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Abstract
Federated learning (FL) enables collaborative model training
among multiple clients without the need to expose raw data.
Its ability to safeguard privacy, at the heart of FL, has recently
been a hot-button debate topic. To elaborate, several studies
have introduced a type of attacks known as gradient leakage
attacks (GLAs), which exploit the gradients shared during
training to reconstruct clients’ raw data. On the flip side,
some literature, however, contends no substantial privacy risk
in practical FL environments due to the effectiveness of such
GLAs being limited to overly relaxed conditions, such as
small batch sizes and knowledge of clients’ data distributions.

This paper bridges this critical gap by empirically demon-
strating that clients’ data can still be effectively reconstructed,
even within realistic FL environments. Upon revisiting GLAs,
we recognize that their performance failures stem from their
inability to handle the gradient matching problem. To alle-
viate the performance bottlenecks identified above, we de-
velop FEDLEAK, which introduces two novel techniques, par-
tial gradient matching and gradient regularization. Moreover,
to evaluate the performance of FEDLEAK in real-world FL
environments, we formulate a practical evaluation protocol
grounded in a thorough review of extensive FL literature and
industry practices. Under this protocol, FEDLEAK can still
achieve high-fidelity data reconstruction, thereby underscor-
ing the significant vulnerability in FL systems and the urgent
need for more effective defense methods.

1 Introduction

Federated learning (FL) [20, 42] has become the de facto
privacy-preserving approach for training deep neural networks
(DNNs). In FL, two steps are iteratively performed: 1) Each
client downloads the current global model and computes gra-
dients locally on its own data; 2) The server collects and
aggregates these locally computed gradients from all partic-
ipating clients to update the global model. By transmitting
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only the gradients rather than raw data, FL inherently offers
a plausible mechanism for privacy protection, promoting its
adoption in various privacy-sensitive scenarios [19, 39].

Although FL’s privacy protection mechanism appears in-
tuitive, recent studies have shown that clients’ raw data can
still be reconstructed by exploiting the uploaded gradients,
known as gradient leakage attacks (GLAs) [4, 22, 58]. We
here focus on a passive attack scenario where the server does
not manipulate the FL training process. The core of GLAs lies
in the gradient matching problem, which aligns the gradients
generated from dummy data with the gradients uploaded from
clients. The vanilla GLA [58], for example, starts by randomly
initializing dummy data and labels, subsequently adjusting
these initializations iteratively to approximate clients’ raw
data by minimizing the L2 distance between the uploaded
gradients and the gradients generated by these initializations.

However, the effectiveness of existing GLAs remains con-
strained to overly simplified scenarios, casting doubts about
their actual threat in real-world FL environments. First, cur-
rent GLAs [4, 26, 50] work well only when facing small
models, simplistic datasets, and limited batch sizes, which
are rarely reflective of real-world scenarios. While recent
efforts have sought to extend these attacks to more sophisti-
cated models and datasets, e.g., ResNet and ImageNet, the
construction results remain either insufficient or contingent
upon access to clients’ batch normalization statistics [52] or
their data distributions [27, 32, 53]. This reliance poses signif-
icant challenges, since clients are not obligated to share such
statistics [31], and gathering large amounts of data similar
to that of clients is rather difficult [16], particularly in data-
scarce domains like healthcare. Second, the performance of
GLAs is positively correlated with the sensitivity of the input
data to gradient changes. High sensitivity allows attackers
to more easily manipulate input data to generate gradients
that align with the uploaded gradients. Conversely, low sen-
sitivity complicates the gradient matching problem, making
it harder for attackers to identify how changes in input will
affect the gradients. Generally, this sensitivity peaks at the
outset of training when the model weights are randomly ini-
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tialized [4, 16]. Yet, this sensitivity can be greatly reduced
through the use of pre-trained weights, as pre-trained weights
have already seen other data, making the resulting model
less responsive to clients’ data. Third, in practice, clients can
adopt various defense strategies to mitigate the impact of
GLAs [19, 23, 46].

To investigate whether FL can truly safeguard client pri-
vacy in real-world environments, we design FEDLEAK. To
the best of our knowledge, FEDLEAK represents the first at-
tack method capable of reconstructing high-fidelity data from
gradients shared by clients in practical environments. Im-
portantly, FEDLEAK operates without the need for any extra
resources, relying exclusively on the information allowed by
the basic FL training protocol [39], such as the model and gra-
dients. This indicates that the attack implication of FEDLEAK
can be extended across almost all FL systems that adhere
to the basic FL training protocol. Moreover, we clarify that
FEDLEAK should not be misconstrued as a malicious threat
to existing FL systems; rather, it is intended as a constructive
resource aimed at deepening our understanding of FL’s pri-
vacy protection mechanism and assessing the effectiveness of
various defense methods. Below we describe the challenges
encountered in designing FEDLEAK and present our key ideas
in addressing these challenges.

Challenge I: What limits the effectiveness of existing
GLAs? Instead of incrementally refining existing attack meth-
ods, we take a step back to re-examine the gradient matching
problem itself to uncover the root causes behind the failure
of current GLAs. We start by analyzing whether the gradient
matching problem is well-posed, a crucial factor in determin-
ing the feasibility of GLAs. The analysis largely yields a posi-
tive response, challenging the common belief that the inherent
multiplicity of solutions in the gradient matching problem
leads to the suboptimal performance of current GLAs [19, 32].
We argue that the underperformance of these attacks stems
from their inability to properly solve the underlying gradient
matching problem. To bridge this gap, we derive a sufficient
condition to address the gradient matching problem, providing
a guiding principle for designing effective attack methods.

Challenge II: How to implement the proposed guiding
principle into attack methods? Based on the proposed prin-
ciple, we introduce two novel techniques, namely partial
gradient matching and gradient regularization. Partial gra-
dient matching extends the original gradient matching prob-
lem by only matching a selected subset of the gradient ele-
ments, while gradient regularization penalizes the gradients of
dummy data. We demonstrate that both techniques help satisfy
the derived sufficient conditions more effectively. Moreover,
we develop approximate solutions for these two techniques
to address the prohibitively high computational cost associ-
ated with their original formulations, thereby enabling more
efficient implementation in practical attack scenarios.

Challenge III: How can we assess the attack performance
of FEDLEAK in real-world environments? To evaluate the

effectiveness of FEDLEAK in real-world environments, it is
essential to design a practical evaluation protocol. To this end,
we carefully review existing studies in GLAs, identifying
eight key factors that significantly influence attack perfor-
mance. Next, we examine a wide range of FL studies and
available industrial-grade FL libraries, particularly those in
privacy-sensitive domains such as healthcare, so as to de-
rive commonly used values for these factors. Leveraging this
knowledge, we align the identified influential factors with
real-world environments to develop an evaluation protocol
grounded in hands-on examples. Through this protocol, we
can gain a more practical implication of FEDLEAK against
FL’s privacy protection ability in real-world environments.

Contributions. We highlight our contributions below:
• Through our reexamination of the gradient matching prob-

lem, we pinpoint the root cause behind the failure of existing
GLAs. We also derive a sufficient condition to resolve the
gradient matching problem.

• We introduce FEDLEAK, which involves two novel tech-
niques: partial gradient matching and gradient regulariza-
tion. We further present two approximate solutions to ad-
dress their prohibitively high computational costs.

• We formulate a practical evaluation protocol and conduct
extensive experiments to validate the attack performance
of FEDLEAK in accordance with this protocol. The attack
results indicate that, even in real-world environments, FL
still poses significant privacy leakage risks.

2 Background & Related Work

2.1 Federated Learning
We denote the global model as F(·,w) parameterized by w.
Let U be the pool of available clients and Di be the local
dataset for the i-th client. The training process unfolds through
iterative rounds t ∈ {1,2, . . . ,T}:
• Model distribution and local training. The server broad-

casts the current model parameters w to a subset of
clients Ut ⊆ U as participants for the t-th training
round. Each client i ∈ Ut subsequently samples a mini-
batch Bi = (xi,yi) ⊆ Di to compute the local gradients
∇wL(F(xi,w),yi), where L denotes the loss function.

• Gradient aggregation and model update. The computed
gradients ∇wL(F(xi,w),yi) are sent back to the server. The
server aggregates these gradients, commonly by averaging
them, and updates the global model.

Several challenges complicate the efficient implementation
of FL. Many clients possess limited computational power,
memory, and bandwidth [40]. To alleviate this, some stud-
ies [39, 42] suggested that selected clients update their lo-
cal models multiple times, followed by sending the result-
ing model parameters to the server. The server then aver-
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ages these uploaded parameters to form a new global model.
However, this strategy risks causing local models to become
overly specialized to their respective datasets, hindering the
global model’s peformance [30]. Notably, in this strategy, the
server can deduce approximate gradients by comparing the
parameters of the old global model and the newly uploaded
model. Another critical challenge arises from data heterogene-
ity across clients, known as the non-IID problem [31, 39],
which can lead to slower convergence rates and performance
degradation. In this paper, we focus on GLAs.

2.2 Gradient Leakage Attack
Recent studies [56, 58] have highlighted the potential of
shared gradients to be exploited in data reconstruction. Let
ĝ denote the gradients estimated by the server. Deep leak-
age from gradient (DLG) [58] iteratively adjusts dummy data
x′,y′ to bring their generated gradients closer to ĝ, proving
effective for small batches and simple networks:

x′,y′ = argmin
x′,y′
||∇wL(F(x′,w),y′)− ĝ||22. (1)

Zhao et al. [56] discovered that with small batches, exact
ground-truth labels can be inferred by analyzing the signs of
the shared gradients, enabling more efficient data reconstruc-
tion. Subsequent works [13, 37, 49] developed approximate
label inference techniques for larger batches. Geiping et al.
[22] found that cosine distance is more effective than Eu-
clidean distance for data reconstruction and introduced total
variation to regularize the reconstructed images.

