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ABSTRACT

This monograph explores the design and analysis of cor-
related noise mechanisms for differential privacy (DP), fo-
cusing on their application to private training of AI and
machine learning models via the core primitive of estimation
of weighted prefix sums. While typical DP mechanisms inject
independent noise into each step of a stochastic gradient
(SGD) learning algorithm in order to protect the privacy of
the training data, a growing body of recent research demon-
strates that introducing (anti-)correlations in the noise can
significantly improve privacy-utility trade-offs by carefully
canceling out some of the noise added on earlier steps in
subsequent steps. Such correlated noise mechanisms, known
variously as matrix mechanisms, factorization mechanisms,
and DP-Follow-the-Regularized-Leader (DP-FTRL) when
applied to learning algorithms, have also been influential in
practice, with industrial deployment at a global scale.
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Unfortunately, the rapid development of this field and com-
plex mathematical foundations pose a high barrier to entry
for researchers and practitioners. This monograph provides
a pedagogical tutorial of correlated noise mechanisms, with
an emphasis on the the theoretical principles governing their
design and derivation, and practical considerations such as
scalability and runtime.
We start with private prefix sum estimation in the streaming
setting, where each example is only processed on a single
training step. We focus on mechanisms with structural con-
straints designed to balance high utility with low time and
space complexity. Next, we allow each example to partici-
pate on multiple training steps, to accommodate practical
private AI model training. While we focus on this example-
level notion of privacy, we also discuss the straightforward
generalization to uer-level privacy, where the DP guarantee
extends to possibly multiple training examples all associ-
ated with the same user, as in practice user-level privacy
is usually necessary. We also discuss how to numerically
find the precise correlations (that is, the noise cancellation
schedule) and offer implementation details and guidance for
practitioners. Finally, we survey promising theoretical and
applied open problems for researchers to contribute to this
active and growing area.



Notation

We summarize the main notation in Tables 1 and 2.

3
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Table 1: Notation summary (part 1). Matrices and vectors are denoted in boldface.

n Number of training steps. More generally, the number of
steps on which private estimates are released.

m Model dimension.
A ∈ Rn×n The workload matrix.
Apre ∈ Rn×n The lower-triangular matrix of ones, defining an unweighted

prefix sum workload.
A = BC Matrix factorization of A, where B is called the decoder

matrix, and C is the strategy or encoder matrix.
C−1 The noise-correlating matrix, the (pseudo)inverse of the

strategy matrix C. The matrix C−1 maps i.i.d. Gaussian
noise to a non-i.i.d. distribution.

G ∈ Rn×m = (g0, . . . , gn−1) stacked row-wise, the sequence of private
inputs processed by the DP mechanism (typically gt =
G[t, :] ∈ Rm is a gradient).

S ∈ Rn×m = (s0, . . . , sn−1) stacked row-wise, the (weighted) pre-
fix sums to be computed, S = AG, equivalently st =∑t

τ=0 A[t, τ ]gτ .
Ĝ ∈ Rn×m = (ĝ0, . . . , ĝn−1) stacked row-wise, DP estimates of G.
Z ∈ Rn×m = (z0, . . . , zn−1) stacked row-wise, the source i.i.d. noise

injected for DP; private estimates of G are given by Ĝ =
G + C−1Z.

Z̃ ∈ Rn×m = C−1Z, the correlated noise injected into the learning
algorithm. The noise injected in step t is z̃ = Z̃[t, :].

Ŝ ∈ Rn×m = (ŝ0, . . . ŝn−1) stacked row-wise, DP estimates of S, com-
puted as Ŝ = AĜ.
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Table 2: Notation summary (part 2). Matrices and vectors are denoted in boldface.

[n] = {0, . . . , n − 1} for n ≥ 1. Indexed quantities (matrices,
vectors, sequences) are zero-indexed throughout.

N = {0, 1, 2, . . . }, the natural numbers including zero.
M⊤ Transpose of a matrix M .
M⋆ A matrix M that is “optimal” in a context-dependent

sense.
M† The Moore-Penrose pseudoinverse of matrix M .
M [i, j] The (i, j)th entry of matrix M , zero-indexed.
M [i, :], M [:, j] The ith row and jth column of M , zero-indexed. The ith

row of M is also often denoted mi := M [i, :]
∥M∥F The Frobenius norm of a matrix M .
∥M∥row = maxt∈[n] ∥M [t, :]∥2, the maximum L2 norm of the rows

of M .
∥M∥col = maxt∈[n] ∥M [:, t]∥2, the maximum L2 norm of the

columns of M .
ln Natural logarithm, ln(2.718) ≈ 1.
EZ∼P [f (Z)] Expectation of the function f under the distribution P .
Z ∼ Nn×m

(
µ, ν2) Z is a random n × m matrix whose entries are i.i.d.

N (µ, ν2).
d Order of recurrence / degree / number of memory buffers.

x ∈ X ML training example.
ℓ : Θ × X → R Loss function.
θ ∈ Θ ⊂ Rm Parameters of AI model to be learned. Typically,

gt = ∇ℓ(θt, x).
B The (mini)batch size for model training.
N The total number of examples x in the training dataset D.
k (Maximum) number of times an example/user participates

in training.
b Minimum separation between the participations of an ex-

ample/user.
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Introduction: Private SGD and Prefix Sums with

Correlated Noise

Privacy-sensitive data is increasingly being collected and stored by both
private entities and governments. Such data includes health records,
business records, personal communications (including chats and emails),
individuals’ location history (enabled by smartphone GPS), internet
content consumption records, and social media interactions. General
trends and insights gleaned from such data hold the promise of great
benefit: real-time estimates of traffic congestion, better user experiences
across apps and websites, public health insights, and more. With the
rise of powerful AI models, including large language models (LLMs),
machine learning is increasingly becoming the principal technique for
unlocking the value latent in private datasets, but this approach also
entails real privacy risks: it is imperative to ensure that models do not
leak sensitive information contained in their training data.

Recent work has shown that this is not just a theoretical risk. There
is a large body of work showing that exact copies of (sometimes sensitive)
training data can be extracted from production language models, even
with just black-box API access to these models. Analyzing the privacy
of sophisticated data processing mechanisms is challenging, as privacy
leakage can be subtle and hard to detect.

6
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Differential privacy (DP) is the gold standard for analyzing privacy-
sensitive data with rigorous and mathematically justified privacy guar-
antees. It has been adapted to AI and machine learning model training
applications in recent years and has garnered significant interest in the
research community. Models trained with rigorous DP guarantees also
have industrial deployments at a global scale by companies such as
Google and Apple.

The workhorse of private machine learning is a differentially pri-
vate version of stochastic gradient descent, known as DP-SGD. This
algorithm adds isotropic Gaussian noise to the updates of a gradient
descent-based learning algorithm. While most work on DP-SGD injects
independent Gaussian noise in each step of the learning algorithm,
recent work has shown that it can be beneficial to use noise that has
non-zero correlations across training steps. In particular, correlated
noise mechanisms power “the first production neural network trained
directly on user data announced with a formal DP guarantee.”1

This monograph serves as a pedagogical introduction to such corre-
lated noise mechanisms, with a focus on theoretical principles behind
their design and development and practical aspects such as scalability
and run time. Due to the rapid development of this field, a fragmented
prior literature, and complex mathematical foundations, researchers
and practitioners face high barriers to entry into this topic. To bridge
this gap, we present this tutorial aimed at a broad audience, ranging
from early graduate students with basic machine learning knowledge to
experts seeking a consolidated reference.

Outline We start this section with a brief introduction to differential
privacy in Section 1.1 for readers not already familiar with this notion.
Next, we describe the problem of private machine learning and the DP-
SGD algorithm in Section 1.2. We also describe its connection to the
problem of private weighted prefix sum estimation; this forms the basis
for the correlated noise mechanisms introduced in Section 1.3 and later
sections. Next, we develop some intuition as to why correlated noise

1https://research.google/blog/federated-learning-with-formal-diffe
rential-privacy-guarantees/

https://research.google/blog/federated-learning-with-formal-differential-privacy-guarantees/
https://research.google/blog/federated-learning-with-formal-differential-privacy-guarantees/
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mechanisms can yield better privacy-utility tradeoffs in Section 1.4.
We then discuss what considerations have to be made in designing
correlated noise mechanisms in Section 1.5, ending the section with
technical aspects of DP guarantees in Sections 1.6 and 1.7.

Sections and remarks marked with an asterisk (∗) go into technical
details or other advanced material—they can safely be skipped on a
first reading.

1.1 Introduction to Differential Privacy

Differential privacy is a notion of privacy that is defined on a collection
of individual data records. In the machine learning context, a data record
typically refers to an individual training example.2 For the purposes of
this monograph, we will make this assumption and deal with datasets
D that are a collection of individual data records x1, . . . , xn. We will
assume that each xi comes from a universe X and so D ∈ X ⋆ is an
ordered sequence of elements of X .

Differential privacy is defined for mechanisms that map input
datasets to possible outcomes. In machine learning, the outcomes are
typically the weights of a trained AI model. Formally, a mechanism
M : X ∗ → Y is a randomised function that takes as input a dataset
D ∈ X ∗ and returns an output M(D) ∈ Y.

Differential privacy (DP) is a formal condition that ensures that the
output M(D) of the mechanism does not leak “too much” information
about any one “data unit” in the input dataset D. A data unit can refer
to an example, or a set of examples corresponding to a user.

At a high level, DP is a stability condition on the mechanism M,
i.e., the outputM(D′) on a dataset D′ obtained by changing D slightly
should be nearly indistinguishable from M(D).

To make these ideas concrete, we use a notion of indistinguishability,
and hence of DP, called approximate differential privacy and Gaussian
DP. As a default, we take the adjacency relation (i.e., what “changing

2Other notions of what constitutes a data record are also sometimes used. For
instance, user-level differential privacy defines a data record as all training examples
containing data from one individual.
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N (0, 1) N (1, 1)

1-GDP (higher privacy)

N (0, 1) N (3, 1)

3-GDP (lower privacy)

Figure 1.1: The notion of µ-GDP means that distinguishing between the outputs
M(D) and M(D′) of the mechanism for two adjacent datasets D and D′ is as hard
as distinguishing between N (0, 1) and N (µ, 1). Smaller µ, as in the left subplot,
means that an adversary will be less successful in distinguishing between the two
distributions, corresponding to a higher level of privacy.

D slightly” means) to be the so-called “replace-one” relation at the
example level.3

Definition 1.1 (Replace-One Example Adjacency). We say that two
datasets D, D′ ∈ X ∗ are adjacent (denoted by D ≃ D′) in the
replace-one notion at the example level if |D \D′| = |D′ \D| = 1,
i.e., D′ is obtained from D by replacing one element with another.

Equipped with this notion of adjacency between datasets, we can now
formally define one of the most widely used formulations of differential
privacy.

Definition 1.2 ((ε, δ)-Differential Privacy). Let M : D → R be a
randomized algorithm, where R is the output domain. For fixed
ε > 0 and δ ∈ [0, 1), we say that M satisfies (ε, δ)-differential
privacy if for all measurable sets S ⊂ R and for all pairs of adjacent
datasets D, D′ ∈ D, it holds that

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

A number of mechanisms are known to satisfy (ε, δ)-differential
privacy, one of the most common being the Gaussian mechanism (see

3Other notions of adjacency and units of privacy are also of interest. For the
most part, the key ideas can be applied directly to those other notions. To keep this
monologue concentrated on providing the fundamentals, we defer this discussion to
Section 1.7.
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Definition 1.5). When analyzing this mechanism, it is often more in-
tuitive to use an equivalent but analytically convenient alternative:
Gaussian differential privacy (µ-GDP)4.

Gaussian differential privacy Informally, a mechanismM is µ-Gaussian
differentially private (µ-GDP) if for any pair of adjacent datasets
D ≃ D′, distinguishing between the distribution ofM(D) andM(D′) is
no easier than distinguishing between the Gaussian distributions N (0, 1)
and N (µ, 1) based on a single sample from each distribution. Thus,
µ-GDP is a stronger privacy guarantee for smaller µ, as illustrated in
Fig. 1.1. Note that µ = 0 gives perfect indistinguishability (i.e., perfect
privacy), µ = 1 gives reasonably good indistinguishability, and µ =∞
gives no indistinguishability (i.e., no privacy). This intuition is captured
formally by the following definition:

Definition 1.3 (Gaussian Differential Privacy). A mechanism M is
µ-Gaussian differentially private (µ-GDP) if, for any adjacent
datasets D ≃ D′, there is a (possibly randomized) function g :
R→ Y with:5

g(Z) d=M(D) for Z ∼ N (0, 1), and

g(Z ′) d=M(D′) for Z ′ ∼ N (µ, 1),

where X
d= Y means random variables X and Y are identically

distributed.

Gaussian Mechanism As mentioned above, the Gaussian mechanism
is a canonical GDP mechanism: it creates a differentially private version
of any deterministic function f by adding zero mean Gaussian noise
(with the appropriate variance) to the output of f . This noise is scaled

4Throughout this monograph, we use the most convenient formalism depending
on context. For instance, µ-GDP is used in Section 1 and Section 2, while (ε, δ)-DP
is used in Section 3. Most of our results do not depend on the specific notion of
differential privacy used.

5N (µ, ν2) denotes the univariate Gaussian distribution with mean µ ∈ R and
variance ν2 > 0. Its probability density function is p(z) = 1√

2πν2 e−(z−µ)2/(2ν2).
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according to the sensitivity of f , which is a measure of how much the
output of f is affected by altering a single record in the input dataset:

Definition 1.4. The ℓ2-sensitivity of a vector-valued function f :
X ∗ → Rm is defined as sens(f) := maxD≃D′ ∥f(D)− f(D′)∥2.

The ℓ2-sensitivity determines how much noise we need to add to
f(D) to ensure privacy. This is made formal by the Gaussian mechanism.

Definition 1.5. Given a function f : X ∗ → Rm and noise multi-
plier σ, set ν = σ · sens(f). Then, the Gaussian mechanism on
input D outputs f(D)+z, where z ∼ Nm

(
0, ν2) is a random vector

in Rm with i.i.d. entries drawn from N
(
0, ν2).

This recipe remains unchanged if the function f outputs a matrix or
a higher order tensor: we conceptually flatten it into a vector, compute
its sensitivity, add entry-wise i.i.d. Gaussian noise, and reshape this
vector into its original shape. To determine the privacy guarantees of
the Gaussian mechanism, we only need to know the noise multiplier σ.

Lemma 1.6. For any function f : X ∗ → Rm, the Gaussian mecha-
nism with noise multiplier σ is 1/σ-GDP.

Proof Sketch. In the proof sketch, we only consider a scalar-valued
function, f , to highlight the main idea behind the proof. The same
proof idea extends to m > 1 dimensions by utilizing the rotational
invariance of the multivariate standard Gaussian distribution. We cover
the full proof in the starred Section 1.9.

Consider the special case of a scalar-valued function f with m = 1.
Consider a pair of worst-case adjacent datasets D ≃ D′ such that
f(D′)−f(D) = sens(f). If f(D) and f(D′) are closer, it only makes the
mechanism outputs M(D),M(D′) more indistinguishable. We exhibit
a function g : R→ R such that M(D) d= g(Z) and M(D′) d= g(Z + µ)
for Z ∼ N (0, 1), as required by Definition 1.3:

g(s) := f(D) + σ · sens(f) · s .
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Plugging in s = Z ∼ N (0, 1), we can verify that g(Z) d=M(D). Instead,
with s = Z + µ for µ = 1/σ, we get

g(Z + µ) = f(D) + σ · sens(f) (Z + µ)

= f(D′) + σ · sens(f) · Z d=M(D′) ,

since µ = 1/σ and sens(f) = f(D′)− f(D).

Post-processing One of the important properties of differential privacy
is that it is preserved under arbitrary post-processing as long as the
post-processing function does not use any part of the confidential data:

Lemma 1.7. LetM be a randomized algorithm that is µ-GDP. Let
g be an arbitrary randomized mapping. Then g◦M(D) := g

(
M(D)

)
is also µ-GDP.

Post-processing is a fundamental property of DP. It can be used to
improve the utility or applicability of differentially private algorithms,
such as reducing noise or enforcing domain constraints, without affecting
the privacy guarantees.

Components of a DP Guarantee In real-world applications, we should
specify three orthogonal components when providing a DP guarantee:6

• The privacy unit defines what entity’s privacy is being protected
by fixing the semantics of a one-unit change between D and D′.
For example, we could protect the privacy of individual examples
in the dataset, or allow a one-unit change to modify all examples
derived from a single user or entity.

• The adjacency relation formalizes what it means to obtain an
adjacent dataset, in the context of a particular unit of privacy.
We could replace one unit (as in Definition 1.1), allow the addi-
tion or removal of one unit (add-or-remove DP), or zero-out the
contributions of a unit (Section 1.7).

6In practical AI model training, a complete report of the DP guarantee should
include additional details of the data access assumed and how the DP guarantee was
computed.
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• The indistinguishability notion is the mathematical formula-
tion used to quantify indistinguishability. Common choices include
Gaussian DP, (ε, δ)-DP, and zero-concentrated DP. Tight conver-
sions exist between different indistinguishability notions (for a
given privacy unit and adjacency; see the appendix for a brief
review).

The fundamental principles discussed in this monograph are broadly
applicable across various choices for each of these three components.
Unless explicitly stated otherwise, we default to examples as the privacy
unit, replace-one as the adjacency unit, and Gaussian DP as the notion
of indistinguishability.

1.2 Private Learning via Weighted Prefix Sums

In this monograph, our key primitive will be the DP estimation of
weighted prefix sums of a sequence of input vectors. In AI and machine
learning, this arises most commonly in the privatization of stochastic
gradient descent, where each vector is a single SGD model update.

Stochastic Gradient Descent (SGD) Suppose we wish to find a model
θ ∈ Θ from a parameter space Θ ⊂ Rm that minimizes the objective,
more commonly known as stochastic optimization, defined as

min
θ∈Θ

Ex∼Pdata [ℓ (θ, x)]. (1.1)

Here, ℓ(θ, x) is the loss of making a prediction with model param-
eters θ on a datapoint x, which is in turn drawn i.i.d. from a data
distribution Pdata. In practice, we will have access only to a finite sam-
ple of datapoints x0, · · · , xn−1 sampled i.i.d. from Pdata, leading to an
empirical risk minimization problem:

min
θ∈Θ

1
n

∑
i∈[n]

ℓ(θ, xi) , (1.2)

where we use shorthand [n] := {0, . . . , n− 1}.
The standard workhorse algorithm used for solving the empirical

risk minimization problem is stochastic gradient descent (SGD). It is
presented in Algorithm 1.1.
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Algorithm 1.1 SGD
Inputs: Dataset D, number of
steps n, learning rate η

1: Pick an initial model θ0 ∈ Θ
2: for t = 0, . . . , n− 1 do
3: Receive a fresh data

point xt ∈ D
4: gt ← ∇θℓ(θt, xt)
5: θt+1 ← θt − η gt

6: Return θn

Algorithm 1.2 DP-SGD
Inputs: Inputs D, n, η to SGD, clip
norm ζ, noise variance ν2

1: Pick an initial model θ0 ∈ Θ
2: for t = 0, . . . , n− 1 do
3: Receive fresh xt ∈ D
4: gt ← clipζ

(
∇θℓ(θt, xt)

)
5: ĝt ← gt +Nm

(
0, ν2)

6: θt+1 ← θt − η ĝt

7: Return θn

Figure 1.2: Stochastic Gradient Descent (SGD) and differentially private stochastic
gradient descent (DP-SGD), both with a batch size of 1. Note that DP-SGD clips
its gradients to norm at most ζ using the function clipζ(v) := v · min{1, ζ/ ∥v∥2}

Remark 1.8. In AI and machine learning applications, stochastic
gradient optimization typically uses gradients computed on mini-
batches of examples, and might use a different update rule than the
fixed learning rate given in Algorithm 1.1 (for example, momentum
or adaptively chosen learning rates). Furthermore, we typically
make multiple passes through the data, in contrast to the streaming
assumption that each datapoint is processed only once. We will
consider these extensions later, in Section 3. The discussions in this
chapter directly generalize to larger batches and other first-order
optimizers, while the lifting the streaming assumption requires
significant extensions, and is the subject of Section 3.

Differentially Private SGD (DP-SGD) Suppose we wish to solve the
learning problem in Eq. (1.2) with a differential privacy constraint such
as µ-GDP. This is achieved by a differentially private version of SGD,
known as DP-SGD, and is contrasted with the non-private version of
SGD in Algorithm 1.2.

DP-SGD makes two key modifications to SGD:

• Gradient Clipping: In order to restrict the ℓ2 sensitivity of a
data point xt, each gradient ∇θℓ(θt, xt) is clipped so that its ℓ2
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norm is at most some constant ζ > 0. That is, if the gradient has
a larger norm, we multiply it by the largest constant α > 0 such
that gt = α∇θℓ(θt, xt) satisfies ∥gt∥2 ≤ ζ. This is performed by
Line 4 of Fig. 1.2 (right) using the following clipping function: for
a vector v and ζ > 0

clipζ(v) := v ·min
{

1,
ζ

∥v∥2

}
(1.3)

• Noise Addition: DP-SGD adds independent zero-mean Gaussian
noise zt ∼ Nm

(
0, ν2) to the (clipped) gradients gt in Line 5 of

Fig. 1.2 (right). Here, the noise variance ν2 is calibrated to the
desired privacy level, e.g. µ-GDP.

The main objective of this monograph is to study a family of corre-
lated noise mechanisms which privatize the gradient ĝt = gt + z̃t using
noise z̃t that is correlated across time. That is, z̃t and z̃τ for t ̸= τ are
not required to be statistically independent.

From SGD to Prefix Sum Estimation We begin developing correlated
noise mechanisms for learning by framing DP-SGD as a problem of
privately estimating prefix sums. For convenience, let us assume that a
learning rate η > 0 is fixed throughout. Unrolling the model parameters
updates of non-private SGD yields

θt − θ0 = −η
t−1∑
τ=0

gτ . (1.4)

Thus, the sequence of iterates of the SGD algorithm are obtained from
the prefix sums st := ∑t

τ=0 gτ ∈ Rm of the gradients g0, g1, . . . ∈ Rm.
Now consider two matrices S ∈ Rn×m and G ∈ Rn×m formed by

stacking the prefix sums and gradients row-wise, i.e.,

S =


s0
s2
...

sn−1

 ∈ Rn×m and G =


g0
g2
...

gn−1

 ∈ Rn×m. (1.5)
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Then it is easy to check that S can be obtained from G via a linear
map S = ApreG corresponding to the lower-triangular matrix

Apre[t, τ ] =

1 if t ≤ τ

0 else;
e.g, A4×4

pre =
( 1 0 0 0

1 1 0 0
1 1 1 0
1 1 1 1

)
. (1.6)

The matrix Apre is also known as the prefix sum workload matrix.
Vanilla SGD with a non-constant learning rate and other first-order

optimizers for the empirical risk minimization problem such as SGD
with momentum lead to different lower triangular workload matrices A

that may not necessarily have only binary entries; we give a few more
examples in Section 3. Thus, we use Apre when referring specifically to
prefix sums (vanilla SGD), but whenever possible, we state results in
terms of a arbitrary lower-triangular workload matrix A, allowing the
extension to other first-order optimizers and learning rate schedules. We
note that prefix sums arise naturally in other contexts such as counting
items in a streaming setting or density estimation, as we discuss in
Section 1.10.

In this monograph, we are interested in differentially private learning
algorithms. This translates to estimating these (weighted) prefix sums
with diffential privacy guarantees. We formalize this next.

General Problem: Private Weighted Prefix Sum Estimation General-
izing the above, we can consider the problem of computing differentially
private estimates of weighted prefix sums s0, . . . , sn−1 of a sequence
of vectors representing (functions of) datapoints g0, g1, . . . , gn−1 ∈ Rm

weighted by a workload matrix A ∈ Rn×n:

Estimate st :=
t∑

τ=0
A[t, τ ] gτ ∀t ∈ [n] with DP. (1.7)

Since only the lower triangular part of A shows up in Eq. (1.7), we
assume without loss of generality that A is a lower triangular matrix,
so equivalently we may write st = (AG)[t, :] and our goal is to estimate
the rows of S = AG with DP. Recall that, in the case of vanilla SGD,
A = Apre while it can have different form for other first-order optimizers.
Finally, we assume throughout that the inputs (gt)n−1

t=0 are bounded in
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ℓ2 norm:

∥gt∥2 ≤ 1 . (1.8)

In the context of DP-SGD, this is equivalent to taking the clip
norm ζ = 1 in Eq. (1.3). This assumption is without loss of generality:
since the output st in Eq. (1.7) is a linear function of gt, we can take
∥gt∥2 ≤ 1 and scale st by ζ instead.

Remark 1.9. We will give an alternative (though equivalent) per-
spective in Section 1.4.3: we can view the problem as providing DP
estimates ĝt = gt + z̃t of the gt, with (correlated) noise z̃t chosen
such that beneficial cancellation occurs when we compute AĜ as
post processing.

Remark 1.10. Though the matrix A is flexible enough to describe
more complicated first-order optimizers and learning rate schedules,
we remark that this can be achieved either by directly describing the
algorithm in A as described above or by using the standard prefix
sums Apre with the corresponding choice of inner optimizer. This
can lead to different privacy-utility Pareto frontiers for machine
learning applications as may be observed in Section 3.

1.3 Correlated Noise Mechanisms

We now turn our attention to the main focus of this monograph: corre-
lated noise mechanisms. Such mechanisms can be described as producing
differentially private estimates of the prefix sums AG.

In particular, given a factorization A = BC of the workload matrix
A ∈ Rn×n, we define a correlated noise mechanism as

M(G) := B (CG + Z) = AG + BZ , (1.9)

where B ∈ Rn×n and C ∈ Rn×n are lower triangular matrices, and
Z ∼ Nn×m(0, ν2) is an n×m matrix of component-wise i.i.d. Gaussian
noise with appropriate variance ν2.
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G ∈ R5×m G′ ∈ R5×m

g0
g1
g2
g3
g4

≃

Streaming Setting

g′
0 = g0

g′
1

g′
2 = g2

g′
3 = g3

g′
4 = g4

G ∈ R5×m G′ ∈ R5×m

g0
g1
g2
g3
g4

≃

Multiple Participation Setting

g′
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g′
1

g′
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g′
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Figure 1.3: Illustration of adjacency of gradient sequences gt = ∇ℓ(θt, xt) and
g′

t = ∇ℓ(θt, x′
t), where equal datapoints are indicated by having the same color cell.

Following Theorem 1.11, we assume gradients are computed in the non-adaptive
setting for a fixed sequence (θt)n−1

t=1 . Left: In the streaming setting, each datapoint
participates only once. Thus, the sequences of gradients on adjacent datasets differ
in only one item (in this example, we have g1 ̸= g′

1) and are equal everywhere else.
Right: In the multiple-participation setting considered in Section 3, each datapoint
can participate multiple times (e.g. by taking mulitple passes through the dataset).
Thus, sequences of gradients on adjacent datasets can differ in multiple indices. In
this example, the blue datapoint is replaced by the green one, changing both g1
and g3—note that the same (changed) datapoint is used for both g1 and g3. In this
section, we focus on the streaming setting.

Correlated Noise for DP-SGD To map these correlated noise mecha-
nisms directly to DP-SGD (Fig. 1.2, right), we can equivalently write
Eq. (1.9) as

M(G) = A(G + C−1Z) , (1.10)

assuming the matrix C is invertible. This equation involves two com-
ponents: (1) computing the noisy gradients Ĝ = G + C−1Z, and (2)
multiplying it by the workload matrix A to return AĜ.

First, the noisy gradients ĝt = Ĝ[t, :] = gt + z̃t are computed by
injecting the correlated noise

z̃t :=
(
C−1Z

)
[t, :] =

t∑
τ=0

(C−1)[t, τ ] zτ , (1.11)

where zt ∼ Nm
(
0, ν2) is i.i.d. seed noise. This is a direct replacement

to the i.i.d. noise update in DP-SGD (Line 5 in Algorithm 1.2).
Second, multiplication by the matrix A = Apre (for the case of

vanilla SGD) is achieved by the gradient step θt+1 = θt − ηĝt (Line 6
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Algorithm 1.3 DP-SGD with Correlated Noise
Inputs: Dataset D, number of steps n, learning rate η, clip norm ζ,
noise variance ν2, noise correlating matrix C−1 (standard DP-SGD uses
C−1 = In×n)

1: Pick an initial model θ0 ∈ Θ
2: for t in 0, 1, . . . , n− 1 do
3: Receive a fresh data point xt ∈ D

4: gt ← clip
(
∇θℓ(θt; xt)

)
▶ clip(v) := v ·min{1, ζ/ ∥v∥2}

5: Sample i.i.d. seed noise zt ∼ Nm
(
0, ν2)

6: Calculate the correlated noise

z̃t ←
t∑

τ=0
(C−1)[t, τ ] zτ

7: ĝt ← gt + z̃t

8: θt+1 ← θt − ηĝt

in Algorithm 1.2); this can be established by unrolling the noisy SGD
update, similar to Eq. (1.4). This gradient step is usually implemented
programmatically using an optimizer step. The resulting algorithm is
given in Algorithm 1.3. Here, the matrix C is also known as the strategy
matrix or encoder matrix, while the matrix C−1 is known as the noise
correlating matrix.

1.3.1 Privacy Guarantees of Correlated Noise Mechanisms

Recall that two datasets D and D′ satisfy replace-one example adja-
cency if D′ can be obtained by replacing one element of D, as per
Definition 1.1. Since the correlated noise mechanism in Eq. (1.9) takes
in the gradients as input, we need to reason about how adjacency
of the underlying datasets affects the corresponding (clipped) gradi-
ents gt = clip

(
∇θℓ(θt, xt)

)
and g′

t = clip
(
∇θℓ(θt, x′

t)
)

computed using
xt ∈ D and x′

t ∈ D′ respectively for t = 0, . . . , n− 1.
Suppose D and D′ differ in the tth example where xt ̸= x′

t. This
affects not only the gradient gt in step t, but also all subsequent gradients
gt+1, . . . , gn−1 via the updated model parameters θt+1. Fortunately, for
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Adaptive Setting
Choose θ0 ∈ Θ
Let f0, . . . , fn−1 be functions

ft : X ∗ ×Θ∗ → Rm.
for t = 0, . . . , n− 1 do

ft = ft

(
D, (θτ )t

τ=0
)

f̂t = ft +Nm

(
0, ν2)

θt+1 ← an arbitrary function
of (f̂τ )t

τ=0 and (θτ )t
τ=0

Return F̂a :=
(
f̂0, . . . , f̂n−1

)

Non-adaptive Setting
Choose θ0 ∈ Θ.
Let f0, . . . , fn−1 be functions

ft : X ∗ ×Θ∗ → Rm.
Fix a sequence from Θn−1

(θt)n−1
t=1 := (θ1, . . . , θn−1)

for t = 0, . . . , n− 1 do
ft = ft

(
D, (θτ )t

τ=0
)

f̂t = ft +Nm

(
0, ν2)

Return F̂ :=
(
f̂0, . . . , f̂n−1

)
Figure 1.4: Adaptive and non-adaptive iterative procedures with state denoted
by θt. DP-SGD can be expressed as an instance of the adaptive setting; however,
Theorem 1.11 shows that we achieve the same GDP guarantee in the non-adaptive
setting, which greatly simplifies privacy analysis.

the purposes of privacy analysis, it turns out that we can ignore the
effect of of xt on all future gradients gt+1, . . . , gn−1. In particular, as
we discuss next, the privacy analysis of a correlated noise mechanism
coincides with a similar non-adaptive procedure.

Adaptive vs. Non-Adaptive GDP Fig. 1.4 gives an abstract itera-
tive procedure with state denoted by θt. The full sequence of states
θ0, . . . , θn−1 is fixed ahead of time in the non-adaptive setting. In
contrast, the state θt+1 in the adaptive setting is allowed to depend ar-
bitrarily on all past information, including the previous states θ0, . . . , θt

as well as the privatized outputs f̂0, . . . , f̂t. In both settings, the state
θt is used to compute a data-dependent output ft, whose privatized
version f̂t (via the Gaussian mechanism) is then released.

The following general theorem shows that the privacy analysis with
Gaussian additive noise in the adaptive case can be reduced to the
non-adaptive case, though take care to note that analogous result does
not hold for all mechanisms. This result underpins the privacy analysis
of all the algorithms in this monograph:

Theorem 1.11 (Adaptive vs. Non-Adaptive Gaussian mechanism).
Consider the two mechanisms defined in Fig. 1.4 with functions
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f0, . . . , fn−1 : X ∗ ×Θ∗ → Rm, whose (combined) ℓ2-sensitivity as a
function of the first argument is bounded by s for any fixed inputs
to the second argument as:

sup
θ0,...,θn−1∈Θ

sup
D≃D′

∥∥∥F (D, (θt)n−1
t=0

)
− F

(
D′, (θt)n−1

t=0
)∥∥∥

F
≤ s , with

F
(
D, (θt)n−1

t=0
)

:=
[
f0(D, θ0) · · · fn−1

(
D, (θt)n−1

t=0
)]⊤
∈ Rn×m

denoting a matrix whose rows are the outputs of f0, . . . , fn−1, and
∥M∥F =

√∑
i,j M [i, j] denotes the Frobenius norm of the matrix

M .7 Then, for any fixed noise variance ν2 > 0, the output F̂a

of the adaptive setting satisfies the same GDP guarantee as the
output F̂ of the non-adaptive setting.

Let clip(·) denote the clipping funtion clipζ(·) defined in Eq. (1.3)
instantiated with ζ = 1. Then Theorem 1.11 captures DP-SGD with
independent noise (Algorithm 1.2): it is simply an adaptive procedure
where the function ft denotes a computation of the clipped gradient

ft
(
D, (θτ )t

τ=0
)

= clip
(
∇θℓ(θt, xt)

)
,

while the state update is the gradient update θt+1 = θt − η f̂t. In
particular, note that ft

(
D, (θτ )t

τ=0
)

depends only on current model θt

and not on the previous θτ ’s for τ < t. We need the additional generality
of Theorem 1.11 to establish the privacy guarantee of Algorithm 1.3, as
we will momentarily see in Theorem 1.14.

In the adaptive setting, changing one example xt can influence
all of the following gradients, gt, . . . , gn−1. Fortunately, Theorem 1.11
allows us to instead analyze the privacy properties of the corresponding
non-adaptive setting; here, by design, changing the data point xt can
only change the gradient gt, while all other gradients are unchanged.

Hence, we can easily extend the definition of adjacency to sequences
of gradients by assuming the non-adaptive setting. In the streaming
setting where each example is processed only once, we say that two
sequences of gradients G = (gt)n−1

t=0 and G′ = (g′
t)n−1

t=0 are adjacent if we
7This is the worst-case ℓ2 sensitivity in the non-adaptive setting. The Frobenius

norm of a matrix is exactly the ∥·∥2 norm of the vector obtained by flattening it,
and is used to compute the ℓ2 sensitivity of matrix-valued maps.



22 Introduction: Private SGD and Prefix Sums with Correlated Noise

have that gτ = g′
τ for all τ ∈ [n], except possibly at some step t (where

xτ ̸= x′
τ ).

GDP Bound of Correlated Noise Mechanisms We are now ready to
tackle the privacy analysis of correlated noise mechanisms.

In order to apply Theorem 1.11, our first step will be to derive a
privacy analysis for the correlated noise mechanism of Eq. (1.9) in the
non-adaptive setting. The key ingredient is bounding the sensitivity
induced by the strategy matrix:

sens(C) := sens(G 7→ CG) = max
G≃G′

∥∥C(G−G′)
∥∥

F . (1.12)

(Since the map G 7→ CG returns a matrix, its ℓ2-sensitivity is computed
using the Frobenius norm.) This quantity is tightly related to the
maximum column norm of C:

∥C∥col := max
t∈[n]
∥C[:, t]∥2 .

Lemma 1.12. Under replace-one-example adjacency (Definition 1.1)
with gradients clipped to norm 1 (cf. Eq. (1.8)), we have

sens(C) = 2 · ∥C∥col .

Proof. Suppose G, G′ differ in the tth row (cf. Fig. 1.5). Recall that G

(G′, respectively) is formed by stacking the vectors gt ∈ Rn (g′
t ∈ Rn,

respectively) row-wise. Therefore C(G−G′) = C[:, t](gt−g′
t)⊤ ∈ Rp×n.

Since each row of G, G′, i.e., gt, g′
t for all t ∈ [n] is bounded in ℓ2

norm, we have the ℓ2 norm of their difference, δt := gt − g′
t, bounded

as ∥δt∥2 ≤ 2 by the triangle inequality. Thus, we have

sens(C) = max
G≃G′

∥∥C(G−G′)
∥∥

F = max
t∈[t], ∥δt∥2≤2

∥∥∥C[:, t] δ⊤
t

∥∥∥
F

(∗)= max
t∈[t]
∥C[:, t]∥2 · max

∥δ∥2≤2
∥δ∥2 = 2 · ∥C∥col , (1.13)

where (∗) follows from using ∥uv⊤∥F = ∥u∥2 ∥v∥2 for any vectors
u ∈ Rn and v ∈ Rm:∥∥∥uv⊤

∥∥∥2

F
=
∑
i∈[n]

∑
j∈[m]

(
u[i] v[j]

)2 =
∑
i∈[n]

u[i]2
∑

j∈[m]
v[j]2 = ∥u∥22 ∥v∥

2
2 .
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This completes the proof of Lemma 1.12.

We will see in the starred Section 1.7 that the constant 2 in
Lemma 1.12 is specific to the replace-one-example adjacency.

With this lemma in hand, the privacy result for the non-adaptive
streaming case is straightforward:

Lemma 1.13. Fix a noise multiplier σ > 0. Consider the replace-
one-example adjacency (Definition 1.1) of gradients G, G′ ∈ Rn×m

in the streaming non-adaptive setting, i.e.

(a) any adjacent G ≃ G′ satisfy gτ = g′
τ for all rows τ ∈ [n]

except possibly at some row t ∈ [n], and

(b) the rows gt, g′
t are clipped to norm 1 (cf. Eq. (1.8)).

Then, the mechanism M(G) = B(CG + Z) for any matrices
B, C ∈ Rn×n (possibly non-lower-triangular and non-invertible)
and i.i.d. Gaussian noise Z ∼ Nn×m(0, ν2) satisfies 1

σ -GDP if we
choose the noise standard deviation as ν = 2σ ∥C∥col.

Proof. The mechanismM is a simple post-processing of the mechanism

M′(G) := CG + Z, (1.14)

asM(G) = B ·M′(G). So it suffices to prove the GDP guarantee forM′.
We have (after flattening the matrices to vectors), that M′ is instance
of the Gaussian mechanism (Definition 1.5) and so the result follows
from Lemma 1.6 using the sensitivity bound from Lemma 1.12.

Finally, we extend this non-adaptive privacy guarantee to DP-SGD
with correlated noise:

Theorem 1.14. Fix a noise multiplier σ and consider Algorithm 1.3
with an invertible lower triangular strategy matrix C, clip norm
ζ = 1, and noise standard deviation ν = 2σ ∥C∥col. Then, the
privatized gradients (ĝt)t∈[n] and iterates (θt)t∈[n] produced by
Algorithm 1.3 satisfy 1

σ -GDP under replace-one-example adjacency
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G ∈ R5×m G′ ∈ R5×m
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G−G′ ∈ R5×m

δ0 = 0
δ1

δ2 = 0
δ3 = 0
δ4 = 0

Figure 1.5: For two adjacent sequences of gradients G ≃ G′ in the streaming
setting, we have that G − G′ is non-zero only for one row.

in the streaming setting.

Proof. We instantiate Algorithm 1.3 as an adaptive iterative process in
the framework of Theorem 1.11. Concretely, we take ft to be functions
which return the rows of CG:

ft
(
D, (θτ )t

τ=0
)

=
(
CG

)
[t, :] where gτ = ∇θℓ(θτ , xτ ) (1.15)

for xτ ∈ D. Since C is a lower triangular matrix, we have that
(
CG

)
[t, :]

depends only on the previous gradients g0, . . . , gt, which in turn depend
(only) on (θ0, · · · , θt) and D. It follows then that f̂t =

(
CG + Z

)
[t, :].

We instantiate the state update of Algorithm 1.3 with
ĝt ← (C−1F̂a)[t, :] =

(
G + C−1Z

)
[t, :] ,

θt+1 ← θt − ηĝt.

Since C−1 is lower-triangular, ĝt is post-processing of f̂0, . . . , f̂t,
the first t rows of F̂a, and so this is a valid update. By the same
post-processing argument, the privatized gradients (ĝt)t∈[n] and iterates
(θt)t∈[n] satisfy the same privacy guarantee as F̂a. Thus, with this choice
of the functions ft (and appropriate update), we have that Algorithm 1.3
is in fact an instance of the adaptive setting of Fig. 1.4.

