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Abstract

Recently, approaches using Deep Reinforcement Learning (DRL) have been pro-
posed to solve UAV navigation systems in complex and unknown environments.
However, despite extensive research and attention, systematic studies on vari-
ous security aspects have not yet been conducted. Therefore, in this paper, we
conduct research on security vulnerabilities in DRL-based navigation systems,
particularly focusing on GPS spoofing attacks against the system. Many recent
basic DRL-based navigation systems fundamentally share an efficient structure.
This paper presents an attack model that operates through GPS spoofing attacks
briefly modeling the range of spoofing attack against EKF sensor fusion of PX4
autopilot, and combine this with the DRL-based system to design attack sce-
narios that are closer to reality. Finally, this paper experimentally demonstrated
that attacks are possible both in the basic DRL system and in attack models
combining the DRL system with PX4 autopilot system.

Keywords: Deep Reinforcement Learning, Obstacle Avoidance, EKF, Navigation,
Sensor Spoofing, PX4, UAV

1 Introduction

Unmanned Aerial Vehicles (UAVs) refer to vehicles that can fly autonomously or be
piloted remotely. UAVs are being widely utilized across various domains, particularly
for delivery services, surveillance operations, reconnaissance missions in hazardous
regions, and agricultural monitoring [1–5]. Additionally, intelligent UAV on the bat-
tlefield has become a key point in the defense industry [6, 7]. The development of
precise sensors such as GPS and IMU, the advancement of propulsion technologies
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like motors and engines, and the evolution of estimation or control software made
the birth of UAVs possible. Recently, with the rapid advancement of artificial intelli-
gence and the increasing sophistication of UAV applications, UAVs are now expected
to perform far more complex flight maneuvers that go well beyond basic automatic
flight control. Especially, UAVs are required to perform autonomous flight in com-
plex environments with numerous obstacles, such as buildings in urban settings and
natural terrain features in hazardous areas. Recently, vision-based navigation, which
performs navigation functions in complex environments based on depth images, has
been gaining attention. Traditional autonomous operation either lacks obstacle avoid-
ance capabilities or requires prior knowledge of the shape and position of surrounding
obstacles [8–10]. However, DRL-based navigation systems allow UAVs to operate in
complex environments without any prior information. Therefore, DRL-based naviga-
tion systems are becoming central to research on autonomous UAV flight. DRL-based
navigation system for UAVs primarily utilize depth images, position and direction as
fundamental input parameters. DRL-based navigation systems are designed to per-
form two critical functions: obstacle avoidance and target-oriented navigation. Recent
research in the field of DRL-based navigation systems has converged on an efficient
architectural paradigm, which typically processes depth images through CNN layers,
followed by a concatenation layer where physical state inputs such as position and
direction are combined.

Recently, research on attacks and defenses related to adversarial attacks on these
DRL systems has been conducted [11]. While this demonstrates growing security con-
cerns about these systems, there has been little research conducted beyond this area
so far. Fault injection or sensor spoofing attack on robotic vehicles have been major
topics of interest in security research for a long time [12–17]. In [14], a attack model
and methodology were proposed to cause malfunctions in ADAS systems through
fault injection, assuming the attacker can access internal or external network sys-
tems. A fuzzing-based attack was proposed under the assumption that the attacker
can input data to all sensor inputs, including image sensors and LiDAR sensors in
[13]. [12] demonstrated that an adversarial attack for autonomous vehicle can be con-
ducted in a physical environment. While numerous attacks on sensors and inputs have
been conducted against autonomous vehicles, attack modeling for DRL-based naviga-
tion systems has not yet been researched. Therefore, from this perspective, this paper
aimed to design an attack model for sensor spoofing attacks on DRL-based systems
and experimentally prove that such attacks are feasible. This paper proposes GPS
spoofing attack scenario that is feasible within DRL-based navigation systems. While
research has been conducted on adversarial attacks against depth images in DRL-based
systems [11], research on sensor spoofing attacks targeting input values for position
and direction have not yet been carried out. Additionally, adversarial attacks based
on depth images have limitations regarding their practicality in real-world environ-
ments because the high dimensional nature of depth images, characterized by a large
number of pixels, necessitates subtle and precise alterations to individual pixel val-
ues for effective adversarial attack. Especially, there has been little research on GPS
spoofing attack for the DRL-based navigation system. Therefore, this paper analyzes
the architecture of the DRL-based system for GPS spoofing attack and systematically
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proposes attack methodologies. To consider GPS spoofing detection, this study inves-
tigates the feasible range of spoofing attacks from the perspective of UAV autopilot
system and restricts the input values which avoid detection by the spoofing detection
system in the DRL-based system model. In summary, this paper makes the following
contributions.