Recent advancements [27, 32, 52, 53] have improved GLAs
by allowing the server to access more information from clients.
Yin et al. [52] assumed that batch normalization statistics
are accessible, which provide additional cues to regularize
the reconstructed images. Balunovic et al. [4] re-approached
existing attacks through a Bayesian lens, proposing the Bayes
attack to enhance reconstruction quality by leveraging prior
knowledge. Other studies [27, 32, 53] took a step further
by positing that servers possess knowledge of clients’ data
distributions, allowing the server to train a generative model
for data reconstruction. They optimized the latent vectors
of the generative model to output images that can generate
gradients similar to the shared gradients. Nonetheless, some
literature [16, 26, 47, 50] has criticized these assumptions as
not conforming to actual FL environments.

2.3 Gradient Leakage Defense
Defenses against gradient leakage can be classified into two
main categories: cryptography-based methods [7, 41, 54] and
perturbation-based methods [19, 46, 47]. Cryptography-based
methods secure gradients by ensuring that the server only
sees the plaintext of the aggregated gradients [3, 7, 41, 54].
This makes data reconstruction more challenging because

the aggregated gradients imply larger batches, expanding the
search space and complicating reverse engineering. However,
cryptography-based methods rely on complex operations like
modular arithmetic and exponentiation. These result in signif-
icant computational and communication overheads, making
them unsuitable for secure aggregation against gradient leak-
age in resource-constrained environments. Moreover, their
efficacy diminishes if attackers can reconstruct high-fidelity
data from larger batch gradients [48], and when the server
is allowed to send maliciously-crafted parameters that can
exclude non-interested clients’ gradients from the decrypted
gradients [43].

Perturbation-based methods offer a more lightweight alter-
native by slightly modifying gradients to obscure the server.
This strategy, however, incurs a delicate trade-off between
utility and privacy where more substantial modifications yield
better protection but also degrade the gradient utility. Differ-
ential privacy (DP) [23] introduces random noises to perturb
ground-truth gradients. Gradient sparsification [53] retains
only the most significant gradient elements, and gradient quan-
tization [53] represents gradient values with fewer bits. Re-
cent advancements include Soteria [46, 48], OUTPOST [47],
and Guardian [19], which selectively perturb the most cost-
effective gradient elements.

2.4 Threat Model

We consider the server to be honest-but-curious [58], indi-
cating that it honestly obeys the FL training protocol, yet
attempts to recover clients’ data from shared gradients. This
assumption is more reflective of real-world situations [16, 39]
than a malicious model that permits the server to take ma-
licious actions to facilitate reconstruction. Such malicious
actions, such as modifying the training procedure or model
parameters [6, 12, 51, 57], could be easily spotted and under-
mine attack stealthiness [16]. Moreover, given the effective-
ness of label inference techniques [13, 37, 49], the server’s
primary objective is to recover clients’ data.

Server’s knowledge and capability. According to the ba-
sic FL training protocol [39], the server has full access to
parameters of clients’ uploaded models and the old global
model, along with knowledge of training configurations such
as learning rate and batch size. The server is not allowed
to access auxiliary information such as clients’ batch nor-
malization statistics and data distributions. This restriction
is justified, as practical clients are not required to furnish
this information to the server [16, 26, 47]. Notice that, while
this limitation indeed increases our attack difficulty, it also
broadens the applicability of FEDLEAK across various FL
scenarios. Moreover, for thoroughness, we still include a com-
parative analysis of attack methods that assume access to this
auxiliary information in our evaluations. Finally, the server
possesses moderate computational resources necessary for
executing attacks.
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(a) GD (b) GD (c) iDLG (d) FEDLEAK

Figure 1: Figure 1a shows the L2 GD between the images recovered by iDLG and the corresponding ground-truth images.
Figure 1b demonstrates the L2 GD between the ground-truth images and the same images with varying levels of random sign
noise added. Figure 1c and Figure 1d illustrate the values of 2µ

L associated with x′ achieved by the gradient descent algorithm and
FEDLEAK, both with a step size of 1×10−4. All results are averaged over 100 samples.

We defer our evaluation protocol, i.e., the configuration
of practical FL environments, to Section 5. For now, we just
highlight that clients can perturb their ground-truth gradients
to upload.

3 Gradient Leakage Attack Revisited

For the sake of discussion, let us assume that the gradients ĝ
estimated by the server are identical to the gradients generated
by local data (x,y), i.e., ĝ=∇wL(F(x,w),y). We also assume
that the labels inferred by the server are the same as y. Note
that ĝ can either be treated as the gradients from an individual
client or as the aggregated gradients. Let us first re-examine
the gradient matching problem, formulated as follows:

x′ = argmin
x′

dist(∇wL(F(x′,w),y), ĝ), (2)

where dist(·, ·) denotes a certain distance metric.
The hypothesis of multiple solutions is likely a misunder-

standing. Most studies [26, 50, 56] have empirically demon-
strated that images recovered through gradient optimization
algorithms for Equation (2) are quite noisy, giving rise to the
hypothesis of multiple noisy solutions beyond just x. This
means different input samples can yield identical gradients1.
To illustrate this rmore concretely, consider the case of train-
ing a three-hidden-layer network with ReLU activation func-
tion on two benchmark datasets MNIST and CIFAR-10. We
employ iDLG [56] and observe the reconstruction perfor-
mance of this attack with a batch size of 1 (see Appendix A
for more attacks). Figure 1a illustrates that the L2 gradient
distance (GD) and PSNR between x′ and x appear to converge
to approximately 0.15∼0.2 and 10∼11, respectively. A PSNR
value of 10∼11 indicates that the recovered images are no-
tably noisy [19]. Furthermore, the L2 GD of 0.15∼0.2 seems

1 f (x) = sin(x) has the same gradients at x = 0 and x = 2π. In batches,
gradient equivalence occurs through (1) direct gradient matching between
distinct inputs, or (2) coincidental averaging of gradients from multiple sam-
ples (e.g., f ′(3)+ f ′(−1) = f ′(0)+ f ′(2) for f (x) = x2 where the gradients
at any two points are not the same). We here examine the former one.

quite small at first glance2, potentially leading to an interpreta-
tion that GLAs find noisy data that produce gradients almost
identical to those of x, thereby reinforcing the hypothesis of
multiple solutions. We first clarify that this interpretation is a
misunderstanding. Specifically, the recovered noisy images
do not constitute a solution to Equation (2), rather, they are
attributable to an improper handling of Equation (2).

To substantiate the above claim, we generate Gaussian ran-
dom noises for 100 input images, then multiply its sign by
a strength of 1

255 ∼
16
255 , and add them to the input images.

This process is repeated 100 times, and Figure 1b shows the
expected L2 GD for varying noise strengths. Empirical stud-
ies [5] say that, for low-resolution images (32×32), the L∞

distance between two similar images should be less than 8
255 .

Generally, similar gradients arise from similar images, sug-
gesting that the threshold for assessing gradient similarity can
be roughly approximated by the GD between an image and
its perturbed counterpart at a noise strength of 8

255 . However,
as shown in Figure 1b, even when the noise strength reaches
as high as 16

255 , the expected L2 GD stays below 0.1. Conse-
quently, a loss value (GD) around 0.2, as achieved by iDLG,
signifies fundamental non-convergence in Equation (2) and
falls far short of indicating that the dummy data have similar
gradients to x. Besides, this non-convergence is unlikely due
to being trapped in local optima or saddle points, as the use of
multiple restarts [38] and temporarily large learning rates [35]
did not ameliorate the situation (Appendix A). To further clar-
ify this point, we now take a closer look at Equation (2).

The examination of Equation (2). At its core, Equation (2)
can boil down to solving the following system of nonlinear
equations:

∇wL(F(x′,w),y)[i] = ĝ[i], i = 1, · · · , |ĝ|. (3)

Due to ĝ = ∇wL(F(x,w),y), the system of nonlinear equa-
tions has at least one solution x′ = x, suggesting that the sys-
tem is not ill-conditioned. Furthermore, it is highly likely

2The absolute difference between two gradient elements is on the order
of 10−4.
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that the solution is unique, i.e., ∇wL(F(x′,w),y) ̸= ∇wL
(F(x,w),y) for x′ ̸= x, for several reasons. Firstly, in Equa-
tion (2), the number of constraints (the number of model
parameters) significantly exceeds the number of variables
(the dimensionality of the input data)3. The over-constrained
nature of the system reduces the chances of multiple solutions
existing. Actually, for fully connected neural networks, the
solution is guaranteed to be unique, as substantiated by Theo-
rem 1. Moreover, we highlight that Theorem 1 can, to some
extent, be applied to convolutional neural networks (CNNs)
and transformers, as convolutional layers and attention lay-
ers can be viewed as specialized variants of fully connected
layers [44].

Theorem 1. Consider F whose first hidden layer is a fully
connected layer, followed by at least one more fully connected
layer. If gradients of L with respect to the outputs of these fully
connected layers are not the zero vectors, then for any x′ ̸= x,
it holds that ∇wL(F(x′,w),y) ̸= ∇wL(F(x,w),y) [22].

Intuitively, different inputs generally yield distinct inter-
mediate outputs within F . These intermediate outputs affect
the computation of the gradient of F’s parameters, making it
challenging for different inputs to produce identical gradients.
In other words, if there exist two different inputs that generate
identical gradients, it would imply that F’s error feedback
in the parameter space for these inputs is the same, which
is highly improbable unless the network degenerates signif-
icantly, for example, if all parameters are zero. In summary,
the noisy solutions are primarily due to the ineffectiveness
of existing optimization algorithms in solving Equation (2),
motivating us to identify the specific conditions that allow for
effective solutions to Equation (2).

