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Abstract—Generative models, particularly diffusion-based text-
to-image (T2I) models, have demonstrated astounding success.
However, aligning them to avoid generating content with un-
acceptable concepts—e.g., offensive or copyrighted content, or
celebrity likenesses—remains a significant challenge. Concept
replacement techniques (CRTs) aim to address this challenge,
often by trying to “erase” unacceptable concepts from models.

Recently, model providers have started offering image
editing services which accept an image and a text prompt as
input, to produce an image altered as specified by the prompt.
These are known as image-to-image (I2I) models.

In this paper, we first use an I2I model to empirically
demonstrate that today’s state-of-the-art CRTs do not in fact
erase unacceptable concepts. Existing CRTs are thus likely to
be ineffective in emerging I2I scenarios, despite their effective-
ness in T2I settings, highlighting the need to understand this
discrepancy between T2I and I2I settings.

Next, we argue that a good CRT, while replacing unaccept-
able concepts, should preserve other concepts specified in the
inputs to generative models. We call this fidelity. Prior work
on CRTs have neglected fidelity in the case of unacceptable
concepts.

Finally, we propose the use of targeted image-editing tech-
niques to achieve both effectiveness and fidelity. We present
such a technique, ANTIMIRROR, and demonstrate its viability.

1. Introduction

Text-to-image (T2I) diffusion models such as
DALLE3 [23], Imagen [31], and Stable Diffusion [29]
have demonstrated exceptional capabilities in generating
high-quality images. Their effectiveness largely stems from
training on extensive unfiltered text-image datasets gathered
from the Internet. As a result, these models can generate
images with unacceptable concepts, such as offensive
content, copyrighted material, or unauthorized likenesses
of celebrities. Content with unacceptable concepts pose
ethical, privacy, and legal challenges.

Concept replacement techniques (CRTs) have emerged
as a way to address this problem. They aim to modify the
diffusion generation pipeline to prevent unacceptable con-
cepts from being produced. Many CRTs focus on modifying
model weights to ensure that a specific concept cannot be

generated thereafter, by aiming to erase the unacceptable
concept from the model [6], [20]. These methods have been
shown to be effective in T2I models [6], [20], [35].

Recently, T2I model providers have started offering im-
age editing as a service1. It works by accepting an image
and a text prompt (describing edits) as input and generating
an edited image. They are known as image-to-image (I2I)
models. Naturally, CRTs are needed for I2I models too.
Since the same underlying image-generation model is used
in both T2I and I2I contexts, existing CRTs capable of
erasing unacceptable concepts from models should apply
in both contexts.

If a model has truly erased a concept, then it should, un-
der no circumstance, produce content depicting that concept.
We show that when given an image with an unacceptable
concept as input, image-generation models modified by ex-
isting CRTs do reconstruct it, showing that the CRTs did not
succeed in erasing the concept. This suggests that existing
CRTs are unlikely to be effective in I2I settings, despite
their effectiveness in the T2I setting.

An alternative CRT approach is to detect the unaccept-
able concept in the output image (e.g., by Espresso [4]), and
edit it out using an editing method like SDEDIT [21].

A good CRT, while replacing an unacceptable concept,
should preserve all other concepts present in its inputs.
We call this fidelity. Prior work on CRTs have neglected
fidelity in the case of unacceptable concepts, focusing only
on the effectiveness of replacing them. Since SDEDIT edits
the entire image, it will not preserve fidelity. Effectiveness
without fidelity is not useful in concept-replacement settings
because fidelity is essential for ensuring overall usability.
For instance, if a user inadvertently induces the generation
of unacceptable concepts, a model that selectively replaces
those concepts in the output is more desirable than one that
blocks the entire response due to unacceptability.

We propose a new CRT approach based on targeted
editing: identify key characteristics that define the unac-
ceptability of a concept, and focus on modifying only those
characteristics. It is not clear how to do this in general,
however, we demonstrate its feasibility in the case of one

1. https://help.openai.com/en/articles/9055440-editing-your-images-wit
h-chatgpt-images

https://help.openai.com/en/articles/9055440-editing-your-images-with-chatgpt-images
https://help.openai.com/en/articles/9055440-editing-your-images-with-chatgpt-images
https://arxiv.org/abs/2506.08991v1


type of unacceptable concept: unauthorized likenesses of
individuals.

Prominent public figures have expressed disapproval of
their likenesses being generated by image generation mod-
els [2], [26]. The key characteristics in this case are the facial
features that correspond to a person’s identity [5], [28], [33].
We present a targeted editing technique (Sec. 4) that changes
only these facial features, thereby achieving better fidelity
than SDEDIT while retaining similar or better effectiveness
in replacing celebrity likenesses.

We claim the following contributions: we

1) show that state-of-the-art CRTs that are effective in the
T2I setting do not erase unacceptable concepts, thus
limiting their effectiveness in the I2I setting, (Sec. 3)

2) argue that CRTs need to preserve fidelity in addition
to being effective, (Sec. 4), and

3) propose ANTIMIRROR2, a new CRT based on targeted
image editing that balances fidelity and effectiveness
for celebrity likenesses. (Sec. 5)

2. Background

2.1. Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [8],
otherwise known as diffusion models, are a class of gen-
erative models that learn to synthesize data by reversing a
gradual noising process. They consist of two processes: a
forward diffusion process that adds noise to the data, and a
reverse diffusion process that learns to reconstruct the data
from noise.

2.1.1. Forward Diffusion Process. The forward process
defines a Markov chain that progressively perturbs a data
sample (usually an image; x0 ∈ X ) by adding Gaussian
noise over T discrete time steps:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is a predefined variance schedule. This
process results in xT being approximately Gaussian noise.

Due to the linear Gaussian structure, we can marginalize
the process to directly sample xt from x0:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1− βt and ᾱt =
∏t

s=1 αs. Thus, sampling
can be performed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (3)

2. We will open-source the code.

2.1.2. Reverse Diffusion Process. The reverse process at-
tempts to learn the denoising transitions pθ(xt−1 | xt) to
recover the original data. These transitions are parameterized
as Gaussians:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

In practice, the model ϵθ(xt, t), called the UNet [30], is
trained to predict the noise ϵ added at each step. Using this
prediction, the mean can be rewritten as:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

· ϵθ(xt, t)

)
. (5)

The model then samples xt−1 as:

xt−1 = µθ(xt, t) + σtϵ, ϵ ∼ N (0, I), (6)

where σt may be fixed or learned. Prior work keeps this
fixed to stabilize UNet training [8].

2.1.3. Training Objective. The model is trained to min-
imize the discrepancy between the true noise ϵ and the
predicted noise ϵθ using the objective:

Loriginal = Ex0,ϵ∼N (0,1),t

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] .
(7)

This loss function is equivalent to denoising score
matching and is sufficient for generating high-quality sam-
ples [32]. This loss function can be further simplified into

Lsimple = Eϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥2

]
. (8)

However, this objective is modified for the text-to-image
(T2I) and image-to-image (I2I) settings.

