
ar
X

iv
:2

50
6.

08
32

0v
1 

 [
cs

.C
R

] 
 1

0 
Ju

n 
20

25

How Good LLM-Generated Password Policies Are?
Vivek Vaidya*

Department of Computer Science
Rutgers University

New Brunswick, USA
vivek.vaidya@rutgers.edu

Aditya Patwardhan*
Department of Computer Science

Stony Brook University
Stony Brook, USA

aapatwardhan@cs.stonybrook.edu

Ashish Kundu
Cisco Research
San Jose, USA

ashkundu@cisco.com

Abstract—Generative AI technologies, particularly Large Lan-
guage Models (LLMs), are rapidly being adopted across industry,
academia, and government sectors, owing to their remarkable
capabilities in natural language processing. However, despite
their strengths, the inconsistency and unpredictability of LLM
outputs present substantial challenges, especially in security-
critical domains such as access control. One critical issue that
emerges prominently is the consistency of LLM-generated re-
sponses, which is paramount for ensuring secure and reliable
operations.

In this paper, we study the application of LLMs within the
context of Cybersecurity Access Control Systems. Specifically,
we investigate the consistency and accuracy of LLM-generated
password policies, translating natural language prompts into
executable pwquality.conf configuration files. Our experimental
methodology adopts two distinct approaches: firstly, we utilize
pre-trained LLMs to generate configuration files purely from nat-
ural language prompts without additional guidance. Secondly, we
provide these models with official pwquality.conf documentation
to serve as an informative baseline. We systematically assesses
the soundness, accuracy, and consistency of these AI-generated
configurations. Our findings underscore significant challenges in
the current generation of LLMs and contribute valuable insights
into refining the deployment of LLMs in Access Control Systems.

Index Terms—Cybersecurity, Generative AI. Large Language
Models, Agents, Consistency, Trustworthiness, Validity, Reliabil-
ity, Hallucination

I. INTRODUCTION

Access control systems—including robust password pol-
icy enforcement—are fundamental to cybersecurity, ensuring
that sensitive resources remain accessible only to authorized
users. Traditionally, Linux systems have relied on password
authentication modules (PAM) and associated files such as
pwquality.conf to enforce desired password policy for the
quality standards. Large language models (LLMs) such as
ChatGPT [18], Gemini [27], have been studied in the context
of automation of cybersecurity tasks and operations. In this
paper, we are studying the problem of how good the LLM-
generated password policies for Linux are especially for Linux
PAM?

Recent advances in Large Language Models (LLMs) and
AI agents offer promising opportunities to automate the gen-
eration of access control policies. In particular, using LLMs
to translate text-based password policies into usable pwqual-
ity.conf files that can directly slot into Linux systems to en-

*These authors contributed equally to this work.

force standards could revolutionize how organizations manage
and update their security protocols. However, integrating AI-
driven systems into such critical roles demands an incredibly
high standard of precision, consistency, and reliability. Even
minor inconsistencies in the generated policies could lead to
policy engine conflicts within a network due to differences on
local machines.

While prior research has evaluated LLM output consis-
tency in broader cybersecurity contexts using frameworks
such as BECEL and TruthEval [5], [7], these studies have
largely overlooked the specific challenges inherent in password
policy control. Password policies, by their nature, require
consistency; even subtle deviations in rule enforcement can
compromise the security of an entire system. A more recent
study [22] has also concluded that while LLMs have made
significant strides in recent times, they are still inconsistent and
tend to hallucinate in their more abstract plain text responses.

In this paper, we studied the problem of how good the LLM-
generated password policies for Linux are? We have developed
a framework that generates and analyzes these LLM-generated
password policies for the following key properties: Consis-
tency, Hallucination, Correctness, and Incompleteness.

This paper explores a slightly different side of consistency:
that’s more focused on directly checking parameter assign-
ments as opposed to judging semantic consistency with natural
language responses, to answer the question: how consistent are
modern Large Language Models at generating usable password
policies based on plain text instructions?

Organization of the paper: Section II and Section III
describe the importance of Access Control Systems, Password
Policies, the key definitions for this study, and the motivation
behind this study. In Section IV, we have presented our novel
framework for Consistency and Correctness in the context of
password configuration files. Section V presents our findings
and discusses the impact of these findings on real-world sys-
tems. Section VI discusses the related work, and Section VII
concludes the paper with future work.

II. BACKGROUND AND PROBLEM MOTIVATION

Access Control Systems in Linux establish the overar-
ching guidelines for resource protection by implementing
both discretionary and mandatory controls. Traditional Unix
file permissions, along with more granular Access Control
Lists (ACLs) and mandatory access control systems like

https://arxiv.org/abs/2506.08320v1


Fig. 1: PAM with configuration files in Linux

SELinux [12] and AppArmor [39], define how users and
processes interact with the system. This general framework not
only regulates file and process permissions but also lays the
groundwork for authenticating users—a process that directly
influences how password management is conducted.

Password Management is a critical component within this
broader access control strategy. It focuses on the secure
creation, storage, and periodic updating of user credentials,
typically stored in encrypted forms in files like /etc/shadow.
Effective password management is crucial because it mitigates
risks associated with brute force and guessing attacks, ensuring
that only properly authenticated users can gain system access.
Thus, robust password management is an indispensable ex-
tension of the overall access control system, bridging the gap
between user identity and resource access.

To integrate and streamline these authentication processes,
Linux employs Pluggable Authentication Modules (PAM).
PAM offers a modular framework that decouples authentica-
tion mechanisms from application logic, allowing administra-
tors to configure various methods—ranging from traditional
passwords to multi-factor authentication—across different ser-
vices like login, SSH, or sudo. By providing a unified and
adaptable approach, PAM not only simplifies authentication
but also reinforces the security policies set by the access
control and password management systems. Figure 1 describes
how the PAM module with its configuration files is stored in
Linux.

Supporting all these mechanisms are Password Policies,
which set formal guidelines for creating and maintaining
strong passwords. These policies—defining criteria such as
minimum length, complexity, expiration intervals, and reuse
restrictions—are often implemented via PAM modules and
system configuration files. Password policies ensure that the
password management system operates effectively, directly
contributing to the overall robustness of access control.