Convergence conditions. Let g′ = ∇wL(F(x′,w),y). We
use x′j and g′j to denote the starting point for x′ and the
gradients generated by x′j at the j-th iteration. The update
rule of the gradient descent algorithm for x′ at j-th itera-
tion is given by x′j+1 = x′j−η∇x′j

dist(g′j, ĝ) where η is the
step size. To ensure convergence of x′ toward x, we require
||x− x′j+1||22 < ||x− x′j||22. Then, expanding ||x− x′j+1||22 pro-
duces:

||x− x′j+1||22 = ||x− x′j +η∇x′j
dist(g′j, ĝ)||22

= ||x− x′j||22−2η⟨x′j− x,∇x′j
dist(g′j, ĝ)⟩

+η
2||∇x′j

dist(g′j, ĝ)||22.

(4)

Let us impose the following conditions to hold:

⟨x′j− x,∇x′j
dist(g′j, ĝ)⟩> µ ||x− x′j||22,

||∇x′j
dist(g′j, ĝ)||22 < L ||x− x′j||22.

(5)

3For example, a ResNet10 model for MNIST has 4902090 parameters.
For batch sizes of 1, 8, 32, 64, and 128, the corresponding input dimensions
are 784, 6272, 25088, 50176, and 100352 respectively. The number of model
parameters is 6252, 781, 195, 97, and 48 times the input dimensions for these
batch sizes respectively.

Substituting the above conditions into Equation (4) yields:

||x− x′j+1||22 < (1+η
2L−2ηµ)||x− x′j||22. (6)

To guarantee convergence, it is essential that 1+η2L−2ηµ≤
1, i.e., 0 < η < 2µ

L . Here, µ measures the curvature of the loss
landscape near minima, while L bounds the gradient smooth-
ness (smaller L implies smoother, more consistent gradients).
Larger µ and smaller L together broaden the range of safe
learning rates η that ensure convergence. We further evaluate
the value of 2µ

L associated with x′ over different optimization
iterations, as shown in Figure 1c. We see that the value of 2µ

L
is very small and susceptible to fluctuations, which poses a
significant challenge in determining an appropriate step size
η for addressing the gradient matching problem with gradient
optimization algorithms. This also demonstrates that the fail-
ure of existing GLAs is due to a lack of an effective way to
solve the gradient matching problem, rather than the existence
of multiple feasible solutions. In light of these observations,
we develop FEDLEAK, designed to more effectively resolve
Equation (2). The details of FEDLEAK will be elaborated in
the following section.

Remark. The analysis in this section relies on the idealized
assumption of ĝ=∇wL(F(x,w),y), which may not hold. This
is primarily because clients might perform multiple local
steps or upload perturbed gradients, which obfuscates the
server from obtaining the exact gradients with respect to (x,y).
Despite this difference from reality, we highlight that, in most
cases, ĝ are still close enough to ∇wL(F(x,w),y) to yield
meaningful reconstructions (as shown in Section 6.3), since
excessive perturbation or an overly large number of local steps
can lead to a significant degradation in model performance.
Additionally, we provide an analysis of the impact of such
estimation errors in Appendix B for interested readers seeking
further insights. We will not elaborate on this here, as it is not
the primary focus of this paper.

4 Our Attack: FEDLEAK

4.1 Overview
To efficiently address the gradient matching problem,
FEDLEAK harnesses two novel techniques, partial gradient
matching and gradient regularization. The partial gradient
matching selectively matches only specific portions of gradi-
ents and can be regarded as a generalized form of gradient
matching. This technique not only significantly reduces µ,
but also ensures that the optimal solutions remain consistent
with those derived from complete gradient matching. More-
over, to increase the value of L, FEDLEAK incorporates a
gradient regularization term into partial gradient matching.
The inclusion of the gradient regularization term, however, re-
quires the computation of Hessian matrix, a computationally
intensive task. To alleviate this burden, we propose an approx-
imation method to enhance the practicality and scalability of
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Figure 2: The overview of the proposed attack FEDLEAK.

Algorithm 1 Our attack: FEDLEAK

Require: The global model F and parameters w; the gradi-
ents estimated by the server ĝ; the loss function (cross-
entropy loss) L; the step size η; the blend factor λ′; the
matching ratio R; maximum attack iterations I ;

1: Infer the ground-truth labels y from ĝ using existing label
inference techniques.

2: Initialize dummy data x′ with a uniform distribution rang-
ing from 0 to 1 and x′0 = x′.

3: for j← 0 to I −1 do
4: Compute the gradients of the loss with respect to

dummy data g′j = ∇x′j
L(F(x′j,w),y).

5: Select the indices of the top R% gradient elements
with the largest magnitude in g′j to form Λ.

6: Compute the distance D(x′j)[Λ] based on Equa-
tion (15).

7: Compute φ = k
∇x′j

D(x′j)[Λ]

||∇x′j
D(x′j)[Λ]||2

and the distance D(x′j +

φ)[Λ] based on Equation (15).
8: Mix ∇x′j

D(x′j)[Λ] and ∇x′j+φD(x′j + φ)[Λ] using the
blend factor λ′ to update x′j with step size η.

9: Project x′j onto feasible domain [0,1] to obtain x′j+1.
10: end for
11: Return the recovered data x′ = x′I .

FEDLEAK. Figure 1d demonstrates that the combination of
the two techniques yields higher and more stable values of 2µ

L .
Algorithm 1 summarizes FEDLEAK and Figure 2 presents the
entire attack process of FEDLEAK.

4.2 Less is Better: Partial Gradient Matching
The core idea of partial gradient matching is to align only
a subset of gradient elements rather than all. Consider an
index set Λ containing the indices of the gradient elements

to be matched. The partial gradient matching problem can be
formulated as follows:

x′ = argmin
x′

dist(g′[Λ], ĝ[Λ]). (7)

When Λ contains all gradient elements’ indices, the partial gra-
dient matching degenerates into the original gradient match-
ing problem (Equation (2)). As illustrated in Theorem 2, the
partial gradient matching problem (Equation (7)) possesses
several favorable properties compared to Equation (2).

Theorem 2. Should Equation (3) be overdetermined and free
of redundant constraints4, there exists a certain index set Λ

such that Equation (7) not only preserves the same solution
as Equation (2), but also enjoys a higher value of µ than
that of Equation (2), with dist(·, ·) being specified as the L1
distance5.

The first part of Theorem 2 asserts that Equations (2)
and (7) yield the same solution, which is obvious from the
definition of overdetermined systems. We mainly demon-
strate the second part: Equation (7) achieves a higher value
of µ than Equation (2). By setting dist(·, ·) as L1 distance,
⟨x′− x,∇x′dist(g′, ĝ)⟩ can be written as follows:

⟨x′− x,∇x′dist(g′, ĝ)⟩= ⟨x′− x,
1
|g′|

∂

∂x′ ∑i
|g′[i]− ĝ[i]| ⟩

= ⟨x′− x,
1
|g′|∑i

sign(g′[i]− ĝ[i])
∂g′[i]
∂x′

⟩. (8)

4Redundant constraints refer to equivalent constraints. This assumption
primarily ensures that removing some constraints does not render Equation
(3) underdetermined. In practice, it is uncommon for the removal of some
constraints to significantly alter the solution, allowing us to relax our concerns
about this assumption.

5L1 distance evaluates each gradient element uniformly and can facilitate
our discussion. Other distance functions are essentially equivalent to con-
sidering the gradients with different weights. For example, the L2 distance
prioritizes gradient elements that have yet to be well-aligned.
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Based on Theorem 2 in Appendix G, if Λ is chosen to include
indices corresponding to the terms with the largest inner prod-
uct values in Equation (8), we arrive at Equation (9):

1
|Λ| ∑i∈Λ

⟨x′− x,sign(g′[i]− ĝ[i])
∂g′[i]
∂x′
⟩

≥ 1
|ĝ|∑i

⟨x′− x,sign(g′[i]− ĝ[i])
∂g′[i]
∂x′
⟩.

(9)

Equation (9) suggests ⟨x′ − x,∇x′dist(g′[Λ], ĝ[Λ])⟩ ≥ ⟨x′ −
x,∇x′dist(g′, ĝ)⟩. Thus, there exists a certain index set Λ that
yields a higher value µ.

The remaining challenge is how to determine the appro-
priate Λ. While the preceding analysis suggests that Λ ought
to include indices associated with the largest inner product
values, identifying these requires evaluating the gradient for
each individual gradient element g′[i] with respect to x′, i.e.,
∂g′[i]
∂x′ . Given the vast number of parameters in DNNs, this is

computationally prohibitive. To address this issue, we present
an approximate solution here.

Generally, within a sufficiently small neighborhood, align-
ing each gradient element should produce a gradient direction
positively correlated with x′− x [8], meaning that each term
is usually positive. As a result, our task reduces to finding
the indices i for which ∂g′[i]

∂x′ has bigger magnitude. Moreover,

the term ∂g′[i]
∂x′ with greater magnitude often corresponds to

g′[i] with large magnitude. To clarify, according to the chain
rule, there is ∂g′[i]

∂x′ = ∂g′[i]
∂L

∂L
∂x′ . As can be seen, ∂L

∂x′ remains
identical across gradient elements and we focus on the first
term, which measures how the gradient changes in response
to variations in the loss function. We can quantify this sensi-
tivity using Fisher information of g′[i], approximated by the
square of g′[i] [36]. Empirical validation of this can be found
in Appendix C, where the correlation coefficient between the
magnitude of gradient elements and their sensitivity to the
input data is around 0.7372, a statistically significant value.
To sum up, we match the top R% gradient elements with the
largest magnitude in g′.

