
ar
X

iv
:2

50
6.

07
95

7v
1 

 [
cs

.A
R

] 
 9

 J
un

 2
02

5

Understanding the Error Sensitivity of
Privacy-Aware Computing

Matías Mazzanti1, Esteban Mocskos1, Augusto Vega2, Pradip Bose2

1University of Buenos Aires (Argentina), 2IBM T. J. Watson Research Center (NY, USA)

Abstract—Homomorphic Encryption (HE) enables secure com-
putation on encrypted data without decryption, allowing a great
opportunity for privacy-preserving computation. In particular,
domains such as healthcare, finance, and government, where
data privacy and security are of utmost importance, can benefit
from HE by enabling third-party computation and services on
sensitive data. In other words, HE constitutes the “Holy Grail”
of cryptography: data remains encrypted all the time, being
protected while in use.

HE’s security guarantees rely on noise added to data to
make relatively simple problems computationally intractable.
This error-centric intrinsic HE mechanism generates new chal-
lenges related to the fault tolerance and robustness of HE itself:
hardware- and software-induced errors during HE operation can
easily evade traditional error detection and correction mecha-
nisms, resulting in silent data corruption (SDC).

In this work, we motivate a thorough discussion regarding the
sensitivity of HE applications to bit faults and provide a detailed
error characterization study of CKKS (Cheon-Kim-Kim-Song).
This is one of the most popular HE schemes due to its fixed-point
arithmetic support for AI and machine learning applications. We
also delve into the impact of the residue number system (RNS)
and the number theoretic transform (NTT), two widely adopted
HE optimization techniques, on CKKS’ error sensitivity. To the
best of our knowledge, this is the first work that looks into the
robustness and error sensitivity of homomorphic encryption and,
as such, it can pave the way for critical future work in this area.

I. INTRODUCTION AND BACKGROUND

Cloud computing has profoundly changed the way busi-
nesses and individuals use, process, and manage their data [1].
Despite the benefits of this approach, its adoption exacerbates
some existing problems and generates new ones related to the
security and privacy of user data [2]. In particular, delivering
data to a third party to be processed opens up different
possibilities of compromising them, both by improper access
or by a decision of the provider to give access to the data
without authorization. One of the solutions to this problem
resides in the use of data encryption schemes, which allow
the data to only be interpreted by the holder of the key that
allows decryption [3], [4]. However, most of the cryptography
schemes do not allow computing directly on the encrypted
data; it is necessary to decrypt before processing them. In
this way, an external cloud computing provider can access
the unencrypted data and, therefore, be able to compromise
them. Homomorphic Encryption (HE) solves this challenge by
allowing computation on encrypted data [5]. Although HE
schemes have high computational and memory requirements,
which have limited so far their widespread adoption, the

great interest in developing new schemes and the recent
development of aggressive optimizations (at both algorithm
and hardware levels) has opened the door to its use in real-
world applications. Figure 1 presents an overview of a typical
HE setting that involves a client that makes use of third-party
cloud services.

Plaintext Ciphertext

CiphertextPlaintext

Encode Encrypt

DecryptDecode

Computation on 
encrypted data

Client Side Server Side

Fig. 1: Homomorphic encryption used in a typical business
application: users send their data encrypted to a third-party
service provider, where data is processed in its encrypted form.

Multiple HE schemes exist today, with different character-
istics and supported capabilities. In this work, we focus on
CKKS (Cheon-Kim-Kim-Song) [6], [7], a popular HE scheme
for AI and machine learning applications due to its fixed-point
arithmetic support. Fundamentally, schemes like CKKS base
their hardness on a simple idea: add small errors (“noise”)
to data to make relatively simple problems computationally
intractable, an approach known as Learning With Errors
(LWE) [8]. In other words, HE operations (like additions and
multiplications) take place within a “noisy” domain.

As HE operates with noisy (or “consciously erroneous”)
data, a consequent question arises: how can we distinguish
between HE’s deliberately introduced error and error resulting
from faulty hardware or software? The answer, although not
straightforward, motivates us to conduct a thorough study of
the sensitivity of CKKS to bit faults (“flips”), resulting in a
detailed error characterization study of this scheme.

A. Silent Data Corruption

Errors across CKKS stages (encoding, encryption, decryp-
tion, and decoding) can result in two scenarios: HE operation
“breaks”1 and the error is detected, or HE operation does not
break and the error propagates across stages and ends up on
silent data corruption (SDC). The latter is the dangerous case
and, as it has been widely studied and reported, hardware- and
software-induced SDC happens, even in today’s cutting edge

1The FHE library used in this work (OpenFHE) detects the data alteration
and finishes its execution with an assertion error.

https://arxiv.org/abs/2506.07957v1


systems and large-scale datacenters [9]. The nasty aspect about
hardware and software errors in HE applications emerges from
the very same error-centric intrinsic operation of HE schemes.
Once in the HE domain, data becomes noisy by construction
and, if additional error occurs due to faulty hardware or
software, such error camouflages within the HE error and
becomes very hard to detect. Figure 2 presents a cartoonish
illustration of this idea, where original data (plaintext) is
“encrypted” by adding random HE error (noise)2.

