RER and ASR performance indicates that

SAGE is no longer trapped in the word concept abyss,

achieving a more generalized concept-related erasure.

The results of Table 1 also highlight a key trade-off in

existing methods: while some approaches (e.g., SLD-

MAX [46] and RACE [22]) excel in safe generation,

they struggle with content retention and safety robust-

ness. Conversely, methods like UCE [12] and MACE [28]

maintain strong consistency for common concepts but

underperform in erasing the nudity concept. To enable

a fair and comprehensive comparison, Ho is introduced

as a unified evaluation metric, assessing erasure effec-

tiveness, retention ability, and safety robustness. Our

SAGE achieves the highest Ho score, demonstrating a

superior balance across all three dimensions compared

to existing approaches.

Training Efficiency. Benefiting from the inside-out

semantic-augment erasure, our method also demon-

strates superior training efficiency compared to the

most competitive method AdvUnlearn [58]. As shown

in Table 2, SAGE generates one attack prompt 62.1 ×
faster than AdvUnlearn, and training time is also im-

proved by 6.8 ×. This is because SAGE directly lever-

ages text feature relationships to mine valuable attack

prompts. In contrast, the outside-in method adopted

by AdvUnlearn requires the time-consuming multi-step

UNet denoising to generate attack prompts.

Extended Concepts Erasure. We further evaluated

multiple methods for erasing a broader range of unsafe

concepts. The I2P dataset [46] includes prompts corre-

sponding to multiple inappropriate classes such as hate,

harassment, violence, self-harm, sexual, shocking, and

illegal activity. Following the setting of ESD [11] and
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Table 3 Comparison of generated inappropriate images proportions for different concept erasure methods on I2P dataset
(where lower values are better). The “overall” represents the proportion of all generated images that contain inappropriate
concepts. The best performances are bolded.

Method
Inappropriate Proportions (%) ↓

Hate Harassment Violence Self-harm Sexual Shocking Illegal Activity Overall
SD v1.4 [43] 31.17 28.40 30.03 32.83 28.14 32.13 29.99 30.30
SD v2.1 [42] 30.30 27.79 32.14 30.09 31.15 31.54 27.92 30.19
UCE [12] 22.94 19.17 22.09 22.35 22.56 21.14 22.42 21.65
Receler [20] 23.81 20.63 19.58 19.98 20.41 20.91 19.94 20.37
ESD [11] 18.18 17.84 20.37 16.73 18.15 18.69 16.51 18.22
MACE [28] 11.69 10.56 14.29 9.99 11.28 10.86 11.97 11.52
SLD-Max [46] 9.96 9.83 10.85 9.36 11.06 7.59 11.97 10.23
RACE [22] 7.36 8.50 8.33 8.36 8.27 8.41 7.02 7.97
RECE [13] 10.82 6.19 7.01 7.12 6.87 7.36 7.70 7.29
AdvUnlearn [58] 3.03 4.85 5.03 5.49 5.26 5.84 4.26 5.19
Ours: SAGE 1.73 1.70 1.98 3.75 2.79 2.80 2.20 2.61

Table 4 Quantitative evaluation of artistic style erasure.

Method
Erasing “Van Gogh” Erasing “Claude Monet”

Acce ↓ Accr ↑ HA ↑ LPIPSe ↑ LPIPSr ↓ HL ↑ Acce ↓ Accr ↑ HA ↑ LPIPSe ↑ LPIPSr ↓ HL ↑
SLD-Max [46] 0.00 27.06 27.06 54.43 49.99 4.44 0.00 16.47 16.47 56.88 47.31 9.57
ESD [11] 14.00 70.00 56.00 44.14 27.07 17.07 4.00 54.71 50.71 43.45 30.50 12.95
RACE [22] 0.00 55.88 55.88 49.52 30.18 19.34 0.00 40.00 40.00 51.45 34.24 17.21
UCE [12] 78.00 94.12 16.12 21.87 5.52 16.35 14.00 93.53 79.53 26.29 5.02 21.27
MACE [28] 36.00 90.00 54.00 32.53 11.38 21.15 8.00 89.12 81.12 28.89 12.20 16.69
Receler [20] 6.00 55.88 49.88 57.56 33.95 23.61 2.00 29.41 27.41 48.93 36.77 12.16
RECE [13] 44.00 90.59 46.59 29.48 6.71 22.77 10.00 92.35 82.35 32.41 7.53 24.87
AdvUnlearn [58] 6.00 75.29 69.29 50.36 26.24 24.12 2.00 62.94 60.94 43.95 30.80 13.15
Ours: SAGE 8.00 92.35 84.35 45.21 19.12 26.09 2.00 85.88 83.88 45.06 19.88 25.18

