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Abstract
The explosive growth of Non-Fungible Tokens (NFTs) has

revolutionized digital ownership by enabling the creation,
exchange, and monetization of unique assets on blockchain
networks. However, this surge in popularity has also given
rise to a disturbing trend: the emergence of rug pulls -
fraudulent schemes where developers exploit trust and smart
contract privileges to drain user funds or invalidate asset
ownership. Central to many of these scams are hidden
backdoors embedded within NFT smart contracts. Unlike
unintentional bugs, these backdoors are deliberately coded
and often obfuscated to bypass traditional audits and exploit
investor confidence. In this paper, we present a large-scale
static analysis of 49,940 verified NFT smart contracts
using Slither, a static analysis framework, to uncover latent
vulnerabilities commonly linked to rug-pulls. We introduce
a custom risk scoring model that classifies contracts into
high, medium, or low risk tiers based on the presence and
severity of rug pull indicators. Our dataset was derived from
verified contracts on the Ethereum mainnet, and we generate
multiple visualizations to highlight red flag clusters, issue
prevalence, and co-occurrence of critical vulnerabilities.
While we do not perform live exploits, our results reveal
how malicious patterns often missed by simple reviews can
be surfaced through static analysis at scale. We conclude by
offering mitigation strategies for developers, marketplaces,
and auditors to enhance smart contract security. By exposing
how hidden backdoors manifest in real-world smart contracts,
this work contributes a practical foundation for detecting and
mitigating NFT rug pulls through scalable automated analysis.

Index Terms—NFT Security, Smart Contract Vulnerabilities,
Rug Pull Attacks, Hidden Backdoors, Blockchain Forensics,
Decentralized Finance (DeFi), Smart Contract Auditing,
Ethereum Security, Static Analysis, Token Exploitation Patterns

I. Introduction
The advent of Non-Fungible Tokens (NFTs) has significantly

reshaped digital ownership by enabling creators to tokenize art,
music, virtual goods, and other assets on blockchain platforms
such as Ethereum. Built primarily on ERC-721 and ERC-
1155 standards, NFT smart contracts aim to offer trustless,
immutable guarantees of provenance and asset transfer [1], [2].
However, the rapid growth and hype-driven nature of the NFT

ecosystem have also introduced significant risks particularly in
the form of financial fraud and project abandonment [3].

One of the most widespread attack patterns in this space is
the rug pull: a deceptive exit strategy where project creators
intentionally disable functionality, erase token metadata, or
drain collected funds, leaving buyers with worthless or in-
accessible assets [3], [4]. While some rug pulls are executed
off-chain through abrupt deactivations or website shutdowns,
a more insidious and technically sophisticated variant occurs
on-chain through embedded backdoors in smart contracts.
These hidden backdoors often enable unauthorized minting,
unrestricted fund withdrawals, or total contract destruction via
functions like selfdestruct [4], [5].

In contrast to common vulnerabilities that software often
suffers from, like for example reentrant code and arithmetic
overflow, these are deliberately put in place and premeditated,
disguised through misleading naming, proxy delegation, and
access-controlled logic that only operates under some triggers
[6], [7]. On their own, they may not seem harmful and are
often not flagged for being suspicious during manual code
reviews or automated audits

As the number of NFT rug pulls and scams grows, little
empirical work has systematically analyzed the manner by
which such backdoors are embedded in smart contracts, and
whether these can be flagged at scale [3], [5], [6]. To address
this gap, we present a detailed static analysis of 49,940 verified
NFT smart contracts deployed on the Ethereum blockchain.
Rather than using old case studies or doing reverse engineering
by hand, we run a repeatable process based on Slither, an open
source static analysis tool to extract, classify and score smart
contracts for suspicious patterns related to rug pulls [8].
Our contributions are fourfold:

1) Threat Pattern Taxonomy: We identify and categorize
common backdoor techniques in NFT contracts, includ-
ing owner-exclusive mint, withdraw functions, use of
delegatecall for proxy manipulation and contract self-
destruction logic [3], [5], [6].

2) Automated Static Analysis Pipeline: We build a pipeline
using Slither to analyze Solidity source code at scale,
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extracting contract-level findings related to access control,
external calls, and dangerous built-in functions [8].