1 0 1 1 0
Original data

0 0 0 1 1
HE error +

Faulty 
CPU

1 1 0 0 1

0 1 0 1 1
Corrupted result

Bit error
Computation on 
encrypted data

Input to other HE 
computation stages

Fig. 2: Illustrative scenario of a SDC case induced by a faulty
CPU. The corrupted result incorporates both the HE error and
the faulty hardware error.

II. ERROR RESILIENCE ANALYSIS

This section presents preliminary error sensitivity results for
CKKS. As illustrated in Figure 1, the encoding stage trans-
forms user’s input data into a plaintext, a polynomial of degree
N that we will call p(X). This plaintext is then encrypted
into a ciphertext, a pair of polynomials of degree N each, that
we will call c = (c0(X), c1(X)). We adopt a single-bit error
model. As such, each bit of every polynomial coefficient (in
both the plaintext and the ciphertext) is flipped in sequence
for the set of single-bit-flip fault injection experiments. After
each bit error injection, we execute the entire HE pipeline, and
compare the recovered data after decoding (last stage) against
the original data. This methodology is depicted in Figure 3,
where two input elements (original message) are encoded into
a 4-element polynomial (plaintext) and encrypted into two 4-
element polynomials (ciphertext). A coefficient bit is flipped at
a time before decryption and decoding. The recovered message
is compared against the original one using the L2 norm. We
execute all runs on an Intel i7-11700 CPU with 32 GB RAM
and Arch Linux 257.5-1, using the CKKS implementation
from the OpenFHE library [10], which includes native RNS
and NTT support and 64-bit coefficient representation.

A first observation is that the error behavior is similar when
bit errors occur in coefficients of p(X) (the plaintext) and in
coefficients of c0(X), one of the two polynomials in c (the ci-
phertext). For this reason, and due to space constraints, in this
paper we focus our campaign on errors in c = (c0(X), c1(X)).

2In practice, encryption involves additional steps not shown in the figure.

64-bit 
coefficients

z1 z2

Original 
Message

z’1 z’2

Recovered 
Message

L2 norm 
comparison

Encode Encrypt

DecryptDecode

Plaintext
d1 d2 d3 d4

Plaintext
d’1 d’2 d’3 d’4

0 1 2 63... 0 1 2 63... 0 1 2 63... 0 1 2 63...

0 1 2 63...

Coeff 0

0 1 2 63...

Coeff 1

0 1 2 63...

Coeff 2

0 1 2 63...

Coeff 3

Ciphertext

We flip one 
bit at a time

Fig. 3: Error injection methodology.

This initial study emphasizes the occurrence of bit errors
specifically during the encoding/encryption (and correspond-
ing decoding/decryption) stages. It does not address errors that
may arise during computations performed on the encrypted
data, which will be the subject of future research.

A. Error Position Impact

This section examines the impact of a single bit error
introduced in the ciphertext c = (c0(X), c1(X)). We consider
a simple scenario where both polynomials c0(X) and c1(X)
consist of four 64-bit coefficients each. Figure 4 illustrates the
L2 norm error of the output after decoding, in comparison to
the original input. A somewhat expected observation is that the
magnitude of the error increases with the importance of the
altered bit within each coefficient. In particular, modifications
to the first 50 bits of each coefficient result in negligible
effects on the recovered output. Additionally, we observe that
c1(X) exhibits more pronounced error peaks than c0(X).
This phenomenon can be understood by examining the CKKS
decryption process (Equation 1), where polynomial c1(X) is
multiplied by the secret key s (another polynomial), leading
to the dispersion of the error across the coefficients.

m′ = [c0 + c1 × s]Q (1)

0 64
2x

64
3x

64
4x

64
5x

64
6x

64
7x

64
8x

64

Modified Bit Index

0

100

200

300

400

500

600

700

No
rm

-2

C0
C1

Fig. 4: L2 norm error of a single-bit flip in the ciphertext.
The X-axis shows the position of the modified bit. Polynomial
degree N = 4.

B. Scale Factor (∆) Impact

CKKS employs various configuration parameters to guar-
antee a certain security level (e.g., 128 bits), such as the
polynomial degree N , the ciphertext coefficient modulus q,



and the scale factor ∆. The scale factor is essential for
adjusting the input data to maintain its precision as much
as possible throughout the HE stages and, as discussed in
this section, it influences error sensitivity. Figure 5 shows the
L2 norm error of the recovered output using different scale
factors: 220, 240, and 250. As observed, an increase in ∆ leads
to enhanced error resilience, characterized by a reduction in
errors. The multiplication by the scale factor ∆ effectively
“shifts right” the coefficient, thereby augmenting the quantity
of bits that remain unaffected by errors.

