
ar
X

iv
:2

50
6.

07
89

4v
1 

 [
cs

.C
R

] 
 9

 J
un

 2
02

5

Secure Distributed Learning for CAVs: Defending
Against Gradient Leakage with Leveled

Homomorphic Encryption

Muhammad Ali Najjar∗ , Ren-Yi Huang† , Dumindu Samaraweera, Member, IEEE∗ , and Prashant Shekhar∗

Abstract—Federated Learning (FL) enables collaborative
model training across distributed clients without sharing raw
data, making it a promising approach for privacy-preserving ma-
chine learning in domains like Connected and Autonomous Vehi-
cles (CAVs). However, recent studies have shown that exchanged
model gradients remain susceptible to inference attacks such as
Deep Leakage from Gradients (DLG), which can reconstruct
private training data. While existing defenses like Differential
Privacy (DP) and Secure Multi-Party Computation (SMPC) offer
protection, they often compromise model accuracy. To that end,
Homomorphic Encryption (HE) offers a promising alternative by
enabling lossless computation directly on encrypted data, thereby
preserving both privacy and model utility. However, HE intro-
duces significant computational and communication overhead,
which can hinder its practical adoption. To address this, we
systematically evaluate various leveled HE schemes to identify the
most suitable for FL in resource-constrained environments due to
its ability to support fixed-depth computations without requiring
costly bootstrapping. Our contributions in this paper include
a comprehensive evaluation of HE schemes for real-world FL
applications, a selective encryption strategy that targets only the
most sensitive gradients to minimize computational overhead, and
the development of a full HE-based FL pipeline that effectively
mitigates DLG attacks while preserving model accuracy. We
open-source our implementation to encourage reproducibility and
facilitate adoption in safety-critical domains.

Index Terms—Federated Learning, Homomorphic Encryption,
Gradient Leakage Attack, Privacy, CAVs

I. INTRODUCTION

Federated Learning (FL) has emerged as a promising
paradigm to address data privacy concerns in Machine Learn-
ing (ML) by enabling distributed and collaborative model
training without the need of direct data sharing. Instead of
centralizing data, FL distributes the learning process across
participating clients, where each client trains a local model on
its data, and only model updates are shared with the central
server for aggregation. This approach inherently strengthens
data privacy, making it widely applicable in practical do-
mains such as Connected and Autonomous Vehicles (CAVs),
Unmanned Aerial Vehicles (UAVs), and similar systems.

∗Department of Mathematics, Embry-Riddle Aeronautical University,
Daytona Beach, FL (emails: najjarm@my.erau.edu, samarawg@erau.edu,
shekharp@erau.edu).

†Department of Electrical Engineering, University of South Florida, Tampa,
FL (email: hr219@usf.edu).

0Code and data of this work available at: https://github.com/Rahn80643/
Federated-Learning-PyTorch-HE-Smap

However, the exchange of model parameters in FL is not
without risk, as these parameters themselves can be targets for
inference or reconstruction attacks and may still leak sensitive
information. For instance, recent studies reveal significant
privacy vulnerabilities, particularly through gradient leakage
attacks, such as Deep Leakage from Gradients (DLG), where
adversaries exploit exchanged model gradients to reconstruct
private training data [1], [2].

To address the growing security and privacy concerns in
FL, several mitigation strategies have been actively explored.
Differential Privacy (DP) is one of the most widely used
and straightforward techniques, where carefully calibrated
noise is added to model updates or gradients to prevent the
leakage of individual data points. While DP offers strong
theoretical guarantees, it may introduce a trade-off between
privacy and model accuracy. Secure Multi-Party Computation
(SMPC) enables multiple parties to collaboratively compute a
function over their inputs while keeping those inputs private,
ensuring that no individual party learns more than necessary.
Homomorphic Encryption (HE), a cryptographic technique
first introduced by Rivest et al. in 1978 [3], takes this a step
further by allowing computations to be performed directly on
encrypted data, enabling a server to aggregate encrypted model
updates without ever accessing the raw data. Each of these
methods offers different levels of protection and computational
overhead, and ongoing research focuses on combining them to
strike a balance between privacy, efficiency, and model utility
in practical FL deployments. However, compared to other
methods, HE is a lossless mechanism that preserves the full
utility of the data while providing strong privacy guarantees,
making it particularly suitable for a wide range of practical
applications.