In the current landscape of generative AI, large language
models (LLMs) are emerging as powerful tools for auto-
matically generating and refining these security policies. By
leveraging LLMs, system administrators can efficiently pro-
duce up-to-date password policies and other access control
configurations that reflect the latest best practices and threat
intelligence. This paper examines how LLM-generated policies
can be integrated within the Linux File Subsystem. Our study

focuses on how these AI-assisted policies can be incorporated
into the system by administrators lacking adequate training or
experience, which leads to authentication issues or gives rise
to vulnerabilities that can then be exploited by malicious users.

In this paper, we specifically focus on automating the
generation of the pwquality.conf file, a configuration-level
component that defines the password policy rules enforced
by Linux systems via the PAM stack. This file plays a
critical role in bridging human-readable policy descriptions
with machine-enforced authentication rules. While it does not
perform enforcement itself, its parameters are consumed by
the pam pwquality.so module—a key enforcement mechanism
within PAM. If the pwquality.conf file is missing, miscon-
figured, or contains outdated parameters, the PAM module
silently falls back on its internal hardcoded defaults, referred
to in this paper as the “failsafe” configuration. This fallback
behavior, although intended to preserve system integrity, can
unintentionally bypass stricter security policies if the configu-
ration is inconsistent. Therefore, ensuring that LLM-generated
pwquality.conf files are correct, complete, and aligned with
best practices is vital for maintaining effective access control.
Our work serves as a first step in automating configuration
generation at this interface, with methods that can be extended
to other security-critical files in the Linux ecosystem, such as
login.defs or sshd config.

III. AUTOMATED GENERATION OF POLICIES BY LLMS

In this study, we focus on the generation of password
configuration files used in conjunction with the Pluggable
Authentication Modules (PAM) to configure password quality
requirements and enforce password complexity rules. Specif-
ically, we focus on the generation of the pwquality.conf file
using Large Language Models.

A. Key Properties

Some key properties in the context of the consistent gener-
ation of configuration files are as follows:

1) Consistency: Consistency in the context of Large Lan-
guage Models refers to an LLM’s ability to generate similar
responses when given the same or semantically identical
prompts. Although past studies such as [22] have explored
abstract forms of consistency, like semantic consistency, in
this study, we adopt a more pragmatic definition: an LLM
is considered consistent if it generates configuration files that
behave exactly the same way. This definition is particularly
critical in the realm of password policies, where consistency
across a network is essential for uniformly enforcing security
standards. Algorithm 2 provides a systematic method for
assessing consistency by quantifying the similarity between
two configuration files based on their parameter assignments.
Specifically, the algorithm computes a similarity metric that
quantifies the number of parameters in one generated file that
match the corresponding parameters in another generated file,
offering a quantitative measure of consistency.



Inconsistency: As opposed to consistency, we define an
LLM as an Inconsistent LLM if it generates two configuration
files with different parameters for the same set of natural
language policies. Such a situation may lead to inconsistencies
between systems. If an LLM interprets the same natural
language password policy in more than one way, it could create
discrepancies on different machines, leading to inconsistent
access control, potential security breaches, and authentication
errors. Inconsistency is closely intertwined with Hallucinations
of parameters in the generated files. When an LLM fabricates
or misinterprets parameters, the resulting configuration files
may diverge from the expected behaviour, undermining the
reliability of Access Control Systems.

2) Correctness: We define correctness using a manually
generated gold-standard benchmark. We implement this by
defining sets of natural language policies [23], [13], [25], [17],
[3], [11] to serve as prompts to the LLM. For each set of
natural language policies, we manually define a pwquality.conf
file to serve as a benchmark, i.e., a ’correct’ answer. This
benchmark file enforces the natural language policy to the
extent of what is possible to set in the pwquality.conf file,
such as setting a password’s minimum length and complexity
requirements, while ignoring policies outside the scope of the
file, such as requiring rate limitation to be implemented ex-
ternally. LLMs are then prompted with these natural language
policy descriptions, and they generate their own configuration
files, intended to implement the specified policies. To measure
the accuracy of these generated files, we use our Correct-
ness algorithm (Algorithm 3) that operates on a parameter-
by-parameter basis. Specifically, the algorithm checks each
parameter in the LLM-generated file against the corresponding
parameter of the benchmark file.

3) Hallucination: Hallucinations [14] refer to instances
where an LLM fabricates or misinterprets configuration pa-
rameters, resulting in deviations from the documented defaults.
We define Hallucination as discrepancies that are created when
an LLM produces outputs with varying parameter assign-
ments or unexpected deviations from the values prescribed
in the official pwquality.conf documentation. For example, if
an LLM introduces a parameter that does not exist in the
benchmark or assigns a value that contradicts the documented
default (such as assigning an incorrect minimum length), such
behavior indicates that the model is generating extraneous or
erroneous information. These hallucinated outputs cause the
resulting configuration files to be diverted from their expected
behavior, thus undermining the reliability and security of
access control mechanisms they are meant to enforce. Even
if an output is semantically consistent, any deviation from the
official parameters results in inconsistent policy enforcement
across the network. By evaluating the generated files on a
parameter-by-parameter basis, we can quantify the degree
of hallucination. This not only measures the consistency of
LLM responses but also provides insights into the impact
of hallucination on the overall trustworthiness of LLMs. To
quantify the extent of hallucinations in the generated configu-
ration files, we employ our Hallucination Analysis Algorithm

(Algorithm 2). It identifies and counts parameters that are
fabricated. The algorithm then computes the average number
of hallucinated parameters per file, providing a dual measure
of both consistency and the incidence of hallucination.

4) Incompleteness: The property of incompleteness refers
to instances where an LLM-generated configuration file does
not fully specify all the parameters required to enforce a given
password policy. This can occur when the LLM either omits
certain parameters entirely or provides only partial information
about them, leading to outputs that may lack comprehensive
coverage of the intended security settings. In our framework,
we address this issue by interpreting missing parameters as
being implicitly assigned their default values as documented
in the official pwquality.conf guidelines [10]. However, in-
completeness still represents a significant challenge, as it can
indicate that the LLM’s understanding of the natural language
prompt is partial or that the model is unable to capture all the
nuances of the policy.