• This paper proposes threat scenarios and analyses the recently studied DRL-based
system for modeling GPS spoofing attacks.

• To perform GPS spoofing attack on recent UAV autopilot controller systems, attack-
ers must evade the spoofing detection mechanisms of the control system, which
limits the attacker’s input space. This paper integrates these constraints to present
a comprehensive threat attack model.

• The paper experimentally demonstrates that GPS spoofing attack on the DRL-
based navigation system are feasible even within this constrained input space.

2 Background

2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is an advanced paradigm that integrates deep
learning techniques with traditional reinforcement learning frameworks [18]. This syn-
ergistic approach enables the utilization of high dimensional data, such as images, as
state representations or observations within the reinforcement learning process. The
fundamental approach in RL starts with an intelligent agent interacting with a given
dynamic environment at each time step. At each time step t, the agent is at the cur-
rent state st decides on an action at, and in return, receives its next state st+1 and
receives a reward r(st, at) from the environment. The ultimate goal of reinforcement
learning is to maximize the cumulative sum of rewards G, which accumulates until the
end of the state sequence. γ is a factor used for discounting future rewards. Equation
1 represents the accumulated discounted rewards from the current time step t. The
goal of reinforcement learning is to find a policy that maximizes G while the agent
interacts with the environment.

Gt =

T∑
t=0

γtr(st, at). (1)

A policy is a function that outputs the action to be taken based on the current
state. The following represents the policy function.

πθ(s) = a, (2)

where θ is the parameter of the policy π, s and a are the state and action of an agent,
repectively. Fundamentally, DRL proceeds with learning to optimize the policy func-
tion from sequences of states and actions obtained by the agent in the environment.
This sequence is termed a trajectory τ , and is represented by the following equation.

τ = (s0, a0, s1, a1, ..., sT , aT .) (3)
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Policy-based reinforcement learning aims to maximize the expected value of the
cumulative reward G from these obtained trajectories. Therefore, the learning process
can be represented as follows.

J(θ) = Eτ∼pθ(τ)[

T∑
t=0

γtr(st, at)]

θ∗ = argmax
θ

J(θ)

(4)

As the target of attack for this paper, we selected a navigation system implemented
with Twin Delayed DDPG (TD3), one of the most recent DRL methodologies [19].
TD3 is essentially a DRL algorithm based on Deep Deterministic Policy Gradient
(DDPG) [20], but it addresses several of its shortcomings. TD3 is an off-policy actor-
critic algorithm which learns a policy and Q function simultaneously . Additionally,
TD3 assumes a policy function to be a deterministic. Q function outputs the expected
value when a specific action is taken in a given state. For learning Q function, TD3
uses replay buffer technique, which involves randomly extracting states, actions, and
rewards from trajectories to facilitate learning [21]. Equation 5 represents the loss
function used for learning the Q function.

L(ϕ) = E(s,a,r,s′)∼D[(Qϕ − (r + γQϕ(s
′, πθ(s

′))))2]. (5)
Modeling Q function and assuming a deterministic policy function simplify the

calculation of the gradient of the objective function J(θ).