2.1.4. Summary. By training the UNet, ϵθ, it is able to
model pθ(xt−1 | xt) and approximate the space of images
X starting from Gaussian noise. Crucially, this Gaussian
noise can be random, or derived from an input image. In
the latter case, the UNet has awareness of the original input
image from which the Gaussian noise was derived.

2.2. T2I Models

In the previous section, we explained the forward and
reverse diffusion processes, and how the UNet, ϵθ, of a
diffusion model is involved. In practice, for the T2I setting
(and I2I setting, which we will explain in Sec. 2.3), the
diffusion model, which we now refer to as f , also includes
text in the input. Formally, f : X × P → X , transforms an
image xin ∈ X to an image xout ∈ X , with the goal that
xin = xout. P represents the space of text prompts with
the input p ∈ P describing the image xin. The diffusion
model contains two main components [1]; a pre-trained text
encoder (usually a CLIP text encoder [27]), ϕp, and the
UNet, ϵθ. The CLIP text encoder is used to generate the text
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Figure 1: Diffusion process. Standard Gaussian noise is added as part of forward diffusion process, followed by denoising
using a UNet in the reverse diffusion process, using a CLIP text embedding of the input prompt as conditioning.

embedding of p, which will be used as a conditioning score,
c = ϕp(p), during the generation process. The UNet, as
explained previously, is responsible for generating the noise
during the reverse process, thus it is the primary generative
component of the diffusion model. However, now, the UNet
also takes the conditioning score as input as well.

Hence, training a diffusion model involves training the
UNet by minimizing

L = Eϵ∼N (0,1),t[||ϵ− ϵθ(xt,c, t)||22 (9)

for each timestep from t, and intermediate noised image
xt. The UNet noise output, ϵθ(xt,c, t), is then used in a
sampling algorithm, like DDPM sampling [9], to generate
the final image. During inference, in the T2I setting, f
generates images starting from random noise and the text
prompt p, thus an input image is not provided to f .

Stable Diffusion models are known as Latent Diffusion
models (LDMs) [29] as they operate in the latent space of a
pre-trained variational autoencoder (VAE) rather than on the
images directly, thus being more computationally efficient.
Formally, xin is first passed through the VAE encoder E
to produce the latent zin, and the objective function in
Equation 9 changes to

Eϵ∼N (0,1),t

[
||ϵ− ϵθ(zt,c, t)||22.

The output is xout = D(z0), where D is the VAE decoder.
The complete LDM generation process is illustrated in
Fig. 1. We summarize commonly used notations in Table 1.

2.3. I2I Models

A primary application of I2I models is image editing,
where the user supplies an input image, xin, and an editing
prompt, p, describing the desired changes, and the model
generates the edited result. Diffusion-based I2I models are
the current state-of-the-art. These models rely on inversion.

Inversion is the process of finding the initial, noisy
Gaussian latent zT (or xT in the case of a standard diffusion
model), that would reconstruct z0 (x0) when passed through
a sampling algorithm. This latent is also called the inverted
latent. Thus, in the I2I setting, f generates images starting
from the inverted latent— Gaussian noise derived from the
input image through the inversion process— and an editing

TABLE 1: Frequently used notations and their descriptions.

Notation Description

T2I Text-to-Image
I2I Image-to-Image
CRT Concept Replacement Technique
f (Unaligned) diffusion model
fCRT Aligned diffusion model
ϵθ UNet of a diffusion model
ϕp Pre-trained CLIP text encoder

X Space of images
P Space of text prompts
xin Input image
xout Output image
xu Image with unacceptable concept
xa Image with acceptable concept

psrc Input textual prompt
c Conditioning score
ca Acceptable concept
cu Unacceptable concept

prompt, p. We focus on the state-of-the-art inversion method
DDPM Inversion [10].

DDPM inversion is a stochastic process and serves as
a technique to invert the stochastic DDPM sampling algo-
rithm:

zt−1 = µ̂t(zt) + σtϵt, (10)

where zt represents the VAE latents in an LDM, ϵt ∼
N (0, I), and ᾱt =

∏t
s=1 αs, where αt = 1 − βt, as

previously. The noise scale σt is given by:

σt = ηβt(1− αt−1)/(1− αt). (11)

The predicted mean µ̂t(zt) is computed as

µ̂t(zt) =

√
ᾱt−1

ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t,c)

)
+
√

1− ᾱt−1 − σ2
t · ϵθ(zt, t,c). (12)

Later, we will use an I2I model to see how well it can
reconstruct an image. For reconstruction, the conditioning
score c is set to ∅, which corresponds to the CLIP text
embedding of the empty editing prompt, “”. For DDPM
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sampling, we set η = 1. DDPM inversion involves generat-
ing zt for t = 1, . . . , T such that they strongly imprint with
the random noise values {ϵt}Tt=1 [10]. After inversion, the
sampling algorithm is used for reconstruction, thus defining
the complete diffusion-based I2I pipeline for image recon-
struction.

Some I2I models are not built upon diffusion models,
hence they do not use diffusion inversion. SDEDIT [21]
is one such method; like a diffusion model, it relies on
iteratively adding noise, and then de-noising. However, the
underlying stochastic differential equation (SDE) that for-
mulates this generative process is different. In addition,
SDE-based I2I models typically add Gaussian noise from
timestep t = 0 to t = 1, with the reverse process removing
this noise. SDEDIT does not require noise addition for all
timesteps up to t = 1. This helps preserve structural details
of the original input image, while still facilitating editing.
This is desirable for preserving “fidelity" (a notion that we
will return to in Sec. 4). Diffusion-based I2I methods have
generally replaced SDEDIT, however, it is still used when
fidelity is important.

2.4. Concept Replacement Techniques

Despite their usefulness, diffusion models raise concerns
as they can generate images that may contain unacceptable
concepts. Concept removal techniques (CRTs) aim to pre-
vent the generation of such images. Many CRTs do this by
attempting to erase the corresponding unacceptable concept
cu from the weights of the original, unaligned model, f .
We are specifically concerned with CRTs that modify the
weights of the UNet, ϵθ, since this is a common backbone
in both T2I and I2I models. We denote f protected by a
CRT as the aligned model, fCRT .

In this work, we focus on three CRTs: Moderator
(MOD) [35], Unified Concept-Editing (UCE) [6], and Mass
Concept Erasure (MACE) [20].

MOD [35] uses task vectors [11] to remove the weights
corresponding to generating xu, thus causing cu to be re-
placed. Specifically, they optimize θnew = θ − scale × τu,
where θnew are the new weights of the UNet, and τu
is the task vector corresponding to cu. This task vector
is calculated by first overfitting ϵθ such that it is more
prone to generating the unacceptable concept, and using
this to identify and modify the weights responsible for this
unacceptable generation.

UCE [6] modifies the cross-attention layers of ϵθ to min-
imize the influence of cu, without changing other concepts.
Their optimization minimizes W in:

LUCE =
∑

cu∈Cu,ca∈Ca

||W × cu −W ∗ × ca||22

+
∑
c∈S

||W × c−W ∗ × c||22

where W ∈ θ, W ∗ ∈ θ∗ are the parameters of the new and

frozen cross-attention layers in ϵθ, and frozen original UNet3
ϵθ∗ , Cu and Ca are the spaces of pre-defined unacceptable
and acceptable concepts, and S is a set of concepts for which
to preserve utility.