Different HE schemes exhibit varying performance charac-
teristics, and selecting the most suitable scheme and applying
optimizations are crucial to making HE-based federated learn-
ing viable in resource-constrained environments such as CAVs.
HE has undergone significant evolution over the past two
decades, with each generation addressing critical challenges
related to functionality, efficiency, and practical deployment.
These HE schemes can broadly be classified into three main
generations, each representing a significant advancement in
capability and practicality:

• First Generation – Partially Homomorphic Encryption

https://orcid.org/0009-0008-3800-306X
https://orcid.org/0009-0006-8341-5835
https://orcid.org/0000-0003-4097-5585
https://orcid.org/0000-0003-2353-6740
https://github.com/Rahn80643/Federated-Learning-PyTorch-HE-Smap
https://github.com/Rahn80643/Federated-Learning-PyTorch-HE-Smap
https://arxiv.org/abs/2506.07894v1


(PHE): The earliest form of HE supported only a sin-
gle type of mathematical operation (either addition or
multiplication) an unlimited number of times. Examples
include RSA (multiplicative homomorphism [3]) and
Paillier (additive homomorphism [4]). Although concep-
tually useful, these schemes were limited in real-world
applicability because of their inability to handle general
computations.

• Second Generation – Somewhat and Fully Homomorphic
Encryption (SHE & FHE): This generation introduced
the ability to perform both addition and multiplication on
encrypted data, enabling more expressive computations.
Somewhat Homomorphic Encryption (SHE) supported
limited-depth computations before ciphertexts became
too noisy. The major breakthrough came in 2009, when
Craig Gentry introduced the first Fully Homomorphic
Encryption (FHE) scheme [5]. His construction, based
on ideal lattices and a revolutionary method called boot-
strapping, allowed for arbitrary-depth computation on
encrypted data and thereby laying the foundation for
general-purpose privacy-preserving computation.

• Third Generation – Practical/Optimized FHE: More re-
cent advances have focused on improving the efficiency,
scalability, and usability of FHE. This includes opti-
mizations such as SIMD-style parallel processing [6],
batching techniques, and support for approximate arith-
metic (e.g., Cheon-Kim-Kim-Song (CKKS) scheme for
encrypted floating-point operations [7]). These develop-
ments have significantly improved performance and made
HE increasingly viable for practical applications such
as privacy-preserving machine learning, secure cloud
computing, and federated learning.

Although promising, integrating HE into FL architectures
remains highly challenging due to significant computational
and communication overheads. To partially mitigate these
challenges, Leveled Homomorphic Encryption (LHE) can be
employed. LHE is a subclass of HE that supports both addition
and multiplication of encrypted data, but only up to a fixed
number of operations, known as multiplicative depth. Unlike
FHE, which allows unlimited operations via the expensive
bootstrapping process, LHE eliminates bootstrapping entirely,
offering improved efficiency and lower latency. This makes
LHE especially suitable for practical scenarios where the
computation depth is known in advance, such as privacy-
preserving machine learning. By carefully tuning the encryp-
tion parameters to match the task complexity, LHE offers a
practical trade-off between security and performance for FL
systems.

The key contributions of this paper are as follows:

1) We conduct an extensive evaluation of practical HE
schemes, focusing on their functionality, efficiency, and
suitability for real-world deployment, with Connected
and Autonomous Vehicles as a primary use case.

2) We propose and implement a selective encryption strat-
egy that prioritizes the most sensitive gradients, effec-

tively reducing the computational overhead of HE while
preserving model utility.

3) We design and implement an end-to-end privacy-
preserving pipeline that effectively mitigates Deep Leak-
age from Gradients (DLG) attacks using HE. Our so-
lution maintains near-identical model accuracy while
providing strong privacy guarantees, and we make the
implementation publicly available to foster reproducibil-
ity and adoption.