The philosophy behind partial gradient matching is intu-
itive. Gradient elements with larger magnitudes correspond
to key parameters vital for capturing significant feature infor-
mation, while gradient elements with smaller magnitudes are
related to less influential parameters that primarily contribute
noise to the optimization landscape [33].

4.3 Gradient Regularization
For simplicity, let us define D(x′) as dist(g′[Λ], ĝ[Λ]) where
g′ = ∇wL(F(x′,w),y). From Equation (5), it is clear that a
smaller ∇x′D(x′) along the entire optimization path can enable
a smaller value of L. To leverage this insight, we introduce a
gradient regularization term in Equation (7) as follows:

x′ = argmin
x′

D(x′)+λ||∇x′D(x′)||2, (10)

where λ is a weighting factor to balance the two terms in
Equation 10. Gradient-based optimization methods are com-
monly employed to solve Equation (10). However, as indi-
cated in Equation (11), the gradients of Equation (10) involve
the Hessian matrix evaluated at x′, which is computationally
prohibitive in high-dimension spaces.

∇x′
(
D(x′)+λ||∇x′D(x′)||2

)
= ∇x′D(x′)+λH

∇x′D(x′)
||∇x′D(x′)||2

.

To circumvent the need for direct Hessian evaluation, we
present an approximate estimation for H ∇x′D(x′)

||∇x′D(x′)||2
. Consider

a random small perturbance φ applied to x′. A Taylor expan-
sion of D(x′+φ) yields:

D(x′+φ) = D(x′)+∇x′D(x′)⊤φ. (11)

Differentiating both sides of Equation (11) results in:

∇x′+φD(x′+φ) = ∇x′D(x′)+Hφ. (12)

Setting φ in the direction of ∇x′D(x′) leads to:

H
∇x′D(x′)
||∇x′D(x′)||2

=
∇x′+φD(x′+φ)−∇x′D(x′)

k
. (13)

where φ = k ∇x′D(x′)
||∇x′D(x′)||2

and k is a small constant ensuring φ

remains small. We then substitute Equation (13) into Equa-
tion (11):

∇x′D(x′)+
λ

k
(∇x′+φD(x′+φ)−∇x′D(x′))

= (1− λ

k
)∇x′D(x′)+

λ

k
∇x′+φD(x′+φ).

(14)

Equation (14) only involves first-order gradients (linear com-
putation time) and is more efficient than direct Hessian evalu-
ation, which demands cubic computation time. Moreover, if
we treat λ

k as a constant between 0 and 1, Equation (14) essen-
tially blends the gradients generated by x′ and x′+φ. There-
fore, we instead set λ′ = λ

k and tune λ′ within the interval
[0,1] to modulate the strength of the gradient regularization.

A closer examination of Equation (14) reveals its actual
effect in the optimization process. Notice that, without gra-
dient regularization, each update can be viewed as moving
x′ a certain distance in the direction of φ. When the gradi-
ents at x′ and x′+φ oppose each other, it means that the step
taken may be excessively large, potentially overshooting the
optimal point. By blending the gradients from both locations,
we can effectively dampen the gradient at x′, which acts as a
form of adaptive step size adjustment. Thus, it is intuitive that
Equation (14) indeed improves convergence by dynamically
adjusting step sizes based on gradient alignment, allowing
for more effective navigation through the complex landscape
of the loss function. We provide an illustrative example in
Appendix D.
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4.4 Concrete Formulation

Loss function. Our distance metric consists of four terms,
including L1 distance, cosine distance, total variation (TV),
and activation value penalty. Drawing inspiration from [18],
we employ both L1 distance and cosine distance to quantify
the gradient distance. The choice of L1 distance is due to
its resilience against gradient perturbations, which can occur
from various defense methods, making it preferable over L2
distance. Moreover, TV helps capture differences between
neighboring pixels, thereby improving the fidelity of the re-
constructed images, given that natural images exhibit smooth
transitions in adjacent pixels. The activation value penalty
applies an L1 penalty to the outputs of the model’s interme-
diate layers, promoting sparsity in these activations. This is
based on the observation that pre-trained and subsequently
fine-tuned models often produce sparse activations, with many
neurons having near-zero values for natural images [44]. The
ultimate dist(·, ·) is formulated as follows:

dist(g′[Λ], ĝ[Λ]) = ||g′[Λ]− ĝ[Λ]||1︸ ︷︷ ︸
L1distance

+1− g′[Λ]⊤ĝ[Λ]
||g′[Λ]||2||ĝ[Λ]||2︸ ︷︷ ︸
cosine distance

+α · TV(x′)︸ ︷︷ ︸
total variation

+β ·∑
l
||F(l)(x′,w)||1︸ ︷︷ ︸

activation value penalty

, (15)

where F(l)(x′,w) denotes the activation values of the l-th layer
of the model given the input x′. α and β are used to balance
the influence of the two terms.

Optimization. Any gradient-based optimization method
can be employed to address Equation (15). However, there is
an additional constraint: pixel values are required to be limited
within the range [0,1]. To adhere to this constraint, we include
a projection step, as shown in the 9th step of Algorithm 1,
clamping pixel values to this range.

5 Evaluation Protocol

Current evaluation protocols do not adequately capture the
nuances of real-world FL environments. To fill this gap, we de-
velop an evaluation protocol that faithfully reflects production
environments, drawing from our investigation (Appendix E).
We identify eight critical factors that significantly influence
attack performance and align their values with those found in
production environments, establishing a more practical evalu-
ation criterion. Table 1 provides a comparison of their values
in previous studies versus those in this paper:
• Batch size. The batch size determines the number of opti-

mization variables included in the gradient matching prob-
lem. When the batch size increases, there are more variables
to optimize, making it harder to reconstruct clients’ data.
Appendix E shows that practical batch sizes typically range
from 16 to 64.

• Model. Beyond CNNs, transformer models are emerging as
competitive alternatives. Appendix E illustrates the usage
frequency of both types in practical applications, revealing
that CNNs are predominant while transformer models are
less common. Thus, although transformer models will be
evaluated, the primary focus remains on CNNs. We eval-
uate four distinct models: ResNet, DenseNet, MobileNet,
and Vision Transformer (ViT). The first three are based on
convolutional structures, and ViT is based on transform-
ers. Moreover, to provide a comprehensive evaluation, we
employ variants of ResNet with 10, 18, and 34 layers, as
well as expanded channel widths for ResNet10, labeled
as ResNet10_x3 and ResNet10_x5, to study how model
complexity impacts attack performance.

• Dataset selection. Real-world datasets are more sophisti-
cated than commonly used small benchmark datasets, such
as MNIST, SVHN, CIFAR-10, and CIFAR-100. Alongside
benchmark datasets, we include three more sophisticated
datasets, ImageNet, HAM10000, and Lung-Colon Cancer.
The latter two are noteworthy as they pertain to medical
imaging. HAM10000 contains 10000 dermatoscopic im-
ages of pigmented skin lesions across seven classes, while
Lung-Colon Cancer features 25000 histopathological im-
ages categorized into five classes. Given that FL is primarily
applied in privacy-sensitive fields like healthcare, and con-
sidering the substantial differences between medical images
and common images, evaluating GLAs in HAM10000 and
Lung-Colon Cancer can provide a clearer picture of their
practical implications.

• Attack stage. Attacks can occur at any communication
round in FL. However, the quality of reconstructed data
is significantly higher in the initial communication rounds
compared to later ones [4, 16]. Note that clients of interest
may not participate in the initial communication rounds.
Therefore, rather than focusing solely on the attack per-
formance of GLAs in the initial rounds, we evaluate their
performance both at the onset and during later phases of
FL to better understand the overall privacy leakage risk
associated with FL.

• Initialization method. Some studies [4] found that GLAs
perform better in untrained models with parameters ini-
tialized through wide uniform distributions. However, Ap-
pendix E illustrates that, in practice, about 70% of cases use
default random initialization, while a smaller percentage
employs pre-trained weights. We focus on default random
initialization and pre-trained weights.

• Auxiliary information. We argue against the use of aux-
iliary information for two reasons. First, such information
may not always be available in real-world scenarios [26, 47],
limiting the generalizability of attack methods depending on
it. Second, methods with auxiliary information often incur
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Table 1: The configurations considered by existing attack methods. When multiple settings are employed, we report the most
sophisticated configuration. The ConvNet is a small CNN developed by Zhu et al. [58]. Yin et al. [52] utilized a batch size of 48,
but the resulting reconstructions are of low fidelity. CNNs indicate the use of various CNN architectures. Some methods employ
ImageNet but resize images from 224 to either 64 or 128. "Early" and "Late" indicate when the attack occurs: during the first
communication round and late training phase, respectively. "Default" refers to initialization methods provided by PyTorch while
"Wide Uniform" indicates the use of a wide uniform distribution for initializing model parameters. Instances where authors do
not provide specific details are marked as "N/A," and a "−" indicates no auxiliary information used.

Evaluation Setting
Batch
Size

Model Dataset Attack Stage
Initialization

Method
Auxiliary Information

Local
Step

Zhu et al. [58] ≤ 8 ConvNet Small Datasets Early Wide Uniform − 1
Zhao et al. [56] ≤ 8 ConvNet Small Datasets Early Wide Uniform − 1

Geiping et al. [22] 1 ResNet ImageNet Early Pretrained − 1
Yin et al. [52] ≤ 48 ResNet ImageNet Early Pretrained Batch Normalization Statistics 1

Balunovic et al. [4] 1 ConvNet Small Datasets Early & Late Wide Uniform − 1
Jeon et al. [27] ≤ 48 ResNet ImageNet (64×64) Early Default Clients’ Data Distribution 1
Li et al. [32] 1 ResNet ImageNet Early Default Clients’ Data Distribution 1

Yue et al. [53] 16 CNNs ImageNet (128×128) Early N/A Clients’ Data Distribution 5
Hu et al. [25] 16 CNNs Small Datasets Early N/A − 5

Ours ≤ 64 CNNs & Transformers ImageNet & Medical Datasets Early & Late Default & Pretrained − 12

high attack costs and complexities, making them less prac-
tical to implement. At the attack design level, FEDLEAK
does not utilize such information.