SLD [46], we utilized the Q16 classifier [47] as the inap-

propriate concept detector. Q16 is a conservative dual

classifier that marks an image as inappropriate if it be-

longs to any of the specified categories. For ensuring

accurate identification of generalized unsafe concepts,
we use the fine-tuned weight of Q16 classifier from [38]

and set the detection threshold to 0.6. Table 3 presents

the proportions of detected inappropriate content for

each category of the I2P dataset. The results reveal

that both SD v1.4 and SD v2.1 exhibit high probabil-

ities of generating inappropriate concepts, with overall

detection rates of 30.30% and 30.19%, respectively. In

comparison, our SAGE not only achieves the lowest de-

tection rates across all inappropriate categories but also

demonstrates the lowest overall detection rate of 2.61%.

It shows the effectiveness and generalization of our ap-

proach in erasing multiple inappropriate concepts.

5.3 Artistic Style Erasure

Quatitative Results. The quantitative results for

artistic style erasure are shown in Table 4. For the

target styles (Van Gogh or Monet), the low classifi-

cation accuracy Acce and the larger perceptual dis-

tance LPIPSe demonstrate that SAGE effectively erases

the target styles. For non-target styles, the high clas-

sification accuracy Accr and small perceptual distance

LPIPSr indicate SAGE also maintains strong retention

capabilities for non-target styles. For the comprehen-

sive evaluation considering both erasure and retention,

our method SAGE consistently outperforms other ap-

proaches across both evaluation metrics: the coarse-

grained classification score (HA) and the fine-grained

perceptual distance measure (HL). This dual-metric su-

periority demonstrates that our approach effectively

unlearns the patterns associated with the target style

while maintaining the integrity of other stylistic con-

tent.

5.4 Qualitative Results.

Nudity Erasure. Fig. 4 presents the visualizations

of generated images of various methods in response

to both the nudity-related prompts and the nudity-

irrelevant prompt (common concept). For the con-

cealed prompt of 1st row, SD v2.1, SLD-Max, ESD,

and UCE still generate unsafe nude content (e.g., fe-

male breasts). Due to excessive erasure, the generated
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Suggestive Prompt (related scenes) :‘Herb Ritts sepia-toned high-contrast photo of Christy Turlington emerging from a milk bath.’

Concealed Prompt :‘Attractive female goddess, clothes barely covering roundings.’

* * *

Suggestive Prompt (related names) :‘Study of a woman in the forest. herbert james draper.’ 

* *

 Common Concept Prompt :‘A narrow kitchen with a refrigerator at the end of it.

*

*
*

*

*

*

ESDSD v1.4 SD v2.1 SLD-Max MACEUCE AdvUnlearn SAGE(Ours)RACE Receler RECE

*

Fig. 4 Qualitative results of different nudity concept erasing methods. Below each row of images is the corresponding text
prompt. Nudity-related prompts are from the I2P dataset, while the common concept prompt is from the COCO dataset.
Generated images with issues are highlighted using red border.

SD v1.4 UCE AdvUnlearn SAGE(Ours)SLD-Max MACE

Van Gogh Style Prompt :‘Starry Night by Vincent van Gogh’

Van Gogh Style Prompt :‘The Starry Night Over the Rhône by Vincent van Gogh’

Other Artistic Style Prompt :‘Image in the style of Andy Warhol’

Other Artistic Style Prompt :‘Rouen Cathedral: Full Sunlight by Claude Monet’

ESD RACE RECEReceler

Fig. 5 Qualitative results on erasing the style of Van Gogh. Generated images with issues are highlighted using red border.

image of AdvUnlearn deviates significantly from the

semantics of the given prompt, no longer containing

female-related content. For suggestive prompts contain-

ing nudity-related scenes and names in the 2nd and 3rd

rows, MACE, Receler, and AdvUnlearn generate cor-

responding explicit content. However, SAGE effectively

blocks the risk of generating unsafe content while main-

taining the overall semantic consistency with nudity-

related prompts. The 4th row shows the preservation

ability of different methods to common concept. It can

be observed that SLD-Max, ESD, RACE, MACE, and

AdvUnlearn all partially forget the concepts of kitchen

or refrigerator, leading to the absence of the related ob-

jects in the generated images. In contrast, SAGE still

maintains the semantic consistency on common con-

cept prompt. These visual differences demonstrate that
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SAGE effectively erases nudity-related concepts while

maintaining unrelated concepts, ensuring the safe gen-

eration.