The rest of the paper is organized as follows. Section II
presents essential background on federated learning, homo-
morphic encryption, and related work in this domain. Section
III reviews adversarial attacks targeting FL architectures, with
a particular emphasis on applications in CAVs. Section IV
introduces our proposed selective parameter encryption strat-
egy using the CKKS scheme, along with the implementation
framework. Section V details the experimental setup, while
Section VI discusses the experimental results and key find-
ings. Finally, Section VII concludes the paper and outlines
directions for future research.

II. BACKGROUND AND RELATED WORK

This section provides an overview of the background and
related work, with a particular focus on the attack landscape
in federated learning, especially as it pertains to CAV appli-
cations.

Fig. 1. An overview of the federated learning workflow in distributed
systems, including its decentralized training architecture and collaborative
model aggregation process.

A. Federated Learning

FL trains a global machine learning model across decen-
tralized nodes or client devices, each with private datasets.
Rather than transferring raw data to a central server, FL ag-
gregates local model updates or gradients to enhance privacy.
Over the years, various aggregation algorithms have been
proposed to strike a balance between collaboration efficiency
and data privacy in FL. A foundational method, Federated
Averaging (FedAvg), introduced by McMahan et al. [8], opti-
mizes local Stochastic Gradient Descent (SGD) by aggregating
model updates while discarding those from straggler devices,

2



thereby improving communication efficiency. To address chal-
lenges arising from statistical and system heterogeneity among
clients, FedProx extends FedAvg by incorporating a proximal
term that regularizes local updates [9]. Further advancements,
such as SCAFFOLD, introduce control variates to mitigate
client drift and enhance convergence, especially under non-
IID data distributions [10].

However, regardless of these aggregation methods, FL’s
privacy vulnerabilities come primarily from the exposure of
gradients, which allows attackers to infer sensitive attributes
from model updates, underscoring the critical need for robust
privacy preservation methods.

B. Encrypting Model Parameters with HE

In the context of FL, homomorphic encryption enables
computations directly on encrypted data without requiring
decryption of intermediate values, thereby significantly en-
hancing privacy guarantees. As previously mentioned, HE
schemes are generally categorized into three types: Partially
Homomorphic Encryption (PHE), which supports only a single
type of operation (either addition or multiplication); Somewhat
Homomorphic Encryption (SHE), which allows a limited num-
ber of both operations; and Fully Homomorphic Encryption
(FHE), which supports arbitrary computations on encrypted
data without limitation [11]. Classical PHE schemes, such
as RSA (multiplicative) and ElGamal (additive under certain
settings), offer efficient encryption mechanisms but lack the
operational flexibility required for complex machine learning
tasks.

Fig. 2. How federated aggregation operates at the server when model
parameters are encrypted using homomorphic encryption.

The introduction of FHE transformed encrypted compu-
tation by allowing any arbitrary arithmetic in ciphertext,
although initially impractical due to computational overhead
[5]. Subsequent advances led to leveled HE schemes like
Brakerski-Gentry-Vaikuntanathan (BGV) [12], Brakerski/Fan-
Vercauteren (BFV) [13], and particularly CKKS [7], signif-
icantly optimizing computational efficiency for approximate
arithmetic common in machine learning tasks. The CKKS

scheme, a lattice-based leveled FHE scheme, supports approxi-
mate arithmetic on real numbers, making it highly suitable for
machine learning workloads. Unlike schemes like BFV that
are optimized for exact arithmetic, CKKS allows SIMD-style1

operations through efficient polynomial encoding, enabling
the batching of encrypted gradients and reducing communi-
cation overheads during secure federated training. This means
that multiple plaintext values can be packed into a single
ciphertext and processed in parallel, significantly improving
computational efficiency. Unlike BFV and BGV, which are
designed for exact computations on integers, CKKS allows
efficient approximate operations on floating-point numbers,
making it well-suited for machine learning tasks that tolerate
small numerical errors. The ability to encode and process
vectors of real numbers directly gives CKKS a performance
advantage in scenarios like federated learning, where large-
scale, parallelizable computations are common.