3) Heuristic-Based Risk Scoring: We propose a simple yet
effective scoring system to quantify risk across contracts
based on detected patterns, allowing us to label contracts
as low, medium or high risk [9].

4) Visualization and Dataset Insights: We present a set
of visualizations to illustrate the distribution and co-
occurrence of critical vulnerabilities, highlighting real-
world trends in how backdoors manifest in NFT ecosys-
tems [3].

While our work does not include dynamic exploitation or
runtime execution of flagged vulnerabilities, we demonstrate
that static analysis alone can reveal systemic weaknesses across
a wide range of NFT deployments. By surfacing these risks
prior to public release or trading, this work contributes a
practical foundation for scalable NFT contract auditing and
proactive investor protection.

II. Background
The NFT (Non-Fungible Token) ecosystem is built on

blockchain technologies that enable the creation, trade, and
verification of unique, indivisible digital assets. Unlike fun-
gible tokens (e.g., ERC-20), NFTs typically implemented via
ERC-721 or ERC-1155 standards allow each token to repre-
sent a distinct item, carrying unique metadata and ownership
attributes [10], [11]. This flexibility has led to rapid adoption
across industries including digital art, gaming, music, and
metaverse infrastructure.

At the core of every NFT project lies a smart contract, a
self-executing program deployed on-chain that governs key
operations such as minting, transfers, royalty payouts, and
access control [12]. These contracts are immutable post-
deployment, meaning any embedded logic - malicious or
otherwise cannot be modified once live. While this property
ensures decentralization and trustlessness, it also creates a
favorable environment for persistent vulnerabilities when de-
velopers intentionally insert hidden backdoors [13].

The NFT ecosystem is based on blockchain technologies
that allow the creation, trade and proof of unique and in-
divisible digital assets. NFTs are unique tokens. They can’t
be exchanged for one another. They are not fungible tokens
like ERC-20. These tokens are typically implemented through
ERC-721 or ERC-1155 standards. Each token represents a
unique item. It carries unique metadata and ownership at-
tributes. As a result, digital artists, game developers, musi-
cians, and builders of the metaverse infrastructure have all
quickly adopted it.

Every NFT project comes with a smart contract. This is just
code that is deployed onto the blockchain and self-executes
on-chain to mint, transfer, distribute royalties, and control
access [12].Once deployed, these contracts cannot be changed,
so any logic embedded in them whether malicious or not is
immutable. Although this property must be present for decen-
tralization and trustlessness to happen on something created
with code, it also creates a situation where vulnerabilities

can persistently be present when developers on purpose insert
hidden backdoors [13].

A. Rug Pulls and Hidden Control Logic
A rug pull in NFTs occurs when project developers exploit

centralized privileges or malicious logic to siphon funds,
disable functionalities, or sabotage user ownership. Rug pulls
fall into two categories:

1) Hard rug pulls, involving on-chain malicious logic like
hidden withdrawAll() or setOwner() functions.

2) Soft rug pulls, involving off-chain behaviors like aban-
doning roadmap commitments or disabling metadata host-
ing [12].

Hard rug pulls rely heavily on control over privileged
functions often hidden within contract code or activated under
specific on-chain conditions. These backdoors exploit features
such as:

1) Owner-controlled withdrawals or minting (onlyOwner
pattern misuse).

2) Self-destruct mechanisms that terminate contract logic
after profit extraction.

3) Token freezing or transfer blocking via modifiable
boolean flags.

4) Dynamic URI reassignment, allowing project creators to
replace original artwork or metadata with spam, explicit
content, or blank files [13].

B. Contract Obfuscation Techniques
To further evade detection, malicious developers employ

code obfuscation techniques that disguise backdoor behavior.
These include:

1) Deceptive function names (e.g., safeWithdraw() instead
of rugPull()) [15].

2) Splitting logic across proxy or delegatecall contracts,
which obscures control flow [18].

3) Access control manipulation, such as hiding sensitive
functionality behind onlyOwner or using tx.origin for
authorization [13].

4) Time-delayed triggers, where backdoors activate after a
delay or upon specific events [14].