• Local step. To reduce communication costs, clients can
perform several local training steps. More local steps mean
that model updates sent to the server are based on a larger
amount of data. Also, the gradients estimated by the server
are cumulative from each local step, rather than reflecting
the gradients from all relevant data points, leading to es-
timation errors. Both of these two aspects make it harder
to recover clients’ data. Appendix E indicates that in real-
world environments, using a local step of 1 and training for
one epoch locally are the two most common configurations.

• Defenses. In real-world scenarios, as shown in Appendix E,
most studies avoid cryptography-based methods due to
their substantial computational costs. Instead, the major-
ity of studies favor Gaussian-DP [23]. In addition to DP, we
also include four state-of-the-art defense methods: quantiza-
tion [53], Soteria [48], OUTPOST [47], and Guardian [19].
Evaluation approach. Our evaluation begins with a seed

configuration using ResNet10, small benchmark datasets,
ImageNet-pretrained weights, and a local step of 1. We then
progressively explore more intricate configurations by chang-
ing one factor at a time and keeping track of the most chal-
lenging values encountered.

Generic setup for FL. The remaining FL configurations
largely follow existing works [19, 46, 48]. We utilize an FL
scenario with 100 clients collaborating to train a global model.
We consider both IID and Non-IID settings. In the IID setting,
the training dataset is randomly partitioned into 100 equal
subsets, one per client. See Section 6.3 for Non-IID settings.
The server performs average aggregation, and each client
updates its local model with a learning rate of 1×10−4.

Attacks. We select three state-of-the-art attacks, iDLG [56],
InvertingGrad (IG) [22], and GradInversion (GI) [52] as base-
lines. Additionally, although we assume that clients’ data
distributions are inaccessible, we also include comparisons
with generative model-based methods, i.e., GGL [32] and
ROGS [53], to demonstrate the effectiveness of FEDLEAK.

Evaluation metrics. To assess the similarity between re-
constructed images and their original counterparts, four met-
rics are used, including PSNR (↑), SSIM (↑), LPIPS (↓), and
attack success rate (ASR) (↑). Here, (↑) indicates that larger
values represent better results and (↓) signifies the oppo-
site. PSNR measures logarithmic L2 distance between recon-
structed and original images. SSIM quantifies the structural
similarity between two images. LPIPS measures perceptual
similarity by comparing DNN-extracted features. For ASR,
we enlist three human volunteers to determine whether the
entities in the two images have a high semantic overlap and
report the proportion of instances with strong overlap.

Label inference. We infer ground-truth labels by aggre-
gating gradients from the final fully connected layer along
the feature dimension and identifying the indices correspond-
ing to minimum values [52]. Formally, let ∆W ∈ RK×N de-
note the gradient matrix where K is the feature dimension
and N is the total number of classes. The inferred labels are
computed as: y′ = arg min(∑K

i=1 ∆W [i, :]))[: batch size]. If the
batch size exceeds the number of classes, we infer labels
based on gradient magnitudes. The count for each class j

is calculated as: c j = ⌊batch size× ∑
K
i=1(∆W [i, j]−maxW )

∑
K
i=1 ∑

N
j=1(∆W [i, j]−maxW )

⌋.
If ∑c j < batch size, we supplement the batch by iteratively
adding samples from the class with the lowest gradient
strength until the batch size requirement is satisfied. We also
jointly optimize the inferred labels alongside the input im-
ages during the inversion process. Appendix F examines the
impact of label inference.
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Table 2: A summary of the configurations across different sections along with corresponding privacy leakage risks. In particular,
Section 6.3 includes four configuration changes, labeled ① through ④, with red indicating weaker configurations to be discarded.
② and ④ involve multiple variables. Moreover, in ④, clients have the option to perform a local step of 1 with batch sizes of 16,
32, or 64, or alternatively, they can train for one local epoch using a batch size of 16 (which corresponds to 12 local steps in
the Lung-Colon Cancer dataset). The latter is more challenging. The risk levels are categorized into three levels: Very High
(PSNR of ≥ 20), High (PSNR of 15∼ 20), and Medium (PSNR of 10∼ 15), which indicate that nearly all, most, and only a
small portion of clients’ data can be semantically reconstructed, respectively.

Config. Batch Model Dataset Attack Stage Initialization Heterogeneity Local Step Defense Risk

Sec. 6.1 16,32,64 ResNet10 Benchmark Datasets Early & Late Pretrained IID 1 ✗ Very High
Sec. 6.2 16,32,64 ResNet10 Sophisticated Datasets Early & Late Pretrained IID 1 ✗ High to Very High

Sec. 6.3
(④ 16,32,64)

vs. 16
(③ Others)

vs. ResNet10
Lung-Colon Cancer

(② Early)
vs. Early & Late

(② Random)
vs. Pretrained

(① Non-IID)
vs. IID

(④ 1)
vs. 12

✗ Medium to High

Sec. 6.4 16 ResNet10 Lung-Colon Cancer Early & Late Pretrained IID 12 ✔ Medium

Table 3: The PSNRs of reconstructed images using four attack methods against FL configurations with benchmark datasets and
varying batch sizes. The best results are given in bold.

Dataset MNIST SVHN CIFAR-10 CIFAR-100

Batch Size iDLG IG GI Ours iDLG IG GI Ours iDLG IG GI Ours iDLG IG GI Ours

16 10.70 10.96 11.57 22.52 10.04 10.28 11.43 21.62 9.90 10.26 11.26 23.06 9.86 10.00 11.42 22.94
32 9.39 9.96 11.17 21.57 9.53 9.43 10.41 20.11 9.51 9.58 10.59 21.33 9.39 9.88 10.48 21.50
64 9.27 9.88 10.94 21.12 8.86 9.37 10.17 18.09 8.52 9.42 10.01 19.83 8.58 9.40 10.26 19.38

(a) ImageNet (b) HAM10000 (c) Lung-Colon Cancer

Figure 3: The images recovered by FEDLEAK in three datasets. The batch size here is 32. See Figure 11 for ground-truth ones
and Figure 12 for reconstructions of ROGS.

Hyperparameters and others. Adam optimizer is utilized
for Equation (15) with step size η = 1×10−4 and attack it-
erations I = 10000. The hyperparameters α, β, and λ′ for
FEDLEAK are configured to 1×10−5, 1×10−4, and 0.7, re-
spectively. We match the most significant 50% of gradient
elements, i.e., R = 50. Default hyperparameters are used for
alternative attack methods, with attack iterations increased
to 10000 for convergence. Attacks are carried out at the
2000×{0,1,2,3,4,5}-th rounds. For each image, we find the
most similar reconstructed image to calculate metrics.

6 Evaluation Results

6.1 Attack in Benchmark Datasets
Table 3 presents the PSNR of reconstructed images using four
different attack methods, evaluated across various datasets
and batch sizes. Throughout all datasets and batch sizes,

FEDLEAK consistently outperforms existing attack methods.
For instance, in CIFAR-10 with a batch size of 16, FEDLEAK
achieves a PSNR of 23.06, while the other methods lag far
behind with PSNRs of 9.90, 10.26, and 11.26, respectively.

6.2 Attack in Sophisticated Datasets
We now evaluate the performance of the attack methods
on sophisticated datasets, including ImageNet, HAM10000,
and Lung-Colon Cancer. Existing attack methods, including
iDLG, IG, and GI, generally exhibit poor reconstruction qual-
ity on high-resolution images. To facilitate a quantifiable
comparison, we contrast FEDLEAK with GGL and ROGS.
For HAM10000 and Lung-Colon Cancer, we resize input im-
ages to 224× 224. Table 4 reports the performance of the
three methods across these sophisticated datasets.

Overall, FEDLEAK significantly outperforms GGL and
ROGS by a considerable margin. For example, in HAM10000,
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Table 4: The PSNRs of reconstructed images using three attack methods against FL configurations with sophisticated datasets.

Dataset ImageNet HAM10000 Lung-Colon Cancer

Batch Size GGL ROGS Ours GGL ROGS Ours GGL ROGS Ours

16 12.50 16.26 20.07 11.76 14.54 23.35 10.81 11.33 18.40
32 11.31 14.18 19.07 10.61 13.28 22.47 9.86 10.44 17.73
64 10.17 12.96 19.01 9.81 11.47 22.16 9.48 10.27 16.06

Table 5: The performance of FEDLEAK under different non-
IID scenarios in Lung-Colon Cancer. We use a batch size of
32. For feature skew, 0∼ 20% is the most simple group.

Label Skew 1 class 2 class 3 class 4 class 5 class
PSNR 18.82 18.38 17.97 17.85 17.73

Quantity Skew 50 100 150 200 250
PSNR 17.80 17.71 17.76 17.72 17.73

Feature Skew 0-20% 20-40% 40-60% 60-80% 80-100%
PSNR 19.64 18.56 17.84 16.94 16.07

Table 6: The performance of FEDLEAK under varying data
heterogeneity levels.

α 0.1 0.5 1 5

ROGS 10.93 10.78 10.40 10.38
Ours 18.06 17.86 17.65 17.60

Table 7: The PSNRs of reconstructed images with different
weight initialization methods in Lung-Colon Cancer.