Hence, applying Theorem 1.11, it remains to analyze this choice of
ft in the non-adaptive setting. By construction, the output of Fig. 1.4
in the non-adaptive setting is

F̂ = CG + Z .

This is exactly the mechanism analyzed by Lemma 1.13 taking B = I,
and the conditions (a)-(b) are satisfied by the assumption of replace-
one-example adjacency, the choice of clipping parameter ζ = 1, and
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non-adaptivity. Finally, the choice of ν matches, and so the result
follows.

1.3.2 Baseline Correlated Noise Mechanisms

The family of correlated noise mechanisms defined by Eq. (1.9) includes
two natural baselines to privately estimate the weighted prefix sums as
in Eq. (1.7): adding noise to the input or the output.

Baseline I: Input Perturbation The first baseline corresponds to the
strategy matrix C = In×n, which is the choice taken by standard DP-
SGD in Algorithm 1.2. Here, we privatize each input with the Gaussian
mechanism ĝt = gt+zt with zt ∼ Nm

(
0, ν2) for some standard deviation

ν. Then, it follows that the post-processed (weighted) prefix sums

ŝt =
t∑

τ=0
A[t, τ ] ĝτ =

t∑
τ=0

A[t, τ ] gτ +
t∑

τ=0
A[t, τ ] zτ (1.16)

satisfy the same DP guarantees as the privatized inputs ĝt for all choices
of the workload matrix A. In particular, taking the standard deviation
ν = 2σ yields the desired (1/σ)-GDP guarantee.8

Baseline II: Output Perturbation The second baseline corresponds to
C = A (so that the matrix B = In×n). This is equivalent to privatizing
each output directly with the Gaussian mechanism to release

ŝt =
(

t∑
τ=0

A[t, τ ] gτ

)
+ zτ (1.17)

for zτ ∼ Nm
(
0, ν2) with component-wise standard deviation ν. Unlike

the input perturbation baseline, ν depends on the choice of the workload
matrix A as it affects the sensitivity of the operation G 7→ AG. For
example, with the prefix sum workload A = Apre, Lemma 1.12 yields
that sens(Apre) = 2

√
n. Thus, to obtain a (1/σ)-GDP guarantee on the

8Again, the factor of 2 in the standard deviation ν here and in the rest of this
section is specific to the replace-one notion of adjacency. This vanishes with other
notions of adjacency, as we discuss in Section 1.7.
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noisy prefix sums ŝt in this case, we need a significantly larger standard
deviation of ν = 2

√
n/µ compared to the input perturbation baseline.

Thus, the best correlated noise mechanism (for a given objective)
is no worse than either of the two baselines. However, an impor-
tant question remains: can general correlated noise mechanisms (with
B, C ̸= In×n) strictly improve over the baselines? In other words, is
there a strong reason to choose non-trivial noise correlations across
time steps?

1.4 Why Correlated Noise Mechanisms?

We now develop some intuition regarding why correlated noise mech-
anisms might lead to improved privacy-utility tradeoffs for DP prefix
sum estimation.

In particular, if s1, . . . , sn are the true prefix sums and ŝ1, . . . , ŝn

are the outputs of a correlated noise mechanism, then we will argue
that the maximum prefix sum loss

max
t∈[n]

E ∥ŝt − st∥22

is smaller than the baseline described in the previous section at each
privacy level.

1.4.1 Why Estimate Prefix Sums Directly?

We consider a simple example in Fig. 1.6 comparing a non-trivial
correlated noise mechanism to the input perturbation mechanism, where
C = In×n (i.e., DP-SGD, which uses i.i.d. noise). Consider minimization
of the simple linear function f(θ1, θ2) = −θ1 in m = 2 dimensions over
the bounded set Θ = {(θ1, θ2) : θ2

1 + θ2
2 ≤ M}, for a sufficiently

large number M . At each step of the optimization, the gradient of the
objective function is ∇f(θ1, θ2) = (−1, 0).

The top plot in Fig. 1.6 illustrates (noisy) gradient descent with a
learning rate of η = 1 under different noise conditions for n = 40 steps
starting from θ0 = (0, 0). The black arrows depict the noiseless case,
which produces iterates θGD

t = (t, 0) as expected. The green arrows
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Learning trajectories

True gradients Correlated noise (DP-FTRL) IID noise (DP-SGD)

0 5 10 15 20 25 30 35 40
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Per-gradient error

Correlated (avg 1.70) IID (avg 1.10)

0 5 10 15 20 25 30 35 40
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10

Prefix sum error

Correlated (avg 2.34) IID (avg 6.02)

Figure 1.6: Example trajectories for learning with correlated noise vs. i.i.d. noise
for n = 40 steps in m = 2 dimensions. This figure considers a simple example where
the black line is the non-private gradient descent baseline with learning rate η = 1,
where the true gradients obtained at each step is gt = (−1, 0). The blue line uses a
correlated noise mechanism (optimized to achieves the best worst-case performance
in the prefix sums; cf. Section 2.2) and the green line corresponds to i.i.d. noise
via DP-SGD (i.e., the input perturbation mechanism with C = C−1 = In×n). We
calibrate these mechanisms to represent equivalent privacy guarantees at any given
noise level as per Lemma 1.13; here we use Gaussian noise with ν = 1. The middle
plot shows that i.i.d. noise is better at estimating individual gradients (1.10 vs 1.70
average root mean squared error in estimating the individual gradients (−1, 0)).
However, correlated noise results in a trajectory that on average stays closer to
the baseline trajectory, thanks to lower error in prefix sum estimates shown in the
bottom plot (2.34 vs 6.02 average root mean squared error in estimating the prefix
sums (−t, 0) for t ∈ [40]).
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represent the sample path obtained under i.i.d. noise:

θIID
t =

(
t +

t−1∑
τ=0

wτ,1,
t−1∑
τ=0

wτ,2

)
, where zτ ∼ N2

(
0, 1
)

.

The blue arrows depict that of a correlated noise mechanism cor-
responding to a certain decomposition Apre = B⋆C⋆ (described in
Section 2.2):

θcorr
t = (t, 0) +

(
B⋆Z

)
[t, :] .

where Z ∼ Nn×m
(
0, ∥C⋆∥2col

)
. Note that the noise is scaled according

to Lemma 1.13 so that both mechanisms represent equivalent privacy
guarantees. We can then calculate:

θIID
t − θGD

t ∼ N2
(
0, t
)

, and

θcorr
t − θGD

t ∼ N2
(
0, ∥C⋆∥2col ∥B⋆[t, :]∥22

)
.

The correlated noise mechanism can yield a trajectory that is closer
in the worst-case to the noiseless black trajectory (in expectation) if we
can have

max
t∈[n]
∥C⋆∥2col ∥B⋆[t, :]∥2 ≤ max

t∈[n]
t = n− 1 (1.18)

for some factorization Apre = B⋆C⋆. This is indeed possible, and we
will see a quantitative example next.

The reason behind this improvement is the direct estimation of prefix
sums rather than the gradients. Indeed, while i.i.d. noise is the optimal
strategy to minimize the total squared error in the noisy gradients
Ĝ = G + C−1Z, correlated noise mechanisms are able to produce
better estimates of the prefix sums AĜ = AG + BZ, resulting in
better worst-case noisy trajectories.

1.4.2 Quantitative Benefits of Using Correlated Noise

We now build on the example of Section 1.4.1 by constructing a simple
correlated noise mechanism that outperforms the input-perturbation
and output-perturbation baselines. For simplicity, we compare all three
approaches under a fixed privacy requirement of 1-GDP. (As we will
see, our calculations will actually hold for any level of µ-GDP.)
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Computing the gradient descent iterates in the previous setting
reduces to estimating prefix sums with differential privacy, Problem 1.7
for the prefix-sum matrix Apre, as in Eq. (1.6). For simplicity, suppose
that the dimension of the stream is m = 1, that is g = (g0, . . . , gn−1) ∈
Rn.

Next, we need to quantify exactly how good our private prefix sum
estimates are. As we saw in Eq. (1.18), a reasonable objective is to
minimize the maximum squared error between the private estimate
ŝt = M(g)[t] and the actual prefix sum st.9 Formally, we wish to
minimize

max
t∈[n]

E(ŝt − st)2 = max
t∈[n]

E
(

(Bz) [t, :]
)2

= ν2 max
t∈[n]
∥B[t, :]∥22 , (1.19)

the maximum squared row norm of B scaled by the noise variance
necessary to achieve 1-GDP. Note that we have dropped the dependence
on C via Theorem 1.14.

To build some intuition why correlated noise helps, let us consider a
simple family of correlated noise mechanisms parameterized by 0 ≤ λ < 1
with

C =



1 0 0 . . . . . . 0

λ 1 0 . . . . . . 0

λ2 λ 1 . . . . . . 0

λ3 λ2 λ
. . . . . . 0

... . . . . . . . . . . . . ...


. (1.20)

These constructions provides a simple interpolation between the
baselines introduced in Section 1.3: λ = 0 recovers input perturbation,
and λ = 1 would recover output perturbation (though for technical
reasons, our analysis requires λ < 1).

9Other objectives are possible, as we discuss in Section 2
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It can be easily checked that

C−1 =



1 0 0 . . . 0

−λ 1 0 . . . 0

0 −λ 1 . . . 0

0 0 −λ
. . . 0

... . . . . . . . . . ...


. (1.21)

Then, we get

B = ApreC
−1 =



1 0 0 . . . 0

1− λ 1 0 . . . 0

1− λ 1− λ 1 . . . 0

1− λ 1− λ 1− λ
. . . 0

... . . . . . . . . . ...


. (1.22)

To achieve 1-GDP, we need from Lemma 1.13 that ν ≥ 2 ∥C∥col.
Since the first column of C has the highest norm, we have

∥C∥2col =
n−1∑
t=0

λ2t = 1− λ2n

1− λ2 (1.23)

and so for any n we can achieve 1-GDP with ν2 = 4(1− λ2n)/(1− λ2).
Similarly, the last row of B has the highest norm, so the maximum
error from Eq. (1.19) is

max
t∈[n]

E(ŝt − st)2 = ν2
(
1 + (n− 1)(1− λ)2

)
= 4

(
1− λ2n

1− λ2

)(
1 + (n− 1)(1− λ)2

)
(1.24)

≤ 4
( 1

1− λ2

)(
1 + (n− 1)(1− λ)2

)
. (1.25)

Both baselines correspond to sub-optimal choices for λ in this loss
expression: input perturbation Eq. (1.16) corresponds to λ = 0 while
the output perturbation baseline Eq. (1.17) corresponds to λ→ 1 and
ν2 = Θ(n).
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We can do better. One could minimize Eq. (1.24) to choose the
optimal λ for a specific n; instead, to obtain an asymptotic result, we
consider the upper bound of Eq. (1.25) with λ = 1− 1/

√
n. With this

choice, direct computation shows

max
t∈[n]

E(ŝt − st)2 ≤ 4(2n− 1)
2
√

n− 1 = Θ(
√

n).

This substantially improves on the Θ(n) error of the baselines, and is in
fact the optimal maximum error (up to constants) for the one-parameter
family defined in Eqs. (1.20) and (1.22).

In fact, as we shall see in Section 2, it is possible to attain a
significantly lower objective value of Θ(poly ln(n)) with appropriately-
defined correlated noise mechanisms.

This is our first example of a general pattern we will follow regularly:
we first design a class of correlated noise mechanisms, generally in terms
of some parameterization or structural assumption on C or C−1, and
then show how to find mechanisms in that class that minimize a certain
notion of error, subject to a constraint on privacy.

Remark 1.15 (Error Analysis in m > 1 Dimensions). The error anal-
ysis for the mechanism defined above directly extends to m > 1
dimensions. First, we note from Lemma 1.13 that the noise cali-
bration does not depend on the dimension. Second, the noise is
independent across dimensions, so that the error Eq. (1.19) simply
adds up across dimensions, leading to an error which is m times
worse. In Section 2 and later, we will consider the case of m > 1 in
full generality.

Remark 1.16 (Non-Square Factorizations). We could define a cor-
related noise mechanism based on a non-square factorization A =
BC with B ∈ Rn×p and C ∈ Rp×n. The privacy guarantee of
Lemma 1.13 holds without any modification. All algorithms and
key results, such as the correlated noise DP-SGD (Algorithm 1.3)
and its privacy guarantee (Theorem 1.14) can be adapted to work
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with the pseudoinverse C† instead of C−1. We stick to square and
invertible B, C for ease of presentation.

Remark 1.17 (Lower Triangular Factorizations). The factors B and
C are both lower-triangular in the above example. At times, it may
be computationally convenient to work with non-lower-triangular
matrices, particularly when considering implementing sampling
from the stream C−1Z. Conveniently, we can always get a lower
triangular factorization from any factorization without altering
either the error (as defined above) or the privacy properties of the
mechanism. This can be achieved, for example, by taking the LQ
decomposition of B = LQ with a lower-triangular matrix L and
an orthonormal matrix Q. We then set B′ = L and C ′ = L−1A.
It follows from the rotational invariance of Gaussian distribution
that we get the same error bound and privacy properties whether
we use the factors B′, C ′ or B, C. Thus, we will restrict ourselves
to lower triangular factorizations for the rest of the monograph.

1.4.3 A Noise-Cancellation View of Correlated Noise Mechanisms

To gain intuition for how correlated noise can improve the estimation
error, we can give a noise cancellation view for a mechanism define by
matrix C; this interpretation applies to any C, but for concreteness we
focus on the one-parameter family defined in Eq. (1.20). We consider
the resulting private estimates Ĝ = G + C−1Z of the data G, where
Z ∼ Nn×m

(
0, ν2). In this case, C−1 is as in Eq. (1.21).

This directly gives us that
ĝ0
ĝ1
...

ĝn−1

 =


g0
g1
...

gn−1

+


1 0 . . . 0
−λ 1 . . . 0
... . . . . . . ...
0 · · · · · · 1

 ·


z0
z1
...

zn−1

 , (1.26)

which can be rewritten as

ĝt =

g1 + z1 t = 0
gt + zt − λzt−1 t ≥ 1 .
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Figure 1.7: An illustration of the noise accumulation in standard DP-SGD (with
independent noise), which corresponds to C−1 = In×n. On the other hand, DP-SGD
with correlated noise (with C−1 ≠ In×n) can cancel a part of the injected noise due
to anti-correlations. In the lower plot, the inverse of the strategy matrix is given by

C−1 =
(

1 0 0
−c′

10 1 0
−c′

20 −c′
21 1

)
.
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In the context of private stochastic gradient descent (Section 1.2),
gt is the gradient obtained in time step t. Then, the privatized gradient
ĝt can be interpreted as canceling out a λ-fraction of the noise zt−1
injected in the previous time step; see Fig. 1.7 for an illustration for
general C matrices.

In general, a large λ leads to better estimation at a fixed variance
ν2 (of each component of the noise z) as more noise is canceled out.
However, this leads to a larger ∥C∥col, implying an increased privacy
cost (Lemma 1.13). Thus, to guarantee a given level of privacy such
as 1-GDP, this in turn requires a larger variance ν2. In general, the
correction applied via the correlated noise needs to be balanced with
the privacy constraint to obtain improved privacy-utility tradeoffs over
the baselines.

As we will see in the rest of this monograph, this is generally
possible in a range of prefix sum estimation and machine learning tasks.
In particular, we study details of how to optimally choose the noise
correlations for various objectives and under various constraints on the
correlation structure such that we obtain efficient implementations.

1.5 The Design Space of Correlated Noise Mechanisms

The design space of correlated noise mechanisms for gradient-based
learning algorithms involves a complex interplay of several factors,
requiring careful consideration of the workload, desired privacy guaran-
tees, acceptable error levels, and computational constraints. We give a
brief description of each of these design factors and describe how Sec-
tions 2 to 4 disentangle these factors, culminating in a set of practical
recommendations by the end of the monograph.

A practitioner interested in employing correlated noise mechanisms
in their model training tasks must make five key design decisions shown
in Fig. 1.8.

1. Workload. The starting point is the workload matrix A to
factorize. When implementing DP-SGD with correlated noise
(Algorithm 1.3), we only need to specify the noise correlating
matrix C−1; the privacy calibration depends on the matrix C
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alone (Theorem 1.14). On the other hand, the A play a key role
(via B = AC−1) in the surrogate objective (e.g. Eq. (1.19)) we
optimize to find the C matrix.

The viewpoint of Section 1.2 suggests a heuristic to select the
workload matrix implied by the base (non-private) optimizer. For
example, vanilla SGD corresponds to the prefix sum workload
A = Apre (Eq. (1.6)). We will use this a canonical example
throughout this monograph. All key considerations we discuss
generalize directly to other first-order optimization algorithms
whose iterates can be obtained as linear combinations of gradients.
This class includes momentum variants such as heavy ball and
Nesterov momentum—we briefly discuss these other workloads in
Section 3.

2. Error Metric. The practitioner also determines the error metric
as a proxy to measure the utility of the correlated noise mecha-
nisms. The error metric and the sensitivity (which depends on
the participation pattern) together determine the objective we
optimize to find the factorization A = BC. For instance, the
objective Eq. (1.24) in the example of Section 1.4 is a product
of the sensitivity term with the error term; its general form is as
shown in Fig. 1.8.

We use the worst-case expected error in prefix sums (as in Eq. (1.19)
of Section 1.4) as a default error metric for concreteness. We briefly
discuss the use of the average expected error across prefix sums
towards the end of Section 2 (and return to it in Section 4). Sec-
tion 3 also considers using the learning objectives as the utility
measures for simple problems such as mean estimation and linear
regression.

3. Participation Patterns. The third factor is to determine the
participation pattern of datapoints:

Do we process each datapoint only once (i.e., the stream-
ing setting of Section 1.2) or do we make multiple passes
over the data? In the latter case, are there any restric-
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Finding a Correlated Noise Mechanism:

minimize
B,C Error(B) × Sensitivity(C)

subject to BC = A and

(∗)

C satisfies some constraints

Degrees of Freedom:

Workload (Ch. 1, 3)

SGD (+ Momentum)

Nesterov Accelerated Gradient
...

Determines:

Error (via B = AC−1),

Base Non-private Optimizer

Error/Utility (Ch. 2)

Max Error

Root-Mean-Square Error
...

Determines:

Error Metric =⇒

Mechanism Objective (∗)

Participation Pattern (Ch. 3)

Single-participation / Streaming

Multiple-participation / Cyclic Order

Multiple-participation / Min-Sep

Determines:

Sensitivity (Privacy) =⇒

Mechanism Objective (∗)

Mechanism Constraints (Ch. 2)

No Constraints (Dense)

Toeplitz

Banded (+ Toeplitz)

Buffered Linear Toeplitz (BLT)

Determines:
Noise Generation Time/Space + Utility Bound

=⇒ Privacy-Utility-Compute Tradeoff

Mechanism Optimization (Ch. 4)

Closed-form Solution

Semi-definite Program (SDP)

Convex + Quasi-Newton Optim.

Non-convex + Gradient-based Optim.

Determines:
Time/Space Complexity of
Mechanism Optimization

Figure 1.8: An outline of the topics defined and covered in each of the sections of
this monograph.
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tions on the order in which the datapoints are processed
(e.g. cyclic order)?

As illustrated in Fig. 1.3, this determines the effect of changing one
datapoint (in an adjacent dataset) on the output of the mechanism.
In other words, the participation pattern is key to quantifying the
sensitivity, and hence, the privacy guarantee, of the correlated
noise mechanism.

The streaming setting is straightforward to handle, as we saw in
Lemma 1.13. Expanding upon the illustration of Fig. 1.3, Sec-
tion 3 explains the challenges and nuances of tightly bounding
the sensitivity in different multiple-participation scenarios, as well
as its efficient computation in Section 3.

4. Mechanism Constraints. The practitioner also decides the
class of factorizations A = BC to optimize over. This design
decision can lead to different privacy-utility-compute tradeoffs
of the correlated noise mechanism. For example, generating the
correlated noise (C−1Z)[t, :] (or equivalently, (BZ)[t, :]) in step t

can take O(nm) time per-step, and simply storing the correlat-
ing noise matrix C ∈ Rn×n would require O(n2) space. This is
impractical for long training runs (i.e., with n large, especially
for larger parameter model where m can range in billions). We
explore families of structured matrices that allow reduced space
and time complexity of this noise generation in Section 2. However,
if the class of matrices is too restrictive, it can have sub-optimal
utility.

We will see in Section 2 that it is possible to attain favourable
privacy-utility-compute tradeoffs with carefully designed families
of structured matrices. We then adapt these mechanisms to the
multiple-participation setting in Section 3.

5. Mechanism Optimization. Finally, the practitioner has to
determine the optimization algorithm to find the factorization
A = BC over the determined set of structured matrices to
minimize the objective (which is the product of the error metric
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and sensitivity); see Fig. 1.8. This is a one-time cost, provided
the obtained factors B, C can be cached. Section 4 discusses
the approaches to perform this optimization and approximations
required to make to practical and scalable.

1.6 The Privacy Unit: Example-level vs. User-level DP

As we discussed at the end of Section 1.1, the definition of differential
privacy can be instantiated at different granularity by specifying the
unit of change between adjacent D and D′. This includes

(i) example-level DP, where D and D′ differ by one example (as
specified by the adjacency notion); and

(ii) user-level DP refers to the setting where D and D′ differ by all
examples derived from a single user or entity.

In practice, the privacy unit must be selected based on the problem
at hand. For example, if multiple examples derived from a single user
or entity might have common features or attributes, user-level DP
can align more closely with the intuitive notion of individual privacy
protection. This is generally the case for AI models that are trained or
fine-tuned directly on user-written emails, documents, or text messages.
In this case, example-level DP may fail to adequately mitigate the risk
of information leakage due to the inherent inter-dependencies among a
user’s examples.

To a large extent, the correlated noise mechanisms we develop are
agnostic to the privacy unit. For the sake of clarity and simplicity in
exposition, we default to example-level DP in this monograph. Notably,
the algorithmic modifications made to adapt independent noise DP-SGD
from example-level to user-level DP are largely applicable to correlated
noise mechanisms.

We can adapt Algorithms 1.2 and 1.3 to user-level DP as follows. It
is convenient to describe the dataset D as a collection of user datasets:

D = {Du : u ∈ [N ]} ,
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where Du = {xu,0, xu,1, . . .} is the dataset of user u ∈ [N ]. We define
the loss on one user’s data as the average loss over

ℓ(θ, Du) := 1
|Du|

∑
x∈Du

ℓ(θ, x) .

Finally, in each iteration t, we sample/select a user ut and calculate the
clipped user gradient:

gt = clipζ

(
∇ℓ(θt, Dut)

)
.

For the purposes of privacy analysis, this gt can actually be any
clipped function of the user data such as a stochastic user gradient
∇ℓ(θt, xut) for some arbitrary xut ∈ Dut . Another popular choice in
the context of federated learning is a clipped pseudo-gradient. This is
the delta of k stochastic gradient steps on Dut :

gt = clipζ

(1
η

(θt − θ
(u)
t,k )

)
, where

θ
(u)
t,l+1 = θ

(u)
t,l − η∇ℓ(θ(u)

t,l , xu,l) for l = 0, . . . , k − 1 ,

(1.27)

and xu,l sampled/selected from Du and the stochastic gradient steps
are initialized at θ

(u)
t,0 = θt.

Importantly, the streaming assumption in user-level DP translates
to each user appearing only once during training. If any user’s data is
used more than once (even if each example might be processed only
once), the streaming assumption is violated for the purpose of user-level
DP. In such a case, we have to use the multiple-participation techniques
of Section 3.

1.7 Other Notions of Adjacency*

While we use the replace-one adjacency (Definition 1.1) in this section,
in practical deployment and literature, two other preferences are the
zero-out adjacency and add-or-remove adjacency.

Zero-out Adjacency

The zero-out adjacency is usually used when working with algorithms
operating on example gradients. In this setting, the zero-out adjacency
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says D ≃ D′ if D and D′ are the same, except one example in D

is replaced with a special example in D′ whose gradients are zero
everywhere or vice-versa:

Definition 1.18. We say two datasets D = {x1, . . . , xN} and D′ =
{x′

1, . . . , x′
N} are zero-out adjacent (denoted D ≃ D′) if xi = xi

for all i ∈ [n] \ {j} for some index j ∈ [n] and xj =⊥ or x′
j =⊥,

where ⊥ is a special null element such that ∇ℓ(θ,⊥) = 0 for all θ.

Replace-one vs. Zero-out Adjacency To compare replace-one and
zero-out, consider f(D) = ∑

x∈D∇ℓ(θ, x), the model gradient summed
over a dataset D, where the parameter θ is 1-dimensional and the loss
θ 7→ ℓ(θ, x) is 1-Lipschitz, i.e., the per-example gradients are bounded
as |∇ℓ(θ, x)| ≤ 1.

Then, we have that sens(f) = 2 under the replace-one adjacency,
because when replacing an example, a gradient can switch from e.g. 1
to −1. Under the zero-out adjacency, however, we have sens(f) = 1,
since the replaced gradient can switch from 1 to 0, but not to −1. A
consequence of the doubled sensitivity is that an algorithm that is
µ-GDP with respect to the replace-one adjacency is µ/2-GDP with
respect to the zero-out adjacency and vice-versa, giving us an easy way
to directly compare the two definitions.

In particular, we have the following analogue to Lemma 1.12:

Lemma 1.19. Under zero-out adjacency (Definition 1.18) with gra-
dients clipped to norm 1 (cf. Eq. (1.8)), we have sens(C) = ∥C∥col.

Proof. Same as the proof of Lemma 1.12, except that ∥δ∥2 ≤ 1 due to
the different notion of the adjacency.

This leads to analogous privacy results in the zero-out case:

Theorem 1.20. Consider the setting of Theorem 1.14. The gradi-
ents and iterates of DP-SGD with correlated noise (Algorithm 1.3)
satisfy 1

σ -GDP in the zero-out-example adjacency in the streaming
setting if we take ν = σ ∥C∥col.
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Advantages of Zero-out Adjacency and Add-or-Remove Adjacency

Since zero-out and replace-one is only a factor of 2 off from each other,
one might wonder why zero-out, which is restricted to gradient-like
queries, is used instead of replace-one in practice. One reason is that
zero-out is more comparable to the popular add-or-remove-one adjacency
described below:

Definition 1.21. Two datasets D, D′ are adjacent under the add-
or-remove adjacency if D = D′∪{x} for D′ = D∪{x} for some
example x.

The add-or-remove-one adjacency is popular in part because it is
very natural. For instance, it gives privacy guarantees to a user who
might want opt their data out of model training. The add-or-remove
model is also more natural for analyzing privacy amplification by Poisson
sampling, discussed in Section 3.4. However, for model training, add-or-
remove adjacency is somewhat inconvenient because adjacent datasets
have different sizes. In turn, the dataset size itself becomes a private
quantity, which greatly complicates privacy analyses. Zero-out adjacency
maintains semantic similarity to add-or-remove-one, but maintains that
D and D′ are the same size and e.g. batches are formed the same way
for both datasets, i.e., effectively allows us to publish the dataset size
without violating DP guarantees.

For these reasons, we will use the zero-out notion of adjacency later
in Section 3.

Remark 1.22 (Event-Level Privacy). In the setting of continual count-
ing and in settings such as Example 1.27, the notion of adjacency
usually considered is the event-level privacy: there is exactly one
time step where the neighboring streams differ. Thus, in the stream-
ing machine learning setting, event-level privacy of gradients coin-
cides with example-level (or user-level) privacy of their underlying
datasets.
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1.8 Other Common Notions of Differential Privacy*

In this chapter, we discuss two differential privacy (DP) definitions,
Gaussian DP and approximate DP, which are more commonly reported
in practice. We state a method for converting a Gaussian DP guarantee
(or its equivalent description via a noise multiplier for the Gaussian
mechanism) to another notion known as zero-concentrated DP. In
particular, this conversion can be done by either computing a simple
formula, or calling an existing open-source library.

1.8.1 Zero-Concentrated DP (zCDP)

Zero-concentrated differential privacy (zCDP) is defined in terms of the
Rényi divergence:

Definition 1.23. The α-Rényi divergence between two distribu-
tions P and Q for α > 1 is defined as:

Rα(P, Q) = 1
α− 1 logEX∼Q

(
P (X)
Q(X)

)α

.

The definition extends to α ∈ {1,∞} by continuity.

Definition 1.24. A mechanism M is ρ-zCDP if for all D ≃ D′, it
holds that

Rα(M(D),M(D′)) ≤ ρα

for all α > 1.

We can convert from GDP (or its equivalent noise multiplier de-
scription) to zCDP using the following result:

Lemma 1.25. Any µ-GDP mechanism is (µ2/2)-zCDP. In partic-
ular, the Gaussian mechanism with noise multiplier σ is (1/2σ2)-
zCDP.

1.9 Additional Proofs*

Earlier on page 11, we gave a proof sketch of Lemma 1.6 in the sense that
it was only for the 1-dimensional case. However, in the case of correlated
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noise mechanisms, we would be applying the Gaussian mechanism on
high-dimensional vectors. We now give a general proof of the GDP bound
of the Gaussian mechanism (Lemma 1.6) in high-dimensions, which at
a high level, uses the isometry of multi-variate Gaussian distribution
to reduce the general high-dimensional case to 1-dimensional case. For
readers familiar with the proof of (ε, δ)-DP for the Gaussian mechanism,
the proof is analogous.

Proof of Lemma 1.6. The proof proceeds similarly to the 1-dimensional
case. Consider a pair of worst-case adjacent datasets D ≃ D′ such
that ∥f(D)− f(D′)∥2 = sens(f). If f(D) and f(D′) are closer, it only
makes the mechanism outputs M(D),M(D′) more indistinguishable.
We will exhibit a randomized map g such that M(D) d= g(Z) and
M(D) d= g(Z + µ) for Z ∼ N (0, 1), as required by Definition 1.3.

Denote µ = 1/σ and u as the unit vector along f(D′)− f(D):

u := f(D′)− f(D)
∥f(D′)− f(D)∥2

= 1
sens(f)

(
f(D′)− f(D)

)
.

The idea is to construct g such that E[g(Z)] = f(D) and that
g(Z + µ) will introduce a bias along the unit vector u, yielding f(D′) in
expectation. All other directions are not relevant, as both distributions
are essentially Gaussian noise with identical variance.

Concretely, consider the randomized function g : R→ Rm given by

g(s) := f(D) + σ ·sens(f)·
(
su +

(
Im×m − uu⊤

)
ξ
)

for ξ ∼ Nm
(
0, 1
)

.

If we take s = Z ∼ N (0, 1), then the second term is just component-wise
i.i.d. Gaussian noise with variance ν2 = σ2 sens(f)2, since

Zu +
(
Im×m − uu⊤

)
ξ

d= Nm
(
0, 1
)

,

by the rotational invariance of the Gaussian distribution. Thus, for
z ∼ N (0, σ2 sens(f)2), we get g(Z) d= f(D) + z

d=M(D), as required.
Instead, if we plug in s = Z + µ, only the mean changes, while the
variance remains unchanged:

g(Z + µ) = f(D) + σ · sens(f) (µu) + z

= f(D) + sens(f) · u + z = f(D′) + z ,

since µ = 1/σ and sens(f) · u = f(D′)− f(D).
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1.10 Chapter Notes*

We give some additional context and details on some of the topics
covered here.

1.10.1 The Workload and Strategy Matrices

In the context of correlated noise mechanisms, the matrix A ∈ Rn×n

is called the workload matrix or query matrix. Similarly, in the factor-
ization A = BC, the matrix C is referred to as the strategy matrix.
This terminology originates from the database literature, where early
research on correlated noise mechanisms (detailed in Section 1.11) fo-
cused on counting records (or bins) satisfying a given predicate in a
database (or histogram). A concrete example is provided in the upcom-
ing Example 1.27.

We map this problem to our notation. Let G ∈ Rn×1 represent the
input database with n records (here, the dimension is m = 1). Each
counting query to the database can be denoted by a vector a ∈ {0, 1}n,
where a[t] = 1 indicates the records to be counted. The result of
this query is simply a⊤G, the dot product of a and the database G.
Early work on correlated noise mechanisms considered answering a
batch of queries denoted by vectors a0, a1, . . . , aN−1, which can be
arranged row-wise into a matrix A ∈ RN×n. The goal is to estimate
AG under differential privacy (we take N = n in our setting). A key
motivation of the early work was to show how answering all the queries
collectively—with appropriate noise correlation—yields better private
estimates than answering them individually (which corresponds to the
output perturbation mechanism).

In databases, the term “workload” refers to a set of database requests
or queries that share common characteristics (e.g., on the same table
or histogram), allowing for the application of workload management
controls to optimize system performance. Since the A matrix denotes
a collection of the queries a0, . . . , aN−1 on the same input G, it is
naturally called the workload matrix.

Similarly, database management systems optimize query execution
by grouping and refactoring queries to avoid redundant work. In cor-
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related noise mechanisms, the matrix C captures a strategy for per-
forming some shared work CG on the input G before adding noise
Z ∼ Nn×m

(
0, ν2) for DP. Thus, it is analogously referred to as the

strategy matrix.

1.10.2 DP-FTRL: DP-SGD with Correlated Noise

DP-SGD with correlated noise, as given in Algorithm 1.3 is referred to
in the literature as DP-FTRL. This stands for a differentially private
version of the follow-the-regularized-leader (FTRL) algorithm. Given
a sequence of past gradients g0, . . . , gt−1, the FTRL algorithm (also
known as dual averaging or lazy mirror descent) sets the next iterate
θt as

θt := arg min
θ∈Θ

{
s⊤

t θ + 1
2η
∥θ − θ0∥22

}
, where st =

t−1∑
τ=0

gτ

is the prefix sum of gradients, θ0 is the first iterate, and Θ is the
constraint set. For an unconstrained optimization problem with Θ = Rm,
these iterates coincide exactly with the SGD iterates in Eq. (1.4). FTRL
differs from SGD when Θ is a strict subset of Rm or when other penalties
are used in the place of the squared Euclidean norm ∥θ − θ0∥22.

Historically, the name DP-FTRL has been used to emphasize that
correlated noise mechanisms are used to privately estimate the prefix
sums (st)n−1

t=0 (as opposed to independent noise DP-SGD with C =
In×n). Throughout this monograph, we stick with the nomenclature
DP-SGD with correlated noise.

1.10.3 More Examples of Weighted Prefix Sums

Weighted prefix sums are ubiquitous in data science, in addition to the
setting of gradient descent considered in Section 1.2. We give a few
more examples here.

Example 1.26 (Online k-means Clustering). In this example, given
input data that consists of a stream of points P in Rd, the goal is
to output after the arrival of a point a set S of k points (called the
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centers) in Rd in order to minimize the following cost function:

cost(P, S) =
∑
p∈P

min
s∈S

dist(p, s)2,

where dist(p, s) is the Euclidean distance between p and point s

while remaining differentially private with respect to the stream of
datapoints. There is a reduction of this problem to a finite collection
prefix sum problem, where each problem is d-dimensional.

Example 1.27 (Range Queries and CDF Estimation). In this prob-
lem, we are given n data points, D = (x1, . . . , xn) ∈ [0, C]n for
some fixed C ∈ R. The goal is to construct a data structure so that,
given a query range [a, b] ∈ [0, C], the output is an estimate of

R[a,b] = |{xi ∈ D such that a ≤ xi ≤ b}| .

A notable application of range queries in the estimation of the
cumulative distribution function (CDF) F (b) := P(X ≤ b) of a
random variable X. In particular, if the data points x1, . . . , xn are
i.i.d. samples of the random variable X, then the empirical CDF
estimator F̂ (b) = R[0,b]

n can be computed via a range query. In
general, range queries are relevant in applications ranging from
online analytics such as financial markets or sensor networks to
contact tracing, mobility analysis and urban planning.

One can reduce range queries to prefix sum computation, al-
lowing us to leverage correlated noise mechanisms for better dif-
ferentially private estimators. In particular, we divide the domain
[0, C] into disjoint buckets, each with size equal to the allowed
accuracy. Then, each bucket stores the number of points that are
in the range covered by the bucket. To estimate the value of R[a,b]
for a given 0 ≤ a ≤ b ≤ C, we use the prefix sum until the bucket
that contains a and the prefix sum until the bucket that contains b.
The difference of the two gives the estimate of R[a,b].
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1.11 Bibliographic Notes

Differential Privacy Differential privacy was introduced in the cel-
ebrated work of Dwork, McSherry, Nissim, and Smith [2016]. The
Gaussian mechanism was introduced subsequently by Dwork, Kentha-
padi, McSherry, Mironov, and Naor [2006] in which they also introduced
the relaxation of differential privacy, now commonly known as approxi-
mate differential privacy. Gaussian differential privacy was introduced
by Dong, Roth, and Su [2022] and zero-concentrated differential pri-
vacy by Bun and Steinke [2016] and Dwork and Rothblum [2016].
Lemma 1.25 was shown as Proposition 1.6 in Bun and Steinke [2016].
The proof of Theorem 1.11 is due to Denisov, McMahan, Rush, Smith,
and Guha Thakurta [2022].

Gradient Descent with DP Differentially private gradient descent was
first introduced by Song, Chaudhuri, and Sarwate [2013]. Bassily, Smith,
and Thakurta [2014b] showed that it achieves optimal empirical risk
guarantee and Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar,
and Zhang [2016] developed a better privacy accounting method (via
the “moments accountant”) using the Gaussian mechanism, making
differentially private SGD (DP-SGD) practically usable on deep nets.

Correlated Noise Mechanisms for Learning The use of correlated
noise for differentially private learning was first studied in the con-
text of online learning by Jain, Kothari, and Thakurta [2012], and
was later by Thakurta and Smith [2013] who considered follow-the-
approximate leader. The variant considered in this monograph was first
defined in Kairouz, McMahan, Song, Thakkar, Thakurta, and Xu [2021a]
and later improved in a series of works by Denisov, McMahan, Rush,
Smith, and Guha Thakurta [2022], Choquette-Choo, McMahan, Rush,
and Thakurta [2023b], Choquette-Choo, Dvijotham, Pillutla, Ganesh,
Steinke, and Thakurta [2024a]. In particular, Denisov, McMahan, Rush,
Smith, and Guha Thakurta [2022] proved Theorem 1.11 and these works
framed correlated noise mechanism as deriving a differentially private
version of the popular follow-the-regularized leader (FTRL) algorithm,
also known as dual averaging. This family of algorithms was, in turn,
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developed through a series of works by Nesterov [2009], Xiao [2009],
McMahan [2011] and Duchi, Agarwal, and Wainwright [2011].

Correlated Noise Mechanisms for Prefix Sum Estimation Computing
prefix sum under the constraints of differential privacy was first studied
by Dwork, Naor, Pitassi, and Rothblum [2010] and Chan, Shi, and
Song [2011]. These works used a particular hand-crafted correlations,
now known as the binary tree mechanism; we discuss this further in
Section 2.7. The general framework of correlated noise mechanisms we
defined in Section 1.3 (i.e., using a factorization A = BC) was first
introduced concurrently by Li, Miklau, Hay, McGregor, and Rastogi
[2015] under the name matrix mechanism and by Nikolov, Talwar, and
Zhang [2016] as the factorization mechanism.

The use of the matrix mechanism for prefix sum estimation was
first observed independently and concurrently by Denisov, McMahan,
Rush, Smith, and Guha Thakurta [2022] and Fichtenberger, Henzinger,
and Upadhyay [2023]. The weighted version of the prefix sum was first
studied by Bolot, Fawaz, Muthukrishnan, Nikolov, and Taft [2013],
and recently improved by Henzinger, Upadhyay, and Upadhyay [2023],
Henzinger and Upadhyay [2025].

Large-Scale Practical Deployments of DP The United States Census
Bureau used DP for the 2020 Census to provide demographic insights [US
Census Bureau, 2021]. Google used DP in the Chrome browser to analyze
user behavior [Erlingsson et al., 2014], while Apple used DP in iOS
and MacOS [Apple, 2017]. In particular, correlated noise mechanisms
have been industrially deployed to train next-word-prediction models
for mobile keyboards by Google [Xu, Zhang, Andrew, Choquette-Choo,
Kairouz, McMahan, Rosenstock, and Zhang, 2023]. For best practices
involving DP in machine learning, see Ponomareva, Hazimeh, Kurakin,
Xu, Denison, McMahan, Vassilvitskii, Chien, and Thakurta [2023, Sec
5.3.3].

Adjacency Notions and Privacy Units For a detailed discussion of
adjacency notions and privacy unit, we refer to Ponomareva, Hazimeh,
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Kurakin, Xu, Denison, McMahan, Vassilvitskii, Chien, and Thakurta
[2023]. In particular, we refer to their Section 2.1 and 5.1 for how to
select a privacy unit. A discussion on the pros and cons of add-or-
remove-one adjacency vis-à-vis replace-one adjacency in the context of
privacy amplification by sampling can be found in [Steinke, 2022, Sec. 6].
The resulting user-level DP learning algorithm obtained by modifying
independent noise DP-SGD (Algorithm 1.2) with Eq. (1.27) is also
known as “DP-FedAvg”. This algorithm was proposed by McMahan,
Ramage, Talwar, and Zhang [2018] to make the standard federated
averaging algorithm satisfy user-level DP guarantees. In fact, much
of the prior literature on correlated noise mechanisms in the learning
setting, starting from Kairouz, McMahan, Song, Thakkar, Thakurta,
and Xu [2021a], was motivated by user-level DP in the federated learning
context; see Example 3.1 in Section 3 for more background context.