∇θJ(θ) = ∇θ

N∑
k=0

Qϕ(sk, πθ(sk)) (6)

ϕ′ ← τϕ+ (1− τ)(ϕ+ α∇ϕL(ϕ))

θ′ ← τθ + (1− τ)(θ + α∇θL(θ))
(7)

TD3 introduces three distinctive methodologies to address the shortcomings of
deterministic policy-based methods, which include target policy smoothing, clipped
double-Q learning, and delayed policy updates [22]. The deterministic policy in DDPG
simplifies calculations but can lead to overfitting. To mitigate this issue, the algorithm
introduces clipped double-Q learning which uses two action value functions. Each Q
function is updated separately, but to prevent overfitting, the TD target is shared
using the smaller output value of the two Q functions during updates. Target policy
smoothing enhances policy stability and facilitating exploration by adding noise into
the policy actions and clipping the action. Delayed Policy Updates is the approch that
updates the policy only after the critic has converged to a certain degree rather than
updating the policy and critic at every step.

2.2 AI for UAV Navigation with Obstacle Avoidance

The conditions and goals of DRL-based navigation system are as follows:

• The system possesses knowledge solely of its target destination, lacking any
prior information about the surrounding environment, including the location and
configuration of obstacles.
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• While navigating towards its designated target position, the UAV must demonstrate
the capability to effectively circumvent obstacles.

• Utilizing depth image, relative position, and direction, the system autonomously
determines and executes appropriate control actions.

Numerous studies have focused on developing the most efficient system that satis-
fies these functionalities and conditions [11, 19, 23–27]. Recent studies predominantly
share a common structure for neural network that outputs actions, fundamentally
considering both functionality and learning efficiency. This structure involves depth
image input being processed through convolution layers for feature extraction, after
which the UAV’s physical states such as relative distance and direction are combined
with the extracted image feature in a concatenation layer. Subsequently, in the con-
catenation layer, the combined information passes through multiple linear layers to
ultimately output the action. The physical state has a significantly smaller dimension
compared to the depth image. Therefore, processing it separately is more efficient, as
combining it with the depth image during training may result in poor reflection of
this information.

Fig. 1: The basic structure commonly shared by recent studies when designing navi-
gation systems based on DRL.

2.3 Sensor Fusion and Anomaly Detection

Extended Kalman Filter (EKF) is an algorithm used to estimate the state of a system
from sensor measurements and a system’s nonlinear dynamic model [28]. EKF sensor
fusion combines sensor measurements collected from multiple sensors and estimates
the system state, which is achieved through two main processes. One process involves
updating the system state through the dynamic model, during which sensor inputs are
not specifically incorporated. Another process involves incorporating sensor measure-
ments into the system state. This process reflects the difference between the internal
estimates of the system and the values estimated from the sensors. The latest robotic
vehicle systems detect a significant discrepancy, it does not incorporate this difference
and instead determine it as an anomaly value [15, 29–32]. If sensor measurements
are continuously identified as anomalies, they may be classified as a spoofing attack,
leading to the suspension of sensor data incorporation in robotic vehicles.
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The process of incorporating sensor values in EKF sensor fusion can be summarized
as follows:

est′next ← pred(estcur)

estnext ← est′next +K × (obscur − h(est′next))
(8)

where est′next represents the values predicted from the dynamic model based on the
system’s internal estimates estcur before incorporating the sensor values, K indicates
the degree to which sensor values are incorporated. est′next is corrected through the
obscur obtained from the sensor and becomes the next system internal state estnext. h
is the relationship function between the sensor values and the internal state estimates.
Generally, for each update of the internal system estimates through sensor values, the
system decides whether to incorporate the sensor values based on the magnitude of
(obscur − h(est′next)) and this is also used for anomaly detection. This paper models
the practical range of possible spoofing to assume more realistic attacks in PX4 which
is the most widely used UAV controller systems in research and industry [29]. The
incorporation of sensor values and anomaly detection is fundamentally applied in PX4.
In PX4, the test ratio is calculated using (est′next − obscur) to detect anomalies. In
other words, if the test ratio exceeds 1, the sensor values are not incorporated, and
prolonged non-incorporation is used to detect spoofing attacks or abnormal sensor
states.