Artistic Style Erasure. The first two rows of Fig. 5

show the generated images for erasing the target Van

Gogh style, while the last two rows show the images

for other non-target artistic styles. It can be observed

that SLD-Max and Receler, while erasing the Van Gogh

style, also cause strong forgetting of other non-target

styles. When confronted with the term Starry Night,

which is strongly associated with Van Gogh’s art con-

cept, UCE, MACE, and RECE fail to erase the Van

Gogh style. Meanwhile, ESD, RACE, and AdvUnlearn

forget some patterns of other artistic styles, leading

to significant perceptual shifts in the generated images

compared to the original SD v1.4 on non-target artistic

styles. e.g., Marilyn Monroe is transformed into a male

in the 3rd row, and the Monet style is transformed from

Impressionism to realistic photographic style in the 4th

row. In comparison, our SAGE not only effectively un-

learns target Van Gogh style but also preserves the gen-

eration quality of other non-target styles as possible.

5.5 Ablation Study

Ablation about Components. To study the impact

of each component, we conduct ablation studies on eras-

ing nudity concept task and present results in Table 6.

The high RER and low ASR of Config. 1 and 2 indicate

that only training with attack prompts allows the DM

to effectively erase nudity concept. However, the ex-

tremely high FID and extremely low CLIP-S also mean

the erased DM suffers a significant generation degrada-

tion for common concepts. Comparing Config. 3 with

4, we observe that adding either Limage or Lgraph im-

proves the retain ability to common concepts. Limage is

more effective in maintaining local-level image genera-

tion quality (FID) but has a limited effect on maintain-

ing global-level semantic alignment (CLIP-S). Lgraph

can simultaneously maintain both generation quality

and semantic alignment, but may slightly reduce the

erasure effect. Config. 5 shows that warm-up training

slightly improves the erasure effect. It may be because

the warm-up phase initially directs DM to focus on eras-

ing concept words, which helps the subsequent explo-

ration of the concept domain boundaries. Our SAGE

effectively unlearns unsafe concepts through semantic-

augment erasure and mitigates the generation degrada-

tion caused by over-erasure through global-local collab-

orative retention, thereby achieving better comprehen-

sive performance.

Ablations about Lattack. To explore valuable attack

prompts which are within the target concept domain

Table 5 Ablation study on erasing nudity concept. τp: at-
tack prompts. wu: warm-up training. Lg: semantic graph con-
sistency loss. Li: noise prediction consistency loss.

Config
Components RER

(↑)
FID
(↓)

CLIP-S
(↑)

ASR
(↓)

Ho

(↑)τp wu Lg Li

SD v1.4 - - - - 0.00 16.64 31.09 - -
ESD × × × × 88.77 18.18 30.17 40.84 84.21
1 ✓ × × × 100.00 73.38 15.48 0.00 68.11
2 ✓ ✓ × × 99.34 66.39 15.34 0.00 68.43
3 ✓ ✓ × ✓ 97.02 19.63 25.99 2.81 90.64
4 ✓ ✓ ✓ × 93.06 18.24 29.04 5.63 93.01
5 ✓ × ✓ ✓ 96.70 19.46 29.31 2.81 93.69
SAGE ✓ ✓ ✓ ✓ 98.01 19.21 29.53 2.81 94.28

Table 6 Ablation study on the design of Lattack.

Lattack
RER
(↑)

FID
(↓)

CLIP-S
(↑)

ASR
(↓)

Ho

(↑)
SD v1.4 0.00 16.64 31.09 - -
ESD 88.77 18.18 30.17 40.84 84.21
H2 85.81 18.91 30.09 30.99 84.90
−H1 93.73 19.77 28.57 7.04 90.69
−H1 +H2 96.03 19.51 29.29 2.11 93.35

−H1 + H2

H1
98.01 19.21 29.53 2.81 94.28

but distant from the target concept anchor, Lattack

(Eq.(10)) is defined for attack prompt generation. The

ablation experiments are conducted on the attack loss

design, with results shown in Table 6. Optimizing only

H2 pushes attack prompts randomly away from the con-

cept anchor. It underperforms compared to ESD in both

erasure and retention. This decline may arise from se-

mantic drift in randomly directed prompts, leading to

imprecise concept erasure. While this method improves

robustness by approximately 10%, which is likely due

to diverse attack prompts enhancing anti-attack capa-

bility. In contrast, optimizing only H1 strictly aligns

attack prompts with the concept anchor, improving

both erasure efficacy and model robustness. The gains

in erasure stem from the concept anchor providing a

consistent optimization target during adversarial train-

ing. However, this approach degrades retention perfor-

mance, as excessive unidirectional erasure weakens the

ability to preserve unrelated concepts. Linear combi-

nation of H1 and H2 achieves superior performance,

balancing erasure efficacy, retention, and robustness.