We note that it is also possible to promote example-level DP guar-
antees to user-level DP guarantees by using generic group privacy reduc-
tions [Vadhan, 2017, Lemma 2.2]. While such reductions are usually not
as tight as the approach presented in Section 1.6, it is possible to develop
tighter user-level privacy accounting techniques for the example-level
DP algorithm of DP-SGD with independent noise [Charles, Ganesh,
McKenna, McMahan, Mitchell, Pillutla, and Rush, 2025].

Other Remarks The reduction of online k-means clustering to a finite
collection of prefix sum problem was shown in Dupré la Tour, Henzinger,
and Saulpic [2024].



2
Correlated Noise Mechanisms for Streaming

Prefix Sums

We develop some correlated noise mechanisms in the simplified streaming
setting to convey the key ideas. As we introduced in Section 1, the
streaming setting refers to the setting where each data point participates
in training only once.

Recall that our goal is to factorize a lower-triangular workload matrix
A ∈ Rn×n into A = BC. We describe a general approach but instantiate
it specifically with unweighted prefix sum matrix, Apre ∈ {0, 1}n×n,
which is a lower-triangular matrix of all ones (see also Eq. (1.6)):

Apre[i, j] =

1 i ≥ j

0 otherwise.

Recall from Section 1.2 that privatizing the iterates θ1, . . . , θn−1
obtained from the iterations of stochastic gradient descent (SGD; see
Algorithm 1.1) with correlated noise mechanisms corresponds to factor-
izing the matrix Apre.

For all theorems and lemmas stated without proof, detailed ref-
erences that include proofs are given in the bibliographic notes of
Section 2.12 at the end of the section.

50
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2.1 Design Considerations

The primary design considerations for a correlated noise mechanism are
its computational cost and its effectiveness in improving the utility of
the algorithm. We recall the setup and describe each in turn.

Setup As described in Section 1, our goal is to privately compute the
prefix sums G 7→ AG for an input sequence G = (g0, . . . , gn−1) ∈ Rn×m

(representing gradients). Given a factorization A = BC of a weighted
prefix sum matrix with lower triangular factors B, C ∈ Rn×n, consider
a correlated noise mechanism M that returns

M(G) = B(CG + Z) = A(G + C−1Z) , (2.1)

where Z is component-wise i.i.d. Gaussian noise. In Section 1.4.3, we saw
this was equivalent to a mechanism M′ which computes DP estimates
of G, M′(G) = Ĝ = G + C−1Z, and then applying the workload as
post-processing, AĜ = AM′(G) =M(G).

We know from Lemma 1.13 that Z ∼ Nn×m
(
0, ν2) for

ν = sens(C) · σ = 2 ∥C∥col σ (2.2)

yields a (1/σ)-GDP mechanism in the streaming setting, where ∥C∥col
denotes the maximum column norm of the matrix C. Thus, throughout
this section, we choose ν following Eq. (2.2); then σ is interpreted as
a noise multiplier parameter that is independent of the factorization
used.

2.1.1 Time and Space Complexity of Noise Generation

As we saw in Algorithm 1.3 in Section 1, private optimization using the
correlated noise mechanism requires us to compute the noisy gradient

ĝt = gt +
(
C−1Z

)
[t, :] = gt +

t∑
τ=0

(C−1)[t, τ ] Z[τ, :] (2.3)

in each step t of the algorithm, where Z is component-wise i.i.d. Gaussian
noise.1 Consequently, a critical design consideration in correlated noise

1The summation over τ in the second expression in Eq. (2.3) runs only until
τ = t because C−1 is lower triangular. This follows from C being lower triangular.
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mechanisms is the time and space complexity of the noise generation
process of Eq. (2.3). In the worst case, it can take O(mn) time to
compute a sum of up to n vectors Z[τ, :] ∈ Rm. Similarly, it can take
up to O(n2) space to simply represent the matrix C−1 (or O(n3) time
to compute, given C).

In typical AI and machine learning settings, the model dimension
m can be significantly larger than the number of steps n. Indeed, m

can vary between a few millions for small on-device models to several
billions or more for transformer language models. On the other hand,
differentially private training entails large batches, so the number of
steps n is usually a few tens of thousands or smaller. Thus, the O(mn)
time complexity of noise generation is usually more of a bottleneck
than the O(n2) memory. In some cases, even a noise generation cost
O(mn) may be tractable, as discussed in Section 4 and Remark 4.16.
Further, as we will see in this section, it is often possible to do better
with carefully designed structured matrices.

The cost of finding a factorization A = BC is also relevant. This
is a one-time cost as the matrices B, C can be cached for future use.
In this section, we only consider the cost of noise generation, as it is
incurred in every step of the correlated noise mechanism. We will revisit
the factorization cost in Section 4.

2.1.2 Loss Metric

While the ultimate test of a correlated noise mechanism is its learning
performance (e.g., accuracy for classification tasks), it is nevertheless
useful to track the error in the prefix sum estimate as a surrogate
measure of utility. Fig. 1.6 illustrates the error in the prefix sums in a
learning setting.

A natural metric is the maximum squared error in the estimation
of any prefix sum; we considered this in Eq. (1.19) in Section 1. In the
literature, it is also common to consider its square root:

Definition 2.1. The unnormalized max loss (also known as the
unnormalized ℓ∞ loss) of a mechanism M(G) estimating the
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(weighted) prefix sum AG of an input G ∈ Rn×m is defined as

L∞(M) := max
t∈[n]

√
E ∥(AG−M(G))[t, :]∥22 .

It turns out that the max loss for the correlated noise mechanisms
has a simple characterization in terms of the maximum row norm ∥B∥row
of B and the maximum column norm ∥C∥col of C:2

Theorem 2.2. Consider a correlated noise mechanism M(G) =
B(CG+Z) for Z ∼ Nn×m

(
0, ν2) with ν = sens(C) ·σ = 2 ∥C∥col σ

for noise multiplier σ, following Lemma 1.12. Then, we have that
its max loss, denoted as L∞(B, C), equals

L∞(B, C) = 2
√

mσ ∥B∥row ∥C∥col .

Proof Sketch. Note that AG−M(G) = BZ ∼ N (0, ν2BB⊤) is obliv-
ious to the input G. Recalling st := A[t, :]G and ŝt =M(G)[t, :], we
can measure the ℓ2 norm of the error of the t prefix sum estimate ŝt as
∥st − ŝt∥22 = ∥(B[t, :] Z)∥22, and so

EM ∥st − ŝt∥22 = EZ ∥(B[t, :] Z)∥22 = mν2

∑
τ∈[n]

B[t, τ ]2


because Z ∼ Nn×m
(
0, ν2) is the only source of randomness in M.

Therefore, we get that

L∞(B, C) =
√

mν max
t∈[n]

√∑
τ∈[n]

B[t, τ ]2

= 2
√

mσ ∥C∥col ∥B∥row

as required.

Since the dimension m is a fixed constant for a given problem, and
the noise multiplier σ is independent of the factorization A = BC

defining the correlated noise mechanism, we will state our results in
2In general, we use the notation ∥M∥p→q

:= maxu ̸=0
∥Mu∥q

∥u∥p
to denote the

induced matrix norm.
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terms of the (normalized) max loss; because this loss is the primary
function considered when designing mechansimms, we will refer to the
normalized max loss as simply “max loss” going forward.

Definition 2.3 (Max Loss). For a correlated noise mechanismM(G) =
B(CG + Z) for Z ∼ Nn×m

(
0, ν2), we define the (normalized) max

loss by
L̄∞(B, C) := ∥B∥row ∥C∥col . (2.4)

Other loss metrics can be used; we discuss root-mean-squared-loss
(RMS-loss) in Section 2.8. Throughout, for a factorization A = BC,
we will use the term loss when we take into account the privacy of the
mechanism, e.g. scaling the noise by the sensitivity of C, and error
when we measure to the magnitude of the noise BZ introduced in
our estimates of AG. Further, the loss generally scales linearly in the
noise multiplier σ as in Theorem 2.2, and hence when evaluating the
quality of a mechanism, we can ignore this term, leading to the notion
of normalized loss. Hence, in general we have

loss(B, C) = error(B) · sens(C). (2.5)

The error term can be varied, e.g. depending on whether we select the
maximum per-iteration error (as in this section) or the mean error.
In the streaming setting, sens(C) = 2 ∥C∥col, as in Eq. (1.13), but in
Section 3 we will generalize this.

2.1.3 Baseline Mechanisms

Recall the two baseline mechanisms of Section 1: the input perturba-
tion (C = In×n) and output perturbation (C = A). We review the
complexity of noise generation and the utility bounds for both these
cases.

Input Perturbation With C = In×n as the identity matrix, the noise
generation process in Eq. (2.3) is

(
C−1Z

)
[t, :] = Z[t, :] ∼ Nm

(
0, σ2).

In other words, it simplifies to generating independent Gaussian noise.
This corresponds to the DP-SGD algorithm in the learning setting.
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The per-step noise generation time is O(m), which is required to
sample m-dimensional white noise Z[t, :]. This noise also requires O(m)
memory. As established in Section 1, its normalized max loss for the
unweighted prefix sum workload Apre is L̄∞(Apre, I) = Θ(

√
n).

Output Perturbation The C = A baseline corresponds to perturbing
the output AG with independent noise Z. For the unweighted prefix
sum workload A = Apre, the noise generation process in Eq. (2.3) takes
the form (

A−1
preZ

)
[t, :] = Z[t, :]−Z[t− 1, :] .

This follows, for example, from the formula for C−1 in Eq. (1.21).
The time complexity of the noise generation process remains O(m)

per-step even for output perturbation. Thus, in each step t, we need
to store the noise Z[t − 1, :] sampled from the previous time step in
addition to Z[t, :]; we still have an O(m) memory overhead. Its utility
bound L̄∞(I, Apre) = Θ(

√
n) is the same as input perturbation, as we

saw in Section 1.
The time and space complexities of these baselines are the best

possible: O(m) memory is required to store the input vector gt ∈
Rm and O(m) time is required to process it. However, the Θ(

√
n)

utility is suboptimal as we saw in Section 1.4, where we showed that
a (normalized) max loss of O(n1/4) is achievable. We show that this
can, in fact, be significantly improved to Θ(ln(n)). We summarize the
mechanisms we study in this section in Table 2.1.

2.2 Dense Mechanism

The poor utility of the baselines stems from their disregard for the error
metric. This can be remedied by optimizing for the normalized max
loss L̄∞(B, C) directly when finding B, C:

min
{
∥B∥row ∥C∥col : BC = A, and

B, C are lower-triangular

}
. (2.6)

While this optimization problem is non-convex, it can be cast as a semi-
definite program, enabling high-quality solutions for small problems
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Table 2.1: Summary of mechanisms considered in Section 2. Here, n is the number
of steps, m is the model dimension, and c is an absolute constant that can change in
each row. We describe the maximum time and space complexity of producing the
correlated noise (C−1Z)[t, :] for any iteration t ∈ [n]. For most real-world applications,
m > n (possibly by orders of magnitude), and the time complexity becomes the
dominating concern. The O(m + n) space complexity for Toeplitz mechanisms
holds for an arbitrary Toeplitz mechanism; when the Toeplitz coefficients can be
easily (re)computed on the fly, e.g. as with the max-loss-optimal factorization of
Theorem 2.5, the space requirement reduces to O(m). The Banded Toeplitz and BLT
mechanisms are in fact Toeplitz and so could be implemented with the O(nm) time
and O(m + n) space, but the given time/space complexities achieved by specializing
noise generation are almost always preferable.

Mechanism Time Space max loss L̄∞

Input perturbation O(m) O(m) Θ(
√

n)

Output perturbation O(m) O(m) Θ(
√

n)

Dense O(nm) O(m + n2) 1
π ln(n) + c

Toeplitz O(nm) O(m + n) 1
π ln(n) + c

b-Banded Toeplitz O(bm) O(bm) See Theorem 2.13

d-buffer BLT, d = poly ln(n) O(dm) O(dm) 1
π ln(n) + c

(with a few thousand steps or less); we discuss considerations around
scalability of this approach in Section 4.

We refer to the mechanism defined by the resulting matrices, B

and C as the dense mechanism. (These matrices are dense; in contrast,
some of the mechanisms we consider later are either sparse or can be
parameterized using a small number of parameters.)

Complexity of Noise Generation To compute the linear combination
of noises ∑t

τ=0
(
C−1) [t, τ ] Z[τ, :] in the noise generation process of

Eq. (2.3) in step t requires O(mt) time to generate and then sum over t

white noise vectors in Rm. Thus, the worst-case per-step time complexity
of noise generation is O(mn).

Storing the matrix C−1 requires O(n2) space. We assume the source
i.i.d. noise Z[τ, :] can be generated on the fly (e.g., via a random seed
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hashed with τ), and hence materializing the noise Z[τ, :] only takes
space O(m).

Utility and Error Bounds For the unweighted prefix sum workload
Apre, the optimal max loss from Eq. (2.6) can be precisely characterized
with upper and lower bounds matching up to a small additive constant:

Theorem 2.4. Let B⋆, C⋆ be the minimizers of the optimization
problem from Eq. (2.6) when A = Apre is the unweighted prefix
sum matrix. Let

Opt = L̄∞(B⋆, C⋆) = ∥B⋆∥row ∥C
⋆∥col (2.7)

denote the minimal normalized max loss. Then, we have the nearly
matching upper and lower bounds:

ln(2n + 1)
π

≤ Opt ≤ 1 + ln(n)
π

,

where π ≈ 3.14 is the ratio of a circle’s circumference to its diameter
and ln(·) is the natural logarithm function.

While the full proof of this statement is out of the scope of this
monograph, we give a detailed attribution of this theorem and the other
upcoming results of this section in the bibliographic notes of Section 2.12.
While Theorem 2.4 gives the asymptotic behavior of the max loss, we
can numerically find high-precision solutions for small n (smaller than
a few thousands; we discuss algorithms and their scalability issues in
Section 4). We such solutions, we can numerically compute the optimal
max loss for specific n (together with a certificate of optimality, such as
a duality gap).

Summary The optimized dense mechanism’s normalized max loss of
ln(n)/π + c (for a small numerical constant c) is significantly better
than that the Θ(

√
n) error obtained from the baselines when factorizing

Apre. However, the time complexity of O(mn) (and to a lesser extent,
the space complexity of O(n2)) can be prohibitive when the number of
steps n is large. The mechanisms we discuss in the rest of the section
will address this issue.
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2.3 Toeplitz Mechanism

We start by addressing the high O(n2) space complexity of the opti-
mized dense mechanism. While this is generally less of a concern than
the O(nm) time complexity in typical machine learning settings, it
forms a good starting point to develop mechanisms with improved time
complexity.

A common trick to overcome the O(n2) memory required to store
an n× n matrix is to assume that it is Toeplitz, where each diagonal
parallel to the main diagonal is a constant.3 An n× n lower-triangular
Toeplitz matrix C can be described in terms of its first column of n

numbers:

C =



c0 0 0 · · · 0
c1 c0 0 · · · 0
c2 c1 c0 · · · 0
... . . . . . . . . . ...

cn−1 cn−2 cn−3 · · · c0


. (2.8)

Toeplitz matrices offer not only reduced memory usage but also two
remarkable properties that make them ideal for this application: (a)
the optimal Toeplitz factorization can be determined analytically, and
(b) they almost achieve the optimal max loss of Theorem 2.4, namely
up to a small additive constant.

It is most interesting to restrict the strategy matrix C to be Toeplitz
(and lower triangular) when the workload matrix A is also Toeplitz; in
this case the matrix B = AC−1 is also Toeplitz (and lower triangular).
The unweighted prefix sum workload Apre satisfies this requirement.
As we shall see in the upcoming Section 3, other common first-order
optimizers also lead to workload matrices A that are Toeplitz and
element-wise non-negative.

3Another common trick is to assume a low-rank factorization; we will return to
that in Section 2.5.
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Mechanism Definition The max-loss-optimal Toeplitz mechanism in
terms of the max loss is the solution to the optimization problem:

min
{
∥B∥row ∥C∥col : BC = A, and

B, C lower-triangular & Toeplitz

}
. (2.9)

As in the earlier case, this is a non-convex optimization problem, which
can be solved numerically. We restrict our discussion to the unweighted
prefix sum workload A = Apre in the following. For this matrix, Problem
(2.9) admits an analytical solution for this case:

Theorem 2.5 (Max-Loss-Optimal Toeplitz Factorization). For the un-
weighted prefix sum workload A = Apre, the optimization problem
from Eq. (2.9) is minimized by Toeplitz matrices BToep = CToep =
A

1/2
pre , the square root matrix of Apre.4 In particular, their first

column c⋆
0, c⋆

1, . . . , c⋆
n−1 is given by

c⋆
t = (−1)t

(
−1/2

t

)
=

1 , if t = 0,

Θ(t−1/2) , else ,
(2.10)

where we denote the generalized binomial coefficient
(p

t

)
:= ∏t−1

τ=0
p−τ
t−τ

for t ∈ N and non-integer p ∈ R. Moreover, C−1
Toep is also a Toeplitz

matrix whose first column c′
0, c′

1, . . . , c′
n−1 is given by

c′
t = (−1)t

(
1/2

t

)
=

1 , if t = 0,

−Θ(t−3/2) , else .
(2.11)

Interestingly, the entries of the optimal factorization, as given in
Eq. (2.10), are independent of the size n of the problem. See Section 2.9
for the key idea behind the proof.

Remark 2.6. The generalized binomial coefficients
(−1/2

t

)
and

(1/2
t

)
from Theorem 2.5 can directly be computed with standard library
functions such as scipy.special.binom. We also have the alter-

4The square root A1/2 of the lower triangular matrix A with positive diagonal
entries is the unique lower triangular matrix with positive diagonal entries such that
A = A1/2A1/2.
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native expressions

c⋆
t = 2−2t

(
2t

t

)
=
(2t− 1

2t

)
c⋆

t−1 ,

where the latter recursion starts from the base case of c⋆
0 = 1.

Similarly, using the relation C−1
Toep = A−1

preCToep, we can express the
coefficients c′

t of C−1
Toep as

c′
t =

1, if t = 0,

c⋆
t+1 − c⋆

t , if t > 0.

Complexity of Noise Generation As with the dense mechanism, we
assume we can re-generate the previous noises zt−1, zt−2, . . . in each
iteration (using e.g. their random seeds). This approach suffers from
a O(mn) time complexity of the per-step noise generation, which is
the same as the dense mechanism, as well as the same O(m) memory
requirement. For a general Toeplitz matrix, only O(n) rather than O(n2)
memory is required to store the strategy matrix C. For the specific
factorization of Theorem 2.7, the entries of C−1

Toep can be generated as
needed from Eq. (2.11) (e.g., using the standard library functions as
in Remark 2.6), so in this case we do not need even the O(n) space to
store them.

It is possible to obtain an improved O(mn ln(n)) time complexity
by implementing the (left) multiplication by a Toeplitz matrix using
the fast Fourier transform. Unfortunately, this requires O(mn) space
complexity to materialize all previous rows of the noise matrix Z, which
is generally prohibitive for typical AI and machine learning models.

Utility and Error Bounds This mechanism is near-optimal among the
class of all (possibly non-Toeplitz) factorizations of the unweighted
prefix sum workload Apre up to a small additive constant:

Theorem 2.7. Let OptToep = L̄∞(A1/2
pre , A

1/2
pre ) denote the normal-

ized max loss of the optimal lower triangular Toeplitz factors
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BToep = CToep = A
1/2
pre from Theorem 2.5. We have,

OptToep ≤
γ + ln(n)

π
+ 1 ,

where γ ≈ 0.577 is the Euler-Mascheroni constant. In particular, we
have OptToep−Opt ≤ 1, where Opt is the best achievable normalized
max loss by any mechanism as defined in Theorem 2.4.

Proof Sketch. The maximum row norm of A
1/2
pre is that of its last row,

while its maximum column norm is attained by its first column; this
can be observed by the structure of the Toeplitz matrix in Eq. (2.8).
Thus, we have,∥∥∥A1/2

pre

∥∥∥2

row
=
∥∥∥A1/2

pre

∥∥∥2

col
=

n−1∑
t=0

(
−1/2

t

)2

≤ 1 +
n−1∑
k=1

Θ
(1

k

)
.

Standard result of the harmonic sum gives ∑n−1
k=1

1
k ≤ ln(n− 1) + γ +

1/(2(n − 1)) ≤ ln(n) + γ, while a careful analysis of the coefficient(−1/2
t

)
= 1

22t

(2t
t

)
reveals that the constant hidden in the big-Θ is 1

π .

In Section 2.6, we also verify empirically that the max-loss-optimal
Toeplitz mechanism nearly matches the dense mechanism in terms of
empirical performance.

Remark 2.8 (Lower Triangular and Toeplitz Factorizations). Recall
from Remark 1.17 that we restricted ourselves to lower triangular
factorizations because given any factorization BC = A, there
exists a lower triangular factorization B′C ′ = A such that
L̄∞(B, C) = L̄∞(B′, C ′). However, this construction does not
preserve the Toeplitz structure of the matrices. That is, optimal
lower triangular and Toeplitz factorization (Eq. (2.9)) may attain
worse normalized max loss than the optimal Toeplitz factorization
without the lower triangular constraint. Fortunately, we know these
are close from Theorem 2.7 as the latter always lies in the interval
[Opt, OptToep], and OptToep − Opt ≤ 1 (independent of n).

Column Normalization to Improve the Mechanism We discuss a
heuristic known as column normalization that can further improve the
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max loss of the Toeplitz mechanism. It is motivated by the observation
that optimal dense C⋆ from Theorem 2.4 generally have equal column
norms:

Lemma 2.9. There exists optimal solutions B⋆, C⋆ to the dense
mechanism satisfying Eq. (2.7) (from Theorem 2.4) such that C⋆

is column-normalized, i.e. ∥C⋆[:, t]∥2 = ∥C⋆∥col for all t ∈ [n].

Unfortunately, Toeplitz matrices C (including those defined by
Eq. (2.8)) cannot in general satisfy this property. This can be remedied
by column normalization:

Definition 2.10 (Column Normalization). Given a correlated noise
mechanism based on a factorization A = BC with C invertible,
its column normalized version is given by the factorization A =
BnormCnorm with

Cnorm[:, t] = C[:, t]
∥C[:, t]∥2

, and Bnorm = AC−1
norm .

As we discussed in Theorem 2.7, the suboptimality of the original
max-loss-optimal Toeplitz mechanism is quite small. Yet, it can be shown
that this mechanism can be improved slightly by column normalization
at the same time and memory cost. (Note that the resulting Cnorm
matrix is no longer Toeplitz.)

Theorem 2.11. Let Optnorm = L̄∞(Bnorm, Cnorm) denote the nor-
malized max loss of the column normalized version Cnorm of the
max-loss-optimal Toeplitz mechanism’s strategy matrix A

1/2
pre and

its corresponding factor Bnorm = ApreC
−1
norm. We have,

Optnorm ≤
ln(n)

π
+ 1 ,

In particular, this removes an extra γ/π term in Theorem 2.7,
matching the upper bound of the dense mechanism in Theorem 2.4.

Summary The max-loss-optimal Toeplitz mechanism gives a tight ad-
ditive approximation to Opt: it has the right asymptotic dependence of
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ln n including the leading multiplicative constant of 1/π. Its space com-
plexity is also the best possible. The main drawback of this mechanism
is the time complexity of noise generation. The next two mechanisms
attain a better time complexity of noise generation, at the cost of
increased space complexity.

2.4 Banded Toeplitz Mechanism

The banded Toeplitz mechanism reduces the per-step cost of noise
generation by requiring that the strategy matrix C be sparse (in addition
to lower triangular and Toeplitz) to allow for efficient noise generation
(as we see in the upcoming Algorithm 2.1). Since the optimal Toeplitz
coefficients from Theorem 2.5 are monotonically decreasing, it is natural
to require that only the first b Toeplitz coefficients are non-zero. Such
matrices are a special instance of the class of banded matrices:

Definition 2.12 (b-Banded Matrix). A lower triangular matrix M

is said to be b-banded if M [t, τ ] = 0 for all t− τ ≥ b.5

This banded structure lends itself to more efficient noise generation
algorithms, as we will momentarily see.

Mechanism Definition The banded Toeplitz mechanism aims to find
the factorization with the smallest max loss subject to the band sparsity
of the strategy matrix and Toeplitz constraints:

min
{
∥B∥row ∥C∥col : BC = A, C[t, τ ] = 0 ∀ t− τ ≥ b ,

B, C lower-triangular & Toeplitz

}
. (2.12)

For example, for n = 5 and b = 3, such a mechanism can be defined
by 3 parameters (c0, c1, c2) as

C =


c0 0 0 0 0
c1 c0 0 0 0
c2 c1 c0 0 0
0 c2 c1 c0 0
0 0 c2 c1 c0

 .

5Since M is lower triangular we have that M [t, τ ] = 0 for all t < τ as well.
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Algorithm 2.1 Noise Generation with the Banded Toeplitz Mechanism
Input: A b-banded lower-triangular Toeplitz matrix C whose first

column has non-zero entries c0, c1, . . . , cb−1, i.i.d. noise Z ∈ Rn×m.
Output: z̃t = (C−1Z)[t, :] for each t.

1: for t = 0, . . . , n− 1 do
2: Define zt = Z[t, :] ∈ Rm and

z̃t = zt −
1
c0

min{t,b−1}∑
τ=1

cτ z̃t−τ


3: Yield correlated noise z̃t

Similar to the optimal factorization problem of Eq. (2.6), this is a
non-convex optimization problem; we return to the optimization aspect
in Section 4. We assume for now that a suitable factorization is available.

Complexity of Noise Generation A b-banded and lower-triangular
linear system can be solved efficiently: each output element can be
sequentially computed in O(b) time, independent of the size n of the
problem. The same approach can be adapted for the noise generation
(C−1Z)[t, :], as show in Algorithm 2.1. In each step t of the algorithm,
we need to maintain the b− 1 previous outputs z̃1, . . . , z̃t−b+1, leading
to a space complexity of O(mb). Each update in Line 2 simply takes a
linear combination of these b previous outputs, so its time complexity
is O(mb) as well.

Utility and Error Bounds As previously, we focus on the unweighted
prefix sum workload Apre for utility bounds. While precise max loss
bounds for the solution of the optimization problem from Eq. (2.12) have
not been established (to the best of our knowledge), we can quantify
the error of a feasible solution which is obtained by “sparsifying” the
optimal Toeplitz factorization:

Theorem 2.13. Fix the number of steps n and the number of
bands 1 ≤ b < n. Define the matrix Ĉband ∈ Rn×n to be the lower-
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Figure 2.1: Examples of mechanisms as defined by
(
C, C−1) pairs for n = 64: (Left)

A dense (arbitrary lower-triangular) matrix (Section 2.2), optimized for RMSE (see
Section 2.8); (Middle) The max-loss-optimal Toeplitz mechanism of Theorem 2.5,
which is extremely well approximated (to the point of visual indistinguishability
in this plot) by a BLT of order d = 4; (Right) A banded Toeplitz mechanism
optimized for max loss (Section 2.4). Optimizing mechanisms for scenarios with
multiple participations can produce substantially different mechanisms, see Fig. 3.3.
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triangular and Toeplitz matrix whose first column is made up of
c⋆

0, c⋆
1, . . . , c⋆

b−1, 0, . . . , 0, where c⋆
t is the optimal Toeplitz coefficient

defined in Eq. (2.10) of Theorem 2.5. Letting B̂band = ApreĈ
−1
band,

we have

L̄∞(B̂band, Ĉband) ≤ O

(√(
n

b
− 1

)
ln b + ln2 b

)
.

The above bound shows that the error decreases monotonically
with an increasing number of bands b. In particular, b = n bands
are optimal in the streaming setting, recovering the max-loss-optimal
Toeplitz mechanism of Section 2.3. It is more practical to consider
a small number of bands such as b = O(1) or b = O(poly ln(n)).
Unfortunately, the max loss bound is suboptimal in this regime; the
bound is comparable to the Θ(

√
n) bound obtained by the baseline

mechanisms and is exponentially worse than the optimal Θ(ln n) scaling
of Theorem 2.4.

Remark 2.14 (Bandedness and Amplification by Sampling*). While
the banded Toeplitz mechanism appears to be suboptimal in terms
of the max loss, it has two key advantages in the learning setting.
First, the banded Toeplitz mechanism allows for significantly im-
proved privacy guarantees via amplification by sampling, as we dis-
cuss in Section 3.4. Second, the banded Toeplitz mechanism allows
for a natural and interpretable structure in the multi-participation
setting. In both these cases, it is advantageous to take b < n—we
discuss these factors further in Sections 3 and 4 (in particular,
Fig. 4.3 shows the empirical optimal number of bands). These
reasons make the banded Toeplitz mechanism a compelling option
in practice. We refer to Section 4.4 for rules of thumb regarding
the selection of different mechanisms.

Summary While the banded Toeplitz mechanism improves the time
complexity of noise generation from O(mn) of the max-loss-optimal
Toeplitz mechanism to O(mb), it comes at the cost of a (potentially)
exponentially worse max loss. This would suggest that this mechanism
requires a large number of bands b to attain competitive empirical per-
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formance in the streaming setting, which in turn could make the O(mb)
space complexity prohibitively large. The next mechanism overcomes
these limitations.

2.5 Buffered Linear Toeplitz (BLT) Mechanism

The Buffered Linear Toeplitz (BLT) mechanism takes a different ap-
proach to improving the time complexity of the max-loss-optimal
Toeplitz mechanism in Section 2.3 while maintaining its near-optimal
max loss.

We develop some intuition. Suppose the matrix C−1 takes the form

C−1
λ =


1 0 · · · 0
−λ 1 · · · 0
... . . . . . . ...

−λn−1 −λn−2 · · · 1


for a parameter λ ∈ [0, 1).6

The exponential decay in the diagonals of C−1
λ leads to an efficient

recursive implementation of the noise generation. In particular, we can
compute z̃t = (C−1

λ Z)[t, :] from zt = Z[t, :] recursively as

z̃0 = z0 and z̃t = zt − λz̃t−1 . (2.13)

Unfortunately, the optimal Toeplitz coefficients of C−1, which scale as
c′

0 = 1 and c′
t ≈ −t−3/2 for t > 1 for the case of A = Apre (from Theo-

rem 2.5), do not admit a similar efficiently-implementable recursion.7
The BLT mechanism of order d instead approximates the optimal

Toeplitz coefficients c⋆
t (e.g. from Theorem 2.5 for the unweighted prefix

6This is related to the one-parameter Toeplitz matrix considered in Eq. (1.20).
The difference is that we parameterized the strategy matrix C with an exponentially
decaying sequence in Section 1, while we now parameterize C−1. We will see in
Lemma 2.16 that this relationship can be made precise.

7In particular, there exist no finite collection of numbers q1, . . . , qd ∈ R for any
d < ∞ such that

∑d

i=0 qic
′
t−i = 0 holds (with q0 = 1) for all t ≥ d. This characterizes

the general class of linear recurrences, for which an efficiently implementable recursion
like Eq. (2.13) exists. We return to this in Section 2.9.
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sum workload Apre) with a linear combination of exponentials:

c⋆
t ≈

d∑
i=1

αiλ
t−1
i (2.14)

for t > 0 using some scale parameters α1, . . . , αd and decay parameters
λ1, . . . , λd ∈ [0, 1).

There are two reasons to utilize this approximation. First, it turns
out that the BLT parameterization from Eq. (2.14) can effectively
approximate decreasing non-negative sequences, including the optimal
Toeplitz coefficients c⋆

t . We briefly discuss this in Remark 2.15 below
and present a more detailed intuition in Section 2.9. Secondly, the
BLT parameterization allows an efficient recursion for noise generation
(C−1Z)[t, :] that can be implemented (as shown in the upcoming Lemma
2.17) with a per-step time complexity and total space complexity of
O(md). This can be viewed as d buffers of the same size m as the
model parameters. In practice, a small constant order d (e.g. d < 5) can
provide near-optimal performance empirically (see also Section 2.6), so
this is effectively only a small constant-factor overhead of storing and
computing on the model of size m.

Remark 2.15 (BLT and Fourier Approximations*). For readers famil-
iar with the Fourier transform, it is instructional to view its paral-
lels with the BLT parameterization from Eq. (2.14). Any sequence
(ct)∞

t=0 can be expressed in the Fourier basis ω 7→
(

exp(ι ωt)
)∞

t=0
(where ι =

√
−1 is the imaginary unit) as

ct = 1
2π

π∫
−π

Fc(ω) exp(ι ωt) dt ,

where Fc : [−2π, 2π] → C is the discrete-time Fourier transform
of the sequence (ct)∞

t=0. It is common practice to approximate
this integral as a sum over d points ω1, . . . , ωd ∈ C with weights
β1, . . . , βd ∈ C:

ct ≈
d∑

i=1
βi exp(ι ωit) . (2.15)
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The BLT approximation in Eq. (2.14) is analogous to this, with the
key distinction that is a linear combination of real and decreasing
exponential functions exp(−µit) (where µi = ln(1/λi) > 0), making
it suitable to approximate decreasing functions.

Mechanism Definition A BLT mechanism of order-d is parameterized
by a scale parameter α = (α1, . . . , αd) ∈ Rd and a decay parameter
λ = (λ1, . . . , λd) ∈ [0, 1)d. It represents the Toeplitz matrix C ∈ Rn×n

as

BLT(α, λ) :=



1 0 · · · · · · 0∑d
i=1 αi 1 · · · · · · 0∑d

i=1 αiλi
∑d

i=1 αi 1 · · ·
...

...
...

... . . . ...∑d
i=1 αiλ

n−2
i

∑d
i=1 αiλ

n−3
i

∑d
i=1 αiλ

n−4
i · · · 1


.

(2.16)

With slight abuse of nomenclature, we refer to matrices BLT(a, λ)
parameterized in this fashion as “BLT matrices”. The best parameters
a, λ can be found numerically as solutions to the optimization problem:

min
{
∥B∥row ∥C∥col : C = BLT(α, λ), B = AC−1,

α ∈ Rd
+, λ ∈ [0, 1)d

}
, (2.17)

where R+ denotes the set of positive real numbers. Note that we con-
strain the scale parameters α to be non-negative in Problem (2.17).
This is because the optimal Toeplitz coefficients c⋆

t we wish to approxi-
mate are non-negative for typical workload matrices A encountered in
machine learning. For instance, we see from Theorem 2.5 that this is
true for the unweighted prefix sum workload Apre.

While the optimization problem (2.17) is non-convex, it turns out
that we can obtain empirically high-quality solutions within a few
seconds for n up to several billions. We return to the optimization
aspect in Section 4 and assume for now that suitable parameters α, λ

are available.
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Noise Generation BLT noise generation is efficiently implementable
via a suitable recursion. While we wish to compute8 (C−1Z)[t, :] for
C = BLT(α, λ), it is instructive to first consider how to compute
C[t, :]Z for t ∈ [n]. Recalling zt = Z[t, :] is the tth row of Z, we have

C[t, :]Z = zt +
t∑

τ=1

(
d∑

i=1
αiλ

τ−1
i

)
zt−τ = zt +

d∑
i=1

αimt,i (2.18)

where we have d memory buffers mt,i for i ∈ 1, . . . d given by m0,i := 0
and for t ≥ 1, and

mt,i :=
t∑

τ=1
λτ−1

i zt−τ = zt−1 + λizt−2 + · · ·+ λt−1
i z0 ∈ Rm.

The key to an efficient implementation is the following recursion akin
to Eq. (2.13):

m0,i = 0 and mt+1,i = zt + λimt,i .

This recipe can directly be used to generate the noise (C−1Z)[t, :]
since C−1 exists and is also BLT:

Lemma 2.16 (Inverse BLT parameterization). Any matrix C =
BLT(α, λ) ∈ Rn×n that BLT-parameterized matrix is invertible.
Further, suppose the scale parameters are positive (i.e. αi > 0
for all i) with ∑d

i=1 αi < 1, and the decay parameters λ ∈ (0, 1)d

are unique (i.e. λi ̸= λj for i ̸= j). Then, there exist parameters
α̂ ∈ Rd and λ̂ ∈ [−1, 1]d such that C−1 = BLT(α̂, λ̂). Furthermore,
the map (α, λ) 7→ (α̂, λ̂) is continuously differentiable and can be
implemented in O(d3) time.

The scale parameter α of the BLT is positive element-wise while the
corresponding parameter α̂ of the inverse BLT is element-wise negative.
This mimics the optimal Toeplitz coefficients of Theorem 2.5: we have
that the coefficients c⋆

t = Θ(t−1/2) of the Toeplitz matrix CToep are
positive, while the corresponding coefficients c′

t = −Θ(t−3/2) of C−1
Toep

are negative for t ≥ 1.
8The matrix BLT(α, λ) is invertible. Indeed, as it is a lower triangular matrix

with all ones along the diagonal, we have that all of its eigenvalues equal 1.
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Algorithm 2.2 Noise Generation with BLTs
Input: Degree-d BLT C = BLT(α, λ), i.i.d. noise Z ∈ Rn×m.
Output: z̃t = (C−1Z)[t, :] for each t.

1: Initialize buffer M0 = 0m×d

2: for t = 0, . . . , n− 1 do
3: z̃t = zt −Mtα with zt = Z[t, :] ∈ Rm ▶ Noise generation
4: Mt+1 = MtΛ + z̃t1⊤

d with Λ = diag(λ) ▶ Buffer update
5: Yield correlated noise z̃t

The parameters α̂, λ̂ of the inverse BLT can be computed using an
eigenvalue decomposition of a non-symmetric d× d matrix, a common
sub-routine in numerical software. Therefore, Lemma 2.16 allows us to
use Eq. (2.18) for efficient noise generation.

Alternatively, instead of deriving the BLT parameters for C−1, we
can directly compute (C−1Z)[t, :] from the BLT parameterization of C.
This approach, given as Algorithm 2.2, may be preferable in practice as
it avoids potential numerical issues in the computation of the inverse
parameters.

Lemma 2.17 (Correctness of BLT noise generation). The output Z̃ =
(z̃0, . . . , z̃n−1) ∈ Rn×m of Algorithm 2.2 with inputs C = BLT(α, λ)
and a matrix Z ∈ Rn×m satisfies Z̃ = C−1Z.

Proof Sketch. We start by noting that the memory buffer Mt satisfies

Mt =
(∑t

τ=1 λτ−1
1 z̃t−τ · · ·

∑t
τ=1 λτ−1

d z̃t−τ

)
∈ Rm×d .

This can be proved, for instance, by induction. Next, we use this formula
together with Line 3 of Algorithm 2.2 to expand out

zt = z̃t + Mtα = z̃t +
d∑

i=1
αi

t∑
τ=1

λτ−1
i z̃t−τ .

Comparing this with Eq. (2.18) gives Z = CZ̃. Thus, we have Z̃ =
C−1Z and Algorithm 2.2 gives the correctly correlated noise.

Complexity of Noise Generation Noise generation with a d-buffer
BLT requires O(md) space to store the memory buffer Mt of Algo-
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rithm 2.2. Its per-step time-complexity is O(md) to generate the corre-
lated noise and update the buffer. It typically suffices to take d≪ n to
get competitive performance (see the error bound below). This is a huge
improvement in the running time of O(mn) of the max-loss-optimal
Toeplitz mechanism and the banded Toeplitz mechanism.

Utility and Error Bounds As previously, we give utility bounds for the
unweighted prefix sum workload A = Apre. It turns out to be sufficient
to take d = poly(ln(n)) to get a competitive approximation guarantee:

Theorem 2.18. Fix the number of steps n, and error term δ > 0.
There exists a d-buffer BLT matrix Cblt with d = O

(
ln2(n/δ)

)
and

its corresponding factor Bblt = ApreC
−1
blt such that

L̄∞(Bblt, Cblt) ≤ OptToep + δ ,

where OptToep = L̄∞(A1/2
pre , A

1/2
pre ) is the optimal normalized max

loss achievable by any Toeplitz factorization as defined in Theo-
rem 2.7.

Theorem 2.18 implies that L̄∞(Bblt, Cblt) ≤ ln(n)/π + constant
achieves the optimal asymptotic rate of ln(n) and optimal leading
constant 1/π. To get this additive approximation on the optimal max
loss Opt, the explicit construction used in Theorem 2.18 requires d =
O(ln2(n)) buffers, leading to a space and time complexity of O(m ln2(n)).
However, directly optimizing C = BLT(α, λ) for a specific n can in
practice produce BLTs with equivalent performance and substantially
smaller number d of dimensions. We discuss the direct optimization of
BLTs in Section 4.3.2.