The above strategies aim to bypass both automated static
analysis tools and human auditors especially when audits
are superficial, crowd-sourced or focused solely on public
interfaces [16].

C. Gaps in Auditing and Detection
Unlike decentralized finance (DeFi) protocols, which often

undergo rigorous third-party audits or formal verification, most
NFT projects are launched without comprehensive security
review [16]. A study by Lee et al. found that a large fraction
of deployed NFT contracts on Ethereum are unaudited, lack
source code transparency, or grant excessive privileges to a
single owner [19].

While tools like Slither and Mythril can detect syntactic
issues (e.g., reentrancy, arithmetic errors), they often fall short
when dealing with semantic misuse - such as legally valid



but maliciously purposed functions [20]. Even more advanced
systems struggle to generalize detection of behaviorally abu-
sive patterns without human guidance or case-specific rule sets
[13].

D. Need for Backdoor-Specific Taxonomy
There is an urgent need to model NFT backdoors as a

unique and growing threat category. These are not simple
bugs or oversights they are intentional, profit-driven designs
that exploit user trust and the irreversibility of blockchain
deployments [14].

Yet, current security tooling and research often treat these
issues as edge cases. We argue for the creation of a dedi-
cated taxonomy that recognizes these threats as deterministic,
exploitable, and systematically embedded [17], [20].

This motivates our study: a large-scale static analysis of
49,940 verified NFT contracts deployed on Ethereum. By
leveraging Slither and custom heuristic rules, we detect and
quantify common backdoor techniques such as selfdestruct,
delegatecall, and centralized minting logic. Our goal is to
expose patterns of systemic risk and promote scalable, pre-
deployment detection methods that can assist both security
auditors and everyday users in identifying high-risk contracts.

III. Methodology
The foundation of our analysis begins with the assembly

of a comprehensive dataset. We leverage the DISL dataset,
a publicly available, large-scale repository of verified smart
contracts on Ethereum. This dataset is hosted on HuggingFace
and contains more than 514,000 Solidity contracts that have
been deployed to the Ethereum mainnet, making their source
code publicly available for analysis [21].

To isolate contracts relevant to NFTs, we apply the following
criteria:

1) Interface Matching: Contracts must implement key
NFT functions such as ownerOf, balanceOf, tokenURI,
safeTransferFrom, or override supportsInterface
to confirm ERC-721 or ERC-1155 compliance [22].

2) Library References: We prioritise contracts that use
well-known libraries like OpenZeppelin’s ERC721 or
ERC1155 implementations, which typically serve as a
base for legitimate and malicious NFT projects alike [23].

3) Contract Metadata: We parse metadata such as contract
name, deployed address, compiler version, and optimi-
sation flags to assist in filtering and later compatibility
checks.

This filtering reduces the original pool of 98,879 contracts
to a more relevant and targeted set of NFT-specific smart
contracts. These are then passed to the preprocessing pipeline
for compilation and static analysis.

A. Contract Sanitisation and Preprocessing
Many real-world smart contracts are not designed for iso-

lated compilation. They often include dependencies, abstract
interfaces, or external imports that may not resolve in a local
analysis environment. To ensure that only contracts suitable for

static analysis are retained, we build a custom preprocessing
script that automates contract sanitisation:

1) Import Resolution: Contracts with unresolved local im-
ports (e.g. import "../utils/SafeMath.sol";) are
excluded [24].These imports often break compilation un-
less the full directory structure is preserved.

2) Pragma Filtering: Contracts that specify strict pragma
versions incompatible with our compiler (e.g. 0.8.17
when we use 0.8.19) are filtered out. We retain contracts
that use flexible pragmas like ˆ0.8.0 or >=0.8.0.

3) Standalone Validation: Contracts are tested for stan-
dalone viability those that depend on inheritance from
contracts not present in the file are excluded.

4) Syntax and Compilation Check: Contracts that fail to
compile due to syntax errors, unresolved symbols, or
circular dependencies are logged and excluded [25].

This step is essential for ensuring high-quality input for
Slither. After filtering and sanitization, we obtain a final pool
of 49,940 contracts that are fully standalone and suitable for
Slither-based static analysis.