Fig. 3. Security challenges in federated learning for distributed connected
and autonomous vehicle environments.

While HE-based techniques such as CKKS offer a strong
privacy guarantee by operating directly on encrypted data,
they incur high computational costs-especially during boot-
strapping, which remains a performance bottleneck. Recent
profiling studies confirm that bootstrapping accounts for up
to 50% of runtime in practical deployments [14], yet its cost
is often justified by removing trust assumptions on the server.
Moreover, arithmetic intensity analyses of bootstrapped CKKS
circuits reveal that modern compute platforms like GPUs and
FPGAs are often memory-bound due to limited cache capacity
and large ciphertext sizes. These insights are driving research
toward more feasible and practical implementations, where
we employ a selective parameter encryption strategy—detailed
later in Section IV of this paper.

C. Integration of HE with Federated Learning for Practical
Applications

Although homomorphic encryption introduces inherent
communication and computational overheads, its lossless util-
ity has made it an attractive option for secure computation.

1Single Instruction, Multiple Data.

3



As a result, several studies have specifically investigated the
integration of HE within Federated Learning frameworks to
enhance privacy without compromising model performance.
Li et al. [9] demonstrated the feasibility of employing HE
schemes in federated settings, emphasizing that appropri-
ate parameter selection and efficient encoding significantly
affect overall system performance. Moreover, Zhang et al.
[15] introduced BatchCrypt, an optimized approach leverag-
ing batching techniques to significantly reduce computational
overhead in HE-FL systems, reinforcing the practicality of
encrypted computations. Another notable contribution by Fang
et al. [16] highlights hybrid models integrating secure multi-
party computation and HE to balance privacy guarantees and
computational efficiency. Combining HE with FL addresses
privacy concerns by securely encrypting gradient updates,
mitigating leakage risks. Usually, such integration typically
involves trade-offs between model accuracy, computational
complexity, and communication overhead, requiring careful
optimization to maintain system performance. Recent practical
frameworks such as FedML-HE effectively manage these
trade-offs, demonstrating real-world applicability of encrypted
FL [17]. These approaches selectively encrypt critical pa-
rameters, effectively balancing security and computational
efficiency.

While homomorphic encryption offers compelling security
benefits for federated learning in applications like CAVs,
practical deployment requires more careful consideration of
computational overhead and communication efficiency. In
particular, CAVs typically generate enormous amounts of
sensitive data from sensors, cameras, and vehicle-to-everything
(V2X) communications. Thus, centralized training methods
pose major risks regarding data privacy, bandwidth limitations,
and latency [18]. Therefore, incorporating HE into FL for
CAVs is essential, not only for protecting sensitive data such as
user location, driving behavior, and sensor inputs during model
updates, but also for ensuring compliance with privacy regu-
lations like GDPR and industry-specific mandates. Moreover,
it enables secure collaboration among multiple stakeholders,
including car manufacturers, without compromising propri-
etary information. In addition, it supports the development
of secure, real-time decision-making models by safeguarding
communication payloads throughout the learning process [19].

III. ADVERSARIAL ATTACKS ON FL ARCHITECTURES IN
CAV APPLICATIONS

Unlike centralized learning models, FL enables decentral-
ized training across multiple clients, which, while enhancing
data privacy, introduces a range of unique security vulnerabili-
ties. One of the most prominent threats is the model poisoning
attack [20], where a malicious client injects carefully crafted
updates during training to manipulate the global model’s
decision boundary, often without significantly degrading its
performance on clean, non-targeted data. Closely related is
the data poisoning attack [21], in which the attacker alters,
inserts, or removes local training data to degrade the model’s

performance or introduce targeted bias, aiming to mislead the
learning process by corrupting the underlying patterns.