0 64
2x

64
3x

64
4x

64
5x

64
6x

64
7x

64
8x

64

Modified Bit index

0100
101
102
103
104
105
106
107
108
109

1010
1011
1012

No
rm

-2
 (s

ym
lo

g 
sc

al
e)

Delta=2^20
Delta=2^40

Delta=2^50

Fig. 5: L2 norm error of a single-bit flip in the ciphertext using
different scale factors ∆. The X-axis shows the position of the
modified bit. Polynomial degree N = 4.

In practical applications, the scale factor ∆ must be care-
fully adjusted for effective CKKS implementations. The choice
of this factor represents a compromise between enhanced
computation precision (larger ∆) and reduced computational
complexity (smaller ∆). However, when incorporating error
resilience into the analysis, such compromise needs to be
revisited.

C. RNS and NTT Optimizations Impact

Schemes like CKKS rely on two widely adopted optimiza-
tions to make HE problems tractable on available systems:
the residue number system (RNS) and the number theoretic
transform (NTT). RNS splits the huge polynomial coefficients
used by HE schemes into smaller ones that fit common 64-bit
processor words; while NTT enables efficient multiplication
of high-degree polynomials. It is not the focus of this work
to delve into the details of RNS and NTT (additional details
can be found in [7]). However, these optimization techniques
have different effects on CKKS’ error sensitivity. Figure 6
illustrates a scenario in which an image from the MNIST
dataset (Figure 6(a)) is processed through the HE pipeline.
The effect of a bit error introduced during the encoding
phase, without the application of RNS and NTT, is depicted
in Figure 6(b), where a fairly accurate representation of the
original image is retrieved. Conversely, when a bit error occurs
during the utilization of RNS and NTT, the resulting image is
entirely distorted, as demonstrated in Figure 6(c).
RNS case: RNS uses Equation 2 to reconstruct a poly-
nomial coefficient from its smaller RNS remainders rk. A
bit error in rk is amplified when multiplied by the large

(a) Original (b) No RNS/NTT (c) RNS+NTT

Fig. 6: Impact of a single bit-flip in CKKS encoding.

[(
1
Qk

)
mod qk

]
Qk factor, impairing the reconstruction of the

original coefficient.

p =

(
L∑

k=1

rk

[(
1

Qk

)
mod qk

]
Qk

)
mod Q (2)

NTT case: The NTT, which is a variant of the Discrete Fourier
Transform (DFT), can be implemented using Cooley-Tukey
butterfly computations (Figure 7). As a result, a bit error in
any of the NTT input elements (a or b in the figure) will
inherently spread across all the output elements (A and B).

Fig. 7: Cooley-Tukey butterfly.

III. CONCLUSION

This work provides a first-cut analysis of error character-
ization in CKKS, a popular homomorphic encryption (HE)
scheme due to its support of fixed-point arithmetic in AI and
machine learning applications. The study examines the sensi-
tivity of errors based on their occurrence location, the scale
factor ∆, and the implementation of residue number system
(RNS) and number theoretic transform (NTT) techniques.

The findings reveal trade-offs between robustness, perfor-
mance, and security that may be overlooked when robustness
is not considered. For instance, while smaller scale factors
are advantageous for minimizing HE complexity and en-
hancing the noise budget for operations, larger scale factors
can enhance bit error resilience. Additionally, RNS and NTT
techniques are acknowledged as significant optimizations in
today’s CKKS applications; however, their use may lead to
severe consequences in the presence of bit errors.

The intrinsic error-centric nature of HE exacerbates this
issue, as errors arising from defective hardware or software can
easily blend with the inherent errors of the encryption, making
detection difficult. Consequently, silent data corruption is an-
ticipated to become a prevalent challenge in environments sus-
ceptible to faults in homomorphic encryption. Consequently,
we anticipate that this research will lay the groundwork for
significant future investigations in this domain.



REFERENCES

[1] K. Konstantinos, M. Persefoni, F. Evangelia, M. Christos, and N. Mara,
“Cloud computing and economic growth,” in Proceedings of the 19th
Panhellenic Conference on Informatics, 2015, pp. 209–214.

[2] J. Sen, “Security and privacy issues in cloud computing,” in Cloud
technology: concepts, methodologies, tools, and applications. IGI
global, 2015, pp. 1585–1630.

[3] H. Williams, “A modification of the RSA public-key encryption pro-
cedure (corresp.),” IEEE Transactions on Information Theory, vol. 26,
no. 6, pp. 726–729, 1980.

[4] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, 1985.

[5] X. Yi, R. Paulet, E. Bertino, X. Yi, R. Paulet, and E. Bertino, Homo-
morphic encryption. Springer, 2014.

[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. Springer, 2017, pp. 409–
437.

[7] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer,
2019, pp. 347–368.

[8] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, ser. STOC ’05, 2005, p. 84–93.
[Online]. Available: https://doi.org/10.1145/1060590.1060603

[9] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.11245

[10] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B. Cousins,
S. Erabelli, N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu,
D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah, S. R.V., K. Rohloff,
J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca,
“OpenFHE: Open-source fully homomorphic encryption library,”
Cryptology ePrint Archive, Paper 2022/915, 2022, https://eprint.iacr.
org/2022/915. [Online]. Available: https://eprint.iacr.org/2022/915