B. Static Analysis Using Slither
The core of our vulnerability detection process uses Slither,

a static analysis framework developed by Trail of Bits for
Solidity smart contracts [26]. Slither analyzes the control
flow graph (CFG), abstract syntax tree (AST) and inheritance
hierarchies of a contract to identify known anti-patterns and
potential vulnerabilities. The setup for the above experiment
includes the following:

Experiment setup:
1) Batch Processing: A Python wrapper processes each

contract through Slither with the –json flag to extract
structured vulnerability data.

2) Vulnerability Extraction: For each contract, we extract
the following information:
• The type of issue (e.g. delegatecall, selfdestruct, exter-

nal call in loop)
• Affected contract and function name
• Description of the issue
• Severity
• Source file path and affected line range

3) Logging Failures: Contracts that encounter tool-specific
failures (e.g., unsupported syntax) are recorded and re-
moved from the dataset.

Our Slither analysis is configured to detect over 100 known
vulnerability patterns, with specific emphasis on the following
rug pull-related constructs:

• selfdestruct() usage: allows contract termination and fund
redirection.

• delegatecall to external addresses: can transfer control
flow to unverified code.

• Owner-only or unrestricted mint/withdraw functions.
• Control-flow conditions gated by tx.origin.
• Unprotected external calls inside loops, which can lead

to reentrancy or unpredictable behavior [27].



Fig. 1: Slither Overview [8]

This process yields a rich vulnerability profile for each con-
tract, which we then classify based on exploitability.

C. Heuristic-Based Risk Scoring

Static analysis tools provide a wealth of raw issue data, but
not all findings are equally dangerous or relevant to rug pulls.
To quantify contract risk in a meaningful and interpretable
way, we introduce a heuristic scoring system based on security
impact.

Each detected issue contributes a weighted score as shown
below:

TABLE I: Heuristic scoring of vulnerability patterns

Vulnerability Pattern Score

Use of selfdestruct +3
Use of delegatecall +3
External call inside loop +2
Unrestricted or owner-only withdraw/mint +2
Use of tx.origin in access control +2
Deprecated Solidity version usage +1

Risk categories
The cumulative score per contract determines its risk cate-

gory:

• High risk: score ≥ 5
• Medium risk: score 3–4
• Low risk: score 1–2

This model offers a repeatable and extensible way to triage
large sets of contracts and focus attention on the most danger-
ous examples. This model allows scalable triage of contracts
for further auditing [28].

Fig. 2: MSmart analysis flow chart [55]

D. Result Aggregation and Visualisation

To facilitate interpretation and enable future audits, we
compile all results into a structured dataset. For each contract,
we store:

• Detected issues and descriptions
• Address and filename
• Total score and risk tier
• Affected functions and line numbers
We then generate a series of visualizations, including:
• Bar charts showing the frequency of vulnerability types

(e.g., delegatecall, selfdestruct)
• Risk distribution pie charts across High, Medium, and

Low risk tiers
• Heatmaps showing issue co-occurrence across contracts
• Top 10 high-risk contracts sorted by cumulative score
These visualizations provide both macro-level insights (e.g.,

prevalence of risk types across NFT contracts) and micro-
level auditability (e.g., contract-specific vulnerability profiles).
These visualizations surface systemic vulnerability patterns in
NFT contracts [29].

IV. Dataset Description

This section describes the construction of the dataset used
for analyzing NFT smart contracts at scale. Our objective was



to compile a reliable, large, and analyzable collection of real-
world contracts that reflect the design and deployment patterns
of modern NFT ecosystems. The dataset is drawn from verified
Ethereum smart contracts and is rigorously filtered to ensure
both relevance (i.e., NFT functionality) and compatibility with
static analysis tooling.

A. Source of Smart Contracts
Each DISL entry provides:
• Full verified Solidity source code.
• Compilation metadata such as:

– Compiler version (e.g., v0.8.6+commit.11564f7e).
– Optimization flags (enabled/disabled).
– Bytecode hashes.

• Deployment details including:
– Ethereum address.
– Block height and timestamp.

These features make DISL an ideal, reproducible foundation
for contract-security research.