3 Proposed Method

3.1 Attack Target System Model

This paper proposes modeling an attack target system that extends from the anomaly
detection and sensor estimation algorithm layer of PX4 to the DRL navigation model.
As mentioned in Section 2.2, the DRL-based navigation system outputs the velocity
that a UAV should take through inputs of depth image, relative position, and yaw.
Basically, in the DRL system, the target position is determined at the beginning
of a mission, and the current position is continuously estimated in EKF module in
PX4, allowing to calculate the relative position to the target. The relative direction
is determined by calculating the difference between the current direction of the UAV
and the direction to the target position, based on the current UAV position which is
an estimated value from PX4. The relative distance and direction, which are inputs to
the DRL system, are calculated as follows, with the direction expressed as the angle
yaw.

drel = ∥postar − poscur∥
yawtar = arctan(postar − poscur)

yawrel = yawtar − yawcur

(9)

The relative distance and yaw are denoted by drel and yawrel, respectively. Meanwhile,
postar represents the target position, and poscur signifies the current position. yawrel

is the angular direction of the target relative to the current position. In particular,
poscur refers to the current position state that the UAV recognizes, which corresponds
to the system internal state mentioned in subsection 2.3.
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Fig. 2: The practical target model models the spoofing attacks constrained by PX4,
and these processed values in PX4 are then passed to the DRL-based navigation
system.

3.2 Base Principle of Attack

The DRL-based system for UAV collision avoidance and navigation to a specific tar-
get, which is currently used in most research, basically has the following structure as
shown in Figure 1. The relative direction to the target alone is insufficient to distin-
guish between scenarios where the target is positioned between the obstacle and the
UAV, and where the target is behind both the UAV and the obstacle. Therefore, the
relative distance of the target becomes an essential input value. However, this struc-
ture has vulnerabilities. The first issue arises because the the decision by a depth image
contradicts the decision based on physical states such as UAV’s direction or its rela-
tive position to the UAV’s target. Fundamentally, the DRL system processes a depth
image and relative physical states of the target simultaneously in the same neural net-
work for handling both movement towards the target and movement to avoid collisions
at the same time. Even in situations where the distribution of obstacles around the
UAV is the same, the distance and direction to target can lead to different actions.
This means that the action output can vary depending on the relative physical state
with the target, even when obstacles are very close.

Secondly, physical states such as relative distance, and direction are directly input
into the concatenation layer of DRL, thus having a relatively large impact on the
action output. While a depth image are difficult to spoof, physical states of UAVs are
already relatively easy to manipulate through spoofing attacks like GPS spoofing and
electromagnetic interference. As a result, the DRL system is inherently vulnerable to
spoofing attacks.

Finally, because a UAV controller must inevitably allow for some degree of sensor
error, spoofing within a small range remains possible. The most commonly used UAV
autopilot systems like PX4 tend to accept a certain range of error values and reflect
them as shown in subsection 2.3. Furthermore, unlike adversarial attacks on depth
images, it is known that these spoofing attacks are easily feasible in reality. In partic-
ular, systematic methodologies for GPS spoofing attacks are well-researched [31–35].
Additionally, methods for sensor disruption using magnetic fields or ultrasound have
also been studied [36–38].
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3.3 Attack Scenario

In modern battlefields and complex urban environments, the operation of intelligent
UAVs is required to be possible even in extremely complex geographical settings. The
goal of the attacker in this attack scenario is to neutralize and disrupt intelligent
UAVs by inducing collisions with obstacles. In other words, the core of the attack
scenario in this paper is to interfere with obstacle avoidance, which is a core function
of intelligent UAVs, through attack vector inputs related to the physical state. This
paper assumes a scenario where an attacker performs GPS spoofing attacks on a UAV
with the DRL-based system. Figure 3 illustrates the attack scenario presented in this
paper.

Fig. 3: A scenario where an attacker induces collisions through spoofing on a UAV
system navigating in complex environments such as urban, battlefield or natural dis-
aster areas.

3.4 Unconstrained Attack Model

The attack model in this subsection assumes that there are no limitations on the
range of attack vectors used as GPS spoofing input to the DRL system. It assumes a
situation where the anomaly detection function for sensor inputs in the UAV’s control
system is not activated. Even if the range is exceeded, it is not detected by autopilot
control system. In other words, this can be seen as an attack model for targets that
does not consider EKF sensor fusion detection layer, and it can be viewed as an attack
model equal to the models used in general adversarial attacks [11].