Another concerning threat is the free-rider attack [22],
where a client participates in the training rounds without
performing meaningful computation, sending random, reused,
or empty updates, yet still benefits from the improved global
model trained by honest participants. Meanwhile, backdoor
attacks embed hidden triggers into the model, causing mis-
classification only when specific patterns are present, without
significantly altering the model’s accuracy on standard inputs.
In addition, inference attacks such as membership inference
[23] and gradient leakage aim to extract sensitive information
from shared updates. Here, an adversary, either a participating
client or the central server, analyzes model gradients or pa-
rameters to reconstruct private data, such as images or sensor
readings, from other clients.

As illustrated in Fig. 4, Deep Leakage from Gradients
(DLG) is an attack in which adversaries reconstruct sensitive
input data from shared gradient information [1]. Figure shows
how DLG exploits the fact that gradients carry implicit infor-
mation about training data, allowing adversaries to iteratively
optimize dummy data to match observed gradients [2]. Follow-
up studies by Zhao et al. [24] improved the efficiency and
accuracy of reconstruction attacks, emphasizing the need for
robust countermeasures. Given its practical feasibility and
significant threat to client privacy, this attack vector is the
central focus of this study.

Fig. 4. An overview of adversarial reconstruction of sensitive input data from
shared gradients, beginning with random input initialization.

While federated learning is designed to enhance data privacy
by keeping raw data local, its decentralized architecture limits
centralized oversight, making the detection and mitigation
of advanced attacks like DLG particularly challenging. As
FL continues to be deployed in privacy sensitive domains,
such as connected autonomous vehicles, developing robust
countermeasures against gradient leakage attacks is essential
to maintain trust in collaborative learning systems.

Moreover, while this paper primarily focuses on mitigating
adversarial attacks in federated learning using homomorphic
encryption, it is important to consider the broader adversarial
threat landscape targeting CAVs. These attacks extend beyond
FL models and can compromise various subsystems within
CAVs. For instance, Qayyum et al. [25] outlined ML-related
vulnerabilities in vehicular networks, while Chattopadhyay et

4



al. [26] emphasized the need for a security-by-design approach
to AV systems. Sharma et al. [27] demonstrated how adver-
sarial examples can bypass existing ML-based misbehavior
detectors in CAVs. Adversarial attacks may target perception
systems by manipulating inputs like camera images or LiDAR
data, leading to misclassification of road signs or phantom
object detection. Planning and control systems can also be at-
tacked through false communication messages, causing unsafe
maneuvers. V2X communication is particularly vulnerable to
spoofing, where attackers impersonate legitimate sources to
inject misleading data.

Securing CAVs against adversarial attacks demands a holis-
tic approach, strengthening perception, control, and commu-
nication layers while embedding privacy-preserving methods
like FL and HE for secure model training and data sharing.
In this study, we focus on mitigating DLG attacks, as they
pose a direct risk to data confidentiality during the gradient
exchange phase, a critical component in FL workflows. By
encrypting model updates using leveled HE through TenSEAL,
we ensure that adversaries, including potentially honest but
prudent servers, cannot access meaningful information from
intercepted gradients.

IV. SELECTIVE PARAMETER ENCRYPTION WITH CKKS

This paper investigates the challenges and practical opti-
mizations of integrating homomorphic encryption into feder-
ated learning architectures, with a particular focus on con-
nected and autonomous vehicle applications. This section out-
lines the implementation details and methodology used in our
experimental evaluations, which are discussed in subsequent
sections.

Over the years, several HE libraries have been developed
to support encrypted federated learning, each offering unique
strengths. Microsoft SEAL [28], a widely used C++ library,
supports BFV and CKKS schemes and provides robust encryp-
tion operations, though it requires manual parameter tuning,
which can be challenging for users unfamiliar with HE.
IBM’s HElib [29] implements BGV and CKKS and includes
advanced features like bootstrapping, but its steep learning
curve and integration complexity limit accessibility. PAL-
ISADE [30], a general-purpose lattice cryptography library,
supports multiple schemes (BFV, BGV, CKKS) and offers
broad functionality, though it is less optimized for ease of
use. In contrast, TenSEAL [31], built on Microsoft SEAL and
designed specifically for machine learning, offers a simplified
Python interface, automated parameter selection, and efficient
tensor operations, with seamless PyTorch integration. Among
these, TenSEAL stands out as the most user-friendly and prac-
tical choice for implementing encrypted federated learning.