B. Analysis of Properties

In our framework, we evaluate LLM-generated configu-
ration files using the four key properties described above:
Consistency, Correctness, Hallucination, and Incompleteness.
Consistency refers to the LLM’s ability to produce functionally
equivalent outputs when presented with the same or seman-
tically identical prompts, ensuring uniform enforcement of
access control policies. Correctness is established by compar-
ing these outputs against a manually defined gold-standard
benchmark, which guarantees that the intended password
policies are accurately implemented. Hallucination captures
instances where the LLM fabricates or misinterprets param-
eters, leading to deviations from documented defaults and
potentially introducing security vulnerabilities. Incompleteness
arises when the LLM fails to specify all required parameters,
leaving gaps that might compromise comprehensive policy
enforcement. As Table I shows, collectively, these properties
directly influence critical aspects such as security, compliance,
usability, and Linux PAM validation. We therefore define an
LLM-generated configuration as sound if it meets all four
criteria—delivering outputs that are consistent, correct, free of
hallucinations, and complete. This final check for soundness
serves as an aggregate measure of the overall trustworthiness
and reliability of the generated configurations in secure access
control systems.

C. Compliance in LLM-Generated Policies

Leveraging LLM-generated policies introduces additional
layers of complexity to the compliance landscape. Since LLMs
are trained on diverse datasets, they may inadvertently incor-
porate outdated or misaligned practices, thereby necessitating
meticulous review processes to ensure adherence to established
legal, regulatory, and industry standards. Robust validation
mechanisms are therefore essential to maintain consistency as
regulatory requirements evolve.

To address these challenges, we propose a definition of
soundness for LLM-generated policies. We define an LLM



TABLE I: Impact of LLM-Generated Config Properties

Property Security ComplianceUsability PAM Vali-
dation

Consistency High:
Fewer
vulnerabil-
ities

High:
Aligns
with
policies

Moderate:
Pre-
dictable
UX

High: Better
PAM accep-
tance

Correctness High:
Blocks
bad access

High:
Meets
standards

Moderate:
Fewer
errors

High:
Passes PAM
checks

Hallucination Low: Fake
entries
risky

Low: Can
break rules

Low: Con-
fuses users

Low: May
be rejected

Incompleteness Low:
Gaps
reduce
safety

Low: May
miss reqs

Low:
Causes
instability

Low: Likely
rejected

as sound if it generates functionally equivalent files. For
example, consider the pwquality.conf file, which automatically
applies default settings when certain parameters are omitted,
in accordance with the Linux documentation [10]. In this
context, explicitly defining a parameter such as minlen=8 is
functionally identical to omitting it altogether. Consequently,
if an LLM produces two configuration files—one where
minlen=8 is explicitly stated and one where the parameter is
omitted—the outputs are deemed sound.

Nonetheless, despite the implementation of robust validation
mechanisms, compliance issues may still arise in real-world
scenarios. For instance, if a password policy description fails
to specify the default value for the parameter controlling the
minimum days after which a password should be changed
(e.g., pass max days), the LLM might generate two different
configuration files, one assigning a value of 90 and the other
180. Such discrepancies, stemming from both inconsistency
and hallucination, underscore the critical need for a thorough
analysis of Generative AI-based applications in Access Control
Policies.

IV. LLM-GENERATED PAM PASSWORD POLICIES AND
SOUNDNESS ANALYSIS

To address the aforementioned issue, we propose two ex-
perimental frameworks. In the first, we assess pre-trained
LLMs - here, the model generates a pwquality.conf file based
solely on its inherent training, and the output is compared
against other LLM-generated files and against our benchmark
file. In the second framework, we provide the model with
the official documentation IV-A1 along with a prompt to
generate the pwquality.conf file, and similar to the first, we
compare the result to other LLM-generated versions and to
the benchmark file. This dual-framework approach enables
us to investigate the impact of consistency, Hallucination,
Correctness, and Incompleteness on the Soundness of the
generated configuration files.

A. System Design

Figure 2 outlines our system, where an LLM generates
the pwquality.conf file based on our policies and replaces

Fig. 2: Password Policy Generation and HICC Analysis

the Linux pwquality.conf file and passes through the Cor-
rectness Algorithm (Algorithm 3) and the Consistency and
Hallucination Analysis (Algorithm 2). This process ensures
that the configuration is both syntactically and semantically
sound before being organized into the standard PAM module,
integrating automated generation with verification to produce
a policy-compliant configuration file.

We define an LLM-generated configuration as sound if it
meets all four criteria: it consistently produces functionally
equivalent outputs, accurately reflects the intended password
policy (correctness), does not introduce fabricated or erroneous
parameters (absence of hallucination), and fully specifies the
required configuration parameters (completeness). This final
check for soundness serves as an aggregate measure of the
trustworthiness of the generated file.

1) Augmentation: In our study, we investigate the impact of
this approach on both III-A1 and III-A2. It is important to note
that our approach does not incorporate Retrieval Augmented
Generation (RAG) or In-Context Learning. Our work only
leverages the pre-trained natural language generation of LLMs,
without additional fine-tuning or task-specific adaptation. We
supply the LLM with the link to the official documentation of
the pwquality.conf file [10] that details all relevant keywords
and all proper assignment rules for each parameter. By em-
bedding this documentation into our prompt, we enable the
LLMs to reference a trusted source and ground their output.
This method serves as a form of implicit training: the LLM
can leverage the provided context to better interpret natural
language descriptions of password policies and translate them
into configuration files that align with the documented defaults
and recommendations.

It is important to clarify that our framework does not
attempt to modify or interact directly with the internal logic
of the PAM modules or their failsafe defaults. Instead, our
automation is restricted to the generation of the pwquality.conf
file, which is interpreted at runtime by the pam pwquality.so
enforcement module. If this file is absent, malformed, or
uses deprecated parameters, the PAM system will default
to internally hardcoded policies to prevent misconfiguration-
induced vulnerabilities. As such, our evaluation assumes the



Algorithm 1 Parameter Generation

1: procedure AVG CONSISTENCY(LLM, prompt, iterations)
2: resps← []
3: for i ∈ 0 . . . iterations do
4: resps[i]← gen resp(LLM, prompt)

5: total← []
6: for i ∈ 0 . . . iterations do
7: for j ∈ i . . . iterations do
8: total+ = Response Comparison(resps[i],

resps[j])

9: sum← iterations ∗ ((iterations− 1)/2)
return [total[0]/sum, total[1]/sum, total[2]/sum]

presence of a valid pwquality.conf file and aims to measure
how well LLMs can produce configurations that remain within
the boundaries of what the PAM system recognizes and en-
forces. This approach ensures practical relevance while avoid-
ing unintended interference with PAM’s failsafe mechanisms.