Remark 2.19 (Column Normalization of BLTs). Column normaliza-
tion, defined in Definition 2.10, can also yield improvements to the
max loss BLT mechanism. In particular, given a fixed number of
steps n, the efficient noise generation approach of Algorithm 2.2
can be extended to column-normalized BLTs at the same time and
space complexity. We leave the details as an exercise to the reader.
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Summary The BLT mechanism attains a favorable tradeoff between
noise generation complexity and utility. It is the only mechanism (as of
this writing) that simultaneously admits an additive max loss guarantee
and a poly(ln(n)) time and space complexity of noise generation.

2.6 Empirical Comparison of the Mechanisms

We numerically compute the optimal strategy within each class of
factorizations defined above, and report the max loss for different values
of the number of steps n in the streaming setting in Fig. 2.2.9

In addition to the correlated noise mechanism described in this
section, we also compare the max loss of the so called binary tree
mechanism (annotated as Tree Aggregation in Fig. 2.2), historically,
the first mechanism for estimating prefix sums with poly log(n) error
and log(n) space and time requirement. This mechanism also has a
correlated noise mechanism perspective. Since it is not the central aspect
of this monograph, we cover it in more detail in Section 2.7.

The empirical findings closely mirror the theoretical max loss bounds
presented so far.

1. First, we note the sub-optimality of the baselines from the top
plot of Fig. 2.2. Indeed, the input/output perturbation lines are
identical and have a slope of 0.5 (up to an error of 10−5) in the
log-log plot. This indicates a

√
n max loss scaling, as established.10

2. Second, tree aggregation (Section 2.7) which achieves the optimal
O(ln n) rate, but its leading constant is sub-optimal. This leads
to significantly worse empirical performance than methods like
the BLT mechanism that can attain an additive performance
guarantee. Third, the BLT mechanism gives a tight approximation
to the dense mechanism and its upper bound in the top plot.

9In the setting that we consider here, the recommended number of bands b
for the banded Toeplitz mechanism is equal to the number of steps n (see also
Remark 2.14), and hence banded Toeplitz mechanism of Section 2.4 is equivalent
to max-loss-optimal Toeplitz mechanism of Section 2.3. Thus, we omit the banded
Toeplitz mechanism from this comparison.

10The log-log plot of f(n) = c xa versus n appears as a straight line with slope a.
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Figure 2.2: An empirical comparison of the max loss for various mechanisms in
the context of streaming unweighted prefix sum estimation. Top: A log-log plot
of the max loss of the baselines (input and output perturbation), tree aggregation
(Section 2.7; optimal rate but suboptimal leading coefficient), BLT (Section 2.5;
optimal rate and leading coefficient) with d = 4 buffers, the optimal dense mechanism
(Section 2.2). For reference, we also plot the lower/upper bounds on the dense max
loss from Theorem 2.4. The BLT parameters are optimized for the max loss (as
described in Section 4). Bottom: A comparison of the excess max loss L̄∞(B, C) −
L̄∞(B⋆, C⋆) of mechanisms defined by the factorization Apre = BC compared to the
dense mechanism Apre = B⋆C⋆. Only mechanisms that attain the optimal leading
constant (i.e., additive approximation guarantee), including column normalization
(Definition 2.10) are shown. See Section 2.11 for the exact numerical values plotted
here. Note the excess max loss for all of these mechanisms is o(n).
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We turn to the bottom plot of Fig. 2.2 for more detail. Here, we
see that the BLT mechanism’s performance is nearly indistinguishable
from the max-loss-optimal Toeplitz mechanism up to the resolution of
this plot, while being computationally more efficient. We also note that
column normalization improves the max loss of the Topelitz mechanism,
while maintaining the same running time.

In conclusion, the theoretical bounds presented in this section cap-
ture the true empirical behavior. For this streaming prefix sum setting,
we recommend using the dense mechanism when its run-time overhead is
not prohibitive, and the BLT mechanism otherwise. We will revisit these
recommendations in the context of training AI and machine learning
models in Section 4.4.

2.7 Tree Aggregation*

The tree aggregation mechanism alleviates the high space and time
complexity of the optimized dense mechanism by leveraging spar-
sity. Also known as the binary tree mechanism, it constructs a fac-
torization BtreeCtree = Apre with sparse rectangular matrices Btree ∈
{0, 1}n×(2n−1) and Ctree ∈ {0, 1}(2n−1)×n whose non-zero entries are
given by a binary tree data structure, as illustrated in Fig. 2.3.11

Mechanism Definition Consider an input sequence g0, . . . , gn−1 where
n = 2k as the leaves of a (complete) binary tree.12. Each intermediate
node of the tree is assigned the sum of the leaves of its sub-tree. In the
example of Fig. 2.3, we have

s0,1 = s0 + s1, s2,3 = s2 + s3,

s4,5 = s4 + s5, s6,7 = s6 + s7,

s0,3 =
3∑

t=0
gt, s4,7 =

7∑
t=4

gt, and s0,7 =
7∑

t=0
gt.

11While we construct a factorization with rectangular Btree, Ctree matrices, we
can obtain square matrices B′

tree, C′
tree by dropping some unused rows of Ctree and

columns of Btree, as will see soon.
12This is just for the ease of presentation. For n which is not a power of two, we

can simply pad our input sequence with zero vectors to length n′ = 2⌈log2(n)⌉
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s0,7

s0,3

s0,1

g0 g1

s2,3

g2 g3

s4,7

s4,5

g4 g5

s6,7

g6 g7

Figure 2.3: The tree aggregation mechanism generates privatized prefix sums
using a binary tree data structure. The input vectors g0, . . . , g7 are arranged as
leaves of the binary tree and each non-leaf node contains the sum of the leaves
within its sub-tree. For instance, s0,1 = g0 + g1, while s4,7 = g4 + · · · + g7. The
root node s0,7 = g0 + · · · + g7 represents the sum of all input vectors. The core idea
behind this mechanism is that any prefix sum g0 + · · · + gt−1 can be expressed as
a sum of at most log2(n) nodes. This is achieved using a dyadic partition of the
interval [0, t − 1]. For example, g0 + · · · + g6 = s0,3 + s4,5 + g6 corresponds to the
partition [0, 6] = [0, 3] ∪ [4, 5] ∪ [6]. Once we privatize each intermediate si,j with
white Guassian noise zi,j as ŝi,j = si,j + zi,j , we can compute any prefix sum by
adding at most log2(n) noise vectors.
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Every intermediate node is of the form sj2ℓ,(j+1)2ℓ−1 for some j ≥ 0
and ℓ such that its sub-tree contains 2l leaves. In fact, it represents a
dyadic interval: the (ℓ + 1)st bit (from the right) in the binary represen-
tation of each of the leaves in the sub-tree is the same. For instance,
the node s4,5 corresponds to ℓ = 1, j = 2, and its leaves are 4 = (100)2
and 5 = (101)2 with a common bit 0 (underlined). Similarly, the node
s0,3 corresponds to ℓ = 2, j = 0 and s4,7 corresponds to ℓ = 2, j = 1.

The main idea underlying the binary tree mechanism is that any
prefix sum g0 + · · ·+ gt−1 can be expressed as a sum of at most log2(n)
nodes. This is achieved using a maximal dyadic partition of the interval
[0, t− 1]. For example, g0 + · · ·+ g6 = s0,3 + s4,5 + g6 corresponds to
the partition [0, 6] = [0, 3] ∪ [4, 5] ∪ [6].

This procedure corresponds to a certain factorization BtreeCtree =
Apre. Indeed, the matrix Ctree ∈ {0, 1}(2n−1)×n gives us all intermediate
nodes in the tree, while the matrix Btree ∈ {0, 1}n×(2n−1) sums up
the nodes forming a maximal dyadic partition of any prefix sum. To
concretely write out these matrices, let us index the 2n − 1 nodes of
the tree using a postorder traversal. For the example of Fig. 2.3, this is

g0, g1, s0,1, g2, g3, s2,3, s0,3, g4, g5, s4,5, g6, g7, s6,7, s4,7, s0,7 .

Denoting G = (g0, . . . , gn−1) ∈ Rn×m as the input matrix, we define
Ctree such that (Ctreeg)[p, :] returns the value of the pth node in the
postorder traversal. Then, we can express Ctree = Pk based on the
recursive definition P0 = (1) ∈ R1×1 and

Pi+1 =

Pi 0
0 Pi

1 1

 .

Indeed, the two Pi−1’s give the postorder traversal of the left and
right sub-trees respectively, while the final row of ones produces the
sum of the entire sub-tree, completing the postorder traversal.

Finally, we take Btree[t, p] = 1 if the corresponding node p in the
postorder traversal is used in the computation of the prefix sum g0 +
· · ·+ gt−1. For the example of Fig. 2.3, we have (with the index nodes
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of the rows and columns shown in orange):

B =

g0 g1 s0,1 g2 g3 s2,3 s0,3 g4 g5 s4,5 g6 g7 s6,7 s4,7 s0,7



g0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
g2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
g3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
g4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
g5 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
g6 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
g7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

.

The columns corresponding to some nodes such as G1 and s2,3 are all
zeros because they never appear in any maximal dyadic partition; such
nodes can be dropped to obtain a square factorization.

Complexity of Noise Generation Note that each row of Btree contains
at most ⌈log2(n)⌉ non-zeros, as this is the largest size of any maximal
dyadic partition of [0, t − 1] for 1 ≤ t ≤ n. Thus, we can compute
(BtreeZ)[t, :] in O(m ⌈log2(n)⌉) time by summing up these non-zero
noise vectors. This immediately gives us the correlated noise C−1

treeZ,
since

(C−1
treeZ)[t, :] = (A−1

preBtreeZ)[t, :] = (BtreeZ)[t, :]− (BtreeZ)[t− 1, :] .

This follows from the formula for A−1
pre, which can be inferred from

Eq. (1.21). Similarly, we need to materialize ⌈log2(n)⌉ noise vectors in
Rm, leading to a space complexity of O(m ⌈log2(n)⌉).

Utility and Error Bounds The tree aggregation mechanism can attain
the optimal error up to a multiplicative factor:

Theorem 2.20. For matrices Btree and Ctree obtained by the tree
aggregation algorithm, we have that

L̄∞(Btree, Ctree) ≤
√
⌈log2(n)⌉ (1 + ⌈log2(n)⌉) .

Proof Sketch. We have already argued that the maximum number of
non-zero entries in any row of Btree is ⌈log2(n)⌉, so that ∥Btree∥2row ≤
⌈log2(n)⌉. We can also argue (e.g. by induction) that the maximum
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number of non-zero entries in any column of Ctree is ⌈log2(n)⌉ + 1,
leading to ∥Ctree∥2col ≤ 1 + ⌈log2(n)⌉.

Thus, tree aggregation has the same asymptotic Θ(ln n) max loss
as the optimized dense mechanism (Theorem 2.4). However, it is subop-
timal by a multiplicative factor of approximately π/ ln 2 ≈ 4.5. Several
improvements have been proposed to improve this leading constant (see
Bibliographic Notes in Section 2.12), yet all of them remain suboptimal.
In this problem, the multiplicative constants in the error have a larger
practical impact on the mechanism’s utility than an additive error: this
is also illustrated by the empirical comparisons of Section 2.6.

Summary In summary, the binary tree-based mechanisms have a near-
optimal time and space complexity of O(m ln n), improving greatly over
the dense mechanism. This even better than the BLT mechanism’s
O(m ln2 n) by a ln n factor. However, while it has the correct Θ(ln n)
asymptotic max loss guarantee, the BLT mechanism attains better
empirical performance due to the additive approximation guarantee.

2.8 Other Loss Metrics*

In this section, we mostly focussed on max-loss; however, in many
machine learning applications of prefix sums, another common loss
metric which is considered is the root mean squared loss: the root-mean-
squared-error (RMSE) of B, scaled by the sensitivity of C.

Definition 2.21. The unnormalized root mean squared loss
of a mechanism M(G) estimating the (weighted) prefix sum AG

of an input G ∈ Rn×m is defined as

L2(M) :=

√√√√EM

[
1
n

n−1∑
t=0
∥(AG−M(G))[t, :]∥22

]
.

This is essentially a scaled version of the ℓ2 error of the prefix sums,
while the max loss measures the ℓ∞ norm of the error. The scaling
factor above is chosen to ensure that the RMS-loss and max loss are of
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the same scale, as we see in the upcoming Lemma 2.24. Before that, we
start with a closed form expression for the RMS-loss.

Theorem 2.22. Consider a correlated noise mechanism M(G) =
B(CG+Z) for Z ∼ Nn×m

(
0, ν2) with ν = sens(C) ·σ = 2 ∥C∥col σ.

Then, the unnormalized RMS-loss satisfies

L2(B, C) = 2
√

m

n
σ ∥B∥F ∥C∥col .

Proof Sketch. As in the proof of Theorem 2.2, we have AG−M(G) =
BZ ∼ N (0, ν2BB⊤). Therefore, we get,

EM∥(M(G)[t, :]−A[t, :]G)∥22 = EZ∥(B[t, :] Z)∥22 = mν2
(

t∑
τ=0

B[t, τ ]2
)

because Z ∼ N (0, ν2)n×m. Therefore, from the linearity of expectation,

n · L2(B, C)2 = EM

n−1∑
t=0
∥(AG−M(G))[t, :]∥22

=
n−1∑
t=0

EM∥(AG−M(G))[t, :]∥22

= mν2
n−1∑
t=0

t∑
τ=0

B[t, τ ]2

= mν2 ∥B∥2F ,

where the last equality follows from B being lower triangular. The
result follows be re-arranging the above equation and plugging in ν =
2 ∥C∥col σ.

Analogous to the normalized max loss in Eq. (2.4), we also define
(normalized) root mean-squared loss:

Definition 2.23. Consider a correlated noise mechanism M(G) =
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B(CG + Z) for Z ∼ Nn×m
(
0, ν2). Then, we define RMS-loss by

L̄2(B, C) := 1√
n
∥B∥F ∥C∥col . (2.19)

The normalized RMS-loss is always upper bounded by the normalized
max loss:

Lemma 2.24. For any matrices B, C ∈ Rn×n, we have L̄2(B, C) ≤
L̄∞(B, C).

Proof. Since each row norm is at most the largest row norm, we have,

∥B∥2F =
∑
t∈[n]
∥B[t, :]∥22 ≤ n max

t∈[n]
∥B[t, :]∥22 = n ∥B∥2row .

Thus, we have that

L̄2(B, C) = 1√
n
∥B∥F ∥C∥col ≤ ∥B∥row ∥C∥col = L̄∞(B, C)

as required.

2.9 An Approximation Theory Viewpoint*

The properties of an (infinite) Toeplitz matrix with first column given
by c = (c0, c1, . . .) can be understood through its ordinary generating
function, which is the formal power series:13

fc(x) :=
∞∑

t=0
ctx

t .

For instance, the generating function of the all-ones worklad matrix
Apre is

fpre(x) =
∞∑

t=0
xt = 1

1− x
.

The Toeplitz coefficients c = (c0, c1, . . .) can be reconstructed from the
Taylor expansion of the generating function around x = 0:

fc(x) =
∞∑

t=0

f
(t)
c (0)

t! xt =
∞∑

t=0
ctx

t ⇐⇒ ct = f
(t)
c (0)

t! ,

13The term “formal” here refers to the fact that we regard x as a placeholder
symbol rather than a number, meaning that we disregard issues of convergence.
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Figure 2.4: The RMS-loss counterpart to Fig. 2.2. We empirically compare various
mechanisms in the streaming unweighted prefix sum estimation in terms of their
RMS-loss. The upper bound of 1 + ln(n)/π on the max loss is also a valid upper
bound on the RMSE by Lemma 2.24. See Section 2.11 for the exact numerical values
plotted here.
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where f
(t)
c denotes the tth derivative of the function fc.

The key relationship governing this connection is that the product
of two Toeplitz matrices is equivalent to the product of the generating
functions of their respective coefficients:

Lemma 2.25. Consider real-valued sequences a = (at)∞
t=0, b =

(bt)∞
t=0, c = (ct)∞

t=0. The following properties are equivalent:
(i) The sequence a is the convolution of b and c, i.e. at =∑t

τ=0 btct−τ ;
(ii) For any size n > 0, the n×n lower triangular Toeplitz matrices

Ma, Mb, Mc with respective first columns given by sequences
(at)n−1

t=0 , (bt)n−1
t=0 , (ct)n−1

t=0 satisfy Ma = MbMc;
(iii) Their respective generating functions fa, fb, fc satisfy fa(x) =

fb(x)fc(x).

Thus, the factorization Apre = BC underlying a correlated noise
mechanism can be understood by looking at the implied factorization
of the generating function fpre = 1/(1− x) of the workload matrix Apre.

The optimal Toeplitz factorization of Section 2.3 with BToep =
CToep = A

1/2
pre corresponds to the factorization

fpre(x) = 1
1− x

= 1√
1− x

· 1√
1− x

= fb(x) fc(x) . (2.20)

Indeed, the coefficients c⋆
t of Theorem 2.5 are the Taylor coefficients of

fc⋆(x) = 1√
1− x

=
∞∑

t=0

(
−1/2

t

)
(−x)t =

∞∑
t=0

c⋆
t xt .

Similarly, the first column of C−1
Toep can be found as the Taylor

coefficients of
1

fc⋆(x) =
√

1− x =
∞∑

t=0
(−1)t

(
1/2

t

)
xt ,

yielding Eq. (2.11).

Generating Function Approximations and Utility Bounds Given any
generating function r(x), we can obtain a factorization

fb(x) = r(x)
1− x

, and fc(x) = 1
r(x) ,
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such that the n×n Toeplitz matrix C−1 is made up of the first n Taylor
coefficients of r(x) and B = ApreC

−1 for any size n > 0. The optimal
factorization Eq. (2.20) corresponds to r(x) =

√
1− x. Thus, we can

expect that r(x) ≈
√

1− x will lead to a good factorization with tighter
approximations leading to better factorizations in terms of the max
loss:

Theorem 2.26. Fix a size n ∈ N and consider a complex-valued
function r : {x ∈ C : |x| < 1} → C defined on the open unit disc in
the complex plane. Define the n× n Toeplitz matrices Br and Cr

whose first columns are given by the first n Taylor coefficients of
the generating functions fb(x) = r(x)/(1− x) and fc(x) = 1/r(x)
respectively. Then, we have:

L̄∞(Br, Cr) ≤ L̄∞(A1/2
pre , A1/2

pre ) + O
(
n · err(r)

)
.

where err(r) is the approximation error of r(x) ≈
√

1− x:

err(r) := max
x∈C : |x|=1−n−1

∣∣r(x)−
√

1− x
∣∣ ,

and is assumed to satisfy err(r) < 1. Here, the notation |x| denotes
the absolute value or modulus of the complex number x ∈ C.

Examples The baselines of input perturbation (r(x) = 1 for all x) and
output perturbation (r(x) = 1− x) are clearly poor approximations to√

1− x. Indeed, we showed err(r) = Θ(
√

n) in this case in Section 1 and
Section 2.1.3. (Note that Theorem 2.26 only gives an upper bound.)

The b-banded Toeplitz mechanism with coefficients c0, . . . , cb−1 cor-
responds to the (inverse) polynomial of degree b− 1:

fc(x) = 1
r(x) =

b−1∑
t=0

ctx
t .

Then, err(r) is related to how well a degree-b polynomial can approximate
the function 1/

√
1− x at |x| = 1 − n−1. Unfortunately, polynomial

approximations can be quite bad, especially around the poles14 of the
14For a rational function in reduced form, the poles are the values of the function

where the denominator is equal to zero.
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Figure 2.5: An illustration of the polynomial generating function approximation
(corresponding to C) provided by the banded Toeplitz mechanism compared to the
optimal generating function of 1/

√
1 − x of the max-loss-optimal Toeplitz mechanism

(top) and the correspond approximation provided by C−1 to
√

1 − x (bottom).
The generating function corresponding to the b-banded C matrix is a degree-(b − 1)
polynomial: f(x) =

∑b−1
t=0 ctx

t. Here, the Toeplitz coefficients ct are optimized to
minimize Eq. (2.12) (using the techniques of Section 4) for n = 104. Notice the
approximation quality of the generating function as x → 1 (middle plots) and the
Toeplitz coefficients (right plots), are not as tight as the BLT mechanism, shown
in Fig. 2.6. The dotted line in the middle plot shows x = 1 − n−1; Theorem 2.26
shows that the approximation error in the generating function at |x| = 1 − n−1 (in
the complex plane) determines the max loss.

function being approximated; 1/
√

1− x has a pole at 1. Indeed, it turns
out that approximating 1/

√
1− x with a degree-b polynomial up to error

δ requires b to be larger than 1/poly(δ). See Fig. 2.5 for an illustration.

We now turn to the BLT mechanism. The generating function of
C = BLT(α, λ) is given by

r(x) = 1 +
d∑

i=1
αix +

d∑
i=1

αiλix
2 + · · · = 1 +

d∑
i=1

αix

1− λix
. (2.21)
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This is a rational function of the form

r(x) = p(x)
q(x) , where p(x) :=

d∑
i=0

pix
i and q(x) :=

d∑
i=0

qix
i

with p(0) = q(0) ̸= 0. Rational approximations generally give much
tighter approximations than polynomials. For instance, rational Padé
approximations are known to be much tighter than polynomial Taylor
approximations. In particular, there is a rational function r(x) of degree
d such that

sup
x∈[0,1]

|r(x)−
√

1− x| ≤ O
(

exp(−
√

d)
)

. (2.22)

The error vanishes exponentially in the degree d, and is significantly
better than polynomial approximations. This is illustrated in Fig. 2.6.

While this result holds only on the real line, there exists a degree-d
rational function r over the complex plane with err(r) = O

(
exp(−

√
d)
)
.

This explains the competitive utility bound of the BLT mechanism (The-
orem 2.18). In particular, it suffices to take a degree of d = O(ln2(n/δ))
so that err(r) = O(δ/n), leading to an additive error of δ.

Generating Functions and Efficient Implementation A broad class
of Toeplitz coefficients that admit efficient noise generation algorithms
correspond to the class of constant-recurrent sequences:

Definition 2.27. A sequence (ct)∞
t=0 is called a constant-recurrent

sequence of order d if there exist numbers q1, . . . , qd ∈ R such that

ct +
d∑

i=1
qict−i = 0

for all t ≥ d.

This broad class includes many special cases such as arithmetic and
geometric progressions, the Fibonacci series, and many others. More
relevant to correlated noise mechanisms, banded Toeplitz coefficients
(and eventually periodic sequences in general), as well as BLT coefficients
are special cases. This follows from inspecting their generating function,
based on the following equivalent representations:
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Figure 2.6: An illustration of the rational generating function approximation
provided by the BLT mechanism compared to the optimal generating function of
1/

√
1 − x of the max-loss-optimal Toeplitz mechanism (top) and the corresponding

approximation its inverse provides to
√

1 − x (bottom). We plot the degree-d BLT
approximation obtained by solving Problem 2.17 for n = 104 (using the techniques
of Section 4). We get a tight approximation for x less than ≈ 1 − n−1 (shown by
the dotted line in the middle plot), with tighter approximation for larger degree d.
Notice that the approximation quality of the generating function as x → 1, and of
the optimal Toeplitz coefficients (rightmost plots) is significantly tighter than that
the banded C from Fig. 2.5.

Theorem 2.28. The following properties are equivalent:

(a) (ct)∞
t=0 is a constant-recurrent sequence of order-d.

(b) The generating function fc(x) = ∑∞
t=0 of (ct)∞

t=0 is a rational
function fc(x) = p(x)/q(x), where q(0) = 1, deg(q) ≤ d and
deg(p) < d.

(c) There exists a matrix Λ ∈ Rd×d and vectors u, v ∈ Rd such
that ct = u⊤Λtv for all t ≥ 0.

For the BLT mechanism, we have that c0, c1, c2, . . . forms a constant-
recurrent sequence (i.e., omitting the first term c0 = 1). As a function
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of the BLT parameters α, λ, we have Λ = diag(λ), v = α and u =
(1, . . . , 1) is the vector of ones. While the sequence c0, c1, . . . (including
the first term c0) can be written as a constant-recurrent sequences of
order-(d + 1), it is computationally advantageous to treat it separately.

A key advantage of constant-recurrent coefficients is that they are
amenable to efficient recursive noise generation. Given a constant-
recurrent sequence ct = u⊤Λtv (in the matrix-power representation of
Theorem 2.28(c)) that makes up the first column of the matrix C, we
can compute Z̃ = C−1Z with a small modification of Algorithm 2.2.
In particular, we replace Lines 3 and 4 with

z̃t = zt −Mtv , and Mt+1 = MtΛ + z̃tu
⊤ ,

which requires O(md + d2) time and space. This is worse than Algo-
rithm 2.2 by an additive factor of d2 on both counts. When the matrix
Λ is diagonalizable, this recurrence can effectively be reduced to Algo-
rithm 2.2. For example, if Λ has all real and unique eigenvalues, we can
diagonalize it as Λ = V diag(λ)V −1. Then, we have

ct = u⊤Λtv = ũ⊤diag(λ)t ṽ ,

where ũ = V ⊤u and ṽ = V −1v.
Importantly, the optimal coefficients (c⋆

t )∞
t=0 of the max-loss-optimal

Toeplitz mechanism defined in Theorem 2.5 do not form a constant-
recurrent sequence. Indeed, their generating function of 1/

√
1− x is

not a rational function. Thus, they are not amenable to the efficient
recursive noise generation procedure outlined above.

2.10 Closed Form Expressions for the BLT Mechanism*

Here, we give closed form expressions for the sensitivity and error
for the BLT mechanism (Section 2.5). These expressions are useful in
numerically optimizing the parameters of the mechanism to minimize
the max loss; see Section 4.3.2.

Lemma 2.29. Suppose we are given parameters α, α̃ ∈ Rd
+ and

λ, λ̃ ∈ [0, 1)d such that C = BLT(α, λ) and C−1 = BLT(−α̃, λ̃)
are inverses of each other, assuming they exist (see Lemma 2.16
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for precise conditions). Further, for λ ∈ [0, 1) define the n-term
geometric sum

γn(λ) :=
n−1∑
t=0

λt = 1− λn

1− λ
.

Then, we have the following:

(a) The single epoch sensitivity is given by

∥C∥2col = 1 +
d∑

i=1

d∑
j=1

αiαjγn−1(λiλj) .

(b) For n ≥ 2, the maximum row norm of B = AC−1 is

∥B∥2row = n + 2
d∑

i=1
α̃iΓ(n)

i +
d∑

i=1

d∑
j=1

α̃iα̃jΓ(n)
i,j ,

where we define

Γ(n)
i = 1

1− λ̃i

(
n− γn(λ̃i)

)
,

Γ(n)
i,j = 1

(1− λ̃i)(1− λ̃j)

(
n− γn(λ̃i)− γn(λ̃j) + γn(λ̃iλ̃j)

)
.

(c) The Frobenius norm of B = AC−1 is given by

1
n
∥B∥2F = n + 1

2 + 2
n

d∑
i=1

α̃iΓ̂(n)
i + 1

n

d∑
i=1

α̃iα̃jΓ̂(n)
i,j ,



90 Correlated Noise Mechanisms for Streaming Prefix Sums

where we define

S
(n)
i = 1− λ̃i + λ̃i

1− λ̃i

(
n− γn(λ̃i)

)
,

S
(n)
i,j = 1− λ̃iλ̃j + λ̃iλ̃j

1− λ̃iλ̃j

(
n− γn(λ̃iλ̃j)

)
,

Γ̂(n)
i = 1 + 1

1− λ̃i

(
n(n− 1)

2 − S
(n)
i

)
,

Γ̂(n)
i,j = 1 + 1

(1− λ̃i)(1− λ̃j)

(
n(n− 1)

2 − S
(n)
i − S

(n)
j + S

(n)
i,j

)
.

Further, each of these quantities can be computed in O(d2) floating
point operations.

2.11 Numerical Comparison in the Streaming Setting*

Tables 2.2 and 2.3 give the raw numbers used to plot Figs. 2.2 and 2.4
respectively. Each column corresponds to a different factorization, with
“Identity” and “Workload” refers to the Input Perturbation and Output
Perturbation mechanism introduced in Section 2.1.3. Streaming H2
and Full H2 refer to different variants of the tree aggregation approach
Section 2.7. BLT was presented in Section 4.3.2. Toeplitz and Col-Norm.
Toep were presented in Section 2.3. Dense was presented in Section 2.2.

Table 2.2: Max Error for different matrix factorizations.

n Identity Workload Streaming H2 Full H2 BLT Toeplitz Col-Norm. Toep. Dense

8 2.828 2.828 NaN 2.382 1.723 1.718 1.573 1.51
16 4.0 4.0 NaN 2.881 1.944 1.944 1.783 1.704
32 5.657 5.657 NaN 3.381 2.168 2.167 1.997 1.905
64 8.0 8.0 NaN 3.883 2.391 2.389 2.212 2.111

128 11.314 11.314 NaN 4.384 2.61 2.61 2.428 2.32
256 16.0 16.0 NaN 4.886 2.832 2.831 2.645 2.532
512 22.627 22.627 NaN 5.387 3.054 3.052 2.863 2.746

1024 32.0 32.0 NaN 5.888 3.273 3.273 3.081 2.958
2048 45.255 45.255 NaN 6.389 3.494 3.493 3.299 3.177
4096 64.0 64.0 NaN 6.89 3.716 3.714 3.518 -
8192 90.51 90.51 NaN 7.391 3.939 3.935 3.737 -
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Table 2.3: RMSE for different matrix factorizations.

n Identity Workload Streaming H2 Full H2 BLT Toeplitz Col-Norm. Toep. Dense

8 2.121 2.828 2.178 1.656 1.544 1.544 1.512 1.494
16 2.915 4.0 2.663 1.938 1.751 1.75 1.714 1.689
32 4.062 5.657 3.156 2.227 1.964 1.963 1.922 1.892
64 5.701 8.0 3.652 2.518 2.18 2.179 2.135 2.1

128 8.031 11.314 4.151 2.81 2.398 2.397 2.35 2.311
256 11.336 16.0 4.65 3.102 2.617 2.616 2.567 2.524
512 16.016 22.627 5.15 3.394 2.837 2.836 2.784 2.739

1024 22.638 32.0 5.65 3.686 3.057 3.057 3.003 2.955
2048 32.008 45.255 6.15 3.978 3.278 3.277 3.221 3.172
4096 45.26 64.0 6.65 4.269 3.499 3.498 3.44 -
8192 64.004 90.51 7.15 4.56 3.72 3.718 3.66 -

2.12 Bibliographic Notes

Bounds on the max loss L̄∞(B, C) for Apre = BC have been studied
extensively, starting with the work of Kwapień and Pełczyński [1970].
Since then many results have improved the leading constants. Theo-
rem 2.2 has been known in the literature from, for example, Nikolov,
Talwar, and Zhang [2016], with an explicit construction appearing in
Edmonds, Nikolov, and Ullman [2020].

Dense Mechanism The bounds of Theorem 2.4 use the property that
the optimization problem (2.6) defines a norm γ2(·) of a matrix:

γ2(M) := min {∥B∥row ∥C∥col : BC = M} .

The fact that this is a norm was first proved in an unpublished manuscript
of Haagerup [1980], who showed its equivalence to the Hadamard norm.
(This was subsequently also shown in many works.)

The upper bound in Theorem 2.4 was proved by Mathias [1993,
Corollary 3.5], with the bound

γ2(Apre) ≤
1
2 + 1

2n

n∑
t=1

∣∣∣∣csc
((2t− 1)π

2n

)∣∣∣∣ ,

where Apre is the lower triangular matrix of all ones (cf. Eq. (1.6))
and csc(·) is the trigonometric cosecant function. This is at most15

15This can be shown by upper bounding the sum with an integral [cf. Mathias,
1993, Sec. 3].
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1 + ln(n)/π. The proof of Mathias [1993] is non-constructive and uses
the triangle inequality to bound γ2(Apre) with the γ2-norms of two
other matrices, which are themselves bounded by other means. Recently,
Henzinger and Upadhyay [2025] gave a constructive factorization that
matches the upper bound of Mathias [1993] and also has the property
that the columns of C all have the same ℓ2 norm. We note that Mathias
[1993, Corollary 3.5] also gives a lower bound:

γ2(Apre) ≥
1

2n
+ 1

2n

n∑
t=1

∣∣∣∣csc
((2t− 1)π

2n

)∣∣∣∣ ,

where the first term is 1/(2n) instead of 1/2 in the upper bound. Theo-
rem 2.4 instead gives a tighter lower bound established by Matoušek,
Nikolov, and Talwar [2020] by using the fact that | csc(x)| ≥ x−1:

γ2(Apre) ≥
1

2n

n∑
t=1

∣∣∣∣csc
( (2t− 1)π

2(2n + 1)

)∣∣∣∣ ≥ 2n + 1
πn

n∑
t=1

1
2t− 1 ≥

ln(2n + 1)
π

.

The dual characterization of the γ2-norm is useful in constructing lower
bounds. First shown by Haagerup [1980] and also appeared later in
Haagerup and Pisier [1993] and Lee, Shraibman, and Špalek [2008,
Theorem 9], we have:

γ2(M) = max
{
∥diag(p)1/2 M diag(q)1/2∥∗ :

p, q ∈ Rn
+ with

p⊤1 = 1 = q⊤1

}
,

where ∥M∥∗ denotes the nuclear norm of the matrix M . The lower
bound from Theorem 2.4, established by Matoušek, Nikolov, and Talwar
[2020], follows from taking p = q = 1n/n in the optimization problem
defining the dual norm, and explicitly computing the eigenvalues of the
matrix M = Apre. In fact, a bound on the trace norm ∥·∥∗ appearing
in the dual norm was explicitly first computed by Elliott [1953] and
subsequently improved by a series of works [Gregory and Karney, 1969,
Hoffman, 1971, Strang, 2022].

Tree Aggregation Tree aggregation, known also as the binary tree
mechanism, was proposed independently by Hay, Rastogi, Miklau, and
Suciu [2010], Dwork, Naor, Pitassi, and Rothblum [2010], Chan, Shi, and
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Song [2011]. These were among the first correlated noise mechanisms
for differential privacy. A variant of the binary tree mechanism was
also proposed by Smith, Thakurta, and Upadhyay [2017], although that
does not fit into the the class of correlated noise mechanisms we study
in this monograph (Eq. (2.1)). Tree aggregation is also known as the
hierarchical histogram method, especially in the context of range queries,
as in Example 1.27, see for example Hay, Rastogi, Miklau, and Suciu
[2010], Qardaji, Yang, and Li [2013], Cormode, Kulkarni, and Srivastava
[2019], Li, Hay, Miklau, and Wang [2014].

Follow up work made several improvements to the tree aggregation
approach of Section 2.7. For instance, Honaker [2015] proposed to
replace the noise correlation matrix Btree from Theorem 2.20 with the
matrix16 B⋆

tree = ApreC
†
tree for its better error properties; this comes at

the cost of an increased O(mn) memory for noise generation. This same
construction appeared earlier in the range query literature Hay, Rastogi,
Miklau, and Suciu [2010], Li, Miklau, Hay, McGregor, and Rastogi [2015]
as well, where it was shown to be the best linear unbiased estimator
for the workload query answers. As another example, Andersson and
Pagh [2023] improve the error bound of Theorem 2.20 by a factor 2
by carefully discarding rows/columns from Btree/Ctree with large norm.
This construction preserves the m log2(n) time and space complexity
of noise generation, but the max loss is still suboptimal by a factor
of approximately π/(2 ln 2) ≈ 2.26. Dvijotham, McMahan, Pillutla,
Steinke, and Thakurta [2024] propose a tree construction which can get
a constant factor of 1 + o(1), i.e., arbitrarily close to optimal. Their
procedure involves building a recursive tree-like factorization over a
base BLT factorization.

The Max-Loss-Optimal Toeplitz Mechanism We can trace the fac-
torization Apre = A

1/2
pre A

1/2
pre of the prefix sum matrix (that we studied

in Section 2.3) at least as far back as Bennett [1977]. Fichtenberger,
Henzinger, and Upadhyay [2023] were the first to utilize this factor-
ization for differentially private computation of streaming prefix sums.
The optimality of this mechanism for the objective Eq. (2.9) among the

16Here, M† denotes the Moore-Penrose pseudoinverse of M .
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class of all lower triangular and Toeplitz factorizations was established
by Dvijotham, McMahan, Pillutla, Steinke, and Thakurta [2024]. (Pre-
viously, it was only known that it is optimal in the asymptotic n→∞
regime.)

Fichtenberger, Henzinger, and Upadhyay [2023] also first established
the bound on the max loss of the max-loss-optimal Toeplitz mechanism,
where the optimal 1/π factor comes from Chen and Qi [2005]. Later,
Henzinger, Upadhyay, and Upadhyay [2023] showed an almost tight
bound on the RMS-loss. In Theorem 2.7, we present the bound of
Dvijotham, McMahan, Pillutla, Steinke, and Thakurta [2024, Lemma
2.1]. Finally, column normalization is motivated by Lemma 2.9, which
was observed by Yuan, Yang, Zhang, and Hao [2016].

Banded Toeplitz Mechanism Banded strategy matrices C were
considered by Choquette-Choo, Ganesh, McKenna, McMahan, Rush,
Guha Thakurta, and Xu [2023a] in the machine learning context for
their compatibility with amplification by sampling, and the banded
Toeplitz matrices by Kalinin and Lampert [2024], McKenna [2024] to
improve the factorization efficiency. We discuss amplification by sam-
pling in Section 3 and the factorization considerations in Section 4. The
error bound we present in Theorem 2.13 is due to Kalinin and Lampert
[2024, Theorem 6].17

The BLT Mechanism The BLT mechanism was introduced by Dvi-
jotham, McMahan, Pillutla, Steinke, and Thakurta [2024], including
the error bound Theorem 2.18 which corresponds to their Theorem
4.6. Their Lemma 5.2 parameterized a mechanism C = BLT(α, λ) and
C−1 = BLT(α̂, λ̂) via the pair (λ, λ̂), allowing efficient noise generation
from C−1 = BLT(α̂, λ̂) following the approach of Eq. (2.18) (their
Algorithm 1).

The BLT mechanism was extended from the streaming setting to the
machine learning setting by McMahan, Xu, and Zhang [2024], including
the algorithm for noise generation directly from C = BLT(α, λ) (our

17While they state bounds on the ℓ2 error, Kalinin and Lampert [2024] actually
upper bound it by the max loss and prove their bounds on the latter.
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Algorithm 2.2 is a restatement of their Algorithm 3). Lemma 2.16
regarding the inverse BLT parameterization is due to McMahan and
Pillutla [2025].

For more discussion on the fact that rational Padé approximations
are known to be much tighter than polynomial Taylor approxima-
tions [e.g., Baker Jr and Gammel, 1961]. The approximation stated in
Eq. (2.22) was given by Newman [1964].

The Approximation Theory Viewpoint The approximation theory
viewpoint presented in Section 2.9 was utilized by Fichtenberger,
Henzinger, and Upadhyay [2023] to develop the max-loss-optimal
Toeplitz mechanism and by Dvijotham, McMahan, Pillutla, Steinke, and
Thakurta [2024] for the BLT mechanism. In particular, Theorem 2.26
is a simplified (and slightly looser) version of Dvijotham, McMahan,
Pillutla, Steinke, and Thakurta [2024, Proposition 4.1].

These developments are based on classical ideas from approximation
theory; we highlight a few important connections. The classical Prony
interpolation, developed by Gaspard Riche de Prony in 1795, is an
approximate decomposition of sequence (or a function) into a sum
of complex exponentials as in Eq. (2.15). Newman [1964] gave an
approximation of |x| using a rational function. This can be used to
construct a rational approximation to

√
1− x, forming the basis for the

proof of the error bound of the BLT mechanism (Theorem 2.18). Finally,
Braess and Hackbusch [2005] show that it is possible to approximate
1/t ≈

∑d
i=1 αtλ

t
i (with αi, λi real) up to an error exp(−Ω(

√
d)). The

BLT approximation task is closely related—we wish to approximate
the function t−3/2, as exhibited by the coefficients (c′

t) of C−1
Toep, as in

Theorem 2.5.
Finally, for more details on Theorem 2.28 and the equivalent rep-

resentations of constant-recurrent sequences, we refer to the excellent
monograph by Corless, Ida, and Hong [2011].



3
Correlated Noise Mechanisms for Learning

Problems

In this chapter, we build on the correlated noise mechanism introduced
in the previous chapters to make them applicable to practical AI and
machine learning settings. Recall from Section 1.2 that we wish to find
model parameters θ ∈ Θ ⊂ Rm optimizing the objective

min
θ∈Θ

Ex∼Pdata [ℓ (θ, x)] , (3.1)

where ℓ(θ, x) is the loss of making a prediction with model parameters
θ on a datapoint x, and Pdata is an underlying data distribution.