B. NFT Contract Identification
To isolate contracts relevant to NFTs from the broader

dataset, we implement a multi-stage filtering strategy based
on:

1) Interface signature detection: Scan for ERC-
721/1155 functions such as ownerOf(uint256),
balanceOf(address), tokenURI(uint256),
safeTransferFrom(address,address,uint256),
supportsInterface(bytes4).

2) Inheritance hierarchy analysis: Require extension of
well-known NFT-related bases (ERC721, ERC1155,
Ownable, AccessControl).

3) Keyword matching and manual inspection: In-
clude contracts whose code or metadata references
"NFT", "mint", "tokenId", "URI", "burn", or marketplaces
("OpenSea", "Rarible").

After applying these three filters, we narrow 98,879 con-
tracts to an NFT-specific pool of approximately 98,000 candi-
dates. (This larger-than-expected number reflects modular code
and proxy patterns.)

C. Contract Sanitisation for Static Analysis
Real-world development often produces multi-file or proxy-

split repos. Static tools like Slither require self-contained
Solidity files, so we enforce:

• Standalone: No external imports or unresolved symbols.
• Compiler compatibility: Solidity >=0.4.0 and
<=0.8.19.

• Syntactic correctness: Compiles without errors.
The sanitisation pipeline consists of:

1) Import stripping: Exclude contracts with unresolved
local imports.

2) Pragma filtering: Remove exact-version locks (e.g.
pragma solidity 0.8.17); keep flexible pragmas
(ˆ0.8.0, >=0.8.0).

3) Syntax & compilation test: Compile each file in dry-run
mode; discard failures.

4) Abstract/interface exclusion: Drop files that only define
abstract contracts or interfaces.

After this step, we obtain a clean, compilable dataset of
49,940 standalone, NFT-related contracts.

D. Dataset Statistics

TABLE II: Summary statistics for the final dataset

Property Value

Total contracts in DISL 98,879
NFT-relevant candidates detected ∼98,000
Compilable and standalone 49,940
Contract format Verified Solidity source (.sol)
Solidity versions covered 0.4.11–0.8.19
Common libraries detected OpenZeppelin ERC721, Ownable,

SafeMath
Analysis tool used Slither (v0.8.x-compatible)

V. Results

After processing the contracts through Slither and applying
our risk scoring model, we classified contracts into three
categories:

Fig. 3: NFT Contracts by Risk Tier

TABLE III: Risk Tier Classification

Risk Tier Criteria Number of Contracts Percentage (%)

High Score ≥ 5 11,309 22.6%
Medium Score 3–4 17,478 35.0%
Low Score 1–2 21,153 42.4%

Insight: Nearly 1 in 4 NFT contracts in our dataset exhibit
multiple high-risk patterns, suggesting a systemic threat posed
by contract-level control logic abuse.

A. Prevalence of Individual Vulnerability Patterns

We analyzed the frequency of key backdoor-enabling con-
structs across all contracts. The most commonly flagged pat-
terns are:



Fig. 4: Smart Contract Vulnerability Patterns

• Use of onlyOwner withdrawal
• Unrestricted mint() access
• Use of selfdestruct()
• Use of delegatecall
• External calls in loops
• tx.origin authorization logic

TABLE IV: Vulnerability Patterns and Contracts Affected

Vulnerability Pattern Contracts Affected

Use of onlyOwner withdrawal 18,925
Unrestricted mint() access 14,478
Use of selfdestruct() 6,881
Use of delegatecall 4,724
External calls in loops 3,143
tx.origin authorization logic 1,727

Observation: While owner-controlled minting and withdrawal
are common, the presence of selfdestruct and delegatecall
indicates a deeper risk, as these can irreversibly disable or
manipulate contract logic post-deployment.

B. Co-occurrence of Vulnerabilities

To examine whether dangerous patterns occur in isolation or
combination, we analyzed the co-occurrence of multiple risk
indicators within the same contract.

• 8,217 contracts exhibited two or more high-severity pat-
terns (e.g., selfdestruct + delegatecall)

• 3,456 contracts contained three or more patterns simul-
taneously, increasing exploitability

• 62 contracts showed four or more co-occurring vul-
nerabilities, often involving proxy misuse or developer-
controlled destructors

Interpretation: Contracts with multiple overlapping vulnerabil-
ities are significantly more likely to support rug pull scenarios.