This paper proposes a brute force attack methodology to induce collisions in this
attack model. In a UAV near collision objects, the attacker seeks to find values in
the input space of relative position and yaw that produce outputs guiding the UAV
towards a collision. Subsequently, the attacker can inject the values as relative position
and yaw values into the DRL system. Algorithm 1 represents our brute force attack
process. pos is the spoofed position inputs of the DRL. An attacker examines the
output values for all inputs up to P , which are the maximum input values for pos to
find the value that meets the condition which induces a collision. The current position
of the UAV can determine the relative distance drel and yaw yrel to the target, which
are inputs to the policy algorithm π of the DRL, through Equation 9. Condition refers
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to a function that, from the attacker’s perspective, determines whether the policy’s
output π(s) can induce a collision. In other words, the desired relative distance and
yaw can be determined by spoofing the current position. Finally, these values are used
for a spoofing attack on the DRL system. Additionally, it is assumed that the attacker
knows the input of the depth image. In the attack scenario, it is assumed that the
depth input that the UAV is looking at can be sufficiently estimated through the
UAV’s position and orientation.

Algorithm 1 Unconstrained Attack Model

UAVMission
while !done do

for pos = 0 to P do
drel ←

√
postar − pos)

yrel ← arctan(postar − pos)− yawcur

s← (Image, drel, yrel)
if Condition(π(s)) == true then
attacker transmit pos

end if
UAV action

end for
end while

3.5 Constrained Attack Model

Currently, UAVs typically have built-in anomaly detection capabilities, which prevent
the incorporation of detected anomalous sensor values as described in subsection 2.3.
Therefore, this paper establishes a more practical attacker model, targeting the sys-
tem described in subsection 3.1 and presenting a more realistic attack threat. The
conditions of this attack model are as follows:

• The attacker can only interfere with the sensor inputs of the target system described
in subsection 3.1.

• The attacker does not know the internal state of the controller system.
• The attacker operates in a way that can evade anomaly detection of the controller
system.

To overcome this, we proposes methods for spoofing sensor values and explores the
extent to which such spoofing is possible. Through this analysis, we have designed a
practical attack model.

Spoofing Strategy in PX4: Despite the fact that the internal estimated values
of sensors cannot be known without accessing the UAV’s internal systems, this paper
demonstrates how an attacker can make the internal estimated value converge on
the value that the attacker wants through spoofing, thereby indirectly getting the
estimated values. In the attack model, it is assumed that as a minimum condition
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for spoofing attack, even if the attacker cannot access the internal of the UAV, the
attacker can measure the true position of the UAV from the outside.

Algorithm 2 Proposed GPS Spoofing Attack Strategy

UAVMission
n← 0
while !done do
attacker sets∆pn
for t = 0 to T do
sign ← posuav +

∑n
i=0 ∆pi

transmit sign
end for
n← n+ 1

end while

Algorithm 2 presents a methodology for conducting a spoofing attack by utilizing
the convergence of estimated values. n is the step unit in which the DRL system
determines the control action. ∆pn represents the degree of change in the UAV’s
estimated position that the attacker desires for one step. T is the number of spoofing
attacks required to reflect this change in UAV.

∑n
i=0 ∆pi is the total spoofed value

reflected in the internal estimates of PX4 over n steps. posuav is the current position
of the UAV. In other words, T spoofing attacks are required for posuav to be reflected,
and afterwards, the attacker must continuously add these reflected changes to the
UAV’s current position. The condition of the attacker model for a spoofing attack
without detection by UAV is that the attacker can observe the actual position of the
UAV from the outside. Therefore, posobs can be considered almost identical to the
UAV’s actual position. In the experiments of this paper, it was demonstrated that
approximately 30 spoofing attacks can change the latitude and longitude by 0.00003
each. Generally, in UAVs, the process of receiving and updating GPS signals occurs
about 10 times per second which is the default setting for PX4. In conclusion, since a
change of 0.00001 degrees in latitude or longitude is approximately equal to 1 meter,
this means that it is possible to change the relative position inputs of DRL system by
up to 1 meter along the x and y axes every 1 seconds.