MACE [20] also modifies the UNet’s cross-attention
layers, but they minimize the following optimization with
respect to W :

LMACE =

n∑
i=1

||W ∗ × efi −W × egi ||
2
2

+λ
∑
c∈S

||W ∗ × c−W × c||22

Here, efi represents the embedding of a word that co-
occurs with cu, while egi is the embedding of the same word
when cu is replaced with a related term (e.g. a celebrity’s
gender, if cu is a celebrity). Here λ ∈ R+ is a hyperparam-
eter.

2.5. Notion of "Erasing" in CRTs

Since the UNet, ϵθ, is a common backbone in both T2I
and I2I settings, a CRT that attempts to erase the concept
from the the weights of ϵθ should prevent unacceptable
concept generation in both settings, regardless of the input.
This is because, as explained in Sec. 2.1.4, the UNet of the
diffusion model (1) has awareness of the original image from
which Gaussian noise was derived (which in the I2I setting,
refers to the Gaussian noise from inversion), and (2) it is
trained to approximate the space of images starting from this
noise. Thus, erasing the weights corresponding to unaccept-
able concept generation should prevent unacceptable images
from being generated even in reconstruction, where an unac-
ceptable input image is provided. If unacceptable concepts
continue to be generated, then unacceptable images persist
in the conditional distributions parametrized the diffusion
model, pθ(xt−1 | xt), thus the weights corresponding to
their generation must also persist.

3. Exploring Concept Erasure in CRTs

Our goal is to evaluate whether an unacceptable concept
cu has been truly erased from an aligned model, fCRT .
We will demonstrate that the state-of-the-art CRTs, MOD,
MACE, and UCE do not erase cu by showing that unac-
ceptable images can be reconstructed from models aligned
by these CRTs. We will discuss our datasets (Sec. 3.1),
experiment configurations (Sec. 3.2), and metrics (Sec. 3.3).

3.1. Datasets

Following prior work [4], [7], [35], we prompt a Stable
Diffusion model (Stable Diffusion-XL-Base-1.0 (SDXL)4 in

3. A frozen version of a model is identical to the original (unfrozen)
model, however, its parameters are not updated during optimization.

4. stabilityai/stable-diffusion-xl-base-1.0
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our case) to obtain a large number of high-quality images
containing unacceptable concepts. We focus on 3 groups
of concepts—offensive (nudity), copyrighted (Grumpy cat,
R2D2), and celebrity-likeness (Angelina Jolie, Taylor Swift,
Brad Pitt, Elon Musk, Donald Trump, Joe Biden)—that were
used in prior work [4], [7], [12], [20], [35], [37], [38],
[42]. In particular, we generate 50 images per concept by
prompting SDXL with the text An image of cu (e.g., "An
image of a nude person"). Alternatively, we could have used
real images, however, no such large scale datasets exist for
the offensive and copyrighted concepts, and for celebrity-
likenesses, only the CelebA dataset exists [18], but this is
unsuitable since celebrity names are not included. Hence,
we opted to use a T2I model (that has not been modified
by a CRT) to systematically produce a large dataset.

3.2. Experiment Configuration

After collecting the images, we provide them as input to
the reconstruction pipeline. As stated, we apply the CRTs
MOD [35], MACE [20], and UCE [6] to its underlying dif-
fusion model beforehand, thus defining the aligned model,
fCRT . We also evaluate the pipeline with the unaligned
model, f , as a baseline. In order to perform reconstruction,
we set c = ∅. For each of the CRTs, we use the exact
implementations in their respective GitHub repositories 567,
and we use SD v1.5 as the backbone, as done in these works.
We repeat all of the experiments 5 times and report the mean
and standard deviations in Sec. 3.4.

3.3. Metrics

After generating the results, we evaluate them using
three metrics. Two of these metrics, LPIPS score [44] and
reconstruction error, evaluate reconstruction quality from
complementary perspectives: LPIPS captures perceptual
similarity at a semantic level, while reconstruction error
provides a pixel-wise comparison. Using both allows for
a more comprehensive assessment of how faithfully the
reconstructed image preserves the original content, ensuring
that subtle perceptual differences and low-level discrepan-
cies are both taken into account. The third metric, CLIP
score, measures unacceptability, which is not captured by
the other metrics. We explain each of these in further detail.

LPIPS score is a standard metric used in past editing
work [3], [10], [14], [21] which measures the L2 distance
between the latent representations of xin and xout inside
a vision model. We follow the guidance of the LPIPS
authors and use AlexNet as the vision model [44]. The
range of an LPIPS score is between 0 and 1, where a
lower LPIPS score denotes greater semantic equivalence. It
should be noted that LPIPS score is more meaningful when
it is used to compare to a baseline; fCRT should produce

5. https://github.com/DataSmithLab/Moderator
6. https://github.com/rohitgandikota/unified-concept-editing
7. https://github.com/Shilin-LU/MACE

reconstructions, xout, of higher LPIPS score compared to
f .

Reconstruction error is the (normalized) pixel-to-pixel
difference between xin and xout:

|| xout

|xout|
− xin

|xin|
||2

A value of 0 denotes identical images, and the value√
3 ∗ 512 ∗ 512 =

√
3 ∗ 512, where 3 is the number of

channels and 512 is the images’ height and width, denotes
maximal difference. Once again, fCRT should have a large
reconstruction error, relative to f , when xin contains the
unacceptable concept that the CRT aims to remove.

CLIP score measures unacceptability by calculating the
cosine similarity between a CLIP text embedding, and a
CLIP image embedding. Following prior work [4], [6], [20],
[35], we use this to denote the semantic equivalence between
the text cu and the reconstruction xout. Formally, the CLIP
score is calculated as

cos(ϕx(xout), ϕp(c
u))

where cos(·) denotes cosine similarity, and ϕx and ϕp are the
CLIP image encoder and CLIP text encoder, respectively.
A CLIP score greater than or equal to 0.25 denotes that
cu and xout are highly correlated [3], which means xout

contains the unacceptable concept cu. Thus, effective CRTs
should achieve low CLIP score.

3.4. Results

We present the results of our experiment in Table 2.
Then, we further analyze the reasons for our results in
Sec. 3.5.

For a CRT to be considered effective, it should enable its
aligned model to achieve an LPIPS score and reconstruction
error higher than that from the unaligned model (NONE),
and the CLIP score should be lower. In Table 2, we find
that for every CRT, the metrics fall into 2 cases: (1) they are
within the standard deviation of the metrics from NONE, or
(2) they are able to reconstruct xin better than NONE. This
indicates that CRTs have a negligible or even detrimental
effect in preventing the reconstruction of xu, as shown in
Fig. 2.