A. Overview of the Workflow and Parameter Integration

The proposed methodology integrates the CKKS leveled
HE scheme within an FL framework using the TenSEAL
library. TenSEAL, built on top of Microsoft SEAL, simpli-
fies the handling of encrypted tensors, automates parameter
management, and efficiently executes critical operations for

machine learning models in privacy-preserving environments.
Our experimental setup aligns with existing literature showing
that ciphertext sizes grow significantly with increasing multi-
plicative depth. This requires frequent bootstrapping or circuit
redesign to stay within a feasible computational envelope [32].

The CKKS algorithm encompasses several key operations,
including the encoding of real numbers into polynomial rep-
resentations, key generation and switching, noise manage-
ment through rescaling, and computational bootstrapping to
extend ciphertext usability. CKKS is especially well-suited for
approximate arithmetic on floating-point numbers, enabling
efficient computation of operations such as inner products and
polynomial approximations (e.g., sigmoid functions). Achiev-
ing an effective balance between security, precision, and
computational efficiency requires careful tuning of encryption
parameters, such as the polynomial modulus degree, ciphertext
modulus, and scaling factors. In this work, CKKS parameters
were integrated using the TenSEAL library, configured as
follows:

• Polynomial modulus degree (N): Set to 8192 based
on the required 128-bit security level and TenSEAL
limitations. Higher N values provide greater security but
increase memory and computational demands.

• Ciphertext modulus (Q): Selected based on the an-
ticipated multiplicative depth of operations. It ensures
that the encrypted computations maintain accuracy over
multiple operations. It is constructed as a product of
prime moduli, whose bit-lengths sum to Qbits = 60 +
52+60 = 172 bits by default. This parameter was set to
172 in all experimental analysis.

• Scaling factor: Determines the precision of floating-
point operations. A higher scaling factor results in better
numerical stability but requires larger ciphertext sizes.
CKKS encodes real numbers by scaling them to integers
with a multiplicative factor ∆ = 252 (default). This
scaling factor balances the precision and the available
noise budget. Scaling factor was set to 52 in all our
experimental analysis.

B. Implementation with Selective Encryption

To reduce the additional computational and communication
overhead introduced by homomorphic encryption, we adopt a
selective encryption strategy that targets only the most critical
model parameters, rather than encrypting the entire parameter
set. This strategy can be implemented using two approaches:

• Jacobian-based Sensitivity Maps: Gradients of model
outputs with respect to each parameter are computed
across training batches. Parameter-wise second-order
derivatives are then averaged to rank parameters based
on their sensitivity/importance.

• Magnitude-based Sensitivity Maps: After each mini-
batch, layer-wise parameter magnitudes are evaluated to
identify influential weights, without requiring the compu-
tation of second-order gradients.

These sensitivity maps enable partial encryption, where only
the top-ranked parameters are encrypted. This significantly

5



reduces computational costs while maintaining model utility
and privacy protection. Building on our previous findings, this
work adopts the magnitude-based sensitivity approach due to
its lower computational overhead and ease of implementation
compared to gradient-based alternatives. [33]

Algorithm 1 provides an overview of the selective CKKS
encryption process, which comprises the following key com-
ponents.

1) Client Initialization: Clients generate local models
based on private data, initializing HE parameters, in-
cluding public/private key pairs, using TenSEAL with
specific polynomial modulus degree and scaling factors.

2) Encrypted Local Training: Each client performs local
training rounds, encrypting either full set of gradients or
selectively encrypted parameters based on the generated
sensitivity maps. The encryption leverages CKKS for
approximate arithmetic, balancing precision and com-
putational efficiency.

3) Encrypted Aggregation: Clients securely transmit en-
crypted updates to the central aggregator. Aggregation
operations such as addition are performed homomorphi-
cally without decryption, ensuring data confidentiality
throughout training.

4) Decryption and Update: After aggregation, the server
decrypts the combined model updates using the secret
key and updates the global model, which is then broad-
casted to the clients for the next round of training.