This paper proposes a methodology for inducing collisions in a practical attack
model. The practical attack model indicates that the internal estimated position of
PX4 can be changed by 0.1 meter every 0.1 seconds. The internal estimated position
determines the relative position, the input value for the DRL system in Equation 9.
Due to the narrower attack range compared to unconstrained attack model, this paper
has induced actions that continuously move towards the collision object. Generally,
if within a certain distance from the target, the optimized DRL system will take
actions that reflect the momentum needed to move towards the target according to the
hypothesis of this paper Section 3.2. This paper proposes that when the input values
of relative position are within a certain range and the UAV is near the collision object,
the attacker uses vector values that align with the direction of the collision object to
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conduct spoofing attacks on the relative position and direction inputs. In other words,
the attacker continuously injects spoofing attack vectors into the UAV, creating an
effect similar to that of an obstacle exerting an attractive potential field on the UAV.

Algorithm 3 Constrained Attack

UAVMission
n← 0
while !done do
∆pn ← norm(poscol − postar)
for t = 0 to T do
sign ← posuav +

∑n
i=0 ∆pi

transmit sign
end for
posest → sign (convergence)
UAV action
n← n+ 1

end while

Algorithm 3 represents the process of the proposed spoofing methodology which
functions equivalently to the effect of the potential field created by obstacles. In this
methodology, it is assumed that DRL outputs control actions at intervals of 0.1 sec-
onds. The attacker performs spoofing T times to change the UAV’s estimated value
by ∆p every 0.1 seconds. Applying a change of vector norm(poscol − postar) to posest
ultimately causes relative position and direction (drel, yawrel) to the target to change
in the direction towards the obstacle. The positions of the collision obstacle and the
target are represented by poscol and postar, respectively. π is the DRL navigation sys-
tem which outputs the control action. In our proposed attack method, uniform field
norm(poscol−postar) are applied to spoofing attack for inducing the UAV to obstacle.

4 Experiment

AirSim is a highly realistic flight simulator based on Unreal Engine which provides
physically and visually realistic environments [39]. In particular, it is optimized to
provide an environment for AI research such as deep learning, computer vision, and
reinforcement learning for UAVs. AirSim provides photo-realistic environments and
delivers real-time simulation data through a Python API, enabling AI system to effec-
tively communicate with the UAV during each simulation frame. This integration
allows researchers to develop and test their algorithms in a highly realistic setting. The
target of the attack in this paper is a DRL-based navigation system which is trained
using TD3 based on the structures in [19, 24]. DRL training and an agent is primarily
based on the stable baseline library [40]. The DRL system basically receives as input a
depth image, the target’s position, the current UAV’s position, and current yaw. The
DRL system outputs the speed and the angle of yaw to be changed based on current
direction. These are dynamically obtained at each step through AirSim’s Python API.
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(a) Top view of flight environment map used in the experiment.

(b) Front view of flight environment map used in the experiment.

Fig. 4: Flight experiment environment in the AirSim simulator.

The DRL system receives input every 0.1 seconds and then proceeds with the control
action step. Figures 4a and 4b represent the flight environment from the top view and
front view, respectively.

Lastly, to demonstrate the range of spoofing attack possible in the EKF system of
an UAV autopilot system, PX4 and Gazebo simulation system were utilized [29, 41].

4.1 Unconstrained Attack Model

In this experiment, we demonstrate that a spoofing attack can induce a collision using
the methodology described in subsection 3.4. The assumption of this experiment is
that there are no restrictions on the inputs of the DRL system. Therefore, for all
input spaces, an attacker can choose the desired output value, which leads to inducing
collisions. Figure 5 shows the experimental results. Both the green line and the purple
line represent the paths of UAVs that were given the mission to reach the target.
However, the green line shows the path when a spoofing attack was carried out, while
the purple line shows the path when no attack was conducted. When the spoofing
attack was carried out, it was possible to induce a collision. When no attack was
conducted, we can see that the UAV moved accurately to the target. The experimental

12



Fig. 5: This figure presents the results of inducing a collision using unconstrained
attack methodology. The green line represents the path when the attack is carried out,
while the pink line shows the path without the attack.

results show that the attacker can completely reverse the UAV’s original path and
cause collision.