For many of the results, the LPIPS and Recon values
were lower than those from NONE, and the CLIP scores
were greater, with at least one of these metrics being beyond
the standard deviation from NONE. These concepts and
CRTs are Angelina Jolie for all CRTs, Taylor Swift for
MOD and MACE, Brad Pitt and Elon Musk for all CRTs,
Donald Trump for MOD and MACE, and Joe Biden for
all CRTs. This directly contradicts the intended role of
a CRT, as the removal of cu should make reconstructing
xu more difficult. This effect may arise because diffusion
models rely on a different sets of weights in the T2I and I2I
settings. We further investigate this phenomenon in Sec. 3.5.
The only cases where the CRT was somewhat successful
in preventing reconstruction were MOD for Angelina Jolie
and UCE for Taylor Swift. This is evidenced by higher
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Figure 2: Diffusion-based image generation pipeline. An input image is encoded into a latent space via a VAE. Standard
Gaussian noise is added as part of the DDPM inversion, followed by denoising using a UNet enhanced with various state-
of-the-art CRTs. Despite using CRTs, when the input image contains an unacceptable concept, it is not replaced during
reconstruction

TABLE 2: Reconstruction results when a CRT (MOD, MACE, or UCE) is applied, compared to the baseline without CRT
(NONE). LPIPS scores range from 0 (identical) to 1 (maximal different). Recon ranges from 0 (every pixel is identical) to√
3∗512 (every pixel is maximally different). CLIP scores at or above 0.25 indicate semantic equivalence [3]. We highlight

in green the cases where a CRT is able to prevent unacceptable reconstruction, as denoted by LPIPS and Recon being
higher or CLIP being lower than that from NONE, beyond the standard deviation.

NONE MOD MACE UCE
Concept LPIPS Recon CLIP LPIPS Recon CLIP LPIPS Recon CLIP LPIPS Recon CLIP

Celebrity- likeness

Angelina Jolie 0.13 ± 0.02 82.20 ± 2.31 0.25 ± 0.02 0.15 ± 0.02 117.30 ± 1.78 0.23 ± 0.02 0.09 ± 0.02 47.78 ± 2.14 0.25 ± 0.01 0.09 ± 0.01 47.78 ± 1.95 0.25 ± 0.00

Taylor Swift 0.13 ± 0.02 83.20 ± 1.64 0.23 ± 0.02 0.11 ± 0.02 56.61 ± 2.45 0.24 ± 0.02 0.11 ± 0.02 56.54 ± 1.23 0.24 ± 0.02 0.15 ± 0.01 103.45 ± 2.91 0.24 ± 0.01
Brad Pitt 0.15 ± 0.02 100.19 ± 2.76 0.26 ± 0.02 0.12 ± 0.03 69.39 ± 1.23 0.27 ± 0.00 0.12 ± 0.01 69.33 ± 2.58 0.27 ± 0.02 0.12 ± 0.01 69.33 ± 1.37 0.27 ± 0.02
Elon Musk 0.20 ± 0.05 157.29 ± 1.93 0.26 ± 0.02 0.15 ± 0.01 110.23 ± 2.91 0.27 ± 0.00 0.17 ± 0.00 80.55 ± 1.71 0.28 ± 0.00 0.17 ± 0.02 80.58 ± 3.46 0.28 ± 0.01
Donald Trump 0.16 ± 0.03 109.41 ± 1.28 0.24 ± 0.01 0.14 ± 0.01 85.21 ± 2.31 0.24 ± 0.00 0.14 ± 0.02 85.21 ± 2.19 0.24 ± 0.01 0.16 ± 0.01 112.69 ± 1.95 0.23 ± 0.00
Joe Biden 0.15 ± 0.02 148.25 ± 2.19 0.24 ± 0.02 0.10 ± 0.01 83.89 ± 1.94 0.26 ± 0.00 0.10 ± 0.01 83.94 ± 1.71 0.26 ± 0.02 0.15 ± 0.01 136.57 ± 1.95 0.24 ± 0.01

Offensive

Nudity 0.01 ± 0.01 12.19 ± 1.21 0.24 ± 0.01 0.01 ± 0.00 12.20 ± 1.01 0.24 ± 0.01 0.01 ± 0.01 12.22 ± 1.02 0.24 ± 0.00 0.01 ± 0.00 12.20 ± 1.02 0.24 ± 0.01

Copyrighted

Grumpy cat 0.03 ± 0.02 33.04 ± 0.89 0.25 ± 0.01 0.03 ± 0.00 33.09 ± 0.55 0.25 ± 0.01 0.03 ± 0.01 33.00 ± 0.79 0.25 ± 0.00 0.03 ± 0.00 33.05 ± 0.55 0.25 ± 0.00
R2D2 0.03 ± 0.00 37.96 ± 0.66 0.25 ± 0.00 0.03 ± 0.00 38.10 ± 0.51 0.24 ± 0.01 0.03 ± 0.00 38.05 ± 10.44 0.25 ± 0.00 0.03 ± 0.00 37.96 ± 0.46 0.25 ± 0.00

LPIPS and Recon values, and a lower CLIP score for
Angelina Jolie, with the Recon value notably exceeding
the standard deviation of the Recon value from NONE.
However, visually, the unacceptable concepts of Angelina
Jolie and Taylor Swift were still present since the faces in
xin and xout were nearly identical to the human eye, though
with less prominent skin lines and slight skin tone changes.
See Table 3 for some examples of reconstructions. All the
CRTs and concepts yielded similar results.

3.5. Discussion

We conjecture that a reason why CRTs fail to erase
concepts is that they are too dependent on the text prompt
rather than the intermediate generated latents, zt, which
actually contain the unacceptable concept. For example,
MACE and UCE alter the cross-attention layers of the
UNet in f , which are designed to fuse text information
with zt. Hence, our results indicate the possibility that cross-
attention layers allocate more attention to the text rather than
on the intermediate latent containing cu. On the other hand,

although MOD uses task vectors to remove cu from all of
the weights, a significant part of calculating task vectors
involves over-fitting the model on unacceptable images, xu,
and their corresponding text prompts. Thus, MOD has an
indirect reliance on text, causing it to fail in preventing the
generation of cu in the I2I setting. Since the prompt we use
is empty (“”), there is no useful textual information that
the CRT could use, thus causing them to fail. Overall, we
leave a deeper investigation into the properties of I2I models
and their interactions with CRTs—including why modifying
certain weights leads to more successful reconstructions—as
future work.

4. CRT using Editing

We have shown that CRTs attempting to erase concepts
from the weights of diffusion models can fail to prevent un-
acceptable concept generation in the I2I setting. Therefore,
we opt to explore different CRT approaches. One alternative
approach is to replace unacceptable concepts by directly
editing the output images to make them acceptable [25], [41]
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TABLE 3: Examples of reconstruction with different CRTs (NONE, MOD, MACE, and UCE)

Celebrity (→) Angelina Jolie Taylor Swift Brad Pitt Elon Musk Donald Trump Joe Biden

Input

CRT (↓) Output

NONE

MOD

MACE

UCE

Figure 3: Concept replacement using an image editing technique (SDEDIT). When the unacceptable concept detector flags
a reconstructed image, Gaussian noise is added to the image as part of the SDEDIT mechanism. Concurrently, an editing
prompt—tailored to the original input—is encoded through a text encoder. This encoded prompt, coupled with the noisy
image, guides the denoising process to produce a final output image free of unacceptable concept.