C. High-Risk Contract Examples

To illustrate the exploitability of real-world contracts, we
highlight five anonymized but representative examples from
the high-risk group.

TABLE V: High-Risk Contract Examples

Contract ID Score Key Issues

0xC1A. . . 82F 8 selfdestruct, delegatecall,
unrestricted mint

0xB7D. . . 091 7 onlyOwner withdraw
0xF25. . . 99D 6 tx.origin, URI override, selfdestruct
0xA3E. . . F13 5 unrestricted burn, no renounce
0xE88. . . 2C0 9 all five risk patterns

These contracts typically follow a pattern where the mali-
cious logic is embedded in fallback or rarely called functions,
activated only when external scrutiny is minimal. Some exhibit
deceptive function naming, such as clearReserves() instead
of selfdestruct().

D. Risk Score Distribution
To visualize the general distribution of contract risks across

the dataset, we plot the risk score histogram:
• Most contracts cluster around scores of 2–4, indicating

limited but present risk indicators.
• A significant long-tail exists beyond score 6, comprising

contracts with multiple red flags.
Conclusion: While many contracts exhibit standard NFT logic
with minimal flaws, a substantial minority is clearly engi-
neered with centralized control or rug pull potential.

E. Key Findings
• Backdoor logic is not rare: Over 22% of NFT contracts

show high-risk patterns such as selfdestruct, suggesting
that these are not edge cases but recurring deployment
strategies.

• Owner-centralized logic is pervasive: Nearly 38% of
contracts use onlyOwner in a way that grants unilateral
financial control.

• Composite vulnerabilities amplify threat: The risk es-
calates significantly when multiple patterns are found
together, especially in proxy or factory-based contracts.

VI. Mitigation Strategies

Given the systemic presence of hidden backdoors in NFT
smart contracts, it is imperative to adopt proactive measures to
prevent rug pulls and contract-level fraud. This section outlines
technical, procedural, and ecosystem-level strategies aimed
at reducing the risk posed by malicious contract logic. Our
recommendations are grounded in the vulnerabilities identified
through static analysis of nearly 50,000 real-world contracts.

A. Developer-Focused Best Practices
Developers are the first line of defense against insecure or

deceptive smart contracts. The following measures help reduce
unintentional flaws and eliminate opportunities for abuse:

a) Avoid Dangerous Built-in Functions
• Refrain from using selfdestruct unless absolutely

necessary. If included, restrict it through time-lock,
multi-sig, or irreversible logic disablement [30].



• Avoid delegatecall unless you fully control the
delegated contract and it is immutable. Prefer call
for explicit, controlled function calls [31].

b) Limit Owner Privileges Post-Deployment
• Use renounceOwnership() to give up privileged

functions after deployment [32].
• Implement Ownable access patterns with multi-sig

wallets rather than EOA (Externally Owned Account)
owners to reduce insider rug risk [33].

• Avoid onlyOwner functions that affect core contract
logic (e.g., minting, withdrawing, updating URI).

c) Secure Minting and Withdrawal Logic
• Validate mint() and withdraw() with appropri-

ate require() conditions (e.g., public sale flags,
whitelist) [34].

• Prevent re-minting of existing tokenId values and
enforce caps through maxSupply.

• Route ETH through escrow or vault contracts instead
of holding funds directly in the NFT contract [35].

B. Marketplace and Platform Controls
NFT marketplaces have an important role in ensuring only

safe contracts are allowed for listing. We propose the following
enhancements:

a) Require Source Code Verification and Metadata Audit
• Make verified source code and compiler settings

mandatory before listing NFTs [36].
• Require renunciation of ownership or disclosure

of privileged control mechanisms before collection
launch.

b) Integrate Static Risk Scoring in Onboarding Pipelines
• Use lightweight Slither-based scanning or community-

reviewed tools to assign a contract risk score [37].
• Label collections with risk badges (e.g., low-risk,

medium-risk, unverifiable) for user awareness.
c) Promote On-Chain Access Control Disclosure

• Standardize a metadata tag or registry that de-
scribes owner privileges (e.g., mintable:false, with-
drawable:true) for UI/UX transparency [38].