B. Generation of pwquality.conf

Algorithm 1 is our file generation algorithm, which returns
the average scores for a certain prompt for an LLM. For each
LLM, it generates a defined number of responses, which we
have set to five, and stores them. Then it calls Algorithm 2
for each pair of responses and returns the average number
of hallucinated responses, consistency including hallucinated
parameters, and consistency not including hallucinated param-
eters.

C. Consistency and Hallucination Analysis

Algorithm 2 is our Consistency and Hallucination Analysis
algorithm for a single pair of files. It loads the defaults and
then reads each response from both responses to fill up two
hashmaps, with keys being the parameter, and values being
the assignment. The algorithm then compares each one. If
the parameter’s assignments are the same, num same, which
keeps track of the number of parameters that are assigned the
same, is incremented. If the parameter is a real parameter,
then num same real, which keeps track of the number of real
parameters that are assigned the same, is updated. If it isn’t
num hal, which keeps track of the number of hallucinated pa-
rameters is updated. Afterwards, it returns an array containing
the average number of hallucinated parameters in each file
(num hal/2), and the average number of parameters assigned
to the same value, both including hallucinated parameters and
not including hallucinated parameters.

D. Correctness and Incompleteness Analysis

Algorithm 3 is our Correctness and Incompleteness Analysis
algorithm. Similar to our consistency and hallucination algo-
rithm, it prompts an LLM a certain number of times and stores
those responses. Instead of comparing these responses with
each other, it compares each one with the provided benchmark,
which contains the correct assignment for each parameter. It
then returns the average of the percentage of correctly assigned

Algorithm 2 Hallucination and Consistency Analysis

Input: Response1 - One response from an LLM
Input: Response2 - Another response from an LLM for
the same prompt generated at a different time

1: procedure RESPONSE COMPARISON(Response1,
Response2)

2: def params← load defaults()
3: resps1← def params.copy()
4: resps2← def params.copy()
5: for param, val ∈ response1 do
6: resps1[param]← val

7: for param, val ∈ response2 do
8: resps2[param]← val

9: num hal← 0
10: num same← 0
11: num same real← 0
12: all keys = [resps1.keys() + resps2.keys()]
13: for k ∈ all keys do
14: if resps1[k] == resps2[k] then
15: num same = num same+ 1
16: if k ∈ def params then
17: num same real = num same real + 1
18: else
19: num hal = num hal + 1

20: lenreal← len(def params)
21: len← len(all keys)

return [num hal/2, num same/len,
num same real/lenreal]

Algorithm 3 Correctness and Incompleteness Analysis

1: procedure AVG CORRECTNESS(LLM, prompt, iterations,
benchmark)

2: resps← []
3: for i ∈ 0 . . . iterations do
4: resps[i]← gen resp(LLM, prompt)

5: total← []
6: for i ∈ 0 . . . iterations do
7: total+ = Response Comparison(resps[i], benchmark)

return total[2]/iterations

parameters. Additionally, the algorithm identifies incomplete-
ness by checking for any missing parameters and interpreting
their absence as an implicit assignment to the documented
default values. This dual evaluation enables us to quantify
both the correctness and the completeness of the generated
configuration files, ensuring that all required parameters are
accurately and fully specified.

V. EXPERIMENTAL DISCUSSIONS

A. Outlier LLM Behavior

There are some things the raw data does not take into
account. The algorithm goes parameter by parameter and
checks the assignment of each one, but doesn’t check the



Fig. 3: Average LLM Consistency (Including Hallucinated
Parameters)

Fig. 4: Average LLM Consistency (Only Including Real Pa-
rameters)

overall state of the file. A few LLMs exhibit outlier behavior
that is not measured by the data.

Bloom [35] refuses to generate anything at all, returning
only blank files. If this file were plugged into pwquality.conf,
it would default to all the defaults for all parameters, hence
why it still doesn’t score badly on accuracy. Since it always
spits out a blank file, it also has a perfect 100% in consistency.

Cohere [1] occasionally forgets the ’=’ sign in it’s assign-
ments. For example, it will sometimes spit out minlen 8 instead
of minlen=8. While this may be the correct assignment, the
file doesn’t work if plugged in directly.

Llama3 [31] includes headers inside brackets in the files it
generates, for example, it’ll put the cracklib parameter under
a [dictionary] header and everything else under a [general]
header.

B. Consistency

Figures 3 and 4 refer to LLM consistency in response
generation, including the hallucinated parameters and only
including the real parameters, respectively.

1) Consistency Including Hallucinated Parameters: When
including hallucinated parameters as seen in Figure 3, the most
consistent models excluding Bloom are the two OpenAI mod-
els, with GPT 4o-mini [19] doing slightly better than GPT o3-
mini [20]. Throughout every LLM, including documentation,

Fig. 5: Average LLM Accuracy

has close to negligible effects on consistency. o3-mini and
DeepSeek [4] display a slight reduction in consistency when
documentation is provided, while Cohere and Gemini [27]
display a slight increase. The two models that experience an
increase, on average, hallucinate more parameters than the
ones that experience a reduction, and both tend to hallucinate
more when given documentation. They likely experience this
increase because there are more false parameters generated
and they are fairly consistent in their hallucinations.

2) Consistency Only Including Real Parameters: Removing
hallucinated parameters is more useful for practically measur-
ing consistency in this study because it more directly measures
differences in how the password policies will function in
practice. Hallucinated parameters being different won’t affect
the policy engine at all, because it won’t even check them.
Real parameters being incorrectly assigned will functionally
change the policy. When hallucinated parameters are not
included, as seen in Figure 4, the average consistency for
most LLMs seems to increase. Interestingly, trends for the
effects of including documentation on consistency remain the
same for every LLM except Cohere. Cohere does considerably
better when not given the documentation, as opposed to doing
better with the documentation when including hallucinated
parameters. This is likely because including documentation
for whatever reason makes Cohere much more likely to
hallucinate, increasing the number of parameters that can be
correctly assigned when including them. Interestingly, Cohere
is actually the stronger performer here even when including
documentation, even outpacing the newer and more refined
OpenAI models. Despite being the model that hallucinates the
most, Cohere is also the most functionally consistent out of
the measured models.