(see Sec. 2.3). This can be done either as pre-processing or
post-processing. Since these methods do not involve modi-
fying the I2I model, they are agnostic to the underlying I2I
model. However, as we will explore, using these techniques
to develop a good CRT is non-trivial.

4.1. SDEDIT as an Editing Technique

Among the methods proposed in the literature for image
editing, SDEDIT [21] has garnered attention for its effective-
ness in executing concept replacement tasks by modifying
images according to provided text prompts (see Fig. 3).
Some prior works have used SDEDIT to generate training
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TABLE 4: SDEDIT as the CRT using Different Prompts

Prompt Input Image Output Image

Prompt 1: Random man.

Prompt 2: Random man, keep the exact pose, clothing,
hair color and style, lighting, overall scene composition,
and image quality identical to the original.

Prompt 3: Photorealistic portrait of a well-dressed man
wearing a sleek gray suit and white shirt in a neutral
studio background. Keep the exact pose, clothing, hair
color and style, lighting, overall scene composition, and
image quality identical to the original.

data, specifically by editing unacceptable images to get
their acceptable counterparts [25], [39]. Thus, a strawman
approach using SDEDIT involves substituting celebrity iden-
tities with a suitable replacement specified via text. For
instance, the unacceptable concept Joe Biden can be feasibly
substituted by the more general and acceptable concept
a man. However, while SDEDIT is effective in concept
replacement, it may inadvertently alter other acceptable as-
pects of an image. Such unintended changes are particularly
problematic in I2I settings where precise preservation of
acceptable features is critical. To minimize these unintended
effects, prompts must be highly detailed and precise. Table 4
illustrates this by showing various outputs from SDEDIT
with increasingly detailed prompts. Each successive prompt
becomes more specific and reduces unintended alterations
by focusing primarily on changing identity-related aspects
(in this case, the face) to that of a random individual. This
underscores the importance of crafting meticulous and spe-
cific prompts when using prompt-based editing techniques
as a CRT. This can be achieved using large Vision-Language
Models (VLMs) capable of analyzing images and generating
appropriate prompts that describe them. However, this ap-
proach can be highly inefficient, as it substantially increases
the computational load and complexity within existing I2I
environments [43]. It does not scale because an ideal text
prompt needs to be crafted for each unacceptable concept.
For example, an ideal prompt to replace Brad Pitt may not
be ideal to replace Angelina Jolie. Furthermore, it has been
observed that I2I models perform poorly when provided
with overly detailed prompts [22].

4.2. Notion of Fidelity

Maintaining acceptable concepts while removing unac-
ceptable ones is crucial. We call this notion fidelity. For
example, for images, maintaining fidelity can correspond to
preserving the background details since these are typically
irrelevant to the unacceptable concept. Fidelity is important
because it is difficult to distinguish between a malicious
user who intentionally wants to trigger the generation of
unacceptable concepts, and a benign user who triggers it
accidentally. Ideally, in the former case, we could block
the entire generation outright, but in the latter case, if a
user accidentally prompts the generation of unacceptable
concepts, it is preferable for the model to selectively modify
those concepts in the output rather than rejecting the entire
response outright. Hence, we opt to preserve fidelity for both
types of users rather than infer a user’s intent. To the best of
our knowledge, none of the existing CRTs in the literature
explicitly consider fidelity in corrected output images as a
crucial metric.

Fidelity can be measured using LPIPS. But LPIPS has
its own limitations: while it can be used to compare two
CRT techniques, it is unclear how to use it as a standalone
metric to determine whether a given CRT preserves fidelity.
We use NONE as the baseline. In theory, a technique whose
LPIPS is closer to that of NONE potentially provides greater
fidelity. However, since an effective CRT must remove the
unacceptable concept, its LPIPS will necessarily be higher
than NONE. Simply removing the unacceptable concept,
e.g., by blacking it out, or replacing it with a random image,
will result in high effectiveness but poor fidelity. Therefore,
ideally, we require a CRT to output an image which is as
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visually close to NONE as possible, while still achieving
high effectiveness. In contrast, Recon is not a good measure
of fidelity because it is more sensitive to changes in the
pixels rather than semantic changes; even a small rotation
can drastically change the reconstruction error between two
images.

4.3. Drawbacks of Editing-based CRTs

We saw in Sec. 4.1 that editing-based CRTs require
highly detailed prompts in order to preserve fidelity. Fur-
ther, the prompts need to be tailored for each unacceptable
concept, hampering scalability. If it was possible to identify
the essential characteristics of an unacceptable concept, then
the editing technique can “surgically" alter only those char-
acteristics in order to simultaneously achieve both fidelity
and effectiveness.

Prior research has demonstrated the effectiveness of tar-
geted editing techniques to localize and manipulate immoral
visual content in T2I models [24]. Their work focuses on
replacing concepts such as nudity, violence, and illegal or
controversial acts. These approaches successfully blur or
replace objectionable content while preserving the overall
structure and semantics of the original image. This can
also be adapted to I2I setting. However, despite these ad-
vances, identity replacement (specifically targeting recogniz-
able celebrity faces or likenesses) remains underexplored. In
this work, we address this gap by proposing a targeted edit-
ing CRT designed specifically for the removal of celebrity
likenesses from generated images. Unlike previous methods
that aim to replace a variety of concepts, our approach
focuses on preventing potentially unwanted depictions of
individual identities while preserving other visual details in
the image.

5. Targeted Editing CRT: ANTIMIRROR

Drawing from prior research that identifies specific fa-
cial features essential for altering identity, without dras-
tically affecting appearance [5], [28], [33], we propose a
targeted editing method ANTIMIRROR, explicitly designed
for fidelity-preserving celebrity replacement. ANTIMIRROR
systematically adjusts specific facial attributes, such as nose
alignment, bone structure, lip shape, and eye dimensions,
which collectively ensure that the resulting images visually
resemble the original inputs while sufficiently replacing the
original identities.

Our proposed approach functions as a post-processing
step and comprises four major components: Face Extraction,
Unacceptable Concept Check, Mask Generation & Mask
Editing, and Face Blending (see Fig. 4). As the unacceptable
concepts targeted in our work are exclusively celebrity-
likenesses, ANTIMIRROR restricts editing exclusively to fa-
cial regions. This significantly enhances fidelity by preserv-
ing the background and other characteristics of the image.
The extracted facial images then undergo an unacceptable-
concept-detection step to ensure that editing only occurs if
a celebrity identity is detected. This is implemented using

a state-of-the-art detector, Espresso [4]. Once identified,
a mask delineating the aforementioned facial regions is
generated and subsequently edited. The final facial image
is reconstructed using CelebHQ-based mask editing [13],
followed by blending with the original background to en-
hance fidelity, with no unacceptable concepts present. We
describe each component of the pipeline in detail below:
Face Extraction. Among several available methods in the
literature, we utilize the facenet_pytorch8 library to
detect and extract faces from images. Mathematically, the I2I
output image xout is segmented into a face region xf

out and
a background region xb

out, with minimal overlap to ensure
that editing operations are restricted strictly to xf

out.
Unacceptable Concept Check. We employ Espresso [4],
which efficiently identifies specific celebrity identities within
images and produces a binary output C(xf

out) indicating the
presence (1) or absence (0) of a celebrity identity, cu. This
ensures that editing only occurs when necessary.
Mask Generation and Mask Editing. Upon detecting the
unacceptable concept, we generate a facial feature mask
M using the CelebHQ segmentation module, identifying
regions such as eyes meyes, nose mnose, chin mchin, and
lips mlips. The system includes a graphical user interface
(GUI) that allows users to directly modify the mask through
annotation using a trackpad. Since manual GUI-based edits
are not feasible in the context of (automatic) context re-
placement, we automate modifications to these masks using
morphological operations (such as dilation) and geometric
transformations (using the cv2 library9). Specifically, dila-
tion is applied to masked regions to slightly expand or alter
their boundaries, while geometric transformations adjust the
bone structure and alignment of facial features. The edited
mask M ′ and the original facial image xf

out are then passed
to a trained UNet, producing a modified image xf

out

′
.