C. Auditor and Tooling Enhancements
Security auditors and analysis tools must evolve to better

capture semantically valid yet malicious constructs:
a) Develop Backdoor-Specific Static Rules

• Extend tools like Slither and Mythril with checks
for selfdestruct, unguarded delegatecall, and
unbounded mint logic [39].

• Flag functions that are not externally visible but
callable via fallback or delegatecall, or named to
obscure their intent (e.g., adminClear() instead of
withdraw()).

b) Heuristic Scoring and Visual Anomaly Detection
• Use visual correlation tools to detect abnormal combi-

nations (e.g., selfdestruct in ERC-721) [40].

• Integrate risk scoring into CI/CD pipelines of NFT
launches.

c) Encourage Fuzz Testing and Simulation
• Pair static analysis with fuzzers like Echidna to simu-

late edge-case activations of backdoors [41].
• Use runtime assertions to ensure ownership and logic

constraints hold under stress.

VII. Discussion
Our large-scale analysis of nearly 50,000 verified NFT

smart contracts has surfaced several important insights into
the prevalence and structure of hidden backdoors within de-
ployed Ethereum contracts. In this section, we reflect on the
implications of these findings, assess the limitations of our
static analysis approach, and propose avenues for deeper future
investigation.

A. Incidental vs. Intentional Vulnerabilities
A key observation from our results is the significant propor-

tion of contracts containing multiple high-risk logic patterns.
While some of these vulnerabilities may stem from poor
coding practices or outdated standards, many such as un-
protected selfdestruct, unrestricted mint(), and delegatecall to
user-supplied addresses are unlikely to occur by accident. The
high co-occurrence rate of multiple exploit-enabling features
(e.g., contracts with delegatecall and owner-only withdrawal)
suggests that many such contracts are intentionally designed
to retain developer control post-deployment. This supports the
hypothesis that rug pulls are not simply opportunistic exits but
are pre-engineered through contract logic [42].

B. The Problem of Audit Gaps and False Trust
Our analysis reinforces concerns about the limitations of the

current NFT security landscape:
• Sparse Audit Coverage: Most contracts in our dataset

lack any public audit trail, leaving users vulnerable to
undiscovered vulnerabilities[43].

• Complex Code Structures: Even when code is verified
and open-source, the presence of complex control flows,
proxy delegation, and misleading function names makes
it difficult for average users or even developers to identify
dangerous logic [44].

• EOA-Based Ownership: Many projects still rely heavily
on Externally Owned Account (EOA)-based ownership,
granting unilateral power to a single deployer, which
increases the risk of malicious owner actions.

These gaps illustrate how technical transparency does not
equate to security, particularly when backdoors are legally
valid Solidity features deployed with obfuscated naming or
structure.

C. Static Analysis: Strengths and Boundaries
While our approach enabled large-scale risk detection, it

also illustrates the boundaries of pure static analysis in assess-
ing smart contract exploitability:



• Syntax-Driven Limitations: Static tools are syntax- and
pattern-driven. They cannot evaluate runtime behaviors,
such as conditional logic that activates only under specific
block states, transaction sequences, or interactions with
other contracts [46].

• Risk Scoring Limitations: Our risk scoring system,
though effective in highlighting red flags, cannot differ-
entiate between intentional malicious logic and negligibly
insecure logic.

• Proxy Pattern Challenges: Contracts using proxy pat-
terns or external libraries pose additional challenges, as
dangerous functionality may be located in separate files
or storage slots not visible to Slither in isolation [47].

Despite these limitations, our pipeline provides a valuable first-
line filter, especially in a space where no review at all is the
norm.

D. Broader Implications for NFT Ecosystem Integrity
The widespread presence of high-risk contract logic calls

into question the integrity and sustainability of the current
NFT ecosystem. Key concerns include:

• Reactive Marketplaces: Marketplaces remain reactive,
often delisting collections only after community outcry
or exploit [48].

• Lack of Developer Incentives: There is little incentive
for developers to relinquish control or follow best prac-
tices unless required by platforms.