Our implementation framework incorporates several ad-
ditional key features to ensure modularity, flexibility, and
detailed performance analysis. Keypair generation is managed
based on the selected HE library (TenSEAL) [34], enabling
seamless integration and adaptability. To thoroughly evaluate
overhead, we individually record encryption and decryption
times, local training durations, and HE aggregation times.
Partial encryption is applied using sensitivity maps, which
can be generated via either magnitude-based or Jacobian-
based methods, allowing selective protection of critical model
parameters. Additionally, model encryption is performed layer-
wise, supported by modular serialization functions that fa-
cilitate checkpointing and resumption. The complete source
code and data for this work are available at https://github.com/
Rahn80643/Federated-Learning-PyTorch-HE-Smap. Together,
these design choices enable scalable, privacy-preserving feder-
ated learning with flexible encryption granularity and efficient
encrypted aggregation, making the framework well-suited for
practical applications such as connected and autonomous ve-
hicles.

V. EXPERIMENTAL SETUP

Our experimental setup leverages a high-performance com-
puting platform configured with PyTorch and Python on an
Ubuntu 20.04 server. The system is powered by Intel Xeon
CPUs, 128 GB of RAM, and an NVIDIA RTX A6000
GPU, providing the computational capacity necessary for both
deep learning and encrypted operations. For cryptographic
computations, we employ the TenSEAL library, specifically

Algorithm 1: Federated Learning with Selective
CKKS Encryption

Input: Global model M0, client datasets {Di}Ni=1,
total rounds T , encryption ratio r

Output: Trained global model MT

1 Initialize encryption context with CKKS parameters
(ring dimension, scale, etc.);

2 Generate public/private keys (pki, ski) for each client
i;

3 Broadcast M0 and pki to all clients;
4 for each round t = 1 to T do
5 for each client i ∈ {1, . . . , N} in parallel do
6 Receive Mt−1 from server;
7 Train local model M(t)

i on data Di;
8 Compute local gradient ∇M(t)

i ;
9 Generate sensitivity map Si using gradient

magnitude or Jacobian;
10 Identify top-r% sensitive elements in ∇M(t)

i ;
11 Encrypt sensitive elements with CKKS using

pki;
12 Send (Encrypted, Plaintext) gradient

tuple to server;
13 end
14 Server side:
15 Aggregate encrypted gradients homomorphically;
16 Aggregate unencrypted gradients normally;
17 Decrypt aggregate encrypted portion using ski or

shared mechanism;
18 Combine both to compute full aggregated gradient

∇Mt;
19 Update global model Mt ←Mt−1 − η∇Mt;
20 Broadcast updated Mt to all clients;
21 end
22 return MT ;

utilizing the CKKS homomorphic encryption scheme. The
encryption is configured with a polynomial ring dimension of
8192 and a scaling bit size of 52, offering a balance between
computational efficiency and numerical precision.

To rigorously evaluate the proposed privacy-preserving fed-
erated learning framework, we adopt the CIFAR-10 bench-
mark dataset, which consists of 60,000 color images evenly
distributed across 10 distinct classes. We simulate two types of
data distribution scenarios to reflect realistic federated learning
environments: (1) an IID setting where data is randomly and
evenly distributed among clients, and (2) a Non-IID setting
where class distributions are deliberately skewed to reflect
heterogeneity. For this study, we focus on the IID configura-
tion. The models used include EfficientNetB0, MobileNetV1,
MobileNetV2, and ResNet34, with approximately 4.0, 4.2,
3.4, and 21.8 million parameters, respectively. These models
were selected to represent a diverse range of lightweight
and moderately complex architectures that are widely used

6

https://github.com/Rahn80643/Federated-Learning-PyTorch-HE-Smap
https://github.com/Rahn80643/Federated-Learning-PyTorch-HE-Smap


in resource-constrained environments, such as CAVs, due to
their balance between accuracy and computational efficiency.
Training is performed 50 communication rounds with three
clients, a batch size of 16, and 10 local epochs per client.
We use stochastic gradient descent (SGD) as the optimizer,
with a learning rate of 0.01, momentum of 0.9, and a weight
decay factor of 4× 10−4. A StepLR scheduler is applied with
a step size of 10 epochs and a gamma value of 0.1 to manage
learning rate decay.