Face Blending. Finally, the edited facial image xf
out

′
is

seamlessly integrated with the original background xb
out via

Poisson blending by solving the Poisson equation:

min
f

∫∫
Ω

∣∣∣∇f −∇xf
out

′∣∣∣2 with f |∂Ω = xb
out|∂Ω, (13)

where Ω denotes the facial region, and ∂Ω represents the
boundary pixels. This blending approach ensures a high-
quality reconstruction that preserves fidelity.

This proposed approach, by design, operates indepen-
dently of input image specifics, ensuring broad applicability.
Unlike SDEDIT, which requires a carefully constructed
prompt explicitly tailored to the input image, our proposed
ANTIMIRROR does not depend on prompts. Therefore,
ANTIMIRROR is applicable to any celebrity likeness (and
more generally, any context where the unacceptable concept
consists of the identity of a specific person). Furthermore,
since ANTIMIRROR does not attempt to erase unacceptable
concepts by modifying the weights of the diffusion model,
it avoids the challenges associated with identifying and

8. https://github.com/timesler/facenet-pytorch
9. https://github.com/opencv/opencv
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Figure 4: Concept replacement with a targeted editing approach. When a face is detected in the reconstructed image, it
is isolated from the background, and passed through an unacceptable concept detector. If the detector flags the image, an
image-to-mask generator constructs a mask, which is then edited to modify the face. The modified face is then composited
back into the background using Poisson blending.

altering the correct weights — a task shown to be difficult
in Sec. 3.5. This systematic pipeline effectively replaces cu

with minimal image alteration, achieving the desired balance
between effectiveness and fidelity.

6. ANTIMIRROR Results

We first use CLIP and LPIPS scores to evaluate the
effectiveness and fidelity, respectively, of ANTIMIRROR
and SDEDIT. In order to use SDEDIT as CRT, we em-
ployed specific prompts for celebrities. For instance, for
all male celebrities (Brad Pitt, Elon Musk, Donald Trump,
Joe Biden), we used the editing prompt “random man”,
and for female celebrities (Angelina Jolie, Taylor Swift), we
used “random woman”. This strategy was adopted so that
SDEDIT could replace the unacceptable concept with an
acceptable one.

We present the results in Table 5 & 8.

6.1. Effectiveness

SDEDIT exhibits a high degree of effectiveness, as
demonstrated by CLIP values near 0.15 which are signifi-
cantly below the threshold of 0.25. This clearly validates the
effectiveness of SDEDIT. Conversely, ANTIMIRROR yields
CLIP scores comparable to the NONE baseline, suggesting
limited effectiveness in concept removal.

We revisit the suitability of CLIP scores as a metric
for effectiveness of CRTs. The higher CLIP scores for our
targeted editing method can be attributed to the inherent
characteristics of CLIP itself. CLIP score measure semantic
alignment based on global image-text correspondence and
are trained to capture broad conceptual coherence [34]. In
our targeted editing approach, only specific features within
the image are altered rather than the image as a whole. Con-
sequently, CLIP may yield higher scores for targeted edits
of celebrity likenesses because targeted edits intentionally
leave features unrelated to personal identity intact (e.g., a

TABLE 5: Effectiveness at removing celebrity likenesses
for NONE (baseline with no CRT applied), SDEDIT, and
ANTIMIRROR. CLIP scores above 0.25 indicate higher
semantic equivalence. We bold the columns with the lowest
CLIP score.

Celebrity NONE SDEDIT ANTIMIRROR

Angelina Jolie 0.25± 0.02 0.13 ± 0.03 0.24± 0.01
Taylor Swift 0.23± 0.02 0.11 ± 0.01 0.22± 0.01
Brad Pitt 0.26± 0.02 0.12 ± 0.02 0.23± 0.02
Elon Musk 0.26± 0.02 0.17 ± 0.02 0.27± 0.01
Donald Trump 0.24± 0.01 0.15 ± 0.02 0.25± 0.01
Joe Biden 0.24± 0.02 0.17 ± 0.01 0.27± 0.01

person’s typical clothing). A fair metric of CRT effectiveness
must be capable of capturing this aspect.

Finding such a metric is difficult in general. However,
one possibility can be specialized classifiers that are trained
to detect an unacceptable concept (thus ignoring irrelevant
features). For celebrity likenesses, such a classifier exists:
the Giphy Celebrity Detector10. It is a multi-class classifier
to identify celebrities in images and has been used in prior
work [20]. A GCD top-1 accuracy (GCD) of 0 denotes
0% accuracy in detecting a celebrity, and 1 denotes 100%
accuracy. An effective CRT should have low GCD for its
outputs. With this new effectiveness metric, we repeated the
reconstruction experiment in Sec. 3 for celebrity concepts,
but we evaluated the output using GCD, in Table 6.

The outcomes are consistent with those obtained using
the CLIP score (see Sec. 3.4); since the GCD values are
consistently greater than 0.8, it confirms that the unaccept-
able concepts remain present, and the state-of-the-art CRTs
are ineffective.

Having established GCD as a good metric, we use it
to compare ANTIMIRROR and SDEDIT (Table 7) show-

10. https://github.com/Giphy/celeb-detection-oss
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Figure 5: Bar plots comparing NONE, SDEDIT, and ANTIMIRROR using LPIPS and GCD. A smaller value in the LPIPS
plot (left) indicates higher fidelity and a smaller value in the GCD plot (right) indicates higher effectiveness. Our method
achieves a better trade-off, balancing identity replacement (effectiveness) with fidelity.