C. Correctness

Figure 5 displays the average number of correctly assigned
parameters per response by LLM when compared to our
manually created benchmark files for each prompt. Bloom
does quite well here with its blank files since the default
and a few of our red herring prompts inflate its score. Not
including Bloom, the OpenAI models once again perform
the best, with o3-mini outscoring 4o-mini both with and



Fig. 6: Average Number of Hallucinated Parameters per LLM

without documentation, and increasing when provided with
documentation. o3-mini is interestingly the outlier in that
quality. Giving documentation to every other LLM either has
no effect or is actively detrimental to their accuracy.

1) Effects of Incorrect Parameter Assignments: If an LLM
sets an existing parameter to an invalid value, this will cause an
issue, unlike with hallucinated parameters. For example, if you
set minlen to a string, when trying to set a new password, the
module will return ”Authentication token manipulation error”
and leave the password unchanged. Next time the command
is run, the PAM module will default to the default rules while
ignoring anything in the file. For example if I set minlen to a
string, and the difok to 2, saying that at there must be at least
two characters in the new password that aren’t in the old one,
this will be ignored in favor of the default, setting difok to 1,
just because minlen was set to an invalid value. LLMs have
made similar mistakes before; for example, Cohere forgot the
equals sign on a few of its assignments on 3/5 of the files
generated for a prompt, meaning that 3/5 times the policy
wouldn’t be enforced at all.

D. Hallucination

When asked to generate pwquality.conf files, some LLMs
tend to hallucinate parameters that don’t exist. Figure 6 keeps
track of the average number of non-existent parameters an
LLM hallucinates per generation. Bloom seems to perform
the best, but it’s always at 0 due to it not generating anything
to begin with. In reality, the best performing are GPT 4o-mini
and o3-mini, each with less than one hallucinated parameter
on average. Interestingly, providing the documentation helps
4o-mini hallucinate less, but makes o3-mini hallucinate more.
Whether the documentation helps or not seems to be LLM
dependent, with it slightly reducing hallucination in Deepseek,
4o-mini, and Llama3, while increasing Hallucination in Co-
here, Gemini, and o3-mini. Cohere consistently hallucinates
the most non-existent parameters, and is also made signif-
icantly worse when provided documentation, even more so
than the others.

1) Effects of Hallucinations: While some LLMs hallucinate
a lot of parameters, we have noticed that it doesn’t affect the
generated file when plugged in. If a non-existent parameter like

Fig. 7: Average Consistency Prompt 4 vs Prompt 5 (no
documentation)

”check userpass” is included, the PAM module will simply
ignore it and enforce all the valid parameters such as ”minlen”.
This means a file containing all correctly assigned parameters
and a few hallucinated ones is functionally the same as one
that doesn’t contain the hallucinated parameters, hence why
we measured consistency both including and excluding hallu-
cinated parameters, and measured accuracy while completely
ignoring them.

E. Outlier Policy Prompts

Our natural language password prompts contain a mix of
enforceable parameters as well as red herrings that cannot be
enforced in the context of the pwquality.conf file. Within these
prompts, there are two outliers that stick out, listed in Table
II. The first prompt is the default setting of the pwquality.conf
file translated into plain text. This contains no red herrings,
and the default parameters don’t even have to be changed. To
pass this, an LLM could even return a blank file, as a blank file
automatically assigns all defaults. In contrast to the first, the
second prompt is a large verbose set of instructions mostly
comprised of red herrings, with only two policies directly
enforceable by the pwquality.conf file, both of which are also
set to their default assignments. We have specifically isolated
results (prompts not including documentation) from these two
extremes to compare the differences in LLM behavior.

1) Consistency: Figure 7 displays the average consistency
for every LLM for the two prompts, only including real
parameters and not including documentation. Barring Bloom’s
blank responses, GPT o3-mini is the only LLM to be 100%
consistent for both prompts. Likely due to the smaller number
of assignable parameters, Cohere, Gemini, and Llama3 are
more consistent with the red herring prompt, showing that
the fluff didn’t affect the consistency of generation. The only
LLM to see a significant reduction in consistency with the
red herring prompt is DeepSeek. Interestingly, DeepSeek’s
consistency with the default prompt is greater than any of
the LLMs which were noticeably more consistent with the
red herring prompt. The two OpenAI models do the best on



Fig. 8: Average Number of Correctly Assigned Parameters per
LLM Prompt 4 vs Prompt 5 (no documentation)

Fig. 9: Average Number of Hallucinated Parameters per LLM,
Prompt 4 vs Prompt 5 (no documentation)

average, and they have a negligible consistency difference
between the two prompts.

2) Correctness: Figure 8 displays the average correctly
assigned parameters for the two prompts, only including real
parameters and not including documentation. Bloom again has
the full 100% here since all the parameter assignments here
are defaults. Again, the OpenAI models perform the best, with
GPT o3-mini doing slightly better than 4o-mini. Correctness
displays the exact same trends as consistency in terms of which
prompt results in better results. Cohere, Gemini and Llama3
tend to correctly assign parameters with the red herring prompt
better than with the default. DeepSeek is the opposite and
is considerably more accurate than the three for the default
prompt.

3) Hallucinated Parameters: Figure 9 displays the average
number of hallucinated parameters for the two prompts. As
expected, on average, LLMs hallucinate more parameters with
the verbose red herring prompt. Llama3 does the worst here,
displaying both the largest overall number of hallucinated
parameters and the largest difference between the default and
the verbose prompt. Cohere is close behind, which is in
contrast to the overall average, where Cohere hallucinates the

most parameters. Gemini and GPT o3-mini are the outliers,
hallucinating slightly more parameters on average with the
default prompt. Along with that DeepSeek is the only LLM to
never hallucinate a single parameter for one of the prompts,
that being the default. This follows its trend of being the outlier
that does considerably better with the default prompt. This
metric also follows the trend of the OpenAI models doing the
best on average.