4.2 GPS Spoofing Strategy in PX4

The objective of this experiment is to determine to what extent the spoofing attack
model proposed in this paper can manipulate the UAV’s estimated position per unit
time. As mentioned earlier, in this experiment, we conducted tests on GPS spoofing,
which is the most realistic and systematized spoofing attack method. The structure
of the experiment involves examining how the internal estimates of PX4 are affected
when spoofed values different from the actual position are input into PX4 autopilot
system. To set up the environment where PX4 runs, we utilized Gazebo simulator.
The overall experimental structure is shown in Figure 6.
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Fig. 6: The true values transmitted from the physical simulator are passed to sensor
simulator and PX4 receives the simulated sensor value. To transmit spoofing values
to PX4, this paper use the communication layer between sensor simulation and PX4.

The estimation of EKF sensor fusion determines the anomaly of sensor values from
external sensor sources by comparing them with the current internal estimated values,
and then reflects these values. At the initial stage of the attack, the internal estimated
value will have little difference from the actually observed position, but as the attack
progresses, it will diverge from the externally observed position. Therefore, the attacker
must continuously predict the internal estimated value to be able to perform spoofing.
Therefore, the attacker must be able to predict how the internal estimated value
changes when the spoofing value is applied. To achieve this, the attacker needs to find a
value that causes the change in the internal estimated value to converge as the spoofing
attack progresses. For this purpose, in this paper, we heuristically found the value to
which the internal position converges through the external position and spoofing attack
values. The basic principle is referenced in [32]. In this experiment, for every 30 GPS
samples, the attacker changed both latitude and longitude by 0.0003 in the desired
direction. This represents the time it takes for the change applied to the internal
estimated value over 30 samples to converge. Figure 7 shows the true position and the
UAV’s internal estimated position when the spoofing attack is executed starting from
15 seconds. A difference of approximately 0.00035 occurred between the true value
and the estimated value over the period from 15 seconds to 50 seconds. This indicates
that the spoofing values were continuously reflected, and additionally, during the same
period, the test ratio maintained a value below 1 as shown in Figure 7. The results of
this experiment demonstrated that it’s possible to change the latitude by 0.0003 every
3 seconds. Simplifying this slightly, it means that a change of 0.1 meters can be made
every 0.1 seconds because 1 degree of latitude or longitude equals to approximately
111 km.
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Fig. 7: This figure shows the results when a spoofing attack is conducted using the
method proposed in this subsection. The orange line represents the actual position of
the UAV, while the blue line indicates the position estimated internally by the UAV.
The figure below shows the change in the test ratio value during the spoofing attack,
and it can be observed that it does not exceed 1.

4.3 Constrained Attack Model

Based on the experimental results in subsection 4.2, This paper presents a GPS spoof-
ing attack model that closely simulates real-world scenarios. Specifically, given that
the DRL model in this experiment operates every 0.1 seconds, the spoofing attack
model is designed to assume a possible attack range at intervals of 0.1 seconds. In
conclusion, the objective of this experiment was to demonstrate an attacker could
induce a collision by assuming that, at each step, the attacker can apply a change of
0.1 meters in the form of a vector that the DRL system recognizes. The experimental
environment assumes that the UAV is positioned 100 meters away from the obstacle,
with the target located at a distance of 150 meters, allowing for a flight simulation
based on this mission. At this point, the attack methodology employed the method
used in subsection 3.5. Figure 8 shows the results of the experiment. The upper part
shows the results when the target is positioned at (0, 150 m). the left side shows the
results when an attack was conducted, while the right side shows the results when
no attack occurred. The lower part shows the results when the target is positioned
at (30 m, 150 m). The green path indicates the true position of movement, while the
blue path in the left represents the position recognized by the UAV. The experimental
results show that the attacker can induce a collision not only when the UAV, target,
and obstacle are aligned in a straight line, but also when the target is positioned to
the side of the obstacle.
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(a) Experimental results when the target (0, 150) is aligned with the obstacle (0, 100).

(b) Experimental results when the target (30, 150) is positioned to the side of the obstacle
(0, 100).