Batch Size 32 64

Weight Random Pre-trained Random Pre-trained

ROGS 13.95 10.44 12.04 10.27
Ours 19.62 17.73 18.32 16.06

FEDLEAK achieves a PSNR of at least 22.16, while GGL and
ROGS reach a maximum PSNR of only 14.54. Crucially,
the impressive attack performance of FEDLEAK is attained
without needing access to clients’ data distribution, whereas
both GGL and ROGS do require such access. Figure 3 shows
reconstructed batches for all three datasets. We also note that
the attack methods tend to be less effective on the Lung-Colon
Cancer dataset compared to the others. This is likely due to the
intricate structures, e.g., various tissue patterns and cellular
details, presented in Lung-Colon Cancer, as shown in Figure 3.
In contrast, the images in HAM10000 are relatively simpler
and lack such complex structural information, making them
easier to reconstruct. To conduct a more rigorous evaluation of
FEDLEAK’s attack performance, our subsequent experiments
will employ Lung-Colon Cancer.

6.3 Attack in Diverse Settings

In this subsection, we examine how the data heterogeneity
among clients, the use of pre-trained weights, and the choice
of models affect attack performance. We will subsequently in-
crease the number of local steps to create more challenging at-
tack configurations. Finally, to mitigate the risk of FEDLEAK
overfitting to a single evaluation metric, we incorporate three
supplementary metrics for a more comprehensive assessment.

Evaluation in Non-IID settings. We use Lung-Colon Can-
cer and stimulate three non-IID scenarios, including label
skew (1-5 classes per client), quantity skew (allocating local
datasets of 50∼ 250 samples), and feature skew (partitioning
images into five percentile groups based on their TV val-
ues, with lower TV indicating simpler images). As shown
in Table 5, FEDLEAK maintains strong attack performance
across all non-IID scenarios. Notably, higher label skew (e.g.,
single-class clients) and simpler features (low TV) are more
vulnerable to FEDLEAK, while sample quantity variations
show negligible impact. In Table 6, we further test FEDLEAK
with different levels of data heterogeneity by varying Dirichlet
distribution α values. A smaller α indicates stronger data het-
erogeneity 6. We see that data heterogeneity does have some
impact on the performance of GLAs, but this effect is not
particularly significant. Actually, data heterogeneity mainly
affects model performance, with a lesser effect on the gradient
matching problem. Therefore, we will retain the current IID
data distribution configuration.

Evaluation in randomly initialized models. Table 7 re-
ports the performance of GLAs in the first training round in
models with both randomly initialized and pre-trained weights.
As anticipated, GLAs indeed present higher attack perfor-
mance against randomly initialized weights. The reason has
been intuitively discussed in Section 1. The attack results in
later training phases are not reported since we observe negli-
gible differences in attack effectiveness after several training
rounds. Given that pre-trained weights offer greater resistance
against GLAs, we will continue to use them moving forward.

Evaluation over different model architectures, depths,
and widths. We evaluate the performance of FEDLEAK from
three perspectives: model architecture, depth, and width. The
results are detailed in Table 8. Across diverse model architec-
tures, depths, and widths, FEDLEAK consistently surpasses
the performance of ROGS. We note that larger models exac-

6https://github.com/TsingZ0/PFLlib.
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Table 8: The PSNRs of reconstructed images with different models in Lung-Colon Cancer.

Batch Size Attack ResNet10
Depth Width Architecture

ResNet18 ResNet34 ResNet10_x3 ResNet10_x5 DenseNet121 MobileNetV2 ViT

32
ROGS 10.44 10.66 11.15 10.96 11.12 10.22 9.48 9.01
Ours 17.73 18.15 18.92 18.46 19.41 17.42 16.85 15.64

64
ROGS 10.27 10.73 11.22 11.43 11.68 9.90 9.19 8.57
Ours 16.06 16.94 17.98 16.64 18.18 15.50 15.20 13.98

Table 9: The PSNRs of reconstructed images with varying
local steps in Lung-Colon Cancer.

Local Step IG GI ROGS Ours

1 8.82 10.12 11.33 18.40
2 8.44 9.86 10.98 16.74
4 8.53 9.53 10.88 15.57
8 8.28 9.41 10.74 14.34

12 8.59 9.10 10.43 13.55

Table 10: The quality of reconstructed images assessed by
three distinct evaluation metrics in Lung-Colon Cancer.

Metric SSIM LPIPS ASR (%)

ROGS 0.55 0.4736 0.35 %
Ours 0.68 0.3447 20.40%

erbate privacy leakage, aligning with conclusions drawn by
[9–11, 22]. Specifically, for FEDLEAK, increasing the model
depth from 10 to 34 layers leads to PSNR improvements of
1.19 and 1.92 for batch sizes of 32 and 64, respectively. This
trend is even more pronounced with model width, yielding
enhancements of 1.68 and 2.12 in PSNR when transitioning
from ResNet10 to ResNet10_x5. In terms of architecture,
FEDLEAK performs less effectively with MobileNetV2 and
ViT compared to ResNet and DenseNet. The reduced perfor-
mance with MobileNetV2 is due to its lightweight design,
while ViT’s unique architecture and information processing
pose challenges for FEDLEAK. Nonetheless, we highlight that
FEDLEAK achieves significant attack performance, particu-
larly in comparison to ROGS which typically obtains PSNRs
around 10. Given that CNNs are more prevalent in practi-
cal scenarios and less data-hungry, we decide to stick with
ResNet10. We will also see that ResNet10 can attain high
accuracy on Lung-Colon Cancer in Section 6.4, eliminating
the need for larger and potentially more complex models.

Evaluation over varying local step sizes. Here, we exam-
ine the case where the local epoch is set to 1. Lung-Colon
Cancer comprises 25000 samples, with 5000 samples reserved
for the test set, resulting in each client having a local dataset
of 200 samples. Using a batch size of 167, each participating

7This represents a worst-case scenario, as a small batch size for a fixed
number of training samples indicates a higher number of local steps, poten-
tially increasing the server’s gradient estimation error. But excessively small

(b) Local Step of 1 (c) Local Step of 12

Figure 4: The utility-privacy trade-offs of various defenses in
Lung-Colon Cancer against FEDLEAK.

client performs 200
16 = 12.5 local steps in a training round.

For convenience, we round the local step size at 12. Table 9
presents the performance of four attack methods when clients
execute 1, 2, 4, 8, and, 12 local steps using a batch size of 16.
A key observation is that FEDLEAK achieves better perfor-
mance over ROGS. Moreover, as expected, the performance
of all attack methods declines as the local step increases. How-
ever, commonly used local steps, either one step or a single
local epoch, are insufficient to safeguard against FEDLEAK.
We will use a local step size of 12 for further analysis.

Evaluation over diverse metrics. Table 10 reports the per-
formance of ROGS and FEDLEAK, scrutinized through three
distinct metrics. Due to the high cost of manual ASR evalua-
tion, we only calculate ASRs for data reconstructed at the first
client during 2000×{0,1,2,3,4,5}-th training rounds. The
results in Table 10 demonstrate the superiority of FEDLEAK
over ROGS across all three metrics. Specifically, the SSIM
for reconstructed data using FEDLEAK reaches an impressive
score of 0.68 (68% similarity). Furthermore, human evalua-
tion reveals an ASR of 20.40% for FEDLEAK. These numbers
underscore the significant privacy vulnerability in FL.

6.4 Attack in State-of-the-art Defenses
We now employ perturbation-based defenses to construct
the most challenging configuration. Although large defense
strengths can render GLAs ineffective, they also cause severe

batch sizes, e.g., a batch size of 1, may lead to model overfitting on the local
dataset.
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Figure 5: Recovered images of FEDLEAK against combined
defenses of Soteria and DP in Lung-Colon-Cancer. The left-
most image is the original image. The top row represents
adaptive DP, while the bottom row shows standard DP-SGD.
The values of ε from left to right are {105,104,103,102}.

performance degradation. In light of this, we adjust defense
strengths to plot the utility-privacy trade-off curve to evaluate
the performance of GLAs against these defenses.

Utility-privacy trade-offs. We examine two configura-
tions: local steps of 1 and 12. Figure 4 illustrates the utility-
privacy trade-offs (accuracy-PSNR curves) of different de-
fenses in Lung-Colon Cancer. For Soteria and OUTPOST, the
pruning ratios used are {0.1,0.3,0.5,0.7,0.9}. Quantization
is assessed with bit levels {32,16,8,4,1}, and Guardian’s ef-
fectiveness is evaluated with β of {0.1,1,10,102,103}. Since
other attacks already exhibit poor performance without de-
fense, their results are no longer reported. In Figure 4, all de-
fenses require a trade-off in model accuracy to reduce PSNR.
Generally, a PSNR below 10 indicates that the reconstructed
data no longer retains meaningful information about the origi-
nal data [19]. With a local step of 1, few methods achieve full
privacy protection, except for Quantization. While Quantiza-
tion lowers PSNR below 10, it severely compromises model
performance, resulting in only 10% accuracy. Increasing the
local step from 1 to 12 can significantly enhance the defense
effectiveness, allowing us to maintain a model accuracy of
around 50% while achieving a PSNR of 10. However, this
accuracy remains unsatisfactory. These findings underscore
achieving satisfactory model performance while preventing
privacy leakage still remains a significant challenge in FL.
Notice that increasing the local step can lead to a decline
in model performance due to overfitting to the local dataset.
For instance, with a local step of 1, the model accuracy is
approximately 90%, whereas with a local step of 12, it drops
to around 85%. Through this, increasing the local step seems
to still be an effective mitigation strategy, as it only reduces
model accuracy by 5% while lowering PSNR from about 18
to approximately 13.5.