F. Limitations and Scope of Automation

While our work demonstrates that LLMs can be evalu-
ated for configuration generation with quantitative rigor, it
is essential to acknowledge the boundary conditions of this
automation. The generated configuration file (pwquality.conf)
operates at the interface between human policy intent and
system-enforced password restrictions. However, the actual
enforcement logic resides within the pam pwquality.so bi-
nary, which is part of the PAM stack and not subject to
direct modification through configuration. Moreover, PAM
includes an internal failsafe mechanism that overrides insecure
or outdated configurations, rendering certain LLM-generated
configurations ineffective even if syntactically correct. This
highlights a practical constraint: the full behavior of the pass-
word policy enforcement depends not only on the generated
file, but also on the state and version of the PAM module.
Our system does not currently intervene at that layer. Future
work may explore automated validation of effective policy
behavior by combining config generation with PAM-aware
policy simulation or static analysis.

VI. RELATED WORK

Recent advances in large language models (LLMs) have
transformed the landscape of natural language processing.
Models such as GPT-3.5 and GPT-4 have demonstrated im-
pressive capabilities in generating human-like text, while open-
source alternatives like LLaMA and OPT have broadened
accessibility and research opportunities [21], [28], [31], [38].
These models serve as the backbone for various applications,
ranging from everyday language tasks to more specialized
domains like cybersecurity.

A critical research focus has been on the consistency of
LLM outputs—a key factor in establishing trust and reliability
in these systems. For example, Jang and Lukasiewicz analyzed
the consistency of ChatGPT responses [6], and later work
by Jang et al. introduced BECEL and TruthEval, which are
benchmarks designed to evaluate different aspects of consis-
tency in LLMs [5], [7]. Additional studies have expanded
on this foundation; Zhu et al.[40] and Lee et al.[8] propose
novel frameworks for measuring model consistency, while Ye
et al. [36] offer a fine-grained evaluation approach based on
alignment skill sets.

Beyond baseline consistency analyses, recent studies have
investigated methods that enhance the reasoning capabili-
ties of LLMs. For instance, techniques like chain-of-thought
prompting [34] and self-consistency approaches [33] have
demonstrated improvements in multi-step reasoning tasks.



Furthermore, advances in prompt engineering, adversarial
training, and retrieval-augmented generation (RAG) [9] have
shown promise in boosting LLM robustness. However, since
these techniques are primarily tailored for general-purpose
applications, they might not fully capture the specific nuances
required for access control systems. Collectively, these ap-
proaches not only enhance task accuracy but also provide valu-
able insights into the variability of model outputs, highlighting
the need for a unified framework for consistency evaluation.

Parallel to these developments, the cybersecurity field is
increasingly leveraging LLMs for practical applications in
access control and security policy formulation. Secure code
copilots and the generation of secure code have emerged as key
research areas, addressing challenges in the analysis of code
and configurations [30], [15], secure code generation [32],
[24], and even security and penetration testing [26]. Although
research specifically targeting password policy generation is
still in its early stages, the integration of LLM capabilities
with cybersecurity tasks is already evident. Recent studies
have demonstrated that generative AI can significantly bolster
cybersecurity operations [2], [16], while the development of
specialized benchmarks and datasets for cybersecurity evalua-
tion [29], [37] further underscores the potential for automating
and enhancing access control systems.

Our work extends these prior contributions by adapting
and enhancing existing consistency evaluation methodologies
specifically for access control scenarios. In doing so, we aim to
provide a focused analysis of the role that consistency plays in
secure, AI-driven access control, and to offer practical insights
into mitigating the unique challenges—such as hallucination
and adversarial manipulation—that affect policy enforcement
in critical cybersecurity environments.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we presented a formal definition of Soundness
tailored to the generation of password policies and introduced
a comprehensive framework for evaluating the consistency of
LLM outputs. By defining Soundness in terms of functional
equivalence, we established a rigorous baseline for LLM-
generated pwquality.conf files against manually constructed
benchmarks.

Our evaluation employed two experimental frameworks: one
where pre-trained LLMs generated configuration files based
solely on natural language prompts, and another that employed
the official pwquality.conf documentation. Extensive evalua-
tions on multiple models reveal that, although some LLMs
demonstrate high consistency, others exhibit discrepancies and
hallucinations that may lead to inconsistent access control
enforcement across networks. Our work contributes a crucial
step toward understanding and improving the consistency of
LLM-generated configurations, offering insights for advancing
trustworthy AI in Cybersecurity Applications.

Future research should focus on refining evaluation method-
ologies, exploring more robust In-Context Learning strategies,
and extending the framework to other cybersecurity domains.
We intend to do so by exploring other ways of enforcing

password policies, such as asking a model to generate files
that it deems necessary for the Linux system. We also plan
to explore other directions which involve scouring parameters
- hallucinated or otherwise - and incorporating them into
such files to exploit vulnerabilities in the Linux and other
contemporary systems. Traversing such relationships between
consistency and hallucinations in detail may help us classify
and fine-tune LLMs for different cybersecurity tasks better.

In addition to refining evaluation metrics, a promising
avenue for future work lies in creating a task-specific dataset
comprising natural language password policies and their cor-
responding pwquality.conf implementations. Such a dataset
could serve as the basis for fine-tuning LLMs or explor-
ing domain-adaptive techniques such as retrieval-augmented
generation (RAG) or instruction tuning. Although this paper
focuses on zero-shot prompting to establish baseline perfor-
mance, our findings suggest that specialized training could
substantially improve the accuracy, consistency, and sound-
ness of generated configurations. Beyond pwquality.conf,
we envision extending our framework to other configura-
tion files within the Linux authentication system—such as
login.defs, system-auth, or even sshd config—where LLM-
generated misconfigurations may introduce subtle but critical
vulnerabilities. This direction holds the potential to transform
LLMs into trustworthy assistants for secure, automated system
administration.

REFERENCES

[1] “Cohere api documentation,” https://cohere.ai/, 2023.
[2] N. Capodieci, C. Sanchez-Adames, J. Harris, and U. Tatar, “The impact

of generative ai and llms on the cybersecurity profession,” in 2024 Sys-
tems and Information Engineering Design Symposium (SIEDS), 2024,
pp. 448–453.