Throughout, we give bounds on the suboptimality of a model θ, also
known as the excess population risk of θ. For a mechanism M that
outputs θ,

R(M) := Ex∼Pdata [ℓ(θ, x)]− min
θ∗∈Θ

Ex∼Pdata [ℓ(θ∗, x)] . (3.2)

In Sections 1 and 2, we mainly focused on the streaming setting
where each data point is processed only once. We relax this assumption
and treat the general multiple-participation setting in this section,
allowing each data point to participate multiple times in training (e.g.
by making multiple passes through the dataset).

The multiple-participation setting is also highly relevant in the
context of user-level DP (as opposed to our default privacy unit of

96
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example-level DP). Here, multiple participations of any of a user’s data
violates the streaming assumption, even if each datapoint is processed
only once (see Section 1.6 for details).

The main difference between the streaming and multiple-
participation settings is the sensitivity computation. As illustrated
in Fig. 1.3, changing one data point (to an adjacent dataset) can change
multiple gradients (even in the non-adaptive setting we use for analysis
per Theorem 1.11), increasing the sensitivity of the operation. The
key challenge in the multiple-participation setting turns out to give
tight and efficient bounds on the sensitivity. We define data processing
abstractions that map to practical scenarios but where the sensitivity is
not too large, and give algorithms to efficiently compute this sensitivity.

Outline We start this section with the potential advantages that cor-
related noise mechanisms can offer in the learning setting in Section 3.1
(and hence motivating the setting of multiple participation). Section 3.2
gives examples of other first order-optimization algorithms and their
reduction to (weighted) prefix sum estimation as in Eq. (1.7). Next,
Section 3.3 takes a deep dive into the multiple-participation setting,
including the challenges, data processing patterns for tight sensitivity
calculations, and efficient computational algorithms.

Changing gears, Section 3.5 surveys learning-theoretic guarantees for
correlated noise mechanisms, and how they can help over using indepen-
dent noise. We end the section by discussing how the privacy guarantees
of correlated noise mechanisms can be amplified by accounting for the
random sampling of data points in Section 3.4. As in Section 2, detailed
pointers to missing proofs can be found in the bibliographic notes of
Section 3.7.

3.1 Motivation

Correlated noise mechanisms are generally never worse (in terms of
downstream learning performance at any given privacy level) and of-
ten much better than using independent noise in learning settings. In
this section, we highlight the factors behind this Pareto-dominance of
correlated noise over independent noise.
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Figure 3.1: Plots for theoretical bounds on amplification of a generic (ε, δ)-DP with
Poisson sampling (in orange), where a batch of data is formed by including each
example i.i.d. with probability p, leading to (ε̂, pδ)-DP with ε̂ = log(1 + p(eε − 1)).
This plot shows p = 10−3. Note the shape of this curve: as ε → 0, then ε̂ ≈ p ε. On
the other hand, when ε → ∞, then ε̂ ≈ ε − log(1/p). In all cases, amplification leads
to an improvement over the unamplified guarantee denoted by the solid gray line.

Privacy amplification by sampling In the centralized training setting,
we can choose to form batches of data randomly. This typically has
no adverse impact on the training process, and can even be helpful.
However, the additional randomness from sampling can be beneficial
for privacy. Intuitively, this added randomness will typically further
increase the uncertainty of an adversary about whether a dataset D or
another adjacent dataset D′ was used in training. This phenomenon is
also known as privacy amplification by sampling.

Privacy amplification guarantees for DP-SGD (i.e., the input per-
turbation baseline of C = In×n) are well understood when the data
batches are chosen via Poisson sampling: in each iteration, each exam-
ple is included in the batch independently with probability p = B/N ,
chosen so that the expected batch size is B. While the precise details of
the amplification analysis are beyond the scope of this monograph, we
note that existing libraries can compute exact privacy guarantees for
DP-SGD with sampling using only the number of steps n, the sampling
probability p, and the noise multiplier σ. Indeed, these amplification
guarantees are central to achieving practical privacy-utility trade-offs
for DP-SGD, as we discuss in Section 3.1. (We provide a deeper dive
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into amplification in Section 3.4.)

Drawbacks of Independent Noise Mechanisms Prior to the intro-
duction of correlated noise mechanisms, the de facto standard for dif-
ferentially private deep learning was DP-SGD with independent noise
(Algorithm 1.2). This algorithm adds independent Gaussian noise to
each stochastic gradient update, and is an instantiation of the input per-
turbation baseline of Eq. (1.16). To achieve good practical performance
(in terms of downstream learning performance) at moderate privacy
budgets, DP-SGD often requires privacy amplification by sampling.
Unfortunately, as we detail next, the data sampling assumptions used
for theoretical analyses are often violated in practice.

Privacy amplification analyses typically assume that batches of
data are constructed either by Poisson sampling or fixed-size sampling
with replacement. These sampling methods can in some regimes give
(amplified) privacy guarantees competitive with correlated noise mecha-
nisms while remaining tractable to compute. However, machine learning
pipelines typically use fixed-size sampling without replacement (usually
implemented by shuffling the data).

In the academic literature, it has been a common practice to report
privacy guarantees based on Poisson sampling even when the actual
models are trained with fixed-size data batches sampled with replace-
ment. This leads to a mismatch between the claimed privacy guarantee
and the actual one satisfied by the trained model. Recent work has
shown that there is a real gap in the level of DP offered by these two
data processing patterns. That is, the gap is not due to the lack of a
tight analysis for shuffling, but a real difference in the level of privacy
protection. Therefore, this practice should not be considered acceptable,
at least in real applications (see Section 3.7 for references).

Finally, and perhaps most importantly, privacy amplification is
challenging or impossible when it is not feasible to obtain a uniformly
random sample of data points (whether through Poisson sampling or
otherwise) due to domain-specific constraints. We review two such
examples.
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Example 3.1 (Federated Learning). Cross-device federated learning
refers to a distributed learning setting where several data silos such
as smartphones (referred to as “clients”) collaborate to learn a single
model while keeping their training data decentralized. The typical
learning algorithm, federated averaging, samples a few available
clients and constructs a stochastic gradient estimator based on
their data. In industrial federated learning systems, the availability
of a client varies diurnally, and is determined by external factors
such as the device being idle, connected to an unmetered Wi-Fi
network, and charging.

Thus, ensuring that clients are subsampled precisely and uni-
formly at random from a large population is complex and hard to
verify (similar concerns apply to random shuffling). This makes
amplification-by-sampling arguments, and thus, amplified DP-SGD
(or its federated variant), infeasible. In this federated learning set-
ting, correlated noise mechanisms can maintain provable privacy
guarantees with utility comparable to or better than amplified
DP-SGD, even with arbitrary changes in client availability.

Example 3.2 (Learning with Distribution Drift). Distribution drift
in learning problems arises from non-stationary data generating
distributions. This drift can be independent of the learning process,
as seen in continual learning where user behavior shifts over time.
For instance, discussions on social networks could change with viral
trends and current affairs, while health data collected at hospitals
could change with emerging health challenges and evolving medical
practices. Alternatively, drift can be driven by feedback mechanisms
where agents strategically adapt their behavior to deployed decision
systems for favorable outcomes. For instance, in loan application
scenarios where AI models may be used to predict the likelihood of
a default, applicants may manipulate model-relevant factors to im-
prove their scores, causing data distribution drift. The model thus
actively shapes the observed data rather than passively observing
a static environment.

In both scenarios, models should adapt to data drift. This
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is best achieved by treating data as a stream and continuously
learning from recent data while discarding outdated information.
This approach necessitates respecting the data’s temporal ordering,
precluding methods like random batch sampling or using randomly
shuffled datasets, which disregard this crucial temporal structure.

Advantages of Correlated Noise Mechanisms In both these examples,
amplification by sampling/shuffling is not practically feasible. In the
absence of amplification arguments, DP-SGD with independent noise
suffers from a huge drop in downstream task utility (e.g. accuracy for
classification problems) at small or moderate privacy budgets.1 In such
instances, DP-SGD with correlated noise (Algorithm 1.3), known also
as “DP-FTRL” (see also Section 1.10.2), has been found to achieve
competitive performance without the need for privacy amplification.

In particular, correlated noise DP-SGD without amplification out-
performs independent noise DP-SGD with amplification for moderate
to large privacy budgets. We refer to Fig. 3.2 for an example. This
method guarantees strict privacy regardless of sampling constraints,
even in scenarios where random sampling is limited or infeasible, while
delivering good downstream task performance. In cases where sampling
is viable, we can provide amplified privacy guarantees for correlated
noise mechanisms (Section 3.4), offering the best of both worlds. Indeed,
correlated noise with amplification uniformly outperforms amplified
independent noise DP-SGD for all privacy budgets.

3.2 Learning Problems as Weighted Prefix Sums

Recall the setting of stochastic gradient descent (SGD) from Section 1.2:
in step t of a learning algorithm, we receive a batch (per-sample clipped)
gradient gt ∈ Rm calculated under the current model parameters θt. The
SGD updates is then computed from the prefix sums of the gradients
G = (g0, g1, . . . , gn−1) ∈ Rn×m; which is obtained as linear map ApreG

1For example, privacy amplification by sampling improves the classification
accuracy in the CIFAR-10 setting of Fig. 3.2 by around 10 points for ε ≈ 7 in
Kairouz, McMahan, Song, Thakkar, Thakurta, and Xu [2021a, Fig. 1b].
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Figure 3.2: Privacy-utility tradeoff of CIFAR-10: This plot shows the classifi-
cation accuracy of DP-SGD with independent noise vs. correlated noise calibrated to
achieve (ε, 10−5)-DP with or without privacy amplification by sampling at different
privacy budgets ε. We make two key observations. First, correlated noise without
amplification outperforms independent noise with amplification at ε ≥ 3. Second,
correlated noise with amplification uniformly outperforms independent noise at all
ε. Figure reproduced from Choquette-Choo, Ganesh, McKenna, McMahan, Rush,
Guha Thakurta, and Xu [2023a, Fig. 1a] with permission; we refer the reader there
for details.
Caveat: While these accuracies are not state-of-the-art for the CIFAR-10 benchmark,
they are representative of the general performance gain that can be expected from
correlated noise. Indeed, these numbers are reported on a small convolutional neural
network with 6 conv layers, one dense layer and around half a million parameters,
trained with a batch size of B = 500. Significantly higher accuracies can be obtained
on the same CIFAR-10 dataset under the same privacy budgets with larger batch
sizes (e.g. B = 65536), larger models (e.g. a 40-layer Wide-ResNet with 9 million
parameters), and data augmentation [De, Berrada, Hayes, Smith, and Balle, 2022].
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with the workload matrix

Apre =


1 0 · · · 0
1 1 · · · 0
...

... . . . ...
1 1 · · · 1

 ∈ {0, 1}n×n . (3.3)

More generally, SGD with momentum and weight decay can be
described by a linear map as well. This update is defined by the recursion

vt+1 = βvt + ηgt

θt+1 = (1− λ)θt − vt+1 ,
(3.4)

where η > 0 is the learning rate, β ∈ [0, 1) is the momentum parameter,
λ ∈ [0, 1) is the weight decay parameter.

We first consider the recursion in Eq. (3.4) case by case.

Case β = λ = 0 When β = λ = 0, then Eq. (3.4) reduces to the
recursion

vt+1 = ηgt and θt+1 = θt − vt+1 .

This is exactly the iterates of SGD, as we saw in Algorithm 1.1.

Case β, λ ≠ 0 Unrolling the recursion in Eq. (3.4) with v0 = 0 in
this case, we get2

θt = (1− λ)tθ0 − η
t−1∑
τ=0

at−1−τ gτ , where

at =
t∑

τ=0
βτ (1− λ)t−τ . (3.5)

The weights at are an the exponentially decaying function of t ∈ N.
Thus, SGD with momentum and weight decay can be obtained from

2This can be established using, e.g., an induction argument. We leave the details
as an exercise to the reader.
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the weighted prefix sum AmomG with the Toeplitz workload matrix

Amom =


a0 0 · · · 0
a1 a0 · · · 0
... . . . . . . ...

an−1 an−2 · · · a0

 (3.6)

where the at’s are defined in Eq. (3.5).

Remark 3.3. Other flavors of momentum, such as the one arising
from Nesterov’s accelerated gradient method, also admit similar
representations as weighted prefix sums. We leave the derivation of
the corresponding workload as an exercise to the reader.

We will focus our discussion in this section mainly on the unweighted
prefix sum workload matrix Apre from Eq. (3.3) for concreteness, al-
though all aspects of our discussions hold for more general non-negative
Toeplitz and lower triangular workload matrices A such as the momen-
tum matrix Amom from Eq. (3.6).

3.3 Multiple-Participation Correlated Noise Mechanisms

The results of Sections 1 and 2 are directly applicable for learning
problems in the streaming setting where the data is processed in a single
pass.3 Further, we also considered stochastic gradient algorithms with a
batch size of one. As we discussed in Remark 1.8, these assumptions are
typically violated in practical AI model training scenarios. Indeed, we
usually process each example multiple times in the learning process; we
refer to this as the multiple-participation setting. Moreover, we process
mini-batches of examples in each stochastic gradient step.

The version of DP-SGD with correlated noise we consider is given
in Algorithm 3.1; it generalizes Algorithm 1.3 to (expected) mini-batch
sizes B.4 The key difference relative to non-private SGD is that we clip
the per-example gradients before averaging them (Line 5), and then

3A complete pass over the data is termed an epoch.
4The batch size may only hold in expectation, as Poisson sampling or other

sampling approaches Section 3.4 may produce a randomly-sized batch.
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Figure 3.3: An expanded version of Fig. 2.1 which includes additional mechanisms
optimized for multiple participations. As before, the first three mechanisms are
optimized for single-participation, though the banded mechanism is also optimal for
b ≥ 16 Min-Sep participation, as sensitivity simply scales linearly with the number
of participations, Eq. (3.21). The BLT mechanism in the fourth column is optimized
to minimize max loss under b = 16 Min-Sep participation Eq. (3.17); the final dense
mechanism is optimized for k = 4 training epochs with b = 16, each with the same
cyclic data order, Eq. (3.16). Note unlike any of the other matrices, some elements
of dense C are, in fact, negative.
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Figure 3.4: An alternative visualization of the matrices in Fig. 3.3; we represent
each matrix by the mean value on each diagonal from the main diagonal and down.
Of course, for the Toeplitz mechanisms this representation fully captures the matrix,
but it is a lossy summary for the other classes. Nevertheless, these values for C−1 in
particular, provide an indication of how a mechanism cancels noise; in fact, in the
case of the banded and cyclic matrices, the mechanisms not only cancel previously
added noise, but sometimes (on a period corresponding to b), re-add previously
added noise as indicated by positive values below the main diagonal of C−1.
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Algorithm 3.1 Mini-batch DP-SGD with Correlated Noise
Inputs: Dataset D, number of steps n, learning rate η, batch size
B, noise variance ν2, clip norm ζ, noise correlating matrix C−1 (for
standard DP-SGD with independent noise, take C−1 = In×n).

1: Define clipζ(v) := v ·min{1, ζ/ ∥v∥2}
2: Pick an initial model θ0 ∈ Θ
3: for t = 0, 1, . . . , n− 1 do
4: Receive a batch Bt ⊆ D of (expected) size B

5: gt ← 1
B

∑
x∈Bt

clipζ

(
∇ℓ(θt; x)

)
▶ Eq. (1.3) for clipζ(·)

6: Sample zt ∼ Nm
(
0, ν2) ▶ Sample i.i.d. seed noise

7: z̃t ← 1
B

∑t−1
τ=0 C−1[t, τ ]zt,τ ▶ Correlated noise

(
C−1Z

)
[t, :]

8: ĝt ← gt + z̃t ▶ Privatized average gradient.
9: θt+1 ← θt − ηĝt ▶ Or any first-order update

10: Return θn

add (correlated) noise (Line 8). Critically, we then use the DP estimate
of the average gradient in the first-order update (Line 9). Following
standard convention, we assume that the noise variance ν2 is calibrated
to the sum of gradients. However, since gt is calculated as the average
mini-batch gradient (rather than their sum), we scale down the noise
z̃t by a B factor in Line 7 to ensure correct noise calibration.

Remark 3.4. Fixing the number of training iterations n, the (ex-
pected) batch size B is a hyperparameter that plays an essential role
in privacy-utility tradeoffs as well as compute cost. The prefix-sum
max loss of the average gradient ĝt is a reasonable proxy for learn-
ing performance. In the zero-out model, we have this unnormalized
max loss is

L∞(ĝ; B, C) = max
t∈[n]

√√√√E
∥∥∥∥∥

t∑
τ=0

gτ −
t∑

τ=0
ĝτ

∥∥∥∥∥
2

= σm

B
∥B∥row sens(C) (3.7)
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following Theorem 2.2 and Eq. (2.5). Hence, if we could increase
the batch size without changing anything else (e.g., if we had
infinite compute and an infinite dataset), we could drive the max
loss down to be arbitrarily small. Of course, this requires nB

examples, and so if our dataset is of fixed size N , some example
must participate at least k =

⌈
nB
N

⌉
times, and this will increase the

sensitivity sens(C). Formally defining and then computing sens(C)
in multiple-participation settings will be a principal topic in this
section.

Once we account for the increased sensitivity (or equivalently,
the impact of the additional participations under sampling), sig-
nificant benefit from increasing the batch size remains. In fact, if
compute cost was not an issue, we would always simply process the
entire training dataset in every batch. In the extreme of full-batch
gradient descent, neither correlated noise nor privacy amplification
via sampling offer any advantage.5 Fig. 3.5 is representative, show-
ing the value of increasing batch size is pronounced for both the
banded Toeplitz mechanism of Section 2.4 and vanilla DP-SGD
with independent noise. Yet, we find that both correlated noise
and amplification can (independently or jointly) lead to significant
improvements in compute-constrained settings, where using the
full batch for each gradient update is infeasible. We will revisit
full-batch training in Remark 4.10.

In order to run this algorithm, we need to specify how to set the
noise standard deviation ν2 as a function of the problem parameters
and the desired privacy level in this multiple-participation regime. It
turns out that the analysis of Section 1 straightforwardly generalizes to
larger mini-batch sizes. These techniques are, however, insufficient to
handle the multiple-participation setting.

Recall from Section 1 (more specifically Section 1.3.1) that the
streaming setting combined with Theorem 1.11 made it straightforward

5Proposition 3.11 shows that independent noise achieves the optimal max loss in
the full-batch setting, meaning that noise correlations do not give any additional
benefits. Similarly, there is no added uncertainty from sampling when we use the full
batch, so there is no amplification by sampling in this regime.
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Figure 3.5: Effect of the batch size: Fixing the number of iterations n =
2048 and dataset size N = 4069, and increasing the batch size can substantially
decrease the max loss in the average gradient of DP-SGD (Algorithm 3.1, Line 8) for
both correlated noise (in this case, the banded Toeplitz mechanism of Section 2.4)
and independent noise, both with privacy amplification from Poisson sampling
(Section 3.4) and in unamplified scenarios. Because N/n = 2, the number of epochs k
is equal to B/2. Thus B = 1 and B = 2 correspond to the streaming setting, while B =
4096 corresponds to full-batch gradient descent. For the banded Toeplitz mechanism
with cyclic Poisson sampling, the number of bands was empirically optimized to
minimize the loss; using fewer bands increases the benefits of amplification, while
more bands allows more flexibility in designing correlated noise. At ε = 10, correlated
noise provides most of the benefit, but at ε = 1 amplification yields significant
additional improvements for small batch sizes.
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to translate adjacency of datasets into adjacency of gradients: since
each data point is processed only once, two sequences of gradients
G = (g0, . . . , gn−1) ∈ Rn×m and G′ = (g′

0, . . . , g′
n−1) ∈ Rn×m arising

from adjacent datasets D and D′ can differ in at most one element, i.e.,
gτ = g′

τ for all τ ∈ [n] except possibly for one index t (see Theorem 1.11
for more discussion).

However, model training typically involves making k > 1 passes over
the data.6 A change of one data point in an adjacent dataset leads to
a change in k gradients in the input G. The goal of this section is to
extend the results of the preceding sections to the multiple-participation
setting.

3.3.1 Multiple-Participation Training Setup

Suppose we have a dataset of N data points, which appear in n iterations
in batches of size B. We are interested in the multiple-participation
setting where nB/N > 1, which implies that at least one data point is
used at least twice. Further, we let k denote the maximum number of
times a data point might participate in training. For example, k can
refer to the number of epochs in settings where that can be tracked.

The input to our correlated noise mechanism is a sequence of
gradients G = (g0, . . . , gn−1) ∈ Rn×m obtained from a dataset
D = {x1, . . . , xN} of data points. We assume that each gradient gt is
obtained as the total gradient over a batch It ⊂ [N ] of |It| = B data
points (evaluated at the current model θt):

gt = 1
B

∑
i∈It

∇ℓ(θt, xi) . (3.8)

Throughout this section, we assume a gradient norm bound of 1:

∥∇ℓ(θ, x)∥2 ≤ 1 for all θ ∈ Θ and x ∈ X . (3.9)

In practice, this can be achieved by the so-called gradient clipping
operation; see Algorithm 3.1, Line 5. As mentioned in Section 1, the
case of clipping to a different norm can simply be handled by scaling.

6Other forms of multiple participation are possible, e.g., in federated learning
where data can be processed in arbitrary order depending on device availability. We
discuss this further in Section 3.3.3.
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Adjacent Datasets and Sequences We define adjacent sequences of
gradients based on adjacency of the underlying datasets, using the
zero-out notion of the adjacency (following much prior work in this
setting; see Section 3.7). Section 1.7 provides additional discussion of
this choice, but for the remainder we only need the definition, which
we restate for convenience:

Definition 3.5 (Zero-out Adjacency of Datasets). Two datasets
D = {x1, . . . , xN} and D′ = {x′

1, . . . , x′
N} are zero-out adjacent

(denoted D ≃ D′) if xi = xi for all indices i ∈ [n] except possibly
at some index j ∈ [n]. At this index j, we have either xj =⊥ or
x′

j =⊥, where “⊥” is a special null element such that ∇ℓ(θ,⊥) = 0
for all θ.
Replacing an example by ⊥ is a convenient way to capture the

removal of a data point without changing the dataset size or how
examples are grouped into batches. This zero-out notion of adjacency
generally yields sensitivities that are a factor of 2 smaller than replace-
one adjacency which we use in Sections 1 and 2.

Recalling Theorem 1.11, we may assume a fixed sequence of model
iterates (θt)n−1

t=1 when defining adjacent sequences of gradients:

Definition 3.6 (Zero-out Adjacency of Gradients). Two sequences
of gradients G = (g0, . . . , gn−1) ∈ Rn×m and G′ = (g′

0, . . . , g′
n−1) ∈

Rn×m of gradients are adjacent if for each t ∈ [n], we have that

gt =
∑
i∈It

∇ℓ(θt, xi) and g′
t =

∑
i∈It

∇ℓ(θt, x′
i)

are evaluated for the same sequence of batch indices I0, . . . , In−1 ⊂
[n] and the same sequence of models (θt)n−1

t=1 on adjacent datasets
D = {xi}Ni=1 and D′ = {x′

i}Ni=1. We say that G, G′ are zero-out
adjacent if the underlying datasets D ≃ D′ are zero-out adjacent;
we denote this as G ≃ G′.

Participation Patterns Let It be the set of batch indices that is picked
at time t. We say that a data point xi participates in step t if i ∈ It.
Note that if a data point can participate in up to k batches It1 , . . . , Itk

,
then G and G′ can differ in up to k gradients gt1 , . . . , gtk

.
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Figure 3.6: Illustration of participation patterns where each color represents a
data point. Top Left: The streaming setting with N = 4 data points over n = 4
steps with a batch size of B = 1 for one epoch (k = 1). Top Right: Full batch
participation of N = 4 data points over n = 5 steps (the batch size is B = N and
number of epochs are k = n). Bottom: Cyclic participation of N = 4 data points
over n = 12 steps with a batch size of B = 1, leading to k = nB/N = 3 epochs
(separated by the dotted line).
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It is useful to define the sequence πi of all steps where xi participates
in training:

πi :=
(
t ∈ [n] : i ∈ It

)
. (3.10)

We refer to πi as the participation pattern of data point xi. For
instance, πi = [n] indicates that data point i participates in each step,
while |πi| = 1 corresponds to the setting where xi only appears once
during training. Finally, if data point i participates in the ℓth step of
each cyclic pass over the data, we have (assuming the batch size B

divides the dataset size N):

πi =
(

l, l + N

B
, l + 2N

B
, . . . , l + (k − 1)N

B

)
. (3.11)

A natural baseline is to simply “restart” the mechanism at the end
of each epoch (assuming the algorithm can run in epochs). Then, we
can simply compose the privacy loss across epochs using Lemma 3.19.
We will instead derive tight sensitivity bounds for the entire multiple-
participation training algorithm as one mechanism. This will recover
the “restarting mechanism” as a special case; we return to this in
Section 3.3.6.

As we will see in the next section (Section 3.3.2), tight sensitivity
bounds in the multiple-participation setting requires us to impose
restrictions on the allowed participation patterns. We will define specific
participation patterns in Section 3.3.3 for further study.

3.3.2 Multiple-Participation Sensitivity: Definition and Challenges

Given a stream of gradients G = (g0, . . . , gn−1) ∈ Rn×m as input,
the correlated noise mechanism M(G) = CG + Z is an instance of
the Gaussian mechanism with i.i.d. Gaussian noise Z ∼ Nn×m

(
0, ν2)

(Definition 1.5). Thus, following Lemma 1.6, we only need to bound the
sensitivity of the linear map G 7→ CG to design mechanisms suited
to the multiple-participation case. Recall we did this for the single-
participation streaming setting in Theorem 1.14; we now generalize
this result. Similar to that case, we can simply consider a non-adaptive
setting, thanks to Theorem 1.11.
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Definition 3.7 (ℓ2 Sensitivity Induced by the Strategy Matrix).
The ℓ2-sensitivity of the matrix-valued map G 7→ CG is

sens(C) = sup
G≃G′∈Rn×m

∥∥CG−CG′∥∥
F , (3.12)

where the Frobenius norm ∥M∥F =
√∑

i,j M [i, j]2 generalizes the
ℓ2-norm of Definition 1.4 to matrix-valued maps.

Given a bound on this sensitivity, we can get a GDP guarantee,
generalizing Lemma 1.13 and Theorem 1.14:

Lemma 3.8. Fix a noise multiplier σ > 0. Consider the non-
adaptive multi-participation setting, i.e.

(a) we have that G ≃ G′ are adjacent in the zero-out sense, as
defined in Definition 3.6, and

(b) the rows gt, g′
t are clipped to norm 1 (cf. Eq. (1.8) or Eq. (3.9)).

Then, the mechanism M(G) = B(CG + Z) for any matrices
B, C ∈ Rn×n (possibly non-lower-triangular and non-invertible)
and i.i.d. Gaussian noise Z ∼ Nn×m(0, ν2) satisfies 1

σ -GDP if we
choose the noise standard deviation as ν = σ sens(C).

Recall that Theorem 1.11 in Section 1 reduces the adaptive case
to the nonadaptive case. Then, similar to Theorem 1.14, this directly
leads to a GDP bound on Algorithm 3.1:

Theorem 3.9. Fix a noise multiplier σ and consider Algorithm 3.1
with an invertible lower-triangular strategy matrix C, clip norm
ζ = 1, any batch size B > 0, and noise standard deviation ν =
σ sens(C). Then, the privatized gradients (ĝt)t∈[n] and iterates
(θt)t∈[n] produced by Algorithm 3.1 satisfy 1

σ -GDP under the zero-
out adjacency of input datasets (Definition 3.5), even in the multi-
participation setting.

Comparing Theorem 3.9 for the multi-participation case to to The-
orem 1.14 for streaming setting, we note that the sensitivity sens(C)
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does the heavy lifting in capturing the multiple-participation aspect.
This sensitivity bound of Definition 3.7 is required to hold over all pairs
of adjacent sequences of gradients G ≃ G′ as in Definition 3.6. In the
(non-adaptive version of the) streaming setting, G and G′ can differ
only in one row, and this difference is limited by the gradient norm
bound. Thus, we recover sens(C) = ∥C∥col as in Theorem 1.14.7 We can
have sens(C) > ∥C∥col in the multi-participation setting, as multiple
rows of G can change in an adjacent dataset (corresponding to the
participation of the underlying example that changes).

If we do not impose any restrictions on the allowed participation
patterns for the multiple-participation setting, a single data point can
participate in every single iteration in the worst case. Thus, it is possible
to have G ≃ G′ that differ in every row by an ℓ2 distance of up to 1 (due
to the gradient norm bound assumption of Eq. (3.9)). By our definition
of adjacency, it follows for the simpler case of m = 1 dimension that two
sequences G, G′ ∈ Rn×1 are adjacent (in the absence of participation
pattern restrictions) if ∥vec(G−G′)∥∞ ≤ 1, where vec(·) treats its
matrix input of shape n× 1 as an n-dimensional vector.

We then have for the ℓ2-sensitivity

sens(C) = max
∥vec(G−G′)∥∞≤1

∥∥C(G−G′)
∥∥

F

= max
∥u∥∞≤1

∥Cu∥2 =: ∥C∥∞→2 ,
(3.13)

where the Frobenius norm of Eq. (3.12) reduces to the ℓ2 norm for
m = 1 dimension in Eq. (3.13). Here, the notation ∥C∥∞→2 denotes the
∞→ 2 matrix operator norm (also known as the induced matrix norm).
In general, for p, q ∈ [1,∞], the p → q operator norm of a matrix is
defined as:

∥C∥p→q := max
u̸=0

∥Cu∥q
∥u∥p

. (3.14)

7The multiplicative factor of 2 in Theorem 1.14 is due to the replace-one adjacency,
and vanishes if we consider the zero-out adjacency as in this section. See Section 1.7
for a detailed discussion on different notions of adjacency.
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Figure 3.7: Operator norm balls: The norm balls of the operator norms ∥M∥col =

∥M∥1→2 (left) and ∥M∥∞→2 (right) of the symmetric matrix M =
(

x y
y z

)
plotted

as a function of (x, y, z). The left norm ball {M : ∥M∥1→2 ≤ 1} is much bigger
than the right one {M : ∥M∥∞→2 ≤ 1}, meaning that more matrices satisfy the
constraint ∥M∥1→2 ≤ 1 than the constraint ∥M∥∞→2 ≤ 1; see Lemma 3.10. Figures
adapted from Grimmer [2022] with permission.

Challenges Unfortunately, the sensitivity in Eq. (3.13) that we ob-
tained in the absence of participation restrictions suffers from some
major difficulties. First, computing the operator norm ∥C∥∞→2 for
general C matrices is NP-hard.8 Second, the multiple-participation
sensitivity can be significantly larger than the single-participation sensi-
tivity ∥C∥col. In particular, the multiple-participation sensitivity can be
worse by a factor of the number n of steps (see Section 3.6 for a proof):

Lemma 3.10. For any matrix C ∈ Rp×n, we have,

∥C∥col ≤ ∥C∥∞→2 ≤ n ∥C∥col .

This large spike in the sensitivity means that independent noise
achieves the optimal max loss in this setting (see Section 3.6 for a
proof):

8To be precise, the corresponding decision problem is NP-hard: does there exist a
vector u ∈ Rn with ∥u∥∞ ≤ 1 such that ∥Cu∥2 ≤ κ for some given constant κ > 0?
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Proposition 3.11. We have that

min
C∈Rn×n

{∥∥∥ApreC
−1
∥∥∥

row
∥C∥∞→2

}
= n ,

and this minimum is attained at C = In×n. That is, the corre-
lated noise mechanism M(G) = CG + Z in m = 1 dimension
that achieves the optimal max loss with the worst-case multi-
participation sensitivity (Eq. (3.13)) is independent noise C = In×n.

However, in contrast to Proposition 3.11, empirically, we observe
that carefully designed correlated noise mechanisms lead to significant
practical improvements (e.g., in Figs. 3.2 and 3.5). A key reason for
the limitations Eq. (3.13) and the approach of this section is that,
without participation restrictions, the matrices G and G′ can differ
arbitrarily in every row. This setup fails to reflect practical scenarios,
where examples typically participate a few times during training, but
not in every iteration.

In particular, as discussed in Remark 3.4, when sufficient compute
resources are available, increasing the batch size is generally beneficial,
often pushing us into the multi-participation regime. So, a natural
approach would be to use full-batch gradient descent (where G ≃ G′

may differ in every row). However, empirical evidence suggests that
the benefit of using full-batch gradient descent in terms of loss is not
significant to warrant using the extra compute resource. This can be
also seen in Fig. 3.5, where a batch size of B = 256 achieves nearly the
same loss as using the full dataset (B = 4096) while requiring 16× less
compute, even without amplification.

These discussions suggests that we should seek reasonable restric-
tions on the allowed participation patterns (and sometimes also on
the matrix C) to design correlated noise mechanisms for the multi-
participation setting. In particular, we have the following desiderata:

(a) Implementation is practical: The restrictions on participation
patterns can be implemented efficiently in real-world ML training
pipelines.

(b) Computing sens(C) is tractable: The multiple-participation
sensitivity can be computed (or tightly bounded from above) in
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polynomial time in the problem parameters, namely the number of
training samples, n, and the model dimension, m, for at least some
classes of strategy matrices C. Preferably, it can be computed in
O(n) time or less and is independent of the model dimension m.

(c) Larger batches give improvements: Finally, we seek restric-
tions where the unnormalized max loss (Eq. (3.7)) improves as
we increase the batch size (and compute cost) — otherwise, we
would be better off just using a smaller batch size and staying
in the streaming setting. (These can typically only be verified
empirically, as in Fig. 3.5.)

Next, we will define participation patterns that satisfy these criteria
and derive sensitivity bounds.

3.3.3 Practical Participation Patterns

Recall that the participation pattern π ⊂ [n] of a data point is the
sequence of steps in which it participates in training; see Eq. (3.10) for
a definition. We define the set of all “allowed” participation patterns as
an abstraction to impose restrictions on how we process the data:

Definition 3.12 (Participation Schema). A participation schema
Π ⊂ 2[n] is a subset of possible participation patterns, called the
allowed participation patterns. That is, two sequences of gradients
G = (g0, . . . , gn−1) ∈ Rn×m and G′ = (g′

0, . . . , g′
n−1) ∈ Rn×m are

adjacent under schema Π if and only if there exists a participation
pattern π ∈ Π such that:

(a) gt = g′
t for all t /∈ π;

(b) ∥gt − g′
t∥2 ≤ 1 for all t ∈ π (following Eq. (3.9))

We denote this as G
Π≃ G′.

In other words, the participation schema imposes restrictions on how
many and which gradients in the stream g0, . . . , gn−1 can be affected by
changing one data point. This lets us map adjacency of datasets D, D′

into adjacency of the corresponding gradients G, G′ ∈ Rn×m.
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G ∈ R5×m G′ ∈ R5×m

g0
g1
g2
g3
g4

Π≃

g′
0 = g0

g′
1

g′
2 = g2

g′
3

g′
4 = g4

if π = (1, 3) ∈ Π

Figure 3.8: Two inputs G, G′ ∈ Rn×m (with n = 5) are adjacent if they can only
differ in the rows contributed by one data point. In this illustration, the blue data
point in G is replaced by the green data point in G′. The participation schema Π
controls all allowed participation patterns. So, we have that G

Π
≃ G′ are adjacent

under schema Π only if the participation pattern π = (1, 3) that encodes the rows
where G, G′ differ is allowed as per Π (i.e., only if π = (1, 3) ∈ Π).

We can now formally define the sensitivity of the matrix C (repre-
senting the linear map G 7→ CG) calibrated to a participation schema:

Definition 3.13 (Participation-Calibrated Sensitivity). The ℓ2-
sensitivity of the matrix C ∈ Rn×n restricted to participation
schema Π ⊆ 2[n] and dimension m is defined as

sens(C, Π, m) = max
G,G′∈Rn×m

{∥∥CG−CG′∥∥
F : G

Π≃ G′
}

. (3.15)

When sens(C, Π, m) is independent of the dimension m, we will
omit m and simply write sens(C, Π).

Simple Examples We now consider some basic participation schemas
arising in the machine learning setting. See Fig. 3.6 for an illustration
of the corresponding participation patterns.

(a) Streaming: Each data point appears only once in training, so
that |π| = 1 for each π ∈ Π. This conforms to the schema

Πsingle := {(0), (1), . . . , (n− 1)} .

Following Theorem 1.14, we have sens(C, Πsingle) = ∥C∥col. Cru-
cially, this is independent of the dimension m. In this case, we
simply use the notation sens(C). For sufficiently large datasets
and limited compute resources, this can be a very practical ap-
proach. However, when possible, we will generally achieve better
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privacy/utility tradeoffs by using larger batches, as we saw in
Remark 3.4. This generally requires multiple participations.

(b) Full batch: Each data point participates in each step of training,
so that Πfull = {[n]}. This yields sens(C, Πfull, 1) = ∥C∥∞→2.
As discussed in Remark 3.4, this full-batch training approach
yields optimal privacy-utility tradeoffs, but at a very large cost
in compute, since the total number of gradient evaluation is
Bn = BN). We will generally be able to do almost as well
with much smaller batches with carefully chosen participation
restrictions; see Fig. 3.5.

Next, we consider two non-trivial participation schema that satisfy
the desiderata of Section 3.3.2.

Cyclic Participation The first new participation pattern we consider
is tailored to centralized9 training pipelines. We loop over fixed batches
of examples in some predefined fixed order.10 Therefore, each data
point occurs in a fixed iteration in each epoch, so the only types of
participation patterns allowed are as in Eq. (3.11); see Fig. 3.6 for an
illustration. For a dataset of size N and batch size B, each pass (epoch)
comprises of b = N/B steps (assuming N divides B), and so for k

epochs, we have the participation schema

Πcyclic
b,k =

{(
l, l + b, l + 2b, . . . , l + (k − 1)b

)
: l ∈ [b]

}
. (3.16)

9We refer to training models in a data-center (possibly in a distributed fashion)
as centralized. The key property of centralized training is that the full training dataset
is always available, and hence can be accessed in any reasonable fashion; this is in
contrast to the federated setting of Example 3.1, where for example the data on any
particular device might be unavailable for arbitrary periods of time, e.g. when the
device is offline.

10The cyclic participation setting is practical in that it can easily be implemented
in realistic centralized training pipelines. While we lose some generality as we are
not allowed to shuffle the data in each epoch, we can introduce some randomness by
shuffling the data once at the start of training. It is not known if tight sensitivity
bounds can be derived for the shuffle-every-epoch approach; we return to this open
problem in Section 5.
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As we see in the upcoming Section 3.3.4, it is computationally
efficient to evaluate the multiple-participation sensitivity in this case
under mild conditions.

Minimum Separation (Min-Sep) Participation While it is possible
to make cyclic passes through the data in centralized model training,
this is not possible in federated learning, where the client availability
is determined by external factors (see Example 3.1). However, it is
often possible to prevent any client from participating twice in quick
succession. Each client remembers the last step τ in which it participated,
and participates in training again only when the current step t satisfies
t ≥ τ + b, for a minimum separation parameter b. Importantly, no client
is forced to check in with the server during a narrow (and unknown
to the device) time window for a specific step, as required by cyclic
participation. This leads to a generalization of cyclic participation that
inherits its favorable traits (as we will discuss further in the coming
sections) but is also practical for federated learning.

Definition 3.14 (Participation with Minimum Separation). A par-
ticipation pattern π satisfies b-minimum-separation (Min-Sep)
with at most k participations if if: (a) every pair of indices t, τ ∈ π

satisfy t = τ or |t − τ | ≥ b, i.e., subsequent participations of
any data point are at least b steps apart, and (b) |π| ≤ k, i.e.,
each data point participates at most k times. The corresponding
participation schema is the collection of all participation patterns
that satisfy the b-Min-Sep condition:

ΠminSep
b,k =

{
π ⊂ [n] :

|π| ≤ k, and
∀t, τ ∈ π : t = τ or |t− τ | ≥ b

}
. (3.17)

We given an illustration of the minimum separation condition in Fig. 3.9.
We usually refer to the participation pattern and schema from Defi-
nition 3.14 as “b-Min-Sep participation” with the understanding that
at most k participations are allowed throughout (for all participation
schemas we consider).

We assume throughout that k is feasible, that is, that k participations
are in fact possible while satisfying a minimum separation of b. The
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Min-Sep Participation

Separation ≥ b = 2
t = 0 t = 3 t = 9

π = (0, 3, 9) π = (1, 5, 7) π = (2, 4, 6) π = (8, 10)

1

Figure 3.9: Illustration of the Min-Sep participation pattern. Each color represents a
data point, as in Fig. 3.6. This setting corresponds to N = 4 data points participating
in batches of size B = 1 over n = 11. Each point participates at most k = 3 times
with a minimum separation of b = 2. Observe that any two subsequent participations
of any given data point are at least b = 2 steps apart.

maximum value of k ∈ N is then determined by the early-and-often
pattern:

π∗ := (0, b, 2b, . . . (k − 1)b) subject to (k − 1)b < n. (3.18)

We do not in general assume that b divides n, and so the last participa-
tion (k − 1)b in π∗ could occur at any iteration between t = n− b and
the last iteration t = n− 1, both included.