Fig. 8: This experiment demonstrates the results of a spoofing attack method using
a 0.1 m size vector to spoof the position sensor. In each figure, the left side shows the
path when the spoofing attack is applied, while the right side shows the result without
the spoofing attack. In the left figure, the blue line represents the internally estimated
position that the UAV incorrectly recognizes due to spoofing, which differs from its
actual position.

5 Discussion

The most common assumption in AI system attacks involves methods that don’t sep-
arately consider lower-layer components. These approaches focus solely on the inputs
and control outputs of DRL-based navigation system without constraints, allowing
attackers to freely manipulate positional or directional values. This inherently makes
such attacks easier to execute, which experimental results naturally reflect. However,
no prior study has yet demonstrated collision induction through positional spoofing
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attacks in DRL-based navigation systems for UAV. This paper’s significance lies in
proposing such an attack model.

To overcome the limitations of unrestricted attacks discussed earlier, this paper first
models the feasible range of GPS spoofing at the UAV navigation layer. subsection 4.2
presents these findings: When the test ratio exceeds 1, PX4’s state estimation module
flags it as an outlier. However, GPS spoofing can evade detection by maintaining val-
ues below 0.2. Note that such spoofing has inherent motion constraints for UAVs, with
spoofable displacements limited to 0.1m per 0.1s. Under these constraints, subsection
?? experimentally validates how attackers can still maximize collision induction effi-
ciency within restricted DRL parameters. Crucially, our method generates a potential
field based on the relative direction between the collision target and the UAV’s position
during GPS spoofing, proving sufficient for reliable collision guidance. Nevertheless,
this study has certain limitations. Due to experimental difficulties in directly inte-
grating DRL systems with GPS spoofing, this paper adopted an alternative approach
of modeling each attack separately while imposing constraints on the DRL system’s
inputs. However, this paper contributes to more realistic attacker modeling at both
the AI system’s module layer and the control system’s state estimation layer com-
pared to previous work. Our approach provides a practical attack scenario that could
benefit future AI system security research. A fundamental limitation in practical GPS
spoofing implementation remains the prerequisite requirement of knowing the UAV’s
precise position through radar or visual observation. Despite these constraints, our
assumptions carry significant implications for future research, given the current lack
of practical methods to bypass anomaly detection in state estimation systems.

6 Conclusion

There is a growing trend of research on the AI-based UAV navigation system. However,
there is very little research on the security aspects of such systems. Despite recent
important security papers focusing on sensor attacks using adversarial methods [11],
there is still very little research on the security aspects of these systems. Adversarial
attacks still have limitations in leading to practical attacks, such as physically injecting
subtle noise into sensors. This paper proposes a systematic and more practical attack
model based on GPS spoofing attack. Most studies on GPS spoofing attacks against
UAVs have assumed attacks on controllers with simple missions, such as moving to
a specific location. These studies have focused on changing the UAV’s movement
or inducing failsafe mechanisms [31, 35, 42–44]. This paper proposes GPS spoofing
attack model for intelligent UAVs equipped with obstacle avoidance capabilities. To
achieve this, this paper analyzed structural issues in the input space of state-of-the-art
the DRL-based systems and experimentally demonstrated that attacks are possible
through only spoofing position value. Unrestricted attacker model has conditions that
are just as stringent as those in traditional adversarial attacks. The attacker must
know not only the parameters of the DRL policy but also the current position of
the UAV and the depth image of the direction the UAV is facing. While this is a
theoretically possible attack scenario, it becomes a challenging scenario in practice.
Unlike unconstrained model, the attacker of constrained model only needs to know the
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position of the UAV. This presents a new attacker model by combining sensor spoofing
attacks in DRL system with the limitations of EKF module in PX4 autopilot system.
This proposes a more realistic attack threat and becomes a crucial point in future DRL-
based navigation system designs. Subsection 3.2 analyzes the vulnerabilities of the
most efficient DRL navigation model in recent research. Furthermore, the experiments
in this paper conducted attacks on the recently researched DRL systems, thereby
validating the attack model proposed in this study. However, this paper has only
demonstrated the success of the attack model using uniform vectors, and has not
yet presented the efficiency of the methodology using various other potential vectors.
These present promising research topics for future work.
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