[3] Center for Internet Security (CIS), “Cis password policy
guide: Passphrases, monitoring, and more,” 2023, ac-
cessed: 2025-03-30. [Online]. Available: https://learn.cisecurity.org/
cis-password-policy-guide-passphrases-monitoring-and-more

[4] A. L. et. al, “Deepseek-v3 technical report,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.19437

[5] M. Jang, D. S. Kwon, and T. Lukasiewicz, “BECEL: Benchmark for
consistency evaluation of language models,” in Proceedings of the 29th
International Conference on Computational Linguistics. Gyeongju,
Republic of Korea: International Committee on Computational
Linguistics, Oct. 2022, pp. 3680–3696. [Online]. Available: https:
//aclanthology.org/2022.coling-1.324/

[6] M. E. Jang and T. Lukasiewicz, “Consistency analysis of chatgpt,”
2023. [Online]. Available: https://arxiv.org/abs/2303.06273

[7] A. Khatun and D. G. Brown, “Trutheval: A dataset to evaluate
llm truthfulness and reliability,” 2024. [Online]. Available: https:
//arxiv.org/abs/2406.01855

[8] N. Lee, J. Hong, and J. Thorne, “Evaluating the consistency of llm
evaluators,” 2024. [Online]. Available: https://arxiv.org/abs/2412.00543

[9] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021. [Online]. Available: https://arxiv.org/abs/2005.11401

[10] A. Linux, pwquality.conf(5) — Arch Manual Pages, n.d., accessed: 2025-
03-28. [Online]. Available: https://man.archlinux.org/man/pwquality.
conf.5.en

[11] Linux Manual, “Default password policy in linux systems (e.g., pam,
/etc/login.defs),” 2024, based on standard Linux configurations; no
official central documentation.

[12] F. M. Love, K. M. Anderson, and D. Smalley, SELinux by Example:
Using Security Enhanced Linux. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2006.

https://cohere.ai/
https://learn.cisecurity.org/cis-password-policy-guide-passphrases-monitoring-and-more
https://learn.cisecurity.org/cis-password-policy-guide-passphrases-monitoring-and-more
https://arxiv.org/abs/2412.19437
https://aclanthology.org/2022.coling-1.324/
https://aclanthology.org/2022.coling-1.324/
https://arxiv.org/abs/2303.06273
https://arxiv.org/abs/2406.01855
https://arxiv.org/abs/2406.01855
https://arxiv.org/abs/2412.00543
https://arxiv.org/abs/2005.11401
https://man.archlinux.org/man/pwquality.conf.5.en
https://man.archlinux.org/man/pwquality.conf.5.en


[13] Lumi Cyber, “Successful password policies for organizations,” 2023,
accessed: 2025-03-30. [Online]. Available: https://www.lumificyber.
com/blog/successful-password-policies-for-organizations/

[14] D. McDonald, R. Papadopoulos, and L. Benningfield, “Reducing llm
hallucination using knowledge distillation: A case study with mistral
large and mmlu benchmark,” Authorea Preprints, 2024.

[15] F. Minna, F. Massacci, and K. Tuma, “Analyzing and mitigating (with
llms) the security misconfigurations of helm charts from artifact hub,”
arXiv preprint arXiv:2403.09537, 2024.

[16] F. N. Motlagh, M. Hajizadeh, M. Majd, P. Najafi, F. Cheng, and
C. Meinel, “Large language models in cybersecurity: State-of-the-art,”
2024. [Online]. Available: https://arxiv.org/abs/2402.00891

[17] NIST, “Digital identity guidelines: Authentication and lifecycle
management (sp 800-63b),” 2020, accessed: 2025-03-30. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-63b.pdf

[18] OpenAI, “Chatgpt: Optimizing language models for dialogue,” https:
//openai.com/blog/chatgpt, 2022, accessed: 2025-03-30.

[19] OpenAI, “GPT-4o Mini: Advancing Cost-Efficient Intelli-
gence,” Jul. 2024. [Online]. Available: https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

[20] OpenAI, “o3-mini in chatgpt - faq,” 2025, accessed March
31, 2025. [Online]. Available: https://help.openai.com/en/articles/
10491870-o3-mini-in-chatgpt-faq

[21] OpenAI Team, “GPT-3.5: Generative Pre-trained Transformer,” OpenAI
API, 2023, accessed: Aug. 4, 2024. [Online]. Available: https:
//platform.openai.com/docs/models/gpt-3-5

[22] A. Patwardhan, V. Vaidya, and A. Kundu, “Automated consistency
analysis of llms,” in 2024 IEEE 6th International Conference on Trust,
Privacy and Security in Intelligent Systems, and Applications (TPS-ISA).
IEEE, 2024, pp. 118–127.

[23] Purplesec, “Cyber security policy templates: Password security,”
2020, accessed: 2025-03-30. [Online]. Available: https://purplesec.us/
resources/cyber-security-policy-templates/password-security/

[24] D. Saha, K. Yahyaei, S. K. Saha, M. Tehranipoor, and F. Farahmandi,
“Empowering hardware security with llm: The development of a vul-
nerable hardware database,” in 2024 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2024, pp. 233–
243.

[25] Securden, “Top 10 password policy best practices,” 2023,
accessed: 2025-03-30. [Online]. Available: https://www.securden.com/
blog/top-10-password-policies.html

[26] S. Song, A. Kundu, and B. Tak, “Poster: Seccomp profiling with dy-
namic analysis via chatgpt-assisted test code generation,” in Proceedings
of the 19th ACM Asia Conference on Computer and Communications
Security, 2024, pp. 1928–1930.

[27] G. Team and R. Anil et. al., “Gemini: A family of highly capable
multimodal models,” 2024. [Online]. Available: https://arxiv.org/abs/
2312.11805

[28] O. Team, “Gpt-4: Generative pre-trained transformer,” OpenAI API,
2023, https://platform.openai.com/docs/models/gpt-4.

[29] N. Tihanyi, M. A. Ferrag, R. Jain, T. Bisztray, and M. Debbah,
“Cybermetric: A benchmark dataset based on retrieval-augmented gen-
eration for evaluating llms in cybersecurity knowledge,” in 2024 IEEE
International Conference on Cyber Security and Resilience (CSR), 2024,
pp. 296–302.