Observe that Πcyclic
b,k ⊂ ΠminSep

b,k . In other words, cyclic participation
is a special case of Min-Sep participation. As a consequence, if G ≃ G

as per the cyclic participation schema Πcyclic
b,k , then G ≃ G′ as per the

Min-Sep schema ΠminSep
b,k as well. Thus, we will focus on computing the

sensitivity for the Min-Sep participation as this directly yields bounds
on the sensitivity for cyclic participation.

We also remark that
∣∣∣ΠminSep

b,k

∣∣∣≫ ∣∣∣Πcyclic
b,k

∣∣∣ = b, where the number of
Min-Sep participation patters can grow as nk (see Eq. (3.23)). This dis-
tinction will crucially matter in Section 3.3.5, when designing practical
algorithms to compute the sensitivity efficiently.

3.3.4 Expressions for Multiple-Participation Sensitivity

We now give various expressions for the participation-calibrated sensi-
tivity of Definition 3.13. These will directly lead to efficient algorithms
to compute the sensitivity in Section 3.3.5.
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Generic Sensitivity Bounds We start by explicitly relating the sen-
sitivity to the participation schema. Recall that we use the notation
(C⊤C)[t, τ ] to denote the (t, τ)th entry of the matrix C⊤C.

Lemma 3.15. For any participation schema Π and any lower-
triangular matrix C ∈ Rn×n, we have:

(a) For any dimension m ≥ 1, we have the upper bound

sens (C, Π, m)2 ≤ max
π∈Π

∑
t,τ∈π

∣∣∣(C⊤C)[t, τ ]
∣∣∣ .

(b) Suppose that

min
t,τ∈π

(C⊤C)[t, τ ] ≥ 0 for all π ∈ Π. (3.19)

(This is true when C⊤C is element-wise non-negative.) Then,
we get a dimension-independent bound:

sens(C, Π)2 = max
π∈Π

∑
t,τ∈π

(C⊤C)[t, τ ] . (3.20)

That is, Part (a) holds with equality.

We discuss the interpretation of this result and its implications,
before giving the proof. Unlike the streaming setting, the sensitivity
generally depends on the dimension m. For general any general strategy
matrix C, we have an upper bound on the sensitivity (Part (a)). However,
a fortunate exception arises when C⊤C is element-wise non-negative
(Part (b)). In such cases, the sensitivity becomes independent of the
dimension m, and the upper bound holds with equality.

Fortunately, most practical scenarios involve C⊤C being non-
negative. This is often because C itself is non-negative, a condition
met by mechanisms like the max-loss-optimal Toeplitz mechanism (Sec-
tion 2.3), BLT (Section 2.5), and tree aggregation (Section 2.7). Even
when optimizing over C without enforcing non-negativity, we often
find that C⊤C is either non-negative or has negligible negative entries.
Therefore, imposing non-negativity on C⊤C results in solutions that are
equally competitive (i.e., the non-negative solution attains nearly iden-
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tical utility in terms of max loss and learning performance at any given
privacy level). We return to practical considerations around optimizing
for the C matrix in Section 4.

It is also instructional to rewrite Eq. (3.20) as

sens(C, Π)2 = max
π∈Π

∑
t,τ∈π

⟨C[:, t], C[:, τ ]⟩ .

This expression measures the similarity between the columns C[:, t] and
C[:, τ ] corresponding to any two participations t, τ ∈ π of any example.
For the independent noise setting of C = In×n, this inner product is
1 when t = τ and 0 otherwise, leading to a (squared) sensitivity of
maxπ∈Π |π| = k, the maximum number of participations.

Finally, the expression of Lemma 3.15 can directly be used to
compute the sensitivity with a brute-force enumeration of all possible
π ∈ Π. This is tractable when |Π| is small, e.g., O(n); we discuss this
further in Section 3.3.5.

We now give the proof of Lemma 3.15.

Proof of Lemma 3.15. Consider two gradient matrices G
Π≃ G′ ∈ Rn×m

that are adjacent as per the schema Π (Definition 3.12). By Defini-
tion 3.13, their difference U := G−G′ must have non-zero rows indexed
by some participation pattern π ∈ Π, which we denote (by slight abuse
of notation) as π(U), so ∀t ∈ [n], U [t, :] ̸= 0 ⇒ t ∈ π(U). Below,
we denote the rows of U as ut := U [t, :] (which satisfy ∥ut∥2 ≤ 1
by assumption Eq. (3.9)) and M := C⊤C. Then, using the fact that
∥X∥2F = Tr(X⊤X) for any matrix X, we get,

∥∥CG−CG′∥∥2
F =

∥∥∥∥∥∥
∑

t∈π(U)
C[:, t] u⊤

t

∥∥∥∥∥∥
2

F

= Tr

 ∑
t,τ∈π(U)

utC[:, t]⊤C[:, τ ]u⊤
τ


(a)=

∑
t,τ∈π(U)

M [t, τ ] u⊤
τ ut

where (a) used the linearity of the trace (to interchange the trace and
summation) and the cyclic property (to group uτ and ut). Next, using
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(b) triangle inequality, (c) the Cauchy-Schwarz inequality, and (d) the
norm bound Eq. (3.9),

∥∥CG−CG′∥∥2
F

(b)
≤

∑
t,τ∈π(U)

|M [t, τ ]| ·
∣∣∣u⊤

τ ut

∣∣∣
(c)
≤

∑
t,τ∈π(U)

|M [t, τ ]| · ∥uτ∥2 · ∥ut∥2︸ ︷︷ ︸
≤1

(d)
≤

∑
t,τ∈π(U)

|M [t, τ ]| .

Finally, by the definition of participation-calibrated sensitivity, we have

sens(C, Π, m)2 ≤ max
G

Π
≃G′

∑
t,τ∈π(G−G′)

|M [t, τ ]| = max
π∈Π

∑
t,τ∈π

|M [t, τ ]| ,

yielding the claimed upper bound of Part (a).
Next, we note that we can drop the absolute values in the expression

of Part (a) when mint,τ∈π M [t, τ ] ≥ 0 for each π ∈ Π. Thus, to show
Part (b), it suffices to exhibit a G ≃ G′ such that the inequalities (b),
(c) and (d) above are tight for a participation pattern π∗ ∈ Π that
maximizes the upper bound of Part (a). We fix G ∈ Rn×m arbitrary
and set G′ = G + U where the non-zero rows of U ∈ Rn×m are indexed
by π∗ and each such row is equal a fixed (arbitrary) unit vector.

Sensitivity for Cyclic and Min-Sep Participation Lemma 3.15 pro-
vides a clear connection between the sensitivity sens( · , Π) and the
participation schema Π. However, its maximization over Π makes it
less suitable for direct algorithmic implementation with |Π| is large. To
address this, we focus on the most practical participation schemes and
mechanisms, as discussed in Section 2 and Section 3.3.3. Specifically, we
consider cyclic and Min-Sep participation combined with the banded or
Toeplitz/BLT mechanisms. By simplifying the sensitivity expression for
these settings, we can develop efficient algorithms to compute it.
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Lemma 3.16. Let ΠminSep
b,k be the participation schema as defined

in Eq. (3.17) and Πcyclic
b,k be as defined in Eq. (3.11). For a matrix

C ∈ Rn×n such that ∀π ∈ Π, mint,τ∈π (C⊤C)[t, τ ] ≥ 0, as per the
assumption in Eq. (3.19) (for example, when C⊤C is element-wise
non-negative), we have the following:

(a) Lower bound: For any integers b, k > 0, we have

sens
(
C, ΠminSep

b,k

)2
≥ sens

(
C, Πcyclic

b,k

)2
≥

k−1∑
i,j=0

(C⊤C)[ib, jb] .

(b) Banded: If C is lower-triangular and b̃-banded (Defini-
tion 2.12) with b̃ ≤ b bands (where b is the minimum separa-
tion parameter), we have for Π ∈

{
Πcyclic

b,k , ΠminSep
b,k

}
that

sens (C, Π)2 = max
π∈Π

∑
t∈π

∥∥C[:, t]
∥∥2

2 ≤ k ∥C∥2col . (3.21)

(c) Toeplitz and Monotonic: If C is lower-triangular and
Toeplitz as in Eq. (2.8) with non-negative and non-increasing
entries c0 ≥ c1 ≥ · · · ≥ cn−1 ≥ 0 in the first column, then the
expression of (a) holds with equality throughout.

(d) Banded and Toeplitz: If C is banded (as in Part (b)) and
Toeplitz, and b divides n, then the expression of (b) also holds
with equality. Regardless of whether b divides n, we always
have for Π ∈

{
Πcyclic

b,k , ΠminSep
b,k

}
that

(k − 1) ∥C∥2col ≤ sens(C, Π)2 ≤ k ∥C∥2col .

Part (a) gives lower bounds on the sensitivity, and these bounds
hold with equality with Toeplitz and monotonic C matrices (Part (c)).
When the C matrix is banded, Part (b) gives us an expression that can
be written as a linear program. As we shall see in Section 3.3.5, this
expression can be evaluated efficiently with a dynamic programming
algorithm. Finally, in the special case of Part (d), we get a closed form
expression for the sensitivity. We now give elementary proofs of these
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expressions.

Proof of Lemma 3.16. We prove each part in turn.

Part (a): First note that Πcyclic
b,k ⊂ ΠminSep

b,k . This implies that the
maximum over the former is a lower bound on the maximum over the
latter in the expression of Lemma 3.15(b). That is,

sens
(
C, ΠminSep

b,k

)2
≥ sens

(
C, Πcyclic

b,k

)2

yielding the first inequality. The second inequality follows from
plugging in the feasible early-and-often participation pattern π =
(0, b, 2b, . . . , (k− 1)b) from Eq. (3.18) into the expression of Lemma 3.15
for a valid lower bound.

Part (b): Lemma 3.15 again gives us

sens(C, Π) = max
π∈Π

∑
t,τ∈π

⟨C[:, t], C[:, τ ]⟩ . (3.22)

We make two observations:

(i) for b̃-banded C, we have ⟨C[:, t], C[:, τ ]⟩ = 0 for all |t − τ | > b̃;
and

(ii) for any b-Min-Sep participation pattern π, we have for every
t, τ ∈ π that t = τ or |t− τ | > b.

Putting these together with b̃ < b, we conclude that the terms
corresponding to t = τ are the only possibly non-zero terms in Eq. (3.22).
This gives the claimed equality.

We can get the claimed upper bound by using |π| ≤ k (this applies
for both ΠminSep

b,k and Πcyclic
b,k ):

max
π∈ΠminSep

b,k

∑
t∈π

(C⊤C)[t, t] ≤ k · max
t

{
(C⊤C)[t, t]

}
= k ∥C∥2col

by the definition of ∥·∥col.
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Part (c): The proof follows from arguing that the maximum over
ΠminSep

b,k in Eq. (3.22) is attained by the early-and-often participation
pattern π⋆ = (0, b, 2b . . . , (k − 1)b), i.e., the k participations occur as
early as possible. Intuitively, this is because the Toeplitz coefficients
ct’s are monotonically non-increasing—we refer to Kalinin and Lampert
[2024, Thm. 2] for a full proof. Since π⋆ ∈ Πcyclic

b,k ⊂ ΠminSep
b,k , it follows

that π⋆ attains the maximum in Eq. (3.22) for Πcyclic
b,k as well.

Part (d): Recall that C is a lower-triangular Toeplitz matrix. Then due
to the Toeplitz structure of C, we have that ∥C[:, t]∥2 (for 1 ≤ t < n− b̃)
is equal to ∥C∥col for the all but the last b̃ columns of C. On the other
hand, the last b̃ columns of C can have a smaller norm. Next, we plug
this into the expression of Part (b). If b divides n, then it is possible to
have a π such that it indexes only columns with norm equal to ∥C∥col,
yielding a squared sensitivity of k ∥C∥2col. In general, the worst-case π

can index at most one column whose norm is less than ∥C∥col, yielding
the claimed lower bound.

Remark 3.17 (Uniform Sensitivity Across Participation Patterns).
In the streaming setting, there exists an optimal strategy matrix
C that is column normalized, meaning that the column norms
of each column are equal (see Definition 2.10 and Lemma 2.9).
The natural translation to the multiple-participation setting is for
the sensitivity for all π ∈ Π to be the same (see the upcoming
Conjecture 4.7). As in the streaming setting, Toeplitz C matrices
in general do not satisfy this desiderata. However, banded C

matrices can be column normalized to satisfy this property for
both cyclic and Min-Sep participation schemas. We return to this
in Section 4.

3.3.5 Efficient Algorithms for Multiple-Participation Sensitivity

Correctly calibrating the noise magnitude ν in the multiple-participation
settings requires computing (or tightly bounding) the participation-
calibrated sensitivity of Definition 3.13. We now give various algorithms
to compute this sensitivity and analyze their time complexity. We
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again focus on the practical settings of cyclic and Min-Sep participation
combined with the banded Toeplitz and BLT mechanisms. We also make
the simplifying assumption that C⊤C is element-wise non-negative,
which lets us use the dimension-independent results of Lemmata 3.15(b)
and 3.16.

Brute Force Computation The simplest approach to compute the
sensitivity is to evaluate Eq. (3.20) of Lemma 3.15(b) by enumerating
all possible π ∈ Π and returning the maximum. Its time complexity is
the sum of the time taken by each of its two steps:

• Matrix Multiplication: Computing C⊤C takes O(n3) time
in general. This can be sped up to O(n2 ln(n)) for a Toeplitz
matrix C using Fast Fourier Transform (FFT). Both of these
approaches are only feasible for a small number of steps n. If
C is b̃-banded (and possibly non-Toeplitz), then C⊤C can be
computed in O(nb̃2) making it practical for moderate n (as long
as b̃ is small).
Further improvements are possible for cyclic participation: we only
need to the compute the entries (C⊤C)[t, τ ] such that t, τ ∈ π

for some pattern π ∈ Π. Indeed, these are the only entries that
appear in Lemma 3.15(b). For cyclic participation, these Θ(nk)
entries can be computed O(n2k) time (see Fig. 3.10) in general
making it practical for moderate n (as long as the number of
epochs k is small).

• Exhaustive search: Searching for the best π ∈ Π takes |Π| time.
This step is feasible for cyclic participation on small to moderate
sized datasets, since |Πcyclic

b,k | = b = N/B, which is the number of
steps in each epoch. (Recall that N is the dataset size and B is
the batch size.) Unfortunately, for Min-Sep participation, we have

|ΠminSep
b,k | ≤ n(n− b)(n− 2b) · · · (n− (k − 1)b) ≤ O(nk) . (3.23)

This is not tractable for even moderate values of n and k.

Overall, the brute force approach can be tractable only for moderately
sized problems with cyclic participation.
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Figure 3.10: Brute-force computation of the multi-participation sensitivity cyclic
participation requires us to evaluate only Θ(nk) entries of the symmetric matrix
M = C⊤C, highlighted here in blue. This figure illustrates the required entries for
n = 9, b = 4, k = 2. The upper triangle does not have to be evaluated as the matrix
M is symmetric, and has thus been omitted from this figure.
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Figure 3.11: Multiple-participation sensitivity of banded matrices via
dynamic programs: Given here is an illustration of Problem (3.24). The goal
here is to place k = 4 non-overlapping blocks of width b = 3 over n = 16 steps
such that we maximize the total reward, where we receive reward rt from placing a
block starting at step t. The (squared) multiple-participation sensitivity of a banded
matrix C under Min-Sep participation can be solved by such a dynamic program
with rt = ∥C[:, t]∥2

2, as per Lemma 3.16(b). This problem can be solved in O(kn)
time and space with the dynamic program of Algorithm 3.2.
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Algorithm 3.2 Dynamic program for maximizing Eq. (3.24)
Input: Non-negative numbers r0, . . . , rn−1, separation b, number of

indices k

1: Initialize buffer M ∈ Rn×(k+1) and set its first column M [:, 0] = 0
▶ M [t, ℓ] will store the maximum reward from selecting l indices

over steps t, . . . , n− 1. We treat M [t, ℓ] = 0 for t, ℓ out of bounds.
2: for l = 1, . . . , k do
3: for t = n− 1, . . . , 0 do
4: R1 = rt + M [t + b, ℓ− 1] ▶ Select t as the lth index
5: R2 = M [t + 1, ℓ] ▶ Ignore t for the lth index
6: M [t, ℓ] = max

{
R1, R2}

Output: M [0, k]

Dynamic programming for banded matrices In the case of multiple-
participation, we can compute the sensitivity exactly for a b̃-banded C

matrix under b-Min-Sep participation ΠminSep
b,k (where b̃ ≤ b) defined by

Eq. (3.17) using a dynamic program. Consider the linear maximization
problem

h(r) := max
π∈ΠminSep

b,k

∑
t∈π

rt , (3.24)

for some non-negative r = (r0, r1, . . . , rn−1). In particular, the ex-
pression of Lemma 3.16(b) is a special case of this problem with
rt = ∥C[:, t]∥22.

The term ∑
t∈π rt is known as the reward. Maximizing the objective

of Eq. (3.24) requires us to “select” k indices π ⊂ [n] to maximize the
total reward ∑t∈π rt such that any two distinct indices t, τ ∈ π are at
least b apart (as required by the minimum separation constraint). This
is a classical scheduling problem (see Fig. 3.11), which can be efficiently
solved by the textbook dynamic program of Algorithm 3.2 in O(nk)
time and space.

Closed-form expression for Toeplitz & monotonic matrices Con-
sider a Toeplitz matrix C whose first column coefficients are mono-
tonically non-increasing and non-negative as in the max-loss-optimal
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Toeplitz mechanism (Section 2.3) or the BLT mechanism (Section 2.5).
Lemma 3.16(c) lets us compute the sensitivity in these cases for both
cyclic and Min-Sep participation. First note that every entry of C⊤C

is non-negative. Therefore, sens is independent of m and we have

sens
(
C, ΠminSep

b,k

)2
=

k−1∑
i,j=0

(C⊤C)[ib, jb] =
∥∥∥∑k−1

j=0 C[:, jb]
∥∥∥2

2
. (3.25)

This can be evaluated in O(nk) time, making it highly practical.

3.3.6 Restarted Mechanisms*

We can extend a streaming correlated noise mechanism to multiple
epochs by simply restarting the mechanism at the end of each epoch. In
practice, this is inferior to directly designing a multi-epoch correlated
noise mechanism using the machinery in this section (see Section 3.7
for more discussion); however, restarted mechanism provides a simple
way to prove bounds for multiple participation.

In particular, in the case of restarted mechanism, the privacy loss
then simply composes (sequentially) over the k epochs (as per the
upcoming Lemma 3.19). This requires a noise multiplier (and hence, the
max loss) that is

√
k times larger, when compared to the single-epoch

setting. Our goal in this section is to demonstrate that the multiple-
participation sensitivity can, by interpreting a restarted mechanism as
a special case of cyclic participation, obtain the same bounds.

We note that general multi-participation correlated noise algorithms,
such as the banded Toeplitz mechanism, are not restarted mechanisms
(whose strategy matrix has a sawtooth shape as in Fig. 3.12). Thus, using
the multi-participation sensitivity directly lets us design substantially
better mechanisms.11

Mathematically, we can describe the restarted mechanism by a
tensorization operation, as illustrated in Fig. 3.12:

11Restarted mechanisms can apply in some settings not covered by existing multi-
participation theory, such as shuffled passes, i.e., where the dataset is shuffled at
the start of the epoch. It is not known if multiple-participation sensitivity can be
extended to this setting, as we discuss in Section 5.
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Figure 3.12: A restarted mechanism with k restarts can, as per Definition 3.18, be
constructed from factorizations of the block diagonals components.

Definition 3.18 (Restarted Mechanism). Let Apre denote a kn×kn

workload matrix. The k-restarted version of a correlated noise
mechanism over n steps based on the factorization Apre[: n, : n] =
BC of the first n rows and n columns of Apre is given by Akn×kn =
B̃C̃ with

C̃ = C ⊗ Ik×k, and B̃ = Apre(C−1 ⊗ Ik×k) ,

where Ik×k is the k × k identity matrix, and “⊗” denotes the
Kronecker product. If C is not invertible, B̃ can be defined using
a suitable pseudoinverse C† instead.

We can expand out the definition to see why it corresponds opera-
tionally to restarting the mechanism: the noise C̃−1Z injected by the
restarted mechanism is correlated by the matrix

C̃−1 = C−1 ⊗ Ik×k =


C−1

. . .
C−1

 ,

which is simply a block-diagonal matrix. Thus, the noise injected in any
given epoch is independent of the noise injected in any other epoch—this
is equivalent to freezing the results of the previous epoch and restarting
the mechanism.
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Restarts vs. Multiple-participation Sensitivity We compare the
restarted mechanisms with directly computing the multiple-participation
sensitivity under cyclic participation (the case of Min-Sep participation
is similar). We show through a simple calculation that the multiple-
participation framework we have developed so far can recover the special
case of restarted mechanisms.

The key tool to give a differential privacy guarantee for a k-restarted
mechanism is composition. We recall the standard composition property
of GDP:

Lemma 3.19 (Adaptive Composition of GDP). Let M1 : X ∗ → Y1
be µ1-GDP, and M2 : X ∗ × Y1 → Y2 be µ2-GDP mechanism
with respect to its first argument for any fixed second argument.
Then, the mechanism M(D) =

(
Y1,M2(D, Y1)

)
for Y1 =M1(D)

is
√

µ2
1 + µ2

2-GDP.

While we stated Lemma 3.19 for two mechanisms, by induction it is
easy to extend to n adaptive mechanisms which have GDP parameters
µ0, . . . , µn−1, in which case releasing all n outputs satisfies µ-GDP with
µ =

√∑n−1
t=0 µ2

t .
Now, returning to the restarted correlated noise mechanism, suppose

we wish to obtain a µ-GDP guarantee over k epochs, where each epoch
corresponds to b = N/B steps with a batch size of B over N examples
(see the setting in Section 3.3.1 for notation). Then, by the GDP
composition property of Lemma 3.19, each epoch must satisfy µ̂-GDP
with µ̂ = µ/

√
k. Thus, the seed noise Z per-epoch mechanismM(G) =

A(G+C−1Z) has to be distributed as Z ∼ Nb×m(0, ∥C∥2col /µ̂2), where
m is the dimension of the model space. That is, its component-wise
variance is σ2

restart := k ∥C∥2col /µ2.
On the other hand, we can view all kb steps as one run of a

multi-epoch mechanism with strategy matrix C̃. Indeed, this multiple-
participation correlated noise mechanism corresponds to cyclic partici-
pation schema Πcyclic

b,k of n steps per epoch for k epochs. Thus, we can
also derive privacy guarantees using the multiple-participation sensi-
tivity of all kn steps. In this case, the component-wise variance of the
seed noise Z for the correlated noise mechanism to satisfy µ-GDP is
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σ2
ME := sens(C̃, Πcyclic

b,k )2/µ2.
Now, it follows from the definition that both approaches turn out to

be equivalent. Indeed, assuming that C⊤C is element-wise non-negative,
we have by Lemma 3.16(b) that

sens(C̃, Πcyclic
b,k )2 = max

π∈Πcyclic
b,k

∑
t∈π

∥∥C̃[:, t]
∥∥2

2

(a)= max
l∈[b]

k−1∑
j=0

∥∥C̃[:, l + jb]
∥∥2

(b)= max
l∈[b]

k
∥∥C[:, l]

∥∥2
2 = k · ∥C∥2col ,

where (a) follows from the definition of the schema Πcyclic
n,k (Eq. (3.16)),

while (b) follows from C̃ = C ⊗ Ik×k (see also Fig. 3.12). Thus, we have
that σ2

ME = σ2
restart, meaning that both approaches are equivalent.

3.4 Privacy Amplification by Sampling: A Deeper Dive

Recall also from Section 3.1 that DP-SGD with correlated noise can
give much better utility than DP-SGD with independent noise in sce-
narios such as federated learning where amplification by sampling is
not applicable. In fact, correlated noise can also be competitive with
independent noise with amplification in some regimes as we elaborate
on below.

The benefit from privacy amplification gets better as the noise
multiplier σ gets larger, or equivalently, when the privacy budget ε is
small12; see Fig. 3.1. In particular, if the noise multiplier σ is sufficiently
large, the benefits of privacy amplification for DP-SGD are larger than
the benefits of using correlated noise (as opposed to independent noise).
That is, amplified independent noise mechanisms can outperform un-
amplified correlated noise mechanisms in the high-privacy regime.

However, the data processing and noise addition are independent
components of the algorithm. This raises a key question:

12We consider amplification in the framework of (ε, δ)-DP, as it admits a tighter
description of the amplified privacy guarantee than Gaussian DP.



3.4. Privacy Amplification by Sampling: A Deeper Dive 135

Can correlated noise mechanisms benefit from privacy am-
plification by sampling (when it is feasible)?

This turns out to be technically challenging. The main reason is that
the analysis of privacy amplification often relies heavily on independence
of the randomness in each iteration of DP-SGD, both for the noise
generation and in the sampling process. This independence lets us
tightly combine the per-round privacy guarantees of DP-SGD (each
step is just a Gaussian mechanism) using standard composition results
such as Lemma 3.19 to get a privacy guarantee for the entire training
process. Without independence, the guarantees given by composition
are not valid, which prevents a straightforward amplification analysis
of correlated noise under sampling. It remains an open question to give
efficiently computable and near-tight privacy guarantees for general
correlated noise mechanisms under amplification by sampling.13

We overview a simple construction that allows amplification of
privacy guarantees with b-banded C matrices, i.e., C[t, τ ] = 0 for all
t ≥ τ +b and t < τ (see Definition 2.12 of Section 2.4). This construction
uses a modification of Poisson sampling that creates a Poisson subsample
from a different block (where we cycle through the blocks in fixed order):

Definition 3.20 (Block-Cyclic Poisson Sampling). Given a number
b of blocks and a expected batch size B, we first partition the dataset
D of size |D| = N into b arbitrary subsets D0, D1, D2, . . . Db−1 of
equal size N/b. In iteration t, we (Poisson) sample from the dataset
Dt (mod b), with sampling probability p′ = Bb/N , giving a batch of
expected size B.

We can now give an amplified privacy guarantee using this sampling
process for banded C matrices:

13Here, we only tackle the problem of giving an amplified privacy guarantee for a
given strategy matrix C. Ultimately, we wish to co-design the strategy matrix and
the sampling scheme to attain the best utility at any privacy level; we get back to
this in Section 5.
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Theorem 3.21 (Informal). Consider the block-cyclic Poisson sam-
pling strategy with b blocks and an expected batch size B and
suppose the gradients satisfy the norm bound of Eq. (3.9). In this
setting, the correlated noise mechanism M(G) = CG + Z with
Z ∼ Nn×m

(
0, ν2) for some variance ν2 > 0 satisfies any privacy guar-

antee satisfied by independent noise DP-SGD (i.e. Algorithm 3.1
with C as the identity matrix) using n′ = n/b steps, sampling
probability p′ = Bb/N (i.e., so that batches are formed with an
expected size of B from a dataset of size N/b), and noise standard
deviation ν ′ = ν/ ∥C∥col.

Proof Sketch. Without loss of generality we can assume that adjacent
datasets D and D′ differ in the example x0 which is in D0. Since the
gradient g0 is drawn from dataset D0, it could differ between D and
D′. However, since the matrix C is b-banded, changing g0 only affects
rows 0, 1, . . . , b− 1 of the output CG + Z, and gb, g2b, . . . do not affect
these rows. Similarly, the gradient gb is also computed on a subsample
from D0 and could differ when we move to an adjacent dataset. This
only affects rows b, b + 1, . . . , 2b− 1 of CG, and g0, g2b, g3b, . . . do not
affect these rows.

In other words, each batch drawn from D0 affects a disjoint part of
the output: the jth batch can only affect rows Rj := {jb, . . . , (j+1)b−1}
for a total of n′ = n/b such groups. Then the mechanism Mj(G) :=
(CG + Z)[Rj ] generating corresponding rows of the M(G) can be
viewed as one run of the Gaussian mechanism with subsampling. In
particular, the ℓ2-sensitivity (assuming G′ is generated as above) is∥∥(C(G−G′)

)
[Rj , :]

∥∥
F =

∥∥∥C[Rj , 0](g0 − g′
0)⊤

∥∥∥
F
≤ ∥C∥col .

This would satisfy the same privacy guarantee as a mechanism with
unit ℓ2-sensitivity, but with noise multiplier σ = ν/ ∥C∥col. Moreover,
g0 is generated by sampling an expected B elements from |D0| = N/b

choices; so the sampling probability is p′ = B/(N/b) = Bb/N . Thus,Mj

satisfies the same privacy guarantee as DP-SGD (whose ℓ2-sensitivity
is 1) with a noise multiplier σ and sampling probability p′. Finally, the
complete mechanism M is an adaptive composition of M0, . . . ,Mn′−1,
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meaning that the original correlated noise mechanism M satisfies the
same privacy guarantee as n′ steps of DP-SGD.

3.5 Learning Guarantees for Correlated Noise Mechanisms*

In this section, we will focus on the learning theoretic guarantees enjoyed
by correlated noise mechanisms, and how they compare to indepen-
dent noise mechanisms (i.e., DP-SGD or differentially private gradient
descent). Note that the full batch noisy gradient descent (DP-GD)
achieves optimal accuracy-privacy trade-off for empirical risk minimiza-
tion, something that can also be achieved using a proper instantiation
of DP-SGD (for example, with appropriate choice of minibatching and
subsampling) for both stochastic convex optimization and empirical risk
minimization. The benefit of using DP-SGD over DP-GD is that the
former has significantly less overhead in terms of computational time.

The main message in this section is that, while we can design optimal
algorithms for stochastic convex optimization (SCO) using multiple
pass over the data, it is not known that it is possible in the single-
epoch setting, i.e., with a single pass over the data. On the other hand,
correlated noise mechanisms are known to be the best in terms of
the trade-offs between privacy, utility, and computation time in the
single-pass setting. In the following, we make this claim more precise,
surveying generic bounds for stochastic convex problems, and more
fine-grained bounds for specific problems like linear regression.

3.5.1 Generic Learning Bounds

Stochastic convex optimization with differential privacy has been stud-
ied in a variety of settings, we focus on the case of Lipschitz functions
and convexity to illustrate the effect of introducing the noise correla-
tions. Specifically, we assume Θ ⊆ Rm is a convex set (where m is the
dimensionality of the model space) and:

(a) Convex: The loss function ℓ(· , x) is convex in its first parameter
for all x.

(b) Lipschitz: The loss function ℓ(· , x) is 1-Lipschitz (in the Eu-
clidean norm). That is, for all pairs θ1, θ2 ∈ Θ and all x ∈ X , we
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have
|ℓ(θ1, x)− ℓ(θ2, x)| ≤ ∥θ1 − θ2∥2 .

The first mechanism to exploit the correlated noise mechanism was
the DP-follow-the-regularized-leader (DP-FTRL), which we collectively
refer as correlated noise DP-SGD. We refer the readers to Section 1.10.2
for details. The analysis of correlated noise DP-SGD goes via the
standard regret analysis of online learning, while accounting for the
additional noise added due to privacy. One can show the following
results for the algorithm Acor-noise defined in Section 1.10.2:

Theorem 3.22. Given n data samples, ADP-FTRL is (ε, δ)-DP and
outputs a θ ∈ Rm such that

• In the general setting, we have

R(Acor-noise) = Õδ

(
m1/4
√

εn

)
,

where Õδ(·) hides polylog factors in n and δ.

• In the realizable setting, i.e., when min
θ∈Θ

Ex∼τ [ℓ(θ; x)] = 0, the
SCO guarantee can be improved to

R(Acor-noise) = Θ̃δ

(
1√
n

+
√

m

εn

)
.

3.5.2 Detailed Learning Bounds on Specific Problems

We now review some bounds demonstrating that correlated noise can
help Algorithm 1.3 attain a better objective value than independent
noise in the streaming setting with an infinite clipping norm of ζ =∞.
That is, the correlated noise mechanism receives as input the unclipped
gradient gt = ∇ℓ

(
θt, xt

)
. Hence the norm, ∥gt∥2, and, thus the sensitiv-

ity, can potentially be unbounded, and so this algorithm does not satisfy
differential privacy.14 Still, studying the suboptimality bounds on the

14Clipping can also impact the optimization dynamics of the learning algorithm;
the bibliographic notes of Section 3.7 provides some pointers.
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resulting algorithms with noise calibrated to a desired privacy level
under the false assumption that ∥g2∥2 ≤ 1 sheds light on the precise
effect of introducing noise correlations into the learning process (while
avoiding technicalities due to clipping), and how it subtly differs from
the prefix sum estimation.

Linear Regression

One of the simplest learning problems is linear regression. We aim to
predict a target y ∈ R from input x ∈ Rm by solving

min
θ∈Rm

1
2 E(x,y)∼Pdata(x

⊤θ − y)2 . (3.26)

This is an instantiation of the learning problem of Section 1.2 where
ℓ
(
θ, (x, y)

)
= (1/2)(x⊤θ−y)2 is the mean squared loss. This multiplica-

tive constant 1/2 in the squared loss ensures that the input covariance
matrix H = E[xx⊤] ∈ Rm×m is also the Hessian matrix of the objective
of Eq. (3.26).

We make several simplifications to illustrate the effect of the noise
correlations. First, we assume that input is Gaussian vector with full-
rank covariance matrix H, i.e., x ∼ N (0, H);15 second, we assume a
realizable model, i.e., the average loss at the global minimizer θ⋆ is zero.
This can only happen if ℓ

(
θ⋆, (x, y)

)
= (1/2)(x⊤θ⋆ − y)2 = 0 almost

surely for (x, y) ∼ Pdata. In other words, with probability one, we have
that (x, y) ∼ Pdata satisfies y = x⊤θ⋆.16 Finally, as we discussed above,
we omit gradient clipping, so the correlated noise mechanisms receives
as input the unclipped gradient gt = ∇ℓ

(
θt, (xt, yt)

)
. We calibrate

the noise to a desired privacy level under the false assumption that
∥g2∥2 ≤ 1.

The bounds depend on the ratio meff = Tr(H)/∥H∥2→2 of the trace
of the m×m input covariance matrix H to its spectral norm; this is also

15The notation N (0, H) denote the multivariate Gaussian with 0-
mean and covariance H ∈ Rm×m. Its probability density function is
(2π)−m/2 det(H)−1/2 exp

(
− 1

2 x⊤H−1x
)

16The realizability assumption is easily lifted by assuming instead that y =
x⊤θ⋆ + ξ for i.i.d. Gaussian noise ξ ∼ N (0, s2). This yields an extra additive term
that is independent of the DP noise in each of the bounds we give below.
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Figure 3.13: The densities of two Gaussian distributions in R2 and their effective
dimensions meff . The left plot depicts an isotropic Gaussian, meaning that its
covariance matrix has equal eigenvalues. Its effective dimension is then meff = 2 = m.
The right plot shows a nearly low rank Gaussian, whose covariance matrix has
eigenvalues (1.2, 0.04). Its effective dimension meff ≈ 1.03 is strictly smaller than the
ambient dimension m = 2.
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known as its effective dimension. We have the alternative expression in
terms of the eigenvalues λ1, . . . , λm > 0 of H:

meff =
∑m

i=1 λi

maxi=1,...,m λi
.

As illustrated in Fig. 3.13, we have 1 ≤ meff ≤ m, with a smaller meff for
approximately low rank problems, and equal to the ambient dimension
m when all the eigenvalues of H are equal. It is desirable for the error
of numerical algorithms to scale with effective dimension meff of the
problem, rather than the ambient dimension m, which can be signifi-
cantly larger. In particular, it is quite common for over-parameterized
problems on real-world data to exhibit an effective dimension that is
much smaller than the ambient dimension.

The advantage of correlated noise can be seen as follows. Suppose,
without loss of generality that ∥H∥2→2 = 1. We have the following
bounds in the asymptotic n→∞ regime in terms of the learning rate
0 < η < 1 (assumed small enough), the GDP parameter µ (so the
component-wise variance of the injected noise scales as 1/µ2), and the
effective dimension meff :

• Using independent noise, we have the matching upper and lower
bounds on the excess population risk (3.2) (up to absolute con-
stants):

lim
n→∞

R(Mindep,n) = Θ
(

ηm

µ2

)
,

where Mindep,n is the output of n steps of DP-SGD where the
gradients are perturbed with independent noise.

• Given a parameter ν > 0, consider a variant of the max-loss-
optimal Toeplitz mechanism (Section 2.3) where the first column
c0, c1, . . . of the strategy matrix C is given by

ct = (−1)t

(
−1/2

t

)
(1− ν)t . (3.27)

This coincides with the Toeplitz coefficients in Eq. (2.10) up to a
factor of (1− ν)t. (For intuition on why we have this extra factor,
see the paragraph on “Interpretation” below.) The mechanism
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MToep,n that uses the correlated noise mechanism over n steps
with this strategy matrix C ∈ Rn×n satisfies the excess risk bound

lim
n→∞

R(MToep,n) ≤ O

(
η2meff

µ2 ln2 1
ν

)

for all 0 < ν ≤ ηλmin(H), where λmin(H) denotes the smallest
eigenvalue of the covariance H.

• For any correlated noise mechanism Mn over n steps with a
Toeplitz strategy matrix C ∈ Rn×n, we have the lower bound on
the excess risk:

inf
M

{
lim

n→∞
R(Mn)

}
≥ Ω

(
η2meff

µ2

)
.

Interestingly, using independent noise in this case is strictly sub-
optimal, while the use of correlated noise is (almost) optimal: it matches
the lower bound up to log factors. The bound for correlated noise is
better than that of using independent noise by a problem-dependent
factor that can be as large as m/ ln m. The gap is significant when the
covariance H is approximately low rank. This is observed empirically in,
e.g., overparameterized models where the features are highly correlated.

Interpretation The improvement from the ambient dimension m to
the effective dimension meff sheds some light on the role played by
the correlated noise in learning problems. The gradient gt aims to
counteract the effect of the noise added in previous iterations and move
the trajectory back towards the minimizer θ⋆.

Unfortunately, the gradients cannot effectively cancel the noise along
eigenvectors of the covariance H with small eigenvalues (i.e., low signal
directions). This leads to accumulation of (independent) noise across
iterations. However, this can be remedied by partial cancellation of this
noise due to anti-correlations, as illustrated in Fig. 1.7 of Section 1.

In particular, the suboptimality R(M) decomposes along the direc-
tions of the eigenvectors of the input covariance H as follows. Let λj

and vj for j = 1, . . . , m denote the eigenvalues and eigenvectors of H.
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Then, we can decompose the suboptimality as

R(M) =
m∑

j=1
Rj(M) ,

where Rj is the suboptimality incurred in the direction given by vj , i.e.,
this depends on λj alone and not on {λi}i ̸=j . It can be shown that the
contribution of each direction is the same if using independent noise:

lim
n→∞

Rj(Mindep,n) = Θ(1) .

This also holds for low signal directions with λj small. On the other
hand, with correlated noise as in Eq. (3.27), we get that the contribution
of a direction j scales with the eigenvalue λj :

lim
n→∞

Rj(MToep,n) ≤ Õ(λj) ,

where Õ(·) hides constants and log factors of problem-dependent con-
stants. That is, the contribution of lower signal directions j with small
eigenvalue λj reduces proportionally due to the noise cancellation effect.

Finally, since the gradients of a strongly convex objective func-
tion can already provide some noise cancellation effect, the max-loss-
optimal Toeplitz mechanism of Eq. (3.27) requires less aggressive anti-
correlations than in the prefix sum estimation of Eq. (2.10). This explains
the a damping factor of (1− ν)t in the former.

In summary, anti-correlated DP noise can prevent noise accumulation
by repeatedly cancelling out a part of the noise in low signal directions.

3.6 Proofs of Technical Results*

We give here proofs of technical results of Lemma 3.10 and Proposi-
tion 3.11.

Proof of Lemma 3.10. The claim follows from plugging in the inequality

∥u∥∞ ≤ ∥u∥1 ≤ n ∥u∥∞ for all u ∈ Rn ,

into the definition of the operator norm (Eq. (3.14)) and noting that
∥·∥col = ∥·∥1→2. In particular, let u1 be such that

∀u ∈ Rn,
∥Cu∥2
∥u∥1

≤ ∥Cu1∥2
∥u1∥1

(3.28)
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and u∞ be such that

∀u ∈ Rn,
∥Cu∥2
∥u∥∞

≤ ∥Cu∞∥2
∥u∞∥∞

(3.29)

Setting u := u∞ in Eq. (3.28), we get
1
n
∥C∥∞→2 = ∥Cu∞∥2

n ∥u∞∥∞
≤ ∥Cu∞∥2
∥u∞∥1

≤ ∥Cu1∥2
∥u1∥1

= ∥C∥1→2 = ∥C∥col .

The other inequality follows similarly.