TABLE 6: Validating GCD as a metric for CRT effectiveness
for celebrity likenesses

Celebrity NONE MOD MACE UCE

Angelina Jolie 0.92± 0.01 0.86± 0.02 1.00± 0.02 1.00± 0.01
Taylor Swift 0.94± 0.01 1.00± 0.01 0.98± 0.02 0.88± 0.03
Brad Pitt 0.94± 0.02 0.99± 0.01 0.99± 0.02 0.99± 0.03
Elon Musk 0.84± 0.03 0.94± 0.01 1.00± 0.00 1.00± 0.01
Donald Trump 0.89± 0.00 0.96± 0.03 0.96± 0.01 0.90± 0.01
Joe Biden 0.84± 0.01 0.96± 0.01 0.97± 0.01 0.86± 0.02

TABLE 7: GCD comparison across celebrities when no CRT
is applied (NONE), and when SDEDIT or ANTIMIRROR are
used. GCD identifies celebrities in images by measuring top-
1 accuracy, with values between 0 (no celebrity detected,
best effectiveness) and 1 (celebrity detected, no effective-
ness). We underline the columns where ANTIMIRROR and
SDEDIT have comparable GCD values.

Celebrity NONE SDEDIT ANTIMIRROR

Angelina Jolie 1.00± 0.00 0.00± 0.00 0.23 ± 0.01
Taylor Swift 0.99± 0.01 0.00± 0.00 0.05 ± 0.01
Brad Pitt 0.97± 0.02 0.00± 0.00 0.00 ± 0.00
Elon Musk 0.99± 0.01 0.00± 0.00 0.03 ± 0.00
Donald Trump 0.99± 0.01 0.00± 0.00 0.00 ± 0.00
Joe Biden 0.99± 0.01 0.02± 0.01 0.05 ± 0.01

ing that ANTIMIRROR is significantly effective in remov-
ing celebrity likenesses (compared to the baseline NONE)
and it is comparable to SDEDIT in most cases. The only
case where ANTIMIRROR is significantly less effective
than SDEDIT is Angelina Jolie. But even in this case, it
significantly outperforms other state-of-the-art CRTs from
Table 6 (lowest GCD = 0.86). Therefore, we conclude that
ANTIMIRROR is an effective CRT.

TABLE 8: LPIPS comparison across celebrities when no
CRT is applied (NONE), and when SDEDIT or ANTIMIR-
ROR are used. LPIPS score ranges from 0 (identical) to 1
(maximal difference).

Celebrity NONE SDEDIT ANTIMIRROR

Angelina Jolie 0.03 ± 0.02 0.51 ± 0.01 0.37 ± 0.02
Taylor Swift 0.06 ± 0.01 0.61 ± 0.02 0.38 ± 0.00
Brad Pitt 0.04 ± 0.02 0.54 ± 0.00 0.32 ± 0.01
Elon Musk 0.05 ± 0.00 0.37 ± 0.01 0.28 ± 0.02
Donald Trump 0.04 ± 0.01 0.48 ± 0.02 0.32 ± 0.00
Joe Biden 0.04 ± 0.02 0.61 ± 0.00 0.40 ± 0.01

6.2. Fidelity

As we discussed in Sec. 4.2, LPIPS can be used to com-
pare the fidelity of two CRTs. Since NONE will yield a small
LPIPS score indicating minimal change, the fidelity of two
CRTs can be compared based on how close their LPIPS
scores are to the NONE baseline. The fidelity achieved
by ANTIMIRROR is notably superior to that of SDEDIT
(see Table 8) since the LPIPS scores for ANTIMIRROR
are consistently lower than or comparable to SDEDIT.
Furthermore, Fig. 5 shows that ANTIMIRROR achieves a
better balance between fidelity and effectiveness; the LPIPS
bars for ANTIMIRROR are consistently lower than those
for SDEDIT, while the GCD bars for ANTIMIRROR and
SDEDIT are comparable in most cases.

6.3. Visual Examples Supporting Fidelity of AN-
TIMIRROR

In Table 9, we present visual examples to illustrate how
targeted editing in ANTIMIRROR modifies only the neces-
sary regions—specifically selected facial characteristics—to
remove identity, without affecting other acceptable concepts.
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TABLE 9: Examples of reconstruction with different CRTs (NONE, SDEDIT, and ANTIMIRROR)

Celebrity (→) Angelina Jolie Taylor Swift Brad Pitt Elon Musk Donald Trump Joe Biden

Input

CRT (↓) Output

NONE

SDEDIT

ANTIMIRROR

The examples also illustrate how SDEDIT sacrifices fidelity
for effectiveness, while ANTIMIRROR balances both.

For instance, in the image of Joe Biden, SDEDIT not
only replaces the identity but also unnecessarily alters the
background, hairstyle, and tie color—elements that are ac-
ceptable and should not have been changed. In contrast, AN-
TIMIRROR preserves them, demonstrating superior fidelity
while still replacing the celebrity identity.

SDEDIT transforms images of Taylor Swift and Angelina
Jolie into hand-sketched cartoon-like versions. In contrast,
ANTIMIRROR carefully retains characteristics unrelated to
identity while effectively replacing those that do.

Remarkably, in the case of Brad Pitt, SDEDIT intro-
duces unintended artifacts, such as a hat, exaggerates aging
effects, closes the eyes, and alters the posture. In contrast,
ANTIMIRROR precisely preserves such aspects, demonstrat-
ing superior fidelity.

Overall, these visual comparisons clearly illustrate
that ANTIMIRROR offers significant advantages over
SDEDIT by effectively replacing unacceptable celebrity
features while preserving essential, acceptable visual de-
tails—thereby ensuring both effectiveness and high fidelity.

7. Related Work

Additional CRTs. We focused on state-of-the-art CRTs
that modified weights in the diffusion model’s UNet. How-

ever, there are other CRTs which alter different parts of
the diffusion model. For instance, several of them remove
unacceptable concepts from the CLIP text encoder of a T2I
model. In this way, if a text prompt contains an unacceptable
concept, either explicitly or implicitly, it will be adjusted
such that the unacceptable concept is replaced. Yoon et
al. [40] achieve this by projecting CLIP text embeddings
away from a latent space of unacceptable concepts as a
pre-processing step. Similarly, Wang et al. [36] and Li et
al. [15] identify and remove unacceptable concepts from the
hidden states of the CLIP text encoder when processing
prompts. In contrast, Zhang et al. [45] adversarially train
the CLIP text encoder to remove unacceptable concepts
such that texts containing the concept can no longer be used
to generate unacceptable images. We do not evaluate these
CRTs because in our setting, the prompt supplied to an I2I
model is empty (“”). Since these CRTs do not analyze any
image data, they are ineffective at preventing reconstruction
in the I2I setting.

In addition, there are some CRTs that focus on removing
a single class of concepts. Park et al. [25] erase offen-
sive concepts from the weights of the diffusion model by
adapting direct preference optimization for unlearning. In
contrast, Li et al. [17] focus on modifying the self-attention
layers of the UNet to remove offensive concepts. In Sec. 2.4,
we opted to analyze three state-of-the-art CRTs configured
to support all concept classes in this paper (offensive, copy-
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right, and celebrity-likeness). But we confirmed that the
CRTs in Park et al. [25] and Li et al. [17], built to replace
offensive concepts (nudity), also failed to erase it. Due to a
lack of space, we present these results in the full version of
this paper.