[30] R. Tóth, T. Bisztray, and L. Erdodi, “Llms in web-development: Evalu-
ating llm-generated php code unveiling vulnerabilities and limitations,”
arXiv preprint arXiv:2404.14459, 2024.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023. [Online]. Available: https:
//arxiv.org/abs/2302.13971

[32] J. Vaidya and H. Asif, “A critical look at ai-generate software: Coding
with the new ai tools is both irresistible and dangerous,” Ieee Spectrum,
vol. 60, no. 7, pp. 34–39, 2023.

[33] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” in The Eleventh International
Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=1PL1NIMMrw

[34] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits

reasoning in large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2201.11903

[35] B. Workshop, :, and T. L. S. et. al., “Bloom: A 176b-parameter
open-access multilingual language model,” 2023. [Online]. Available:
https://arxiv.org/abs/2211.05100

[36] S. Ye, D. Kim, S. Kim, H. Hwang, S. Kim, Y. Jo, J. Thorne,
J. Kim, and M. Seo, “FLASK: Fine-grained language model
evaluation based on alignment skill sets,” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=CYmF38ysDa

[37] Y.-C. Yu, T.-H. Chiang, C.-W. Tsai, C.-M. Huang, and W.-K.
Tsao, “Primus: A pioneering collection of open-source datasets
for cybersecurity llm training,” 2025. [Online]. Available: https:
//arxiv.org/abs/2502.11191

[38] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen,
C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott,
S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and
L. Zettlemoyer, “Opt: Open pre-trained transformer language models,”
2022. [Online]. Available: https://arxiv.org/abs/2205.01068

[39] H. Zhu and C. Gehrmann, “Apparmor profile generator as a cloud
service,” in Proceedings of the 11th International Conference on Cloud
Computing and Services Science. SciTePress, 2021, pp. 45–55.

[40] Q. Zhu, D. Lyu, X. Fan, X. Wang, Q. Tu, Y. Zhan, and H. Chen,
“Multi-model consistency for llms’ evaluation,” in 2024 International
Joint Conference on Neural Networks (IJCNN), 2024, pp. 1–8.

https://www.lumificyber.com/blog/successful-password-policies-for-organizations/
https://www.lumificyber.com/blog/successful-password-policies-for-organizations/
https://arxiv.org/abs/2402.00891
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://help.openai.com/en/articles/10491870-o3-mini-in-chatgpt-faq
https://help.openai.com/en/articles/10491870-o3-mini-in-chatgpt-faq
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://purplesec.us/resources/cyber-security-policy-templates/password-security/
https://purplesec.us/resources/cyber-security-policy-templates/password-security/
https://www.securden.com/blog/top-10-password-policies.html
https://www.securden.com/blog/top-10-password-policies.html
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://platform.openai.com/docs/models/gpt-4
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2211.05100
https://openreview.net/forum?id=CYmF38ysDa
https://arxiv.org/abs/2502.11191
https://arxiv.org/abs/2502.11191
https://arxiv.org/abs/2205.01068


APPENDIX

TABLE II: Password Policy Requirements

Policy Requirements
P1 There must be at least 1 character in the new password that isn’t in the old password.

The password must be at least 8 characters long.
Cannot contain words in the cracklib directory.
Cannot contain the username in any form.
Must be enforced by the PAM module.
Allows the user 3 retries before returning an error.

P2 A Memorized Secret authenticator — commonly referred to as a password or, if numeric, a PIN — is a secret value intended
to be chosen and memorized by the user. Memorized secrets need to be of sufficient complexity and secrecy that it would be
impractical for an attacker to guess or otherwise discover the correct secret value. A memorized secret is something you know.
Memorized secrets SHALL be at least 8 characters in length if chosen by the subscriber. Memorized secrets chosen randomly
by the CSP or verifier SHALL be at least 6 characters in length and MAY be entirely numeric. If the CSP or verifier disallows
a chosen memorized secret based on its appearance on a blacklist of compromised values, the subscriber SHALL be required
to choose a different memorized secret. No other complexity requirements for memorized secrets SHOULD be imposed.
Verifiers SHALL require subscriber-chosen memorized secrets to be at least 8 characters in length. Verifiers SHOULD permit
subscriber-chosen memorized secrets at least 64 characters in length. All printing ASCII characters, as well as the space
character, SHOULD be acceptable in memorized secrets. Unicode characters SHOULD be accepted as well.
To account for mistyping, verifiers MAY replace multiple consecutive space characters with a single space prior to verification,
provided the result is still 8+ characters. Truncation SHALL NOT be performed. Unicode secrets SHOULD use the NFKC or
NFKD normalization process before hashing.
Verifiers SHALL NOT permit storage of password “hints” accessible to unauthenticated users, nor prompt for specific types
of personal information (e.g., ”first pet”).
When processing password changes, secrets SHALL be compared to a list of known weak/compromised values. These include
breached passwords, dictionary words, sequential patterns (e.g., ”aaaaaa”, ”123abc”), and context-specific tokens like the
username or service name. If found on the list, the user SHALL be prompted to choose a new secret.
Verifiers SHOULD offer feedback tools like a password-strength meter.
Rate limiting SHALL be applied to failed login attempts. Arbitrary password expiration SHOULD NOT be required unless
there is evidence of compromise.


	Introduction
	Background and Problem Motivation
	Automated Generation of Policies by LLMs
	Key Properties
	Consistency
	Correctness
	Hallucination
	Incompleteness

	Analysis of Properties
	Compliance in LLM-Generated Policies

	LLM-Generated PAM Password Policies and Soundness Analysis
	System Design
	Augmentation

	Generation of pwquality.conf
	Consistency and Hallucination Analysis
	Correctness and Incompleteness Analysis

	Experimental Discussions
	Outlier LLM Behavior
	Consistency
	Consistency Including Hallucinated Parameters
	Consistency Only Including Real Parameters

	Correctness
	Effects of Incorrect Parameter Assignments

	Hallucination
	Effects of Hallucinations

	Outlier Policy Prompts
	Consistency
	Correctness
	Hallucinated Parameters

	Limitations and Scope of Automation

	Related Work
	Conclusions and Future Work
	References
	Appendix