• Erosion of Trust: High-profile scams and rug pulls erode
long-term user trust in NFTs as a secure asset class [44].

These trends underscore the need for systemic improvements
both technical and policy-based, such as mandatory pre-
deployment analysis, risk labeling and stronger community
auditing norms.

E. Future Research Directions
Our study opens multiple avenues for further work:

1) Dynamic Analysis Integration: Future pipelines could
combine static analysis with fuzzing or symbolic execu-
tion to capture activation conditions and simulate exploit
paths [45].

2) Semantic Labeling: Machine learning models could be
trained on labeled malicious vs. benign functions to
identify subtle intent-driven code structures [47].

3) Behavioral Correlation: Cross-chain event analysis (e.g.,
abrupt withdrawal patterns, metadata changes) could cor-
relate flagged contracts with actual rug pull events.

4) Cross-Ecosystem Risk Mapping: Expanding analyses
to other chains (Polygon, BNB Chain, Avalanche) may
reveal whether these backdoor patterns are chain-specific
or part of a broader trend.

The rapid rise of NFTs has brought immense innovation
to digital ownership and asset representation but it has also
created fertile ground for financial abuse via smart contract
backdoors. In this study, we conducted one of the largest
static analyses to date on 49,940 verified NFT smart contracts

deployed on Ethereum, focusing on hidden logic patterns that
facilitate rug pull attacks.

By leveraging Slither and designing a custom heuristic scor-
ing system, we systematically identified and classified high-
risk constructs such as selfdestruct, delegatecall, unrestricted
mint() functions, and owner-only withdrawals. Our results
reveal that more than 22% of NFT contracts exhibit multiple
overlapping vulnerabilities, many of which are unlikely to exist
unintentionally. These patterns strongly suggest a recurring
design model in which control and withdrawal privileges are
deliberately retained by the deployer, in direct contradiction to
decentralization principles.

Through our risk classification, co-occurrence analysis, and
contract-level case examples, we demonstrate that malicious
contract logic is neither rare nor isolated it is embedded across
a wide spectrum of deployed NFT projects. Moreover, our
findings highlight the inadequacy of current audit practices
and the need for stronger pre-deployment screening, automated
risk assessment, and marketplace-level safeguards.

While our analysis is static and does not simulate live
exploitability, it establishes a scalable and reproducible frame-
work for flagging smart contract backdoors before they are
abused in the wild. We hope this work contributes to a more
secure, transparent, and accountable NFT ecosystem and that it
catalyzes a broader shift toward embedding security as a first-
class concern in smart contract development and deployment.

VIII. Conclusion
The rapid rise of NFTs has brought immense innovation

to digital ownership and asset representation but it has also
created fertile ground for financial abuse via smart contract
backdoors. In this study, we conducted one of the largest
static analyses to date on 49,940 verified NFT smart contracts
deployed on Ethereum, focusing on hidden logic patterns that
facilitate rug pull attacks [48].

By leveraging Slither and designing a custom heuristic scor-
ing system, we systematically identified and classified high-
risk constructs such as selfdestruct, delegatecall, unrestricted
mint() functions, and owner-only withdrawal[49]. Our results
reveal that more than 22% of NFT contracts exhibit multiple
overlapping vulnerabilities, many of which are unlikely to exist
unintentionally. These patterns strongly suggest a recurring
design model in which control and withdrawal privileges are
deliberately retained by the deployer, in direct contradiction to
decentralization principles [50].

Through our risk classification, co-occurrence analysis, and
contract-level case examples, we demonstrate that malicious
contract logic is neither rare nor isolated, it is embedded across
a wide spectrum of deployed NFT projects [51]. Moreover, our
findings highlight the inadequacy of current audit practices and
the need for stronger pre-deployment screening, automated risk
assessment, and marketplace-level safeguards [52].

While our analysis is static and does not simulate live
exploitability, it establishes a scalable and reproducible frame-
work for flagging smart contract backdoors before they are
abused in the wild. We hope this work contributes to a more



secure, transparent, and accountable NFT ecosystem and that it
catalyzes a broader shift toward embedding security as a first-
class concern in smart contract development and deployment
[53].
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