Combining multiple defense strategies. Beyond individ-
ual defenses, an alternative approach is to combine multi-
ple defense strategies. We here evaluate FEDLEAK’s perfor-
mance with the combination of DP and Soteria. In detail, we
employ DP-SGD [23] in clients’ local training, with C = 1,

δ = 10−5, and noise variance calculated via σ =

√
2log(1/δ)

ε
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Figure 6: The gradient similarity between reconstructed im-
ages and ground-truth ones. We use ImageNet, ResNet10, and
a batch size of 64.

[17]. We also implement adaptive DP [21]. ε takes values of
{105,104,103,102}. We apply Soteria with a pruning strength
parameter of 0.5 to process model updates. Figure 5 visualizes
reconstructed examples of Lung-Colon Cancer. Overall, when
ε≥ 103, FEDLEAK is still able to extract some semantic infor-
mation. Complete protection is achieved only when ε≤ 102.
This observation contrasts with common literature [23] where
ε = 102 often provides negligible privacy guarantees, pri-
marily due to simpler datasets like MNIST or CIFAR-10. In
contrast, sophisticated datasets are more sensitive to ε. For
example, ResNet18 with DP-SGD achieves only about 10%
accuracy at ε = 71 in ImageNet [28], indicating that gradients
become heavily noisy. Under such conditions, it is reasonable
that FEDLEAK struggles to extract useful private information.
Moreover, we find that the defensive capability of adaptive
DP is, in fact, weaker than that of standard DP, because of
adaptive DP’s σ decay mechanism, which reduces gradient
noise injection over time.

6.5 Attack Cost

We here evaluate the computational cost of FEDLEAK using
an NVIDIA RTX 4090 GPU. Figure 6 shows the convergence
curve of FEDLEAK, where we observe that approximately
1000 iterations suffice to recover the most semantic informa-
tion from the ground-truth images. Beyond 4000 iterations,
the reconstructed images show only negligible perceptual
changes. For computational efficiency, FEDLEAK requires
approximately 20 minutes to complete 10000 iterations. For
10000 iterations, GI and IG require about 5 minutes, while
GGL and ROGS take about 11 minutes. GI and IG con-
verge within approximately 1000 iterations, whereas GGL
and ROGS stabilize around 2000 iterations. This eliminates
the possibility of non-convergence in GLAs. While FEDLEAK
indeed incurs higher computational costs compared to exist-
ing GLAs, its cost remains within an acceptable range.
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Figure 7: Performance of cryptography-based methods [7]
against FEDLEAK with varying participating clients.

Figure 8: The performance of FEDLEAK over two different
gradient pruning strategies.

7 Mitigation and Future Work

Section 6.4 shows that perturbation-based methods are in-
sufficient to fully resist FEDLEAK. We also observe that
increasing local steps can significantly degrade the perfor-
mance of FEDLEAK, primarily due to the amplification of the
batch size. Cryptography-based methods [7] exploit this by
ensuring that clients only observe the plaintext of aggregated
gradients, essentially scaling the batch size by the number
of participating clients. Figure 7 evaluates the performance
of cryptography-based methods [7] against FEDLEAK with
varying participating clients per round. Notably, FEDLEAK’s
performance diminishes remarkably with just two clients per
round and becomes ineffective with three clients (resulting in
a batch size of 576). However, cryptography-based methods
are often limited in practical deployment due to their complex
protocol requirements and computationally intensive opera-
tions. For a configuration of 12 local steps, a batch size of 16,
and ResNet-10 on Lung-Colon-Cancer, cryptography-based
methods incur substantial extra computation time: 702.03
seconds/client and 793.79 seconds/server per communication
round [7]. To put this computational cost into perspective, the
time required for clients’ local training is only 2.6 seconds.

What can we learn from FEDLEAK? One insight in
FEDLEAK is the importance of restricting server access to gra-
dient elements with the largest magnitudes8. Figure 8 shows
FEDLEAK’s effectiveness when the server can access vary-
ing proportions of the highest and lowest magnitude gradient
elements. When the server can only observe low-magnitude

8Intuitively, if FEDLEAK converges, the elements with the greatest mag-
nitude in g and g′ will be the same. The gradient elements in g′ play an
important role for FEDLEAK.

components (e.g., the bottom 20%), FEDLEAK achieves very
low PSNR, whereas access to high-magnitude components
(top 20%) enables reconstruction performance comparable
to full gradients. This insight could guide improvements in
existing methods.

For instance, cryptography-based methods can encrypt just
the top 80% of gradient elements by magnitude, as the remain-
ing ones are less likely to contain private information. This
selective encryption could reduce cryptographic overhead by
approximately 20%. Another potential solution is for clients
to inject noise proportionally to the magnitude of gradient el-
ements so as to obfuscate high-magnitude elements. Consider
noise vector M . To counterbalance the impact of this noise
on model performance, the client could send −M to another
client, which adds it to its own model updates. In this way, the
noise vector would be canceled out in aggregation process.
However, this method requires that clients do not disclose M
to the server. Furthermore, we highlight that all defense meth-
ods inherently entail trade-offs among model utility, privacy
preservation, computational efficiency, and threat model as-
sumptions. Future research should investigate these trade-offs
to develop more effective defense strategies.
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Table 11: The gradient distance (GD) and PSNR using differ-
ent attack strategies in MNIST and CIFAR-10.

Attack Strategy
MNIST CIFAR-10

GD PSNR GD PSNR

BayesAttack 0.19 10.99 0.21 11.08
IG 0.25 8.70 0.16 10.32
GI 0.17 12.01 0.19 12.03

BayesAttack + Multiple Start 0.16 11.11 0.20 11.10
IG + Multiple Start 0.24 9.01 0.16 10.33
GI + Multiple Start 0.16 12.23 0.18 12.05

BayesAttack + Cosine Annealing 0.15 11.04 0.19 11.32
IG + Cosine Annealing 0.23 9.22 0.14 10.65
GI + Cosine Annealing 0.14 12.05 0.16 12.57

Figure 9: The x-axis represents the absolute value of the
gradient elements (|g′[i]|), while the y-axis represents the
sensitivity of gradient elements to input changes (∑ j |

∂g′[i]
∂x′[ j] |).

A Supplementary Experiment for Section 3

We employ three attack methods (BayesAttack [4], IG [22],
GI [52]) on a three-layer fully connected network (Section
3), with results in Table 11. Note that IG uses cosine distance
while others use L2 distance. The PSNR values of the recon-
structed data are notably low in both MNIST and CIFAR-10
datasets, as evidenced by PSNRs around 10.

We also incorporate multiple restart [38] and cosine an-
nealing learning rate [35] for these attacks. Multiple restarts
mitigate saddle points and local minima through repeated
attacks with different seeds to avoid poor initializations.

Cosine annealing involves a sharp increase in the step size
after a predetermined number of iterations (1000 in our exper-
iments) to escape saddle points and local minima. As reported
in Table 11, although these strategies can somewhat improve
attack performance, the quality of the reconstructed data re-
mains significantly low. Thus, the recovery of noisy data is
unlikely to be mainly attributed to saddle points and local
minima.

Figure 10: The search paths of the gradient descent algorithm
with and without gradient regularization for minimizing y =
x2. The left image is with a step size of 1. The right image is
with a step size of 0.9.

B Gradient Estimation Error

Here, we analyze the scenario where ĝ ̸= ∇wL(F(x,w),y).
We denote ∇wL(F(x,w),y) as g. Let us suppose ε = ĝ− g,
with ĝ corresponding to the gradients generated by x∗, i.e.,
ĝ = ∇wL(F(x,w),y). According to the mean value theorem,
we have ĝ−g = ∇2L(F(z,w),y) (x∗−x), where z is between
x and x∗. Consequently, according to basic theorem in alge-
bra [8], if ∇2L(F(z,w),y) is positive definite, we obtain the
following inequality:

||ĝ−g||= ||∇2L(F(z,w),y) (x∗− x)|| ≥ σmin ||x∗− x||,

where σmin denotes the smallest eigenvalue of
∇2L(F(z,w),y). This indicates that when the estima-
tion error is ε, the distance between ground-truth data
associated with ĝ and g is bounded by ||ε||

||∇2 f (z)|| . Notice that
in practice, if the model fits the dataset well, the Hessian
matrix (∇2L(F(z,w),y)) should indeed be positive definite.
Moreover, a similar analytical framework can be applied
to the estimation errors associated with y and we will not
elaborate on that further here.

C Empirical Validation about Section 4.2

Here, we empirically demonstrate that gradient elements with
larger magnitudes are more sensitive to changes in input data.
We employ ResNet10 and CIFAR-10. Specifically, we input
100 samples into the model and calculate the gradients of
the final linear layer (g′[i]). We then calculate the absolute
sum of each gradient element with respect to the input data
(∑ j |

∂g′[i]
∂x′[ j] |) and visualize the results in Figure 9. As can be

seen, there is a clear trend: as the magnitude of the gradient
elements increases, so does their sensitivity to input changes.
The Pearson correlation coefficient is 0.7372± 0.0566. In
statistics, correlation coefficient above 0.7 is generally con-
sidered significant. Thus, gradient elements with larger mag-
nitudes indeed respond more sensitively to variations in the
input data.
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D Example for Gradient Regularization

To clarify the role of gradient regularization (Equation 14),
we illustrate its effect on minimizing y = x2 using gradient
descent with and without regularization. Starting at x = 0.5,
as illustrated on the left side of Figure 10, a fixed step size of 1
without gradient regularization causes oscillation between 0.5
and −0.5. Even with a reduced learning rate 0.9, oscillations
persist, slowly converging to x = 0.