Proof of Proposition 3.11. The crux of the proof is to establish

f(C) :=
∥∥∥ApreC

−1
∥∥∥

row
∥C∥∞→2 ≥ ∥Apre∥∞→∞ . (3.30)

We will prove this later. Assuming that it holds for now, the next step is
to note that ∥M∥∞→∞ = maxt∈[n] ∥M [t, :]∥1 is the maximum absolute
row sum of the matrix M . For the matrix M = Apre, this is attained by
the last row and we have ∥Apre∥∞→∞ = n. Thus, we have, f(C) ≥ n.

The next step of our proof is to establish that the identity matrix
C = In×n achieves the lower bound with equality. First, ∥Apre∥row =

√
n

is the largest row norm of Apre, which is attained by the last row of
Apre. Second, we have that ∥I∥∞→2 =

√
n, because of the matching

upper and lower bounds

∥I∥∞→2 = max
u̸=0
∥u∥2 / ∥u∥∞ ≤

√
n and

∥I∥∞→2 ≥ ∥1n∥2 / ∥1n∥∞ =
√

n .

Here, the upper bound is based on the vector norm inequality ∥u∥2 ≤√
n ∥u∥∞ and we plugged in 1n := (1, . . . , 1) ∈ Rn for the lower bound.

Thus, we have that

f(I) = ∥Apre∥row ∥I∥∞→2 = n ,

establishing the required claim minC f(C) ≥ n = f(I).

Proving Eq. (3.30) To complete the proof, we have to show Eq. (3.30).
Fix a vector u such that Cu ̸= 0. Noting that the max row norm can
be written as an induced matrix norm, we have∥∥∥ApreC

−1
∥∥∥

row
=
∥∥∥ApreC

−1
∥∥∥

2→∞
≥
∥∥ApreC

−1(Cu)
∥∥

∞
∥Cu∥2

=
∥Apreu∥∞
∥Cu∥2

.
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Rearranging (and noting that it holds trivially for u such that Cu = 0),
we get the following inequality that holds for all u ∈ Rn:∥∥∥ApreC

−1
∥∥∥

row
∥Cu∥2 ≥ ∥Apreu∥∞ . (3.31)

Fix a vector u with ∥u∥∞ ≤ 1. Continuing on with the definition of
∥·∥∞→2, we get

f(C) =
∥∥∥ApreC

−1
∥∥∥

row

(
max

∥v∥∞≤1
∥Cv∥2

)
≥
∥∥∥ApreC

−1
∥∥∥

row
∥Cu∥2

≥ ∥Apreu∥∞ ,

where the last inequality followed from Eq. (3.31). Since this inequality
holds for all u such that ∥u∥∞ ≤ 1, we can take the largest lower bound
to get

f(C) ≥ max
∥u∥∞≤1

∥Apreu∥∞ =: ∥Apre∥∞→∞ .

This establishes Eq. (3.30).
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that the multi-epoch sensitivity is equal to ∥C∥∞→2 in the absence
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McKenna, McMahan, Rush, Guha Thakurta, and Xu [2023a] as its
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Multi-Epoch Sensitivity: Bounds The sensitivity bounds of Sec-
tion 3.3.4 can be attributed as follows:
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McKenna, McMahan, Rush, Guha Thakurta, and Xu [2023a,
Prop. E.1], while (b) is taken from Choquette-Choo, McMahan,
Rush, and Thakurta [2023b, Eq. 3, Cor. 2.1].

• Lemma 3.16: Part (a) is elementary; its second inequality has been
noted, for instance in McMahan, Xu, and Zhang [2024, Remark
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McKenna, McMahan, Rush, Guha Thakurta, and Xu [2023a, Thm.
2]. Finally, Part (c) was established in Kalinin and Lampert [2024,
Thm. 2], while Part (d) is a direct corollary of (b) and (d).

Multi-Epoch Sensitivity: Algorithms Next, we move on to the al-
gorithms presented in Section 3.3.5. The brute force computation of
sensitivity for cyclic participation was proposed in Choquette-Choo,
McMahan, Rush, and Thakurta [2023b], while the dynamic program
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for banded matrices was used by Choquette-Choo, Ganesh, McKenna,
McMahan, Rush, Guha Thakurta, and Xu [2023a]. The closed-form
expression was, as we previously noted, established in Kalinin and
Lampert [2024] and was used later, for instance, in McMahan, Xu, and
Zhang [2024]. Recently, Kalinin, McKenna, Upadhyay, and Lampert
[2025] introduced a new explicit factorization method, Banded Inverse
Square Root, which imposes a banded structure on the inverse correlation
matrix.

Finally, the tensorization process of restarted mechanisms in Sec-
tion 3.3.6 was called as “Stamping” in [Choquette-Choo et al., 2023b,
App. D.4]; restarting mechanisms is a commonly used trick, particularly
for baselines.
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McKenna, McMahan, Rush, Guha Thakurta, and Xu [2023a]. Unfortu-
nately, this resulting has two drawbacks: it is applicable only to banded
matrices, and the result guarantees can be worse than the unamplified
ones at large ε. The follow-up work of Choquette-Choo, Ganesh, Steinke,
and Thakurta [2024] lifted the first drawback (but in the setting of
Poisson sampling), giving a procedure that gives amplified guarantees
for non-banded correlated noise mechanisms. Choquette-Choo, Ganesh,
Haque, Steinke, and Thakurta [2024b] consider a different sampling
scheme which allows tight guarantees through Monte Carlo sampling.

Privacy Preserving Learning Differentially private empirical risk min-
imization (DP-ERM) and DP stochastic convex optimization (DP-
SCO) [Bassily, Smith, and Thakurta, 2014a, Bassily, Feldman, Talwar,
and Thakurta, 2019, Feldman, Koren, and Talwar, 2020, Bassily, Feld-
man, Guzmán, and Talwar, 2020, Asi, Feldman, Koren, and Talwar,
2021a, Bassily, Guzmán, and Nandi, 2021, Zhang, Tran, and Cutkosky,
2022a, Asi, Levy, and Duchi, 2021b, Kulkarni, Lee, and Liu, 2021, Gopi,
Lee, and Liu, 2022, Chaudhuri, Monteleoni, and Sarwate, 2011, Kifer,
Smith, and Thakurta, 2012] are probaly the most studied problems
in the theoretical DP literature. This body of work captures the opti-
mal privacy/utility trade-offs for a large class of convex optimzation
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problems. A comprehensive survey article for various methods used
in practice to instantiate DP-SGD (and detailed best practices) can
be found in Ponomareva, Hazimeh, Kurakin, Xu, Denison, McMahan,
Vassilvitskii, Chien, and Thakurta [2023], including how one instantiate
subsampling to achieve better accuracy guarantee.

Theoretical Analysis of Learning with Correlated Noise Mechanisms
The generic bounds of Section 3.5.1 were shown by Kairouz, McMa-
han, Song, Thakkar, Thakurta, and Xu [2021a] for the non-realizable
(agnostic) setting, while the one in the realizable setting was shown
by Asi, Feldman, Koren, and Talwar [2023]. The detailed bounds of
Section 3.5.2 were shown by Choquette-Choo, Dvijotham, Pillutla,
Ganesh, Steinke, and Thakurta [2024a]. Finally, the currently best
known rate for single-pass algorithms for stochastic convex optimization
is in Choquette-Choo, Ganesh, and Thakurta [2024]. We refer to these
original works for further details and proofs.

The analysis of Section 3.5.2 is based on Algorithm 1.3 without
clipping. However, this is only an approximation as clipping does impact
the optimization dynamics, see Zhang, He, Sra, and Jadbabaie [2020],
Chen, Wu, and Hong [2020], Zhang, Chen, Hong, Wu, and Yi [2022b],
Xiao, Xiang, Wang, and Devadas [2023a], Koloskova, Hendrikx, and
Stich [2023a], Schaipp, Garrigos, Simsekli, and Gower [2024], Marshall,
Xiao, Agarwala, and Paquette [2024] and the references therein. Using
anti-correlated DP noise to prevent noise accumulation by repeatedly
cancelling out a part of the noise in low signal directions is discussed in
more details in Choquette-Choo, Dvijotham, Pillutla, Ganesh, Steinke,
and Thakurta [2024a, Remark C.16].



4
Implementation Details and Practical

Recommendations

We now turn to practical considerations in implementing correlated noise
mechanisms. In particular, we discuss how to solve the optimization
problems involved in constructing correlated noise mechanisms for the
streaming setting (Section 2) and the multiple-participation setting
(Section 3). We also discuss the nuances involved in efficient noise
generation, including in distributed environments.

While our discussions apply more broadly to correlated noise mech-
anisms based on any lower triangular and Toeplitz workload matrix
A ∈ Rn×n, we use the prefix sum workload matrix, encountered in
stochastic gradient descent (SGD; see Section 1.2), as a concrete exam-
ple:

Apre =


1 0 · · · 0
1 1 · · · 0
...

... . . . ...
1 1 · · · 1

 ∈ {0, 1}n×n . (4.1)

The main focus of this section is two fold. First, we discuss nu-
merical optimization techniques to find a factorization Apre = BC

with lower-triangular factors B, C. In particular, we setup the problem
in Section 4.1, focusing on specific methods for the optimizing the

149
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dense mechanism in Section 4.2 and parameterized mechanism (e.g.
BLT) in Section 4.3. In both cases, we handle the streaming and multi-
participation settings. The second objective of this section is to provide
practical recommendations on the design choices in correlated noise
mechanisms (Section 4.4).

4.1 Mechanism Optimization Using Numerical Methods

Recall that we considered two types of mechanisms in Section 2: (a)
those that involved numerically optimizing the strategy matrix C,
such as the dense mechanism of Section 2.2 or the Buffered Linear
Toeplitz (BLT) mechanism of Section 2.5, and (b) mechanisms with
handcrafted matrices, such as the max-loss-optimal Toeplitz mechanism
of Theorem 2.5 ( Section 2.3).

While numerical optimization of the mechanisms requires additional
up-front computation cost (compared to the handcrafted mechanisms),
they have a key practical advantage: they can be configured for a wider
variety of settings, particularly varied participation patterns in the
multiple-participation setting. Such settings are particularly relevant in
the learning setting, as we discussed in Section 3.

Setting Our goal is find a lower triangular strategy matrix C ∈ Rn×n,
such that some loss induced by the factors B = ApreC

−1 and C is
minimized. While we focused primarily on the max loss (Definition 2.3)
in Sections 1 and 2, it is customary to use the root-mean square loss
(RMS-loss) as an objective for numerical optimization (Definition 2.23).
For the streaming setting, we showed in Theorem 2.22 that:

L̄2(C) := L̄2(ApreC
−1, C) = 1√

n

∥∥∥ApreC
−1
∥∥∥

F
∥C∥col , (4.2)

where we take B = ApreC
−1 if not specified otherwise. In the multiple-

participation setting, the term ∥C∥col is replaced with the participation
calibrated sensitivity as discussed in Section 3.3.3.

The RMS-loss has traditionally been the objective of choice to
optimize correlated noise mechanisms, both for streaming prefix sums
and for machine learning, as it better captures the “overall” loss across
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Figure 4.1: We plot ∥B∥2
row and ∥B∥2

F for the matrix B =
(

x1 0
1 x2

)
as a function

of x1, x2. Notice the non-smoothness in the left plot.

all prefix sums than the max loss. Moreover, the squared norm ∥·∥2F
encountered when optimizing the (square of the) RMS-loss is a smooth
function,1 while ∥·∥2row encountered in the (square of the) max loss of
Eq. (2.4) is not; see Fig. 4.1 for an illustration. Practically, this makes
the optimization of RMS-loss more stable.

In the upcoming sections, we focus on optimizing mechanisms whose
strategy matrix C can be of two types:

1. Dense strategies, which are represented explicitly as a matrix
C. Dense strategies provide full generality and coverage over the
space of strategies.

2. Parameterized strategies, which represents the strategy im-
plicitly in terms of a parameter vector ϕ ∈ Rp via the parameter-
ization C(ϕ). Examples include the banded Toeplitz strategies
(Section 2.4) and the BLT strategies (Section 2.5).

1We say a function f is smooth if it is continuously differentiable and its gradient
∇f is Lipschitz.
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Remark 4.1 (Scalability). While explicit dense strategy matrices
C are more general, their O(n2) space and O(n3) optimization
time complexity can be prohibitive for large number of steps n.
Indeed, prior work has scaled up the dense mechanism only to
n ≈ 104 steps. For example, the numerical mechanism optimization
in the open-source Jax Privacy library for dense mechanisms takes
less than 10 seconds (on a GPU) for n = 1024 steps, but the
running time increases 100× to around 15 minutes for n = 8192.
When appropriately designed, implicitly represented strategies tend
to have compact tractable representations and can be optimized
efficiently for much larger values of n.

4.2 Optimizing the Dense Mechanism

The dense mechanism attempts to directly optimize the strategy matrix
C to minimize the RMS-loss objective. We treat the streaming and
multiple-participation settings separately.

4.2.1 Optimization in the Streaming Setting

The RMS-loss objective takes the simple form of Eq. (4.2) in the
streaming setting. The key challenge arises from this objective being a
non-convex function of C. Fortunately, it can be rewritten as a convex
optimization problem as a function of the Gram matrix M = C⊤C.
The key property is the following:

Lemma 4.2. For any two matrices A, C ∈ Rn×n with C invertible,
and M = C⊤C, we have

∥C∥2col = ∥diag(M)∥∞ , and
∥∥∥AC−1

∥∥∥2

F
= Tr(AM−1A⊤) .

Proof. The proof follows from direct calculation using the following two
facts: (1) M [t, t] = ∥C[:, t]∥22, and (2) ∥Q∥2F = Tr(Q⊤Q) for any real
matrix Q.

The next ingredient to a convex reformulation is that the objective
L̄2(C) is scale-invariant: L̄2(C) = L̄2(αC) for any constant α ̸= 0.
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Thus, we can fix a scale by imposing the constraint that ∥C∥col = 1, or
equivalently, that diag(M) ≤ 1 element-wise. Together, we end up with
the following convex optimization problem:

Problem 4.3. Find the matrix M⋆ that solves the optimization
problem

minimize Tr(AM−1A⊤)
subject to diag(M) = 1 and M ≻ 0

(4.3)

and then find C⋆ so that C⊤
⋆ C⋆ = M⋆ via e.g., Cholesky decompo-

sition.

Here, the positive-definiteness constraint M ≻ 0 ensures that
there exists a matrix C⋆ such that C⊤

⋆ C⋆ = M⋆ and the objec-
tive Tr(AM−1A) is finite and convex. Finally, note that we replace
the inequality constraint diag(M) ≤ 1 with the equality constraint
diag(M) = 1, as this does not change the solution: As we showed
in Lemma 2.9 the set of optimal strategies always includes a column-
normalized one. This has the added benefit of yielding an unconstrained
optimization problem, as we will soon discuss. Together, we get the
equivalence:

Theorem 4.4. The solution C⋆ obtained from Problem 4.3 mini-
mizes the RMS-loss, i.e.,

L̄2(C⋆) = min
C∈Rn×n

L̄2(C).

See Fig. 3.3 (left) for an example of a mechanism optimized using
this approach.

Practical Algorithms While Problem 4.3 can be written as a semi-
definite program, it is possible to develop more efficient solutions us-
ing unconstrained quasi-Newton algorithms. The equality constraint
diag(M) = 1 amounts to fixing the diagonal elements of M to one
and not optimizing over them. (In contrast, the inequality constraint
diag(M) ≤ 1 is more challenging to handle, and requires constrained
optimizers.)
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Figure 4.2: Dropping the positive-definiteness constraint of Problem 4.3: we plot
f(M) = Tr(M−1) with M = diag

(
x, y, 1 − x − y

)
, plotted as a function of x, y. (We

have Tr(M) = 1 by construction.) Notice that the red region with M ≻ 0 (where
the objective is convex) is disconnected from the blue regions where M fails to be
positive definite. Indeed, f(M) is discontinuous whenever one of the eigenvalues of
M is zero. A gradient-based optimizer initialized in the red region with M ≻ 0 with
appropriate safeguards (such as line search or a small enough learning rate) will
generally not leave that region. Thus, this positive-definiteness constraint can be
heuristically dropped in practical implementations.
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Next, prior work has generally found it to be safe to ignore the
positive-definiteness constraint M ≻ 0 as well (once diag(M) = 1 is
imposed), as long as the optimization of M is initialized at a feasible
point. The intuition behind this is illustrated in Fig. 4.2. Ignoring this
constraint as a heuristic, Problem 4.3 is then a smooth, unconstrained,
and convex optimization problem. These three properties are crucial as
they allow us to leverage rapidly convergent off-the-shelf optimization
algorithms to solve Problem 4.3. We recommend L-BFGS, a limited
memory quasi-Newton algorithm, for its rapid empirical convergence
and highly optimized numerical implementations.

Time and Space Complexity The n × n matrix M requires O(n2)
memory. Thus, the total memory requirement of L-BFGS is O(n2)
(assuming a small constant number of memory buffers for L-BFGS).
Since the gradient ∇M Tr(AM−1A⊤) = −M−1A⊤AM−1 requires
computing M−1, the per-step time complexity is O(n3). In practice,
when utilizing GPUs, it is feasible to solve this problem up to n ≈ 104.

4.2.2 Optimization in the Multiple-Participation Setting

The main difference between the streaming and the multiple-
participation setting lies in how sensitivity is calculated. As discussed
in Sections 3.3.3 and 3.3.4, we need specialized algorithms tailored
to particular participation schema to tightly compute the sensitivity.
Indeed, in this case, we have that the RMS-loss of a strategy C under
a participation schema Π and model dimension m is

L̄2(C |Π, m) = sens(C, Π, m)
∥∥∥ApreC

−1
∥∥∥

F
, (4.4)

where sens(·, ·, ·) is the participation-calibrated sensitivity (also see
Definition 3.13) and the other factor B is again understood to be
B = ApreC

−1, and is omitted for brevity.
From an optimization perspective, it is convenient to use the follow-

ing corollary of Lemma 3.15:
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Corollary 4.5. Let C ∈ Rn×n denote a lower-triangular matrix and
let M = C⊤C denote its Gram matrix.

(a) For any participation schema Π, we have we

sens (C, Π, m)2 ≤ max
π∈Π

∑
t,τ∈π

∣∣∣M [t, τ ]
∣∣∣ . (4.5)

(b) This upper bound is tight (and the sensitivity is independent
of the dimensions m) if M [t, τ ] = 0 for all t ̸= τ ∈ π ∈ Π.

Lemma 3.15(b) gives more general non-negativity conditions for
the upper bound to be tight. However, as discussed in the streaming
setting, it is numerically easier to handle equality constraints rather than
inequality constraints; we just fix M [t, τ ] = 0 and do not optimize that
variable. Thus, in the interest of scalability of numerical optimization,
it is common to opt for this more restrictive formulation with equality
constraints.

The constraint that M [t, τ ] = 0 means that the noise added in two
iterations t, τ where the same datapoint (or user) i can participate is
uncorrelated. While this is a modest constraint for the cyclic partici-
pation, it imposes a b-banded structure (Definition 2.12) for b-MinSep
participation (Definition 3.14). We design optimization algorithms under
this assumption. In particular, since the sensitivity is then dimension-
independent, we denote it by sens(C, Π), as in Definition 3.13.

Similar to the streaming setting, this objective is scale-invariant, so
we can impose the bound sens(C, Π) ≤ 1. This leads us to the following
optimization problem:

Problem 4.6. Given a participation schema Π, (i) find the matrix
M⋆ that solves the optimization problem

minimize
M≻0

Tr(AM−1A⊤)

subject to
∑
t∈π

M [t, t] = 1 ∀π ∈ Π

M [t, τ ] = 0 ∀ t, τ ∈ π, π ∈ Π, t ̸= τ

(4.6)
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and then (ii) find C⋆ so that C⊤
⋆ C⋆ = M⋆ via e.g., Cholesky

decomposition.

Note that sens(C, Π) ≤ 1 is equivalent to the inequality constraint∑
t∈π M [t, t] ≤ 1 for each π ∈ Π. Like in the streaming setting, we have

replaced the inequality constraint with an equality in Eq. (4.6). Unlike
the streaming setting, however, we do not have a proof of optimality of
this step. This substitution is based on the following conjecture, which
is strongly supported by empirical evidence:

Conjecture 4.7. For every participation schema Π and workload
A, the unique solution M⋆ of Problem 4.6 remains optimal when the
first constraint of Eq. (4.6) is replaced with the inequality constraint∑

t∈π M [t, t] ≤ 1 ∀π ∈ Π.

Practically, Problem 4.6, with its equality constraints, has several
advantages over the inequality constraints. First, it simplifies the prob-
lem significantly, making it closer to Problem 4.3 from the streaming
setting, which is well-understood. Second, imposing these constraints
improves the convergence of the optimization algorithm, allowing it
to find better solutions in less time. Third, it reveals interesting and
interpretable structures about the behavior of optimal strategies with
different participation schemas (e.g., Proposition 4.9).

Practical Algorithms Problem 4.6 is only slightly harder to solve
than its streaming version in Problem 4.3. The individual entries of
M where M [t, τ ] = 0 can be removed as variables and constraints
from the optimization problem,2 leaving the linear equality constraint∑

t∈π M [t, t] = 1 as the main technical challenge to overcome. Ideally,
we solve this problem in a similar fashion as in the streaming case, i.e.
using an off-the-shelf rapidly-convergent optimization algorithm like
L-BFGS. Since L-BFGS cannot natively handle equality constraints,
some modifications are necessary, as discussed next for the case of cyclic
participation.

2One way to achieve this is to initialize M [t, τ ] = 0 and never update it during
the course of optimization.
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Algorithms for Cyclic Participation Constraints can be incorporated
into gradient descent by projecting the iterates onto the constraint set.
Because the constraints are linear, this can be equivalently achieved
by projecting the gradients (instead of the iterates) onto the level
sets of the constraints. Heuristically, we recommend using the same
orthogonal projection strategy for L-BFGS.3 That is, to use an out-of-
the-box implementation of L-BFGS, but pass in the projected gradients
(onto the level sets of the constraints) in place of the true gradients.
This ensures that the iterates of the optimization respect the desired
constraints, as long as the initial value does.

We emphasize that this is a heuristic, and we are not aware of con-
vergence guarantees for this approach. Specifically, we use the projected
gradient proj(G+) in place of the actual gradient G+ in the L-BFGS
update step, as follows:

proj(G+) = arg min
G

{∥∥∥G−G+
∥∥∥2

F
:
∑
t∈π

G[t, t] = 0 ∀π ∈ Π
}

. (4.7)

This projection is easy in the case of cyclic participation Πcyclic
b,k ,

where the equality constraints are non-overlapping, i.e., each index t

only belongs to one π ∈ Πcyclic
b,k . In this case, proj(G+) simply modifies

the diagonal entries of G+ for |Πcyclic
b,k | = k non-overlapping subsets of

entries. We refer the readers to Fig. 3.3 (far right) for an example of a
mechanism optimized using this approach. In this example, some entries
in the corresponding C are in fact negative, unlike with most of the
other mechanisms we consider.

Algorithms for Min-Sep Participation The projection of Eq. (4.7) can-
not be efficiently implemented with Min-Sep participation. In particular,
it has overlapping groups (i.e. π ∩ π′ ̸= ∅), so an exact projection may
not be possible. Approximation projections (e.g., based on Dykstra’s

3L-BFGS can natively handle box constraints. However, more complex con-
straints require projections in the Mahalanobis norm defined by L-BFGS’s Hessian
approximation. Instead, our heuristic uses a Euclidean projection, making it directly
compatible with existing highly-optimized L-BFGS implementations (see Section 4.6
for references).
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alternating projection algorithm) would also be infeasible, as their cost
grows with |Π| and |Π| is exponentially large for the Min-Sep schema.

An alternate heuristic employed is to impose the constraint that
diag(M) = 1:

Problem 4.8. Given a participation schema Π, (i) find the matrix
M⋆ that solves the optimization problem

minimize
M≻0

Tr(AM−1A⊤)

subject to diag(M) = 1
M [t, τ ] = 0 ∀ t, τ ∈ π, π ∈ Π, t ̸= τ

(4.8)

and then (ii) find C⋆ so that C⊤
⋆ C⋆ = M⋆.

In the setting where every example participates an equal number of
times, i.e. |π| = |π′| for all π, π′ ∈ Π, then diag(M) = c 1 implies the
constraint of Eq. (4.6) for an appropriate constant c.4 This is true for
cyclic participation but not for Min-Sep participation.

Despite this difference, Problem 4.8 naturally interpolates between
the streaming setting and the full batch setting. Indeed, it is nearly
identical to the Problem 4.3 from the streaming setting, with the only
difference being a smaller set of free variables. As a result, the same opti-
mization routines used in the streaming setting are applicable here with
minor modifications. On the other hand, analogous to Proposition 3.11,
Problem 4.8 recovers independent noise under full-batch participation:5

Proposition 4.9. Under the full-batch setting (i.e., under partici-
pation schema Πfull = {[n]}), we have:

(a) The minimizers M⋆, C⋆ of Problem 4.6 are diagonal matrices.

(b) Problem 4.8 is solved by M = In×n = C.

Proof. The proof follows from noting that only diagonal matrices are
4We can take c = 1 due to scale invariance of the objective.
5While computing the sensitivity in the full-batch case is NP-hard (Section 3.3.2),

we can nonetheless solve Problems 4.6 and 4.8 efficiently. This is because we addi-
tionally impose M [t, τ ] = 0 for all t ̸= τ .
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allowed under the constraints of Problem 4.6 for Π = {[n]}, and that
we require these diagonal elements to be 1 in Problem 4.8.

Remark 4.10 (Full-batch correlated noise mechanisms). In the full
batch setting, where every example participates in every round, the
diagonal entries of the optimal strategy C⋆ solving Problem 4.6 (as
described in Proposition 4.9) are generally decreasing, which means
more noise is added in the later iterations.6 From the machine
learning perspective, this is counter-intuitive and possibly even
undesirable. On the other hand, from the perspective of minimiz-
ing RMS-loss on the prefix queries, this is natural, as the earlier
elements of the stream are required by more of the prefix queries,
and hence need less noise.

Beyond this abnormality, Proposition 4.9 reiterates the obser-
vation of Proposition 3.11 that correlated noise offers no further
improvements over independent noise in the full-batch setting.
Indeed, the most notable improvements of correlated noise mecha-
nisms over independent noise mechanisms occur in the streaming
(i.e., the single-epoch) setting, and significant gains can still be
obtained in large-scale compute-limited settings.

Time and Space Complexity The time and space complexity of solving
Problem 4.6 with projected L-BFGS for both cyclic and b-minimum
separated participation remains unchanged from the streaming setting.
That is, we require O(n3) time per L-BFGS step (with a small constant
number of total steps), and O(n2) space when representing the strategies
as dense matrices.

For b-minimum separated participation, Problem 4.8 imposes a
bandedness constraint that M [t, τ ] = 0 for all |t − τ | ≥ b. By using
parameterized strategies instead, we can reduce the time and space
complexity to O(nb2) and O(nb) respectively, which we discuss further
in Section 4.3.

6The decreasing ordering of diagonal elements is a property of RMS-loss. Recall for
max loss that the diagonal elements are equal, as we established in Proposition 3.11.



4.3. Optimizing Parameterized Mechanisms 161

Remark 4.11 (Primal vs. Dual Optimization). Problems 4.3-4.8 can
also be effectively solved via their dual problems.7We recommend
using the primal approach described earlier with L-BFGS for multi-
ple reasons. First, it generally converges very rapidly (possibly due
to the use of limited second order information about the curvature
of the objective function). Second, the primal problem formulation
can more naturally handle additional constraints on M . Finally,
parameterized mechanisms can only be tackled by primal-based
approaches (as we see in the next section), allowing for a unified
approach.

4.3 Optimizing Parameterized Mechanisms

While dense strategies provide the best utility, they can be expensive
or infeasible to optimize and deploy in practice for n ≳ 104 steps (see
Remark 4.1). This precludes their use in some regimes of practical
interest. We now discuss approaches to optimizing over parameterized
strategy classes such as Banded Toeplitz and Buffered Linear Toeplitz.
These strategy classes have sufficient expressive capacity to represent
near-optimal strategies (obtaining expected errors close to the optimal
dense strategies), while their structure allows for efficient optimization
and noise generation even with a large number of steps n.

Let ϕ ∈ Φ ⊂ Rp represent arbitrary parameters and let C(ϕ) ∈
Rn×n denote a lower-triangular strategy matrix parameterized by ϕ.
We focus in particular on two parameterized mechanisms introduced in
Section 2:

(a) The Banded Toeplitz mechanism (Section 2.4): Given param-
eters ϕ = (c0, . . . , cb−1), we parameterize the first column of C(ϕ)
as (

C(ϕ)
)
[:, 0] = (c0, . . . , cb−1, 0, . . . , 0) .

Further, we take C(ϕ) to be Toeplitz, so all other columns can

7It turns out that these problems satisfy strong duality, so the primal and dual
optimal values coincide.
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be determined from the first one, e.g. for b = 3 and n = 4,

C =


c0 0 0 0 0
c1 c0 0 0 0
c2 c1 c0 0 0
0 c2 c1 c0 0
0 0 c2 c1 c0

 .

(b) The Buffered Linear Toeplitz (BLT) mechanism (Sec-
tion 2.5): Given parameters ϕ = (α, λ), where α ∈ Rd

+ is a scale
parameter and λ ∈ [0, 1)d is a decay parameter, we parameterize
C(ϕ) = BLT(α, λ) as in Eq. (2.16).

The goal here is then to find parameters ϕ so as to minimize the
RMS-loss or the max loss. We consider the max loss in addition to the
RMS-loss because for Toeplitz strategies (both banded and BLT), the
max loss is equal to the last-iterate loss, and is hence a smooth function
that is amenable to numerical methods.8

Problem 4.12. Given a participation schema Π, find the parame-
ters ϕ⋆ ∈ Φ that solve the optimization problem

minimize
ϕ∈Φ

sens
(
C(ϕ), Π

)2 ∥∥∥AC(ϕ)−1
∥∥∥2

E
, (4.9)

where ∥·∥E = ∥·∥F /
√

n for the RMS-loss and ∥·∥E = ∥·∥row for
the max loss. For the streaming setting where Π = Πsingle =
{(0), (1), . . . , (n− 1)}, the problem simplifies to

minimize
ϕ∈Φ

∥C(ϕ)∥2col

∥∥∥AC(ϕ)−1
∥∥∥2

E
. (4.10)

Practical Algorithms We tackle Problem 4.12 with automatic differ-
entiation coupled with off-the-shelf gradient-based optimization. Specif-
ically, it suffices to have a function that can efficiently evaluate the
objective function with differentiable operations. In order to scale to a
large number of steps n, it is crucial to be able to evaluate the objective

8In all the cases we consider, we have that sens(C(ϕ), Π) is independent of the
model dimension m, as it satisfies the conditions of Lemma 3.15(b).
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function without ever materializing the matrices C(ϕ) or A explicitly by
exploiting their special structure. Details for how this can be achieved
with specific strategy classes are given in the subsections below.

In general, Problem 4.12 is a non-convex optimization problem with
respect to either the strategy matrix C or its parameters ϕ for the
banded Toeplitz and BLT mechanisms. Thus, gradient-based optimiza-
tion is not guaranteed to converge to a global optimal solution. However,
in practice, we find that appropriate initialization and parameter tuning
lead to high-quality solutions.9

Next, we describe how to evaluate the objective of Problem 4.12 for
both the banded Toeplitz and BLT mechanisms.

4.3.1 Optimizing the Banded Toeplitz Mechanism

When the number of bands b′ of the banded Toeplitz mechanism is
chosen to be no greater than the minimum separation b under MinSep
participation ΠminSep

b,k , we have by Lemma 3.16(d) that the multiple-
participation sensitivity sens(C, ΠminSep

b,k ) is
√

k times the streaming
sensitivity ∥C∥col, where k is the maximum number of partitions. The
same relation also holds for the cyclic participation setting, where
b = N/B is then the number of steps in an epoch and k is the num-
ber of epochs. In both cases, k is a constant and can be ignored for
optimization.

It remains to efficiently compute the error
∥∥AC(ϕ)−1∥∥2

E . Because
the matrix B = AC(ϕ)−1 is Toeplitz (as long as A is Toeplitz) and has
coefficients b = C(ϕ)−11 ∈ Rn, the expected error can be computed
efficiently as
∥∥∥ApreC(ϕ)−1

∥∥∥2

row
= ∥b∥22 ,

∥∥∥ApreC(ϕ)−1
∥∥∥2

F
=

n−1∑
t=0

(n− t)b2
t . (4.11)

These expressions can be computed efficiently. First, computing the
vector b ∈ Rn requires O(nb) time and O(n) space by leveraging the

9For example, we find in the streaming setting that the gradient-based solutions
obtained are competitive with the Toeplitz mechanism (Section 2.3), which is an
upper bound on how well both the banded Toeplitz and BLT mechanisms can perform
in the streaming setting. See Section 2.6 for empirical comparisons.
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banded structure of C(ϕ) (see Algorithm 2.1 in Section 2 for details).
Second, given the vector b, we can evaluate the expressions of Eq. (4.11)
in O(n) time.

The final step to optimize for Problem 4.12 using first-order opti-
mization is to calculate the gradients of the objective w.r.t. the parame-
ters. This can be done with automatic differentiation. The sensitivity
∥C(ϕ)∥2col = ∑b−1

t=0 c2
t is clearly a differentiable function of the parame-

ters ϕ = (c0, . . . , cb−1). The error
∥∥AC(ϕ)−1∥∥2

E is a function of b, which
is in turn a function of the ϕ.

Practical Considerations We find that this non-convex optimization
problem is somewhat sensitive to its initialization. In practice, initializing
the optimizer with ϕ0 = (c⋆

0, . . . , c⋆
b−1), which are the optimal Toeplitz

coefficients from Theorem 2.5, is highly effective across a wide range of
settings. Then, an off-the-shelf implementation of L-BFGS with default
parameters returns a high quality solution.

Furthermore, we find that it is important to tune the number of
bands. One can do so without paying a privacy cost of working with
real data by using the max loss or RMS-loss as a proxy for learning
performance. See Fig. 4.3 which shows how the optimal number of bands
varies with the batch size.

4.3.2 Optimizing the BLT Mechanism

Our high-level approach is to express the RMS-loss/max loss objective
as a differentiable function of the parameters ϕ that we wish to optimize
over. This enables us to leverage automatic differentiation to optimize
the objective with gradient-based optimization.

We first map the parameters ϕ to the BLT/inverse-BLT parameters
α, α̂ ∈ Rn and λ, λ̂ ∈ [0, 1)d using a differentiable function such that
the inverse of C = BLT(α, λ) is given by C−1 = BLT(α̂, λ̂).10 The
different ways of achieving this are summarized in Fig. 4.4a. Next, we
map (α, λ, α̂, λ̂) to the sensitivity and the RMS-loss or max loss via a
differentiable function, as summarized in Fig. 4.4b. By the chain rule,

10This is possible under the conditions imposed by Lemma 2.16.
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Figure 4.3: Tuning the Number of Bands: We plot the optimal number of
bands b of the banded Toeplitz mechanism as a function of the batch size B. The
number of bands is chosen to empirically minimize the max loss with and without
amplification at various values of the privacy budget ε for (ε, δ)-DP. Throughout, we
fix the number of iterations n = 2048 and dataset size N = 4069, as in Fig. 3.5. The
value of ε does not matter in the unamplified scenarios, as the unnormalized max loss
is simply a scaled version of sens(C)

∥∥ApreC
−1
∥∥

row
(see Theorem 2.2 and 3.9). On

the other hand, when accounting for amplification by sampling, the optimal number
of bands varies with ε: this is because the effect of amplification is determined by
the noise multiplier, as we discussed in Fig. 3.1. Recall from Fig. 3.5 that significant
amplification is obtained at ε = 1: this figure shows that this requires a smaller
number of bands. On the other hand, there is almost no amplification at ε = 10, so
the optimal number of bands is almost identical to the unamplified one.
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the composition of both these steps gives the loss as a differentiable
function of the parameters ϕ.

We consider the streaming setting, cyclic participation, and b-
minimum separated participation with at most k participations. The
conditions of Lemma 3.16(c) will hold so that the sensitivity for the
latter two multiple-participation settings will coincide, as in the banded
case.

Parameterization Choices: From ϕ to BLT Two possible BLT pa-
rameterizations ϕ have been proposed such that the mapping ϕ 7→
(α, λ, α̂, λ̂) is a differentiable mapping.

The first approach is to take ϕ = (α, λ) as the parameters of
C = BLT(α, λ) and reconstruct the inverse BLT parameters α̂, λ̂ from
it as per Lemma 2.16; see Fig. 4.4a (left) for an illustration. This requires
finding the roots of a degree-d polynomial, a step that can be performed
via an eigen-decomposition of a non-symmetric matrix (known as the
companion matrix) in O(d3) time. This subroutine is available as a
differentiable function in automatic differentiation frameworks like JAX
and PyTorch.

An alternate approach is to take ϕ = (λ, λ̂), and reconstruct α, α̂ ∈
Rd, see Fig. 4.4a (right) for an illustration.11 This can be achieved in
O(d2) time and memory as per the following lemma:

Lemma 4.13. Consider non-zero decay parameters λ, λ̂ ∈ Rd that
are pairwise distinct.12 Then, the unique parameters α, α̂ ∈ Rd

that achieve BLT(α, λ) = BLT(α̂, λ̂)−1 are given by:

αi =
∏d

j=1 λi − λ̂j∏
j ̸=i λi − λj

, and α̂i =
∏d

j=1 λ̂i − λj∏
j ̸=i λ̂i − λ̂j

.

Fig. 4.4a compares these different parameterizations. From a theoretical
perspective, both these parameterizations are equivalent, in that they
represent the same class of BLT/inverse-BLT systems:

11We allow the scale parameters α, α̂ to take both positive or negative values
here. We circumvent this issue in practice with appropriate barrier functions.

12Specifically, λi ̸= λj and λ̂i ̸= λ̂j for all i ̸= j, and λi ̸= λ̂j for all i, j ∈ [d].
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(a) Computation graph of the differentiable mapping ϕ 7→ (α, λ, α̂, λ̂) for different choices of the
parameters ϕ, denoted by the double bordered nodes. Left: ϕ = (λ, α). Right: ϕ = (λ, λ̂).
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(b) Computation graph of the differentiable mapping from the BLT/inverse-BLT parameters
(α, λ, α̂, λ̂) to the RMS-loss/max loss objectives.

Figure 4.4: BLT Computation Graph: We show the computation graph to
compute the objective of Problem 4.12 starting with different choices of the parameters
ϕ of the BLT. The blue nodes denote variables (with the double bordered nodes
denoting ϕ) while the orange nodes denote operations.
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Lemma 4.14. Consider the following two BLT parameterizations:
(a) Let Φ1 denote the set of (α, λ) ∈ Rd

++ × (0, 1)d that satisfy∑d
i=1 αi/λi < 1, in addition to the conditions of Lemma 2.16;

(b) Let Φ2 denote the set of (λ, λ̂) ∈ (0, 1)d × (0, 1)d that satisfy
the strict interlacing condition

λ1 > λ̂1 > λ2 > λ̂2 > · · · > λ̂d−1 > λd > λ̂d .

Then, the set of BLT/inverse-BLT systems represented Φ1 and Φ2
are identical. That is, for every ϕ1 ∈ Φ1, there exists ϕ2 ∈ Φ2 such
that BLT(ϕ1) = BLT(ϕ2) and vice versa.

BLT to Loss Having obtained a differentiable mapping ϕ 7→
(α, λ, α̂, λ̂), we now turn to expressing the loss as a function of these
scale and decay parameters. We consider two approaches to achieve
this:

• Toeplitz Coefficient Materialization: For a given time horizon
n, we can materialize the first column c0 = 1 and ct = ∑d

i=1 αiλ
t−1
i

for t ≥ 1 of the strategy matrix C = BLT(α, λ). Then, denoting
c = (c0, . . . , cn−1) ∈ Rn, the sensitivity can simply be calculated
as (see Eq. (3.25)):

∥C∥2col = ∥c∥22 , and sens(C, ΠminSep
b,k ) =

∥∥∥∥∥∥
k−1∑
j=0
Bjb(c)

∥∥∥∥∥∥
2

2

,

(4.12)

where Bl(c) = C[:, l] is given by the backshift operator:

Bl(c) :=

0, . . . , 0︸ ︷︷ ︸
l zeros

, c0, . . . , cn−l−1

 ∈ Rn for l ≥ 0 .

These can be programmed as differentiable functions in automatic
differentiation frameworks such as JAX or PyTorch that execute
in O(ndk) time. Reverse-mode automatic differentiation creates a
computation graph that effective stores c in memory, leading to a
O(n) space complexity; see Fig. 4.4 (a).



4.3. Optimizing Parameterized Mechanisms 169

We can then materialize the first column of b = (ApreC
−1)[:, 0]

since we have that b is the vector of prefix sums of c′ = (C−1)[:, 0].
Finally, we use Eq. (4.11) to compute the error

∥∥AC(ϕ)−1∥∥2
E .