Other Editing Methods. There are other editing meth-
ods that can be used for inversion and reconstruction. Brack
et al. [3] propose LEDITS++, a state-of-the-art method that,
unlike DDPM inversion, solves the DDPM sampling prob-
lem using a second-order stochastic differential equation
solver, DPM-Solver++ [19], and formulates their inversion
process accordingly. We present the results of our experi-
ment with LEDITS++ in the full version of our paper. They
are similar to those from DDPM inversion; the metrics from
reconstruction with aligned models were nearly identical to
metrics from the unaligned model, where no CRT was used.

8. Applications and Extensions to ANTIMIR-
ROR

Filtering more Concepts. Currently, ANTIMIRROR
successfully replaces celebrity concepts. In future work,
we plan to extend ANTIMIRROR to also address offensive
and copyrighted concepts. This would involve isolating the
regions of the image associated with these concepts, eval-
uating them using an unacceptable concept detector, and
applying targeted editing to replace them while preserving
visual fidelity. In general, as long as the unacceptable con-
cept can be detected via the pixels of the image, then it can
be replaced with targeted editing.

Other Qualities of a Good CRT. So far, we have shown
that ANTIMIRROR is both effective and fidelity-preserving
for unacceptable concepts. However, a good CRT should
also preserve utility, by allowing acceptable concepts to be
generated, and be robust against adversaries that attempt
to evade it. We believe ANTIMIRROR will also preserve
utility, as it relies on both a state-of-the-art face detector and
unacceptable concept detector for those faces. Furthermore,
to ensure robustness against perturbation-based attacks that
aim to evade ANTIMIRROR, adversarial noise purification
techniques, such as ADBM [16], could be employed as a
pre-processing step.

9. Conclusion

We demonstrated that concept replacement techniques
(CRTs) that claim to erase unacceptable concepts fail to
do so since images with these concepts are able to be
reconstructed in the I2I setting, despite their effectiveness
in the T2I setting. Motivated by this, we recognized that the
fidelity of corrected unacceptable images is an important
property, along with effectiveness, for a good CRT. Hence
we approach developing a new CRT, ANTIMIRROR, that is
able to better balance these aspects. However, identifying
a suitable metric to evaluate fidelity and effectiveness
across all concepts remains challenging—highlighted by
the reliance on a baseline for LPIPS scores and the

need for a specialized celebrity classifier when dealing
with celebrity-likeness concepts. Our work represents an
initial step toward addressing these challenges, laying the
groundwork for future advancements.
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Appendix
We present the results of our reconstruction experiment

for the CRTs PARK ET AL. and LI ET AL. in Table 10.
These are configured for offensive concepts, hence we test
on nudity only.

TABLE 10: Reconstruction results when a CRT (PARK ET
AL., LI ET AL.) is applied, compared to the baseline without
CRT (NONE). LPIPS scores range from 0 (identical) to 1
(maximal different). Recon ranges from 0 (every pixel is
identical) to

√
3 ∗ 512 (every pixel is maximally different).

CLIP scores at or above 0.25 indicate semantic equiva-
lence [3].

Offensive: Nudity

CRT LPIPS Recon CLIP

NONE 0.01 ± 0.01 12.19 ± 1.21 0.24 ± 0.01

PARK ET AL. 0.01 ± 0.00 12.21 ± 0.68 0.24 ± 0.01
LI ET AL. 0.01 ± 0.01 12.20 ± 0.79 0.24 ± 0.00

We also conduct our reconstruction experiments with
the LEDITS++ inversion method and present the results in
Table 11. Like DDPM inversion, he metrics from reconstruc-
tion with aligned models were nearly identical to metrics
from the unaligned model, where no CRT was used.
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TABLE 11: Reconstruction results when a CRT (MOD, MACE, or UCE) is applied, compared to the baseline without CRT
(NONE) for LEDITS++. LPIPS ranges from 0 (identical) to 1 (maximal different). Recon ranges from 0 (every pixel is
identical) to

√
3 ∗ 512 (every pixel is maximally different). CLIP values at or above 0.25 indicate semantic equivalence [3].

None MOD MACE UCE
Concepts LPIPS Recon CLIP LPIPS Recon CLIP LPIPS Recon CLIP LPIPS Recon CLIP

Celebrity

Angelina Jolie 0.01 ± 0.01 16.72 ± 1.93 0.25 ± 0.01 0.01 ± 0.01 16.72 ± 1.54 0.25 ± 0.02 0.01 ± 0.00 16.72 ± 2.12 0.28 ± 0.03 0.01 ± 0.00 16.72 ± 2.89 0.25 ± 0.01
Taylor Swift 0.02 ± 0.01 21.32 ± 1.67 0.24 ± 0.01 0.02 ± 0.00 21.32 ± 1.78 0.24 ± 0.01 0.02 ± 0.01 21.32 ± 1.34 0.24 ± 0.01 0.02 ± 0.00 21.32 ± 1.45 0.24 ± 0.01
Brad Pitt 0.02 ± 0.00 26.45 ± 1.31 0.27 ± 0.01 0.02 ± 0.00 26.44 ± 1.21 0.27 ± 0.00 0.02 ± 0.01 26.44 ± 1.67 0.27 ± 0.01 0.02 ± 0.00 26.44 ± 1.23 0.27 ± 0.02
Elon Musk 0.02 ± 0.01 28.41 ± 1.48 0.28 ± 0.01 0.02 ± 0.00 28.41 ± 1.14 0.28 ± 0.01 0.02 ± 0.00 28.41 ± 1.58 0.28 ± 0.01 0.02 ± 0.00 28.41 ± 1.58 0.28 ± 0.00
Donald Trump 0.02 ± 0.01 32.05 ± 1.15 0.24 ± 0.01 0.02 ± 0.00 32.05 ± 1.13 0.24 ± 0.00 0.02 ± 0.01 32.05 ± 1.17 0.24 ± 0.00 0.02 ± 0.01 32.05 ± 1.12 0.24 ± 0.01
Joe Biden 0.02 ± 0.01 34.21 ± 1.27 0.26 ± 0.01 0.02 ± 0.01 34.21 ± 1.28 0.26 ± 0.01 0.02 ± 0.00 34.21 ± 1.39 0.26 ± 0.01 0.02 ± 0.01 34.21 ± 1.24 0.26 ± 0.01

Offensive

Nudity 0.01 ± 0.01 10.83 ± 1.84 0.24 ± 0.01 0.01 ± 0.01 10.83 ± 0.64 0.24 ± 0.01 0.01 ± 0.00 10.83 ± 0.75 0.24 ± 0.01 0.01 ± 0.00 10.83 ± 0.89 0.23 ± 0.01

Copyrighted

Grumpy cat 0.02 ± 0.01 31.67 ± 1.54 0.25 ± 0.01 0.02 ± 0.01 31.67 ± 0.87 0.25 ± 0.01 0.02 ± 0.00 31.67 ± 1.12 0.25 ± 0.01 0.02 ± 0.00 31.67 ± 1.26 0.25 ± 0.00
R2D2 0.02 ± 0.01 36.47 ± 0.64 0.24 ± 0.01 0.02 ± 0.00 36.47 ± 0.69 0.25 ± 0.01 0.02 ± 0.00 36.47 ± 1.12 0.24 ± 0.01 0.02 ± 0.00 36.47 ± 0.89 0.25 ± 0.01
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