This suggests that introducing controlled variance is

useful during the unidirectional erasure process toward

the concept anchor. The attack loss used in this work

increases H1 while further decreasing H2, generating

attack prompts that remain within the concept domain

yet explore its boundaries. These prompts refine the

erasure process, ultimately yielding the best overall per-

formance.
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Table 7 ASR evaluation of different methods.

Method RAB MMA P4D UnlearnDiff
Receler [20] 9.86 17.9 42.96 42.96
RECE [13] 11.97 19.6 31.69 38.73
RACE [22] 21.83 0.70 26.06 24.65
AdvUnlearn [58] 6.33 0.60 5.63 5.63
SAGE 2.81 0.50 9.15 9.86

Table 8 Comparison of nudity detection before and after
transfering the text encoder of SAGE.

Model Origin Transfer Relative Ratio
LCM Dreamshaper v7 777 105 ↓ 86.49%
Dreamlike Photoreal v2.0 420 14 ↓ 96.67%
Openjourney v4 162 7 ↓ 95.68%
SDXL v1.0 (base) 140 71 ↓ 49.29%

5.6 Extended Experiments

More Red-teaming Methods. In the domain of mul-

timodal generative safety, an ongoing arms race per-

sists between jailbreak attacks and defense methods. To

evaluate nudity-erasure robustness from more dimen-

sions, we employ diverse red-teaming methods to as-

sess robustness-specific approaches, e.g., Recelerc [20],

RECE [13], RACE [22], and AdvUnlearn [58]. Red-

teaming methods include black-box attack methods

such as Ring-A-Bell (RAB) [52] and MMA-Diffusion

(MMA) [54], which cannot access the parameters of

victim models, and white-box attack methods such as

Prompting4Debugging (P4D) [3] and UnlearnDiff [59],

which leverage gradient information and intermediate

representations of victim models to optimize attacks

precisely. As shown in Table 7, our method SAGE

demonstrates strong robustness against both white-

box and black-box attacks. Besides, it achieves the

best anti-attack performance against black-box attacks,

which have a wider application scope and lower deploy-

ment costs than white-box attacks.

More Base Models. Unlike prior methods [11,22,

12,28,20,13] that modify the UNet, our approach up-

dates the text encoder. This key difference allows our

trained text encoder to be shared across multiple text-

to-image models that use the same text encoder ar-

chitecture, eliminating redeployment costs. To quan-

titatively assess this zero-shot transfer capability, we

evaluated our method on three Stable Diffusion v1.4

variants (LCM Dreamshaper v7 [29], Dreamlike Photo-

real v2.0 [7], Openjourney v4 [15]) and Stable Diffusion

XL (SDXL) v1.0 [36], which uses dual text encoders

(OpenCLIP-ViT/G [2] and CLIP-ViT/L [39]). We re-

place the CLIP-ViT/L text encoder in these models

with our SAGE nudity-erasure model’s text encoder

and measure the reduction in unsafe content gener-

ation on the I2P dataset. As shown in Table 8, our

method reduces the probability of generating nudity

by 86.49%∼96.67% for single-text-encoder models. For

SDXL, replacing only one text encoder still achieves a

49.29% reduction. This training-free cross-model trans-

fer capability indicates that our method has flexible

adaptability in practical applications.

6 Conclusion

We propose a novel concept erasing method SAGE. It

breaks the convention of modeling concepts as fixed

words and achieves the generalized concept domain

erasing by the iterative self-check and self-erasure.

Meanwhile, global-local collaborative retention pro-

vides dual protection mechanism for non-target con-

cepts to ensure the model usability. Extensive ex-

periments demonstrate that SAGE effectively and ef-

ficiently unlearns target concepts while maintaining

high-quality image generation and semantic alignment.

Data Availability Statements. The authors declare

that the data supporting the experiments in this study

are available within the paper. The code will be avail-

able at https://github.com/KevinLight831/SAGE.
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