These quantities can be computed in O(nd) time and O(n) mem-
ory, as can their derivatives with respect to the parameters (using
automatic differentiation). This can get prohibitively large, espe-
cially when the number n of steps is in the order of billions.

• Closed-Form Expression: In the streaming (single-
participation) setting, we can do better with a little more
effort—all the sensitivity and error terms in Problem 4.12 can
be computed in closed form in O(d2) time and memory. This
improvement is significant because, in practice, d < 10 typically
provides sufficient accuracy for the BLT mechanism. The exact
expressions are given in the appendix in Theorem 2.29.

Practical Considerations We recommend optimizing over the pa-
rameterization ϕ = (α, λ), as in Fig. 4.4a. While the O(d3) eigen-
decomposition is marginally more expensive, we find that it is nu-
merically more stable. To calculate the loss, we recommend using the
closed-form expressions whenever available, i.e., for the streaming set-
ting. This is especially advantageous with a large number n of steps.
For the multi-participations setting where closed-form expressions are
not available, we recommend materializing the Toeplitz coefficients.

Regardless of the parameterization (from Fig. 4.4a), it is crucial to
impose a log-barrier function so that λ ∈ (0, 1)d, and α is coordinate-
wise positive:

h(α, λ) = −
d∑

i=1
(log(λi) + log(1− λi) + log(αi)) .

Multiple sets of BLT parameters α, λ can produce the numerically
similar strategy matrix C, with different (random) initializations re-
sulting in different parameters. Interestingly, we observe that a smaller
number of buffers d leads to greater numerical stability. While theory
suggests that a larger d should always result in lower error, our empirical
findings show that there is no benefit (in terms of RMS-loss and max



170 Implementation Details and Practical Recommendations

Strategy Optimization Complexity

Mechanism Runtime Memory Practical
(Per Step) Limitations

Dense n3 n2 n ≲ 104

b-Banded bn2 bn n ≲ 105

b-Banded Toeplitz bn n n ≲ 107

d-Buffered Linear Toeplitz, k > 1 dn n n ≲ 108

d-Buffered Linear Toeplitz, k = 1 d d n ≲ 1010

Table 4.1: Time and space complexity of optimizing over different strategy classes
in terms of the number of steps n, the maximum number of participations k, the
number of bands b for banded strategy matrices (Section 2.4), and the order d for
the BLT mechanism (Section 2.5). The optimal value of b for Banded and Banded
Toeplitz mechanisms depends on the problem parameters, see Fig. 3.5 for an example.
The k = 1 optimization of BLTs uses the closed-forms of the loss from Section 4.3.2,
while for k > 1 we use the Toeplitz coefficient materialization approach (necessitating
time and space O(n), but scaling very well in practice).

loss) in taking d larger than 5 for this reason. In fact, d > 10 can actually
hurt empirical performance. This also suggests that reducing d may
help mitigate over-parameterization issues in this highly non-convex
optimization landscape.

Using double-precision floating point arithmetic is crucial.13 This
is necessary because decay parameters λi that are very close to, but
strictly less than, 1 are frequently encountered in practice. Finally,
careful tuning of L-BFGS parameters helps improve robustness.

4.4 Choosing a Correlated Noise Mechanism: Recommendations

We now provide some concrete rules of thumb to choose various design
aspects of correlated noise mechanisms in the context of AI model
training problem based on various practical considerations we have
discussed so far. These recommendations are summarized in Fig. 4.5.

13This requires an explicit adjustment in JAX and PyTorch, which default to
single-precision.
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Finding a Correlated Noise Mechanism:

minimize
B,C Error(B) × Sensitivity(C)

subject to BC = A and

(∗)

C satisfies some constraints

Practical Recommendations:

Workload (Ch. 1, 3)

Use A = Apre

(irrespective of base optimizer)

Error/Utility (Ch. 2)

Use max loss

or RMS loss

(not a critical choice)

Participation Pattern (Ch. 3)

Block-Cyclic Poisson Sampling (centralized, high privacy)

Cyclic Order (centralized, low privacy)

Min-Sep (federated learning)

Mechanism Constraints (Ch. 2)

Use

Banded Toeplitz (centralized) or

BLT (federated)

Mechanism Optimization (Ch. 4)

Non-convex optimization with

Gradient descent

or Quasi-Newton (L-BFGS)

Figure 4.5: A summary of the practical recommendations for each of the design
considerations highlighted in Fig. 1.8 in the context of AI model training.
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4.4.1 Choosing a Workload Matrix

Recall that the workload matrix does not explicitly appear in an imple-
mentation of DP-SGD with correlated noise (Algorithm 1.3 or the batch
version Algorithm 3.1). Indeed, the mechanism is fully specified by the
noise-correlating matrix C−1 (whereas the C matrix is only needed
to calibrate the noise for a particular µ-GDP guarantee). At the end
of the day, our goal is good learning performance for the final trained
model, for example the empirical risk Ex∼D[ℓ(x, θn)] (cf. Eq. (1.2)).
Unfortunately, we lack a rigorous theory to estimate this performance
for a given noise-correlating matrix C−1 used in Algorithm 3.1.14

In Section 1, we discussed a heuristic of selecting the workload matrix
A implied by the choice of first-order optimizer, e.g. Apre from Eq. (1.6)
for vanilla SGD and Amom from Eq. (3.6) for SGD with momentum.
Unfortunately, this heuristic does not apply to adaptive optimizers such
as Adam or AdaGrad.

We recommend an alternative heuristic: choose A = Apre regardless
of the base (non-private) optimizer. That is, we optimize the mechanism
to achieve low error on unweighted prefix sum estimates. We find that
this heuristic yields a C−1 that works very well in Algorithm 3.1 even if
the actual first-order update rule (Line 9 of Algorithm 3.1) corresponds
to a different workload such as SGD with momentum, or even an
adaptive gradient algorithm such as Adam or AdaGrad. Conversely,
there is no guarantee that a mechanism selected for good performance
on a particular momentum matrix Amom will outperform one optimized
for prefix sums Apre, even if the actual update rule corresponds exactly
to the momentum workload matrix Amom.

Recommendation: Workload Matrix

Choose A = Apre (irrespective of the base non-private optimizer).

There has been some effort in getting theoretical guarantee for work-
load matrices arising from momentum methods, but they do not lead
to space and time efficient mechanisms. Moreover, while we recommend

14The learning guarantees in Section 3.5 are too loose for general problems, or
only apply to specific problems such as linear regression.
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the above, an important research question is whether there are bet-
ter choices when we consider adaptive learning algorithms, like Adam,
RMSProp, etc. We return to open questions in this space in Section 5.3.

4.4.2 Choosing a Surrogate Loss

We primarily focused on the max loss objective in this monograph,
although the RMS-loss is another common choice in the literature. In
general, any differentiable function of the per query squared errors
can be used as the objective with minor modifications to the optimiza-
tion techniques discussed in this section. However, these more flexible
alternatives have not been carefully studied previously. Prior work em-
pirically comparing max loss with mean squared error is also slim, but
in the experiments that have been done the training-time performance
characteristics have been similar.

Recommendation: Surrogate Loss for Mechanism Opti-
mization

Choose the max loss (Definition 2.3) or the RMS loss (Defini-
tion 2.23).

As in the case of workload matrices, the choice of a better surrogate
loss still remains an interesting research question. We discuss it in more
detail in Section 5.5.

4.4.3 Choosing a Participation Schema

To a large extent, the possible participation schemas will be deter-
mined by the training environment and infrastructure. Generally, we
recommend choosing the first schema in the following list that is fully
supported by the infrastructure:

• Block Cyclic Poisson Sampling, defined in Definition 3.20
should be preferred when possible, as it endows the mechanism
with both the benefits of privacy amplification by sampling and
noise correlation. Recall that block-cyclic sampling with b = 1
blocks recovers the usual data processing pattern for DP-SGD with
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Poisson sampling. This schema is generally conceptually feasible in
centralized training scenarios. Of course, if this sampling pattern
is assumed for mechanism design and privacy accounting, it is
essential that the training infrastructure correctly follows this
sampling scheme; unfortunately, currently no major (DP) ML
training platforms directly support such data processing.

• Cyclic Participation, described in Fig. 3.6, should be used in
centralized training scenarios where strictly enforcing Poisson
subsampling is infeasible or too inconvenient. In the low privacy
regime, cyclic participation will only be slightly worse than block
cyclic Poisson sampling; see also Fig. 3.1.

• Min-Sep Participation, which was also described in Defini-
tion 3.14 and Fig. 3.6, should be used in federated training scenar-
ios where it is difficult to control the precise order of examples or
users. It may also be applicable in centralized training scenarios
under the multi-attribution model of user-level DP.

• Single-participation If none of the above are possible, it is
generally relatively straightforward to ensure that each example
contributes at most once to training (for example, training for
a single epoch in an arbitrary order). For user-level privacy, we
additionally need that each user contributes at most one example
to training.

Recommendation: Participation Schema

Depending on the setting, choose the following:

• Centralized (non-federated) learning: Choose block-cyclic
Poisson sampling as a default.

• Federated learning: Choose the Min-Sep participation schema.

For the centralized (i.e. non-federated) setting choose the max loss
(Definition 2.3) or the RMS loss (Definition 2.23).
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4.4.4 Choosing a Class of Strategy Matrices

Our default recommendation is to use banded Toeplitz strategies with
column normalization in most settings. These strategies offer the best ex-
pected errors in both federated settings (under a b-min-sep participation
schema) and centralized settings (under a cyclic participation schema
with Poisson sub-sampling). Moreover, with a careful implementation,
their memory overhead is generally small compared to the overall cost
of the automatic differentiation to compute per-example gradients and
gradient clipping + accumulation.

On the other hand, when the number of participations k is small,
and a larger ε provides sufficient privacy protection, then amplification
offers relatively little benefit, and so the mechanisms for the centralized
un-amplified setting below may be sufficient (and allow e.g. much lower
runtime costs via BLTs).

Below we provide some additional suggestions for scenarios where
the default recommendation may not apply or may not be necessary.

Centralized training with many epochs and high privacy In settings
where we are training a model for many epochs over the dataset (typi-
cally using a batch size that consists of a significant fraction of the total
training data set size), particularly when a high privacy bar is required
(e.g., 1-GDP or stronger), correlated noise offers little to no improve-
ment over a careful implementation of DP-SGD when accounting for
amplification by sampling. Full-batch gradient descent (when the full
dataset is used to compute each gradient) is an extreme example of
this setting. However, since DP-SGD is just a special case of matrix
factorization with banded strategies, there is no need to deviate from
the default recommendation here in principle.

Centralized training without amplification-via-sampling In the single-
participation setting, column-normalized BLTs offer near-optimal loss,
with the best-known noise-generation efficiency. Under Min-Sep partici-
pation, banded matrices with b = n

k bands can offer small performance
improvements over BLTs, but the noise generation cost for large b can
be prohibitive.
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In centralized training scenarios without amplification, where cyclic
participation can be enforced, using dense strategies can offer a slight
improvement in the expected error compared to BLTs or banded ma-
trices, but mechanism optimization is only feasible for n ≤ 4000 or so.
Further, this approach has even more expensive noise generation for
large n. In this case, the cost of noise generation, which we discuss in
greater detail in Section 4.4.5, may start to outweigh the other training
costs.

More than n = 107 training iterations Optimizing banded Toeplitz
strategies using the techniques we have described only scales up to
n = 107. Beyond this point, we recommend using BLTs instead, although
the compute budget may be better spent on larger batch sizes or model
sizes instead.

Recommendation: Strategy Matrix Class

Depending on the setting, choose:

• Centralized learning: choose the banded Toeplitz mechanism.

• Federated learning: choose the BLT mechanism.

4.4.5 Implementation Considerations for Noise Generation

There are several ways one can generate the correlated noise at training
time, and these implementations have varying performance characteris-
tics which we discuss in this section. Algorithm 2.1 and Algorithm 2.2
from Section 2 give two algorithms, specialized for banded Toeplitz and
BLT strategies. Here, we provide a more comprehensive overview of the
implementation options and their trade-offs.

Approach 1: Naive Noise Generation The simplest approach is to
sample the full matrix of independent noise Z ∼ Nn×m

(
0, ν2) in memory,

and then compute C−1Z explicitly. The rows of this matrix are the
correlated noise vectors and can be iteratively indexed during model
training. This implementation of noise generation has an n×m time
and memory overhead, and for large n and m this overhead can be
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prohibitive. This approach may be feasible in very small scale problems
but should otherwise be avoided.

Approach 2: Memoryless Noise Regeneration A better approach
avoids the n × m memory overhead by regenerating the rows of
Z in each iteration. That is, on iteration t we need to compute∑t−1

τ=0 C−1[t, τ ]Z[τ, :]. By keeping track of the random seeds used to
sample each row of Z we can avoid keeping the entire matrix in memory
at once, in favor of generating the rows on demand exactly when needed.
This approach crucially relies on the fact that a pseudo-random number
generator is used to sample the noise. If the random keys are discarded
after use or otherwise unavailable (e.g. for security purposes), this ap-
proach would not be viable. The running time complexity of Approach
2 is the same as Approach 1, but it only has a O(m) memory overhead.
Prior work have used this approach and demonstrated scalability up to
about n ≈ 2000 for models with a few million parameters.

Approach 3: Low-Memory Streaming Linear Operators A third
approach applies for strategy classes with specific structure that enable
efficient multiplication-by-inverse algorithms, like banded Toeplitz and
BLT strategies. We considered these approaches earlier in Algorithm 2.1
and Algorithm 2.2 of Section 2. In both cases, the noise generator receives
i.i.d. noise vectors as a stream of inputs, and returns appropriately
correlated noise vectors as outputs in a streaming fashion. To accomplish
this, the streaming algorithm stores a “buffer state” in memory. For
the banded Toeplitz strategy, the buffer consists of the correlated noise
vectors for the previous b − 1 iterations, incuring a O(bm) time and
memory overhead. For the BLT mechanism, we require d buffers for a
BLT of order d, incuring a O(dm) time and memory overhead.

Distributed Noise Generation As mentioned in Section 4.4, corre-
lated noise mechanisms are highly advantageous in large-scale training
scenarios which typically occur in distributed environments with many
accelerators working in tandem. By carefully splitting up the work, we
can greatly reduce the time and (per-machine) memory required to
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generate the correlated noise. There are several “sharding” strategies
one could consider, which describe how the work should be partitioned
across machines.

1. Sharding noise like the model is one natural option. There,
each row z ∈ Rm of the noise matrix Z ∈ Rn×m, which has
the same size and structure as the model, is distributed across
machines in the same way as the model. This approach is natural
and can leverage existing model sharding rules that are known
to be compatible with the model shape. Moreover, once the noise
is generated, it can be added to the model gradient without
any communication. However, for models trained with only data
parallelism (where a full copy of the model is replicated on every
machine), this approach does not leverage the additional machines
effectively, as it duplicates the work of generating noise on each
machine.

2. Sharding noise across all machines is a better option that
ensures no duplicate work is done across machines. There, each
row z ∈ Rm of the noise matrix Z ∈ Rn×m is evenly distributed
across all machines in the environment, and all computations
on these vectors respect this sharding. That is, if we have M

machines, we (as evenly as possible) partition the indices [m]
into M groups {G0, . . . ,GM−1}, with each machine i on iteration
t being responsible for computing the entries(

Z̃[t, j] | j ∈ Gi
)

for Z̃ = C−1Z . (4.13)

For all three approaches above, this sharding strategy requires
no communication between machines to compute the values of
Eq. (4.13). Hence, noise computation is an entirely embarrassingly
parallel computation and its running time is therefore inversely
proportional to the number of machines in the training environ-
ment. Finally, the per-iteration noise vector z̃t must be assembled
from Eq. (4.13) so that it can be added to the (clipped and
aggregated) gradient which in general uses different sharding.

3. Generating noise on CPU is a third option worth considering,
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where noise is generated on the CPUs while the forward/back-
ward pass is done on an accelerator. At the surface, this may seem
appealing because it allows the noise generation to happen asyn-
cronously rather than sequentially. However, communicating large
matrices from CPU to accelerators is typically slow on current
hardware, and simple preliminary tests rule this out as a viable
approach.

Remark 4.15 (Handling Complex Model Structures). In the discus-
sion above, we assumed that the model and noise are generated
as flat vectors in Rm, and that m is divisible by the number of
machines. In practice, the model parameters are often represented
as a collection of smaller arrays of various shapes, whose sizes may
not all be divisible by the number of machines. This can be handled
by appropriate flattening and padding. (The open-source software
of Section 4.5 automatically implements such sub-routines.)

Remark 4.16 (Relative Cost of Noise Generation). Until this sec-
tion, we have discussed the costs of different correlated noise gen-
eration strategies relative to each other (e.g. in Table 2.1). While
the Dense and Toeplitz mechanisms have a n times higher time
complexity than Input and Output perturbation, they are not ac-
tually n times slower in practice, since correlated noise generation
is only one part of the cost associated with training a model with
differential privacy. The other primary cost is computing (and clip-
ping) per-example gradients. Perhaps somewhat unintuitively, it
turns out that the overhead of correlated noise generation is small
relative to the other costs of DP training, even when the number of
buffers is large. This can be attributed to careful implementation
(e.g. described above) coupled with the need to use very large batch
sizes to get the best utility with DP.

While the relative costs of each step are dependent on the model
and compute environment, let us next consider a concrete example.
For large transformer-based language models, the cost of gradient
computation and clipping can be approximated as ≈ 6 ·m ·B · S
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where B is the batch size and S is the sequence length. For common
language models, S is typically taken to be in the thousands and B

is at least as large as S for DP training. Hence this cost can often
outweigh the b ·m time complexity of noise generation required
for e.g., a banded Toeplitz strategy for reasonable values of b, B,
and S. As a concrete example, if b = 100, B = S = 1000, then
noise generation requires ≤ 0.01% of the total step time. On the
other hand, if S = 1, which essentially reduces to a fully connected
neural network, then noise generation requires closer to ∼ 10% of
the total step time.

4.5 Open-Source Software

As discussed in this section, correctly and efficiently optimizing for corre-
lated noise mechanisms requires some care to correctly handle subtleties.
Jax Privacy provides implementations of the techniques described in
this section. At the time of writing, Jax Privacy provides well-tuned
strategy optimization routines for dense, banded, banded toeplitz, and
buffered linear toeplitz strategies. It also provides implementation of
the various noise addition strategies discussed in Section 4.4.5 that can
run efficiently in large distributed environments.

4.6 Bibliographic Notes

Dense Strategies Lemma 4.2, that underlies all numerical optimiza-
tions for the dense mechanism was established by Li, Miklau, Hay,
McGregor, and Rastogi [2015]. Many approaches have been proposed to
optimize the dense mechanism in the streaming setting, including pri-
mal approaches [Yuan, Yang, Zhang, and Hao, 2016, McKenna, Miklau,
Hay, and Machanavajjhala, 2021, Choquette-Choo, Ganesh, McKenna,
McMahan, Rush, Guha Thakurta, and Xu, 2023a] and dual approaches
[Denisov, McMahan, Rush, Smith, and Guha Thakurta, 2022, Choquette-
Choo, McMahan, Rush, and Thakurta, 2023b]. McKenna, Miklau, Hay,
and Machanavajjhala [2021] demonstrated the effectiveness of solving
Problem 4.3 with L-BFGS, including the heuristic to ignore M ≻ 0. Us-
ing memoryless noise regeneration has used to demonstrate scalability up
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to about n ≈ 2000 for models with a few million parameters by several
works like Denisov, McMahan, Rush, Smith, and Guha Thakurta [2022],
Choquette-Choo, McMahan, Rush, and Thakurta [2023b], Choquette-
Choo, Ganesh, McKenna, McMahan, Rush, Guha Thakurta, and Xu
[2023a].

A note on L-BFGS L-BFGS can natively handle box constraints Zhu,
Byrd, Lu, and Nocedal [1997]. However, more complex constraints
require projections in the Mahalanobis norm defined by L-BFGS’s
Hessian approximation [Schmidt et al., 2011]. Instead, the heuristic
used in this monograph is a Euclidean projection, making it directly
compatible with existing highly-optimized L-BFGS implementations.

Parameterized Strategies In the counting query literature, there have
been many prior works that optimize carefully parameterized strategies
to overcome scalability limitations of the dense representation. Qardaji,
Yang, and Li [2013] optimize the branching factor over generalized
hierarchical strategies, while Li, Hay, Miklau, and Wang [2014] optimize
the weighting coefficients for each level of the hierarchy. McKenna,
Miklau, Hay, and Machanavajjhala [2021] propose optimizing so-called
p-Identity strategies specifically for the pure-DP version of the problem,
and strategies built from smaller building blocks via the Kronecker
product. The approaches to optimize the BLT parameters with a (λ, λ̂)
parameterization are due to Dvijotham, McMahan, Pillutla, Steinke,
and Thakurta [2024], McMahan, Xu, and Zhang [2024]. In particular,
Lemma 4.13 results from a simplification of the result of Dvijotham,
McMahan, Pillutla, Steinke, and Thakurta [2024, Lem. 5.2]; the exact
statement we give can be found in McMahan and Pillutla [2025]. On
the other hand, the (α̂, λ̂) parameterization approach, and the equiva-
lence between the two parameterizations (i.e., Lemma 4.14) are from
McMahan and Pillutla [2025].

Matrix mechanism in other settings Xiao, He, Zhang, and Kifer
[2023b], Ding, Winslett, Han, and Li [2011], McKenna, Miklau, Hay,
and Machanavajjhala [2021] propose matrix mechanisms specifically
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tailored for marginal query workloads. McKenna, Miklau, Hay, and
Machanavajjhala [2021] further provided optimized strategies for the
broad class of conjunctive query workloads, that are applicable for
domains as large as 109. Edmonds, Nikolov, and Ullman [2020] showed
that the matrix mechanism can be applied under local DP with favorable
theoretical guarantees, and McKenna, Maity, Mazumdar, and Miklau
[2020] proposed a more practical variant that generalizes randomized
response rather than the Gaussian mechanism.



5
Challenges and Open Questions

This monologue has explored the landscape of correlated noise mecha-
nisms for privacy preserving machine learning, providing a structured
overview of their theoretical foundations, practical applications, and
privacy implications. Looking ahead, correlated noise mechanisms offer
a promising frontier in privacy-preserving data analysis. As data pri-
vacy continues to grow in importance, correlated noise mechanisms will
likely play a critical role in balancing the need for data utility with the
imperative for individual privacy.

In the rest of this section, we explore some of the important open
problems.

5.1 Client Participation in Weighted Prefix Sums

In practice and as shown in Section 3 and Section 4, private learning
has two primary sources of stochasticity: (1) client participation, which
arises through random sampling, system-driven availability, or shuffling;
and (2) noise added to ensure privacy, such as correlated noise, i.i.d.
noise, etc.

Most existing approaches in designing correlated noise mechanisms
treat these two components somewhat independently. In particular,

183
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participation is typically handled through heuristics such as defining
participation schema or uniform random sampling, without regard to the
implications for noise design. Conversely, correlated noise mechanisms
are often built assuming idealized participation patterns, like b-MinSep,
etc. This separation leads to inefficiencies: either the variance-reduction
benefits of correlation are lost, or the system must be artificially con-
strained to preserve fragile noise structures. While the latter can be
enforced, it makes the architecture a little more complicated than
desired.

This raises a natural question:

Question 5.1. Can we jointly design client participation strategies
and correlated noise mechanisms to exploit their interaction for
improved privacy-utility tradeoffs in the computation of weighted
prefix sums?

5.2 Defining Factorization Losses that Reflect Learning Perfor-
mance

The use of linearly-correlated noise mechanisms in (weighted) prefix sum
estimation is well-understood, especially for max loss (Definition 2.3)
or RMS-loss (Definition 2.23). In these two cases, the mechanism de-
sign reduces to a tractable optimization problem (more precisely, a
semi-definite program). However, extending these methods to learning
problems presents few challenges.

Currently, in all the works that uses correlated noise mechanisms
for learning (see Section 3.7 for references), proxy losses are introduced
that are typically derived from a related linear estimation problem with
the hope that minimizing them leads to better learning performance.
However, how close these proxy loss are in theoretical and empirical
terms to the true learning dynamics remains an unresolved open question.
In particular, while these proxies often serve as upper bounds on the
learning error, whether they faithfully capture the behavior of real-
world models, particularly across diverse function classes and worst-case
dynamics, is still unclear.

Recent work has begun to investigate this gap between proxy losses
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and actual learning performance. For example, Koloskova, McKenna,
Charles, Rush, and McMahan [2023b] showed that there was not a
monotonic relationship between losses imposed on typical factorization
problems and learning performance, even for simple models. They pro-
posed alternative analyses and adjusted loss functions that better track
true performance. As discussed in Section 3.5.2, Choquette-Choo, Dvi-
jotham, Pillutla, Ganesh, Steinke, and Thakurta [2024a] have provided
an asymptotic characterization of performance under quadratic losses,
relating them directly to properties of the noise design. These insights
suggest that more faithful modeling of noise-influenced learning dy-
namics, especially using the linearly correlated noise mechanism, could
guide improved mechanism design. By developing loss measures that
more accurately reflect real learning behavior, one can hope to further
improve privacy-preserving training algorithms.

An intriguing direction is to view noise mechanism design through
the lens of learned optimizers. Much like learning an optimizer that per-
forms well across tasks, we can interpret the design of noise mechanisms
(e.g., DP-SGD with correlated noise) as an optimization problem over
a space of algorithmic parameters (such as noise covariance structures).
This analogy points to a promising opportunity: designing losses and
optimization targets that better capture learning performance across
tasks, without inheriting the challenges of overfitting faced by learned
optimizers. By exploring richer loss parameterizations (e.g., quadratic
or convex losses), one can aim to build a more robust and expressive
framework for noise mechanism design.

Question 5.2. How can we design proxy loss functions for linearly-
correlated noise mechanisms that more faithfully capture and im-
prove actual learning performance across a broad class of machine
learning problems?

Solving this research question could ultimately lead to more effective
and generalizable private learning algorithms, grounded in a better
theoretical understanding of the connection between proxy objectives
and learning performance.
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5.3 Adaptive Private Optimization with Correlated Noise Mecha-
nisms

The idea of casting learning algorithm design as an optimization prob-
lem over algorithmic spaces naturally leads to adaptive optimization
methods such as AdaGrad, Adam, and RMSProp. These optimizers
were originally motivated by meta-optimization or regret minimiza-
tion frameworks, and remain central to training large-scale models
like Transformer-based architectures, which benefit from per-parameter
adaptive learning rates. Despite their widespread use and perceived ne-
cessity in modern machine learning workflows, integrating differentially
private mechanism design, especially correlated noise mechanisms, into
adaptive optimization remains an open challenge.

At the heart of this challenge lies the fundamental non-linearity
introduced by adaptive optimizers: they typically perform pointwise
division of gradients by functions of past gradients, breaking the linear
stream-to-stream relationship between gradients and model updates
that the design of correlated noise mechanisms relies on. This linearity
is critical, as it ensures that loss functions (such as those quantifying the
distance between noised and unnoised training trajectories) are indepen-
dent of the data itself. Once this assumption fails, the proxy loss used
in the optimization problem (e.g., Eq. (1.7)) becomes data-dependent,
complicating both theoretical analysis and practical implementation.

Question 5.3. How can linearly-correlated noise mechanisms be
effectively extended to support adaptive optimization methods, ei-
ther through novel regret-based analytical formulations or learned-
optimizer-style numerical solutions, while preserving privacy guar-
antees and achieving competitive learning performance?

5.4 Stochastic Convex Optimization and Correlated Noise Mecha-
nisms

A significant open question in differentially private optimization is
whether the stochastic convex optimization (SCO) guarantees of cor-
related noise DP-SGD in the general setting can match the minimax
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optimal bounds known for the realizable regime. As discussed in Sec-
tion 3.5.2, Choquette-Choo, Ganesh, and Thakurta [2024] and Zhang,
Tran, and Cutkosky [2022a] have shown promising advances in this
direction by modifying the correlated noise DP-SGD to operate over
sequences of gradient differences instead of raw gradients. This refor-
mulation enables the algorithm to achieve the optimal error rates for
DP-SCO previously believed to require multi-pass training or more
complex mechanisms.

In particular, these works demonstrate that not only is it possible to
attain the optimal DP-SCO guarantee using a single-epoch algorithm,
but that this can be done with batch sizes as large as Ω(

√
n). This is a

notable improvement over standard instantiations of correlated noise
DP-SGD, such as in Section 1.10.2, where each update is based on a
batch of size one. The ability to scale batch sizes in this way is critical
for practical applications and also reduces the number of noise-injected
updates required during training.

A crucial component enabling this improvement is the use of corre-
lated noise mechanisms applied to the sequence of gradient differences.
Bounding the noise injected in this transformed domain becomes more
tractable and can be done in a way that aligns with optimal privacy-
utility tradeoffs. This innovation suggests that revisiting classic DP
optimization pipelines with alternative sequence parameterizations may
unlock further improvements.

Difference estimator has been used a lot in statistics and streaming
algorithms. For example, using difference estimator has been used in the
streaming algorithm literature to design more efficient robust streaming
algorithms [Woodruff and Zhou, 2022]. In the context of differential
privacy, by observing the difference sequence has bounded sensitivity,
Fichtenberger et al. [2021] and Song et al. [2018] gave a differentially
private algorithm for various graph statistics in the continual release
model. However, application of these techniques are limited. This raises
the following question:

Question 5.4. Can the transformation to gradient-difference se-
quences be generalized beyond DP-SGD with correlated noise
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mechanism to differentially private learning algorithms for other
statistics or settings (like low-space privacy preserving algorithms
or continual release algorithms for other statistics and settings),
and under what conditions does this transformation preserve or
improve privacy-utility tradeoffs?

5.5 Better Instantiation of DP-SGD with Correlated Noise

Extending the question of Section 5.1, and bringing together Sections 5.2
and 5.3, the bigger goal is to holistically design private training methods.

DP-SGD and its variant algorithms, such as the one outlined in
Algorithm 1.3, present a flexible template for private model training.
However, to turn this into a fully specified and high-performing learning
algorithm, several critical design choices must be addressed as discussed
in Section 3 and Section 4:

1. the data processing pattern—particularly the participation schema
and its impact on privacy amplification, as seen in techniques like
block Poisson sampling;

2. the structure of the strategy matrix C (or equivalently the noise-
correlating matrix C−1), which governs how noise is injected and
correlated across iterations; and

3. the choice of the first-order optimizer, which translates noisy
gradient estimates into model updates.

As we saw in Section 3 and Section 4, each of these components
interacts in subtle and sometimes nontrivial ways. This suggests that
a piecemeal design approach may leave substantial performance gains
that are not fully realized, and, hence, a lot of effort has been dedicated
to understand these subtle interactions. For example, a recent thrust in
the literature of privacy preserving learning has been motivated by the
thesis that a co-design approach is necessary, one that jointly optimizes
the data processing scheme, noise correlation strategy, and learning
algorithm. For instance, the structured, banded design of C is essential
for theoretical guarantees under block-cyclic Poisson sampling, while
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the effectiveness of a proxy loss function (e.g., RMS-loss with respect
to a prefix-sum workload matrix) likely depends on both the strategy
matrix and the optimizer used.

Such interdependence suggests that better proxy losses, e.g. losses
that are tailored to specific optimizer dynamics and workload struc-
tures, could drive more effective noise mechanism design. Furthermore,
simple instantiations of DP-SGD may not suffice when moving toward
adaptive optimization methods, which introduce additional complexity
and opportunities for tuning noise injection and update behavior.

Question 5.5. How can we develop a unified framework for the
co-design of data sampling schemes, noise correlation strategies, and
optimizers in DP-SGD, to achieve improved learning performance
under differential privacy constraints—especially in the presence of
adaptive optimization methods?

5.6 Resolving Conjecture 4.7

In designing optimal correlated noise mechanisms under a given partici-
pation schema Π, a central step involves solving an optimization problem
over positive definite matrices M , subject to sensitivity constraints.
In analogy to the streaming setting, we consider a scale-invariant ob-
jective and normalize sensitivity via the constraint ∑t∈π M [t, t] ≤ 1
for each π ∈ Π. In practice, however, this inequality is commonly re-
placed with an equality: ∑t∈π M [t, t] = 1, which simplifies analysis and
implementation.

While empirical evidence strongly supports that this substitution
preserves optimality, no theoretical guarantee currently exists for the
general case. Notably, in the streaming setting, this replacement is
provably without loss of generality. Whether the same holds in the multi-
epoch setting remains an open question. If the equality-constrained
problem indeed yields an optimal solution for the original inequality-
constrained formulation, it would justify current practices and simplify
both the analysis and deployment of such mechanisms.



190 Challenges and Open Questions

Question 5.6. Does the equality-constrained problem in Prob-
lem 4.6 yield a solution that is also optimal for the corresponding
inequality-constrained version? In particular, under what conditions
on the participation schema Π and workload matrix A does the
solution M⋆ to the equality-constrained formulation remain valid
for the relaxed inequality-constrained problem?

As discussed in Section 4, resolving the above question would not
only simplify the problem of multi-participation, but also improve the
convergence rate of the optimization algorithms.

5.7 Correlated Noise Mechanisms for Streaming Prefix Sums

In this monograph, we primarily focused on one central application
of differentially private prefix sum estimation: the training of machine
learning models, particularly via private variants of stochastic gradient
descent. However, the prefix sum primitive has far-reaching applications
beyond private learning. It serves as a foundational tool in numer-
ous other domains, including but not limited to histogram estimation,
range query answering, shortest-path estimation on structured graphs,
non-interactive local learning, graph spectral analysis, and matrix com-
putation. In these settings, accuracy is typically assessed through metrics
such as the root mean square loss (RMS-loss) or the maximum error
(max loss) over the query outputs.

For the canonical prefix sum workload matrix A = Apre, strong theo-
retical foundations exist. In particular, tight upper and lower bounds on
the RMS-loss are known not only in asymptotic terms but also up to con-
stants. More generally, Liu, Upadhyay, and Zou [2024] showed that, for
any positive constant p, we have asymptotically tight characterizations
of the ℓp error defined as

max
x∈Rn

(
E
[
∥M(x)−Ax∥pp

])1/p
,

where M is a differentially private mechanism. These bounds reflect a
mature understanding of the trade-offs between privacy and accuracy
under a range of loss functions.
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In contrast, for the max loss metric (or for p = ω(1)), the picture is
more nuanced. Using standard packing arguments, Dwork, Naor, Pitassi,
and Rothblum [2010] showed that any (1, o(1/

√
n))-differentially private

mechanism for the prefix sum problem must incur a max loss error of at
least Ω(log(n)/ε) in the worst case. Recently, Cohen, Lyu, Nelson, Sarlós,
and Stemmer [2024] showed that, when the input vector is s-sparse,
this lower bound becomes Ω(min{log(s), log(n)}). On the other hand,
the best known upper bound on max loss for (ε, δ)-differential private
mechanism is O

(
log3/2(n) ·

√
log(1/δ)/ε

)
for input streams bounded

in [−1, 1].

Question 5.7. The gap between best known upper and lower bound
on max loss for differentially private prefix sum for n updates is
log1/2(n) dependence. Can we close this gap? Further, what is the
optimal accuracy guarantee if the stream is s-sparse with respect
to the sparsity parameter.

5.8 Amplification of Correlated Noise Mechanism Under Sliding
Window

This monograph has explored the theory and practice of correlated
noise mechanisms for differentially private learning, starting with their
application to prefix sum estimation and culminating in their use for
training large-scale models under privacy constraints.

One compelling direction for future work, which naturally extends
the models discussed in this monograph, is the sliding window model.
In many modern applications of machine learning—especially in online
learning, federated learning, or real-time analytics—more recent data
are more relevant to current predictions and model updates. In these
settings, it may be desirable to estimate statistics (e.g., means, prefix
sums, or gradients) over only the most recent w observations, rather
than over the full history. This calls for differentially private mechanisms
tailored to sliding window estimation, where the goal is to release private
estimates of functions computed over a moving window of size w, rather
than over an accumulating prefix.

From a privacy mechanism design standpoint, this introduces new
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challenges and opportunities. Mechanisms must now adapt not only to
the prefix structure but also to temporal locality—ensuring that noise is
injected in a way that respects the decay in importance of older data.
Correlated noise mechanisms, already well-suited to structured time
dependencies, provide a promising starting point. For instance, designing
strategy matrices C or workload matrices A with banded or decaying
influence patterns could yield effective mechanisms for sliding window
analytics. Moreover, privacy accounting in the sliding window model
may require novel analyses, as traditional notions of sensitivity and
amplification must be redefined for moving-window adjacency relations.

Question 5.8. How can we extend correlated noise mechanisms
to the sliding window model in a way that reflects the height-
ened importance of recent data while maintaining rigorous privacy
guarantees and high utility in private estimation and training?

This question opens a rich design space that intersects with time-
series privacy, streaming algorithms, and adaptive learning. Addressing it
could lead to more temporally aware privacy mechanisms—particularly
relevant for real-time deployment scenarios where recent user interac-
tions carry more signal than stale historical data.

5.9 A Functional Analysis Perspective on Sensitivity

The computation of sensitivity (e.g. defined in terms of participation
schema by Definition 3.13) can be viewed as an operator norm with
interesting structure.

Most of the sensitivity calculations in Section 3 factor
through Lemma 3.15, which can be significantly suboptimal in the
presence of cancellation (e.g., via entries of mixed sign) in the matrix
C⊤C. In fact, precise control of this operator-norm cancellation was a
problem posed by Grothendieck in the 1950’s, who showed a uniform
bound in all dimensions:

Theorem 5.1. Consider a matrix W ∈ Rn×n with entries wij :=
W [i, j] and suppose that it has unit ℓ∞ to ℓ1 operator norm (defined
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in Eq. (3.14)):

∥W ∥∞→1 ≤ 1 ⇐⇒

∣∣∣∣∣∣
n−1∑
i,j=0

wijtisj

∣∣∣∣∣∣ ≤ 1 ∀ |ti| ≤ 1, |sj | ≤ 1 .

Then, for every set of unit vectors {xi}n−1
i=0 , {yj}n−1

j=0 in a Hilbert
space H (endowed with an inner product ⟨·, ·⟩H), we have the
uniform bound ∣∣∣∣∣∣

n−1∑
i,j=0

wij⟨xi, yj⟩H

∣∣∣∣∣∣ ≤ K,

where K is an absolute constant known as Grothendieck’s constant.

Grothendieck’s constant K is known to be between 1.57 and 1.7822
in general, though in the application of Grothendieck’s theorem to
calculation of sensitivity one may leverage symmetry to achieve the value
π/2. As has been noted previously, Grothendieck’s theorem provides an
alternate means of estimating the ℓ2 sensitivity of a strategy matrix C,
as one may rewrite the trace which appears in the proof of Lemma 3.15
into a form to which Grothendieck’s theorem applies.

If we restrict the matrices W in Theorem 5.1, K may be signif-
icantly improved. For example, the arguments of Lemma 3.15 show
that for elementwise nonnegative W , one may take K = 1 (though this
represents a tiny fraction of invertible matrices). In some sense, one
may view the restrictions to nonnegative C⊤C while optimizing for
nontrivial Π as primarily playing the role of avoiding the need to pay
the π/2 cost that would otherwise be implied by Theorem 5.1.

Whether optimal or near-optimal C satisfy C⊤C ≥ 0 is in many
cases not known, and is in principle be dependent on the workload
matrix A. The presence of the Grothendieck constant in vector-to-
scalar reductions is itself Π-dependent; this concern disappears in the
streaming (single participation) setting. Thus the current state of theory
relating A, Π, and structure in C is somewhat unsatisfying: we know
that in many cases of interest, we may suppress the factor of π/2
by imposing appropriate structure on C, but we do not in principle
know what we are losing in the optimization problem by enforcing this
restriction.
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Question 5.9. Are there settings of A, Π pairs in which loosening
structure on C permits significantly improved solutions? In the case
of nontrivial Π, are there large classes of matrices for which K can
be lowered and yield useful extensions of the space of permissible
C matrices? If not, why not?

Given the practical success of banded, Toeplitz, and BLT mecha-
nisms for which Lemma 3.15 applies, this question is perhaps slightly
academic, but represents a tempting gap in our theoretical understand-
ing with connections to a deep result in functional analysis.

5.10 Characterizing the error of optimal BLTs

Dvijotham, McMahan, Pillutla, Steinke, and Thakurta [2024] showed
that BLTs constructed via rational function approximation can achieve
(up to a small additive factor) the optimal max loss of log(n)/π using
d = Θ(log2 n) buffers, using the same BLT (for a given d) for all possible
n. However, direct numerical optimization of the BLT parameters for a
specific n (that is, the approach of Section 4.3.1) yields substantially
better mechanisms. This naturally yields the following questions:

Question 5.10. Can the BLT parameters that minimize max loss
for a specific n and specific number of buffers d be characterized in
closed form (without numerical optimization)? Can a tight bound
on max loss be given for these parameters? And most importantly,
how many buffers d are necessary to achieve the optimal rate of
log(n)/π? Empirically evidence leads us to conjecture d = Θ(log n)
is sufficient.
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