Equation 14 combines gradients at the current point x and
a subsequent point along the descent path. Intuitively, if the
gradient at the forward point opposes that at the current point,
it indicates that the step size is too large. Then, the gradient
at the forward point will shrink the gradient at the current
point x, which indirectly reduces the step size. This behavior
is illustrated in Figure 10, where we set λ′ to 0.3. The gradient
at x = 0.5 is 1, while the gradient at the next point x =−0.5
is −1. Consequently, the resulting mixed gradient is (1−
λ′)× 1+λ′× (−1) = 0.4. This demonstrates how gradient
regularization facilitates the optimization process.

E Supplementary Investigation Result

Upon review of existing research related to GLAs, we identify
eight key factors that significantly impact the performance of
these attacks and summarize these factors in Table 12. These
factors are either explicitly mentioned or shown to have a
substantial impact on the effectiveness of GLAs. To collect
common values for eight factors in production environments,
we reviewed extensive FL literature on FL and open-source
FL libraries. The attack stage is server-determined, while aux-
iliary information is largely scenario-driven, such as whether
the specified scenario can collect substantial data similar to
that of the clients. We focus on the remaining seven factors,
including batch size, model, dataset, initialization method,
auxiliary information, local step, and defense.
• Batch size. Some survey papers [39] indicate that the com-

mon batch size ranges from 16 to 64. Our examination
of application cases published in journals such as Nature,
Science, and BMC over the past several years reveals that
many studies use vague expressions like "specific/common
parameters" without providing precise values. A few pa-
pers specify batch sizes of 16 [34], 32 [1, 2], 609, and 64
[29]. We conjecture that these studies predominantly adopt
the default recommended values from existing frameworks.
Introductory examples in common industrial libraries also
typically use batch sizes between 20 and 64, as summarized
in Table 13. Therefore, we consider the range of 16 to 64
as standard practice.

• Model. Guan et al. [24] compiled the studies utilizing
FL in the medical domain. Among the 47 papers they re-

9https://github.com/gkaissis/PriMIA/blob/master/configs/
torch/pneumonia-conv.ini

viewed, 35 employed CNN architectures, primarily ResNet,
DenseNet, and MobileNet, while 4 utilized transformer
models. This highlights that CNNs remain the dominant
architecture in practical applications. This is likely due to
their higher computational efficiency and lower data require-
ments compared to transformer models [15], making them
better suited for data-scarce medical environments.

• Dataset. As noted in most literature [24, 29, 34, 55], real-
world datasets typically have higher resolutions compared
to commonly used benchmark datasets, which are often
limited to a resolution of 32×32.

• Initialization method. Zhang et al. [55] summarized the
weight initialization approaches of existing FL application
papers in the medical domain. Among the 89 papers they
reviewed, 68 explicitly discussed approaches for weight ini-
tialization. Among 89 studies, 45/89 used random initializa-
tion, 16/89 pre-determined parameters, and 7/89 pre-trained
weights. Pre-determined parameters can vary significantly
across tasks. As such, we focus on random initialization
and pre-trained weights.

• Local step. Most papers vaguely describe local steps. Com-
mon values include 1 step or 1 local epoch [1, 14, 45].

• Defense. Zhang et al. [55] reviewed 89 FL application
papers and found that most did not actively implement de-
fense methods. Specifically, six papers applied DP, five of
which were based on Gaussian mechanism. It seems that
practitioners in real-world scenarios generally have strong
confidence in FL’s privacy protection capabilities. Although
the use of privacy-enhancing methods is not yet widespread
in practice, we still evaluate the effectiveness of FEDLEAK
against defense methods.

F Label Inference, Sensitivity Analysis, and
Ablation Study

We first discuss label inference. We then study the impact of
different hyperparameters on the performance of FEDLEAK.
By default, we use a batch size of 32 and CIFAR-10.

The impact of label inference. Table 14 reports the accu-
racy of label inference and the FEDLEAK’s performance with
and without label inference across different batch sizes, over
1280 ImageNet samples. We see label inference generally
achieves high accuracy and enhances reconstruction quality.

The impact of matching ratio R. We here incrementally
increase the value of R from 15 to 100 to observe the per-
formance change of FEDLEAK, as illustrated in Table 15.
Looking at the results we see a performance trend that ini-
tially rises and peaks at R = 50, followed by a subsequent
decline. This trend can be intuitively understood as a result of
balancing the number of matched gradient elements. Match-
ing too few gradient elements might lead to the omission of
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Table 12: A summary of critical factors influencing the performance of GLAs.

Factor Literature Explanation

Batch Size [16, 25, 26, 50, 52, 53, 58] A larger batch size introduces more optimization variables, which complicates the data reconstruction process.
Model [19, 22, 25] Intuitively, a larger model should impose more constraints on the gradient matching problem, potentially enhancing

the reconstruction quality. However, this increased complexity also leads to heightened nonlinearity of the model.
Compared to linear problems, non-linear problems are notoriously more difficult to solve. Early GLAs present
poor performance on large models, likely due to their inability to effectively address the gradient matching problem
associated with large models.

Dataset [16, 22, 25, 27, 32, 50, 53] Higher-resolution images suggest more optimization variables, thereby exacerbating reconstruction difficulty.
Attack Stage [4, 16] GLAs tend to yield better attack results during the early stages of training, which can be attributed to the model’s

higher sensitivity at that time. This is elaborated in Section 1.
Initialization Method [22, 47] Different weight initialization methods can affect the model’s sensitivity to data, thereby influencing the recon-

struction difficulty. For instance, wide uniform initialization can amplify the weight intensity, causing minor
data variations to lead to significant changes in the model’s output. This increased sensitivity can facilitate data
reconstruction.

Auxiliary Information [16, 26, 27, 47] Apparently, auxiliary information gives the server more advantages in solving the gradient matching problem.
Local Step [16, 47, 50] When the batch size is fixed, an increase in local steps leads to uploaded model updates being derived from more

data, which complicates the data reconstruction. Besides, an increase in local steps also can introduce greater
estimation errors on the server side, adding another layer of difficulty to the data reconstruction.

(a) ImageNet (b) HAM10000 (c) Lung-Colon Cancer

Figure 11: The ground-truth batch of Figure 3.

Table 13: The default batch sizes of introductory examples in
various open-source libraries.

Library Batch Size

NVIDIA FLARE 4-32
FLOWER 32-64

Substra 32
PySyft 64

OpenFL 32
TensorFlow Federated 20

Figure 12: ROGS’s recovered batch in Lung-Colon Cancer.

many useful elements, whereas matching too many can lead
to an overly small µ value.

The impact of blend factor λ′. A higher λ′ heightens em-
phasis on gradient regularization, thereby reducing the value

Table 14: Label inference accuracy and performance metrics
across different batch sizes in ImageNet.

Batch Size
Label Inference

Accuracy
PSNR

(with Label Inference)
PSNR

(w.o. Label Inference)

32 100% 19.07 17.94
64 96.88% 19.01 17.50

128 92.19% 18.40 16.45

Table 15: The impact of R.

R 15% 30% 50% 65% 80% 100%

PSNR 18.85 20.34 21.33 20.76 19.80 15.06

Table 16: The impact of λ′.

λ′ 0.1 0.3 0.5 0.7 0.9

PSNR 18.85 20.34 21.33 20.76 19.80

of L. Nonetheless, an excessively high λ′ might disproportion-
ately prioritize optimizing the gradient regularization term,
potentially neglecting the gradient matching. As anticipated,
Table 16 illustrates this rising and then falling trend.

The impact of α and β. Table 17 and Table 18 present
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Table 17: The impact of α.

α 0 10−5 10−4 10−3 10−2 10−1

PSNR 21.05 21.33 21.99 21.01 17.79 14.31

Table 18: The impact of β.

β 0 0.0001 0.001 0.01 0.1

PSNR 20.84 21.33 21.80 21.17 20.20

the impact of varying α and β on FEDLEAK’s performance.
Both α and β exhibit a rising and subsequently falling pattern
regarding attack performance. Specifically, an overly large α

leads to overly smooth constructions, where all pixel values
converge to the same number. Likewise, a high β causes the
recovered images to have activation values close to zero, thus
reconstructing most pixel values to zero.

Table 19: The impact of loss function.

Loss Function w.o. cos w.o. L1 cos & L1

PSNR 20.04 19.86 21.33

Ablation study on loss function. We further assess the per-
formance of FEDLEAK when removing either the L1 distance
or cosine distance from Equation (15). As reported in Table
19, omitting either distance measure results in performance
degradation, showing the necessity of both components in
FEDLEAK’s effectiveness.

G Supplementary Theory

Theorem 3. Removing the minimum values from a set
S = {a1, · · · ,an} and then calculating the average of the re-
maining values will result in an increase in the average.

Proof. Without loss of generality, let an be the smallest ele-
ment in the set S. The average of the original S is given by
Average(S) = 1

n ∑
n
i=1 ai. After removing the smallest element

an, the new set is defined as S′ = S\{an}. The average of the
new set S′ can be expressed as Average(S′) = 1

n−1 (∑
n
i=1 ai−

an). We demonstrate that Average(S′) ≥ Average(S). This
inequality can be rewritten as 1

n−1 (∑
n
i=1 ai−an)≥ 1

n ∑
n
i=1 ai.

Cross-multiplying yields:

n(
n

∑
i=1

ai−an)≥ (n−1)
n

∑
i=1

ai.

Expanding and rearranging gives:

n
n

∑
i=1

ai−nan ≥ n
n

∑
i=1

ai−
n

∑
i=1

ai.

Simplifying leads to nan ≤ ∑
n
i=1 ai. Since an is the minimum

value in S, it follows that nan ≤ ∑
n
i=1 ai holds true. We can

iteratively remove subsequent minimum elements and apply
the same reasoning. Each removal of the smallest element
results in an increased average of the resulting set, thereby
confirming the validity of Theorem 2.
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