The experimental workflow proceeds through six key stages,
as discussed. (1) Initialization and Key Generation: The
central server defines the global model architecture (e.g.,
EfficientNet, MobileNet, ResNet) and configures encryption
parameters, generating and distributing CKKS configurations
using TenSEAL. (2) Local Training and Gradient Compu-
tation: Clients perform training on IID-simulated data and
compute gradients, applying magnitude-based sensitivity maps
to identify the most privacy-sensitive parameters. (3) Selective
Encryption: Sensitive gradients are encrypted using CKKS,
while non-sensitive ones remain in plaintext to minimize
overhead. (4) Secure Aggregation: Clients send encrypted and
plaintext gradients to the server, which performs homomor-
phic aggregation on ciphertexts and conventional aggregation
on plaintext. (5) Decryption and Model Update: The server
decrypts the aggregated ciphertext gradients and updates the
global model with both encrypted and plaintext contributions.
(6) Redistribution and Iteration: Updated model parameters
are sent back to clients, and training continues iteratively until
convergence.

VI. DISCUSSION

This section presents the results and insights derived from
applying the proposed CKKS-based selective homomorphic
encryption scheme within a federated learning (FL) frame-
work.

A. Accuracy Comparison: With and Without Homomorphic
Encryption

To directly quantify the impact of HE on model accuracy,
we present a comparative analysis for each model under
two scenarios: training/testing with full encryption (100%)
and without encryption (0%). Figures 5 and 6 present the
comparison of model accuracy with and without HE.

Based on the results, ResNet34 and MobileNetV2 demon-
strate strong robustness, maintaining high training and test-
ing accuracy even under full encryption. EfficientNetB0 also
shows relatively stable performance, with only a slight decline
in accuracy. In contrast, MobileNetV1 experiences a noticeable
drop, particularly in testing accuracy, under full encryption,
indicating its greater sensitivity to the computational overhead
introduced by homomorphic encryption.

Overall, these comparisons demonstrate that while homo-
morphic encryption introduces some measurable performance
degradation, model accuracy remains largely preserved with
and without encryption. Certain architectures are more affected

due to inherent structural constraints, highlighting the impor-
tance of careful model selection when deploying fully en-
crypted training pipelines. This analysis emphasizes the need
to balance privacy preservation with architectural suitability
for encrypted federated learning.

Fig. 5. Comparison of training accuracy with and without homomorphic
encryption, where 100% encryption indicates that all model parameters are
encrypted, and 0% indicates no parameters are encrypted.

Fig. 6. Comparison of testing accuracy versus model name with and without
homomorphic encryption, where 100% encryption indicates that all model
parameters are encrypted, and 0% indicates no parameters are encrypted.

Next, following the lines of observing behavior in accuracy
changes, we quantify the explicit impact of full encryption
on predictive performance, Figure 7 displays the relative
percentage decrease in test accuracy when moving from 0%
to 100% encryption for each model.

B. Analysis on Generalization Gap

The generalization gap, defined as the difference between
training and test accuracy, serves as a critical indicator of
model overfitting. By plotting the generalization gap for each
model and encryption ratio as grouped bars, we reveal the
sensitivity of each model to overfitting as privacy increases.

7



Fig. 7. Relative drop in test accuracy (in percentage) for each model when
moving from no encryption (0%) to full homomorphic encryption (100%).

Fig. 8. Generalization gap (TrainAccuracyr − TestAccuracyr) for each
model at encryption ratios 0%, 10%, 50%, and 100%. Smaller values indicate
better generalization.

As shown in Figure 8, a lower bar indicates better gener-
alization (less overfitting). The plot reveals how encryption
affects generalization for different models, highlighting which
architectures remain robust as privacy increases. As encryp-
tion ratios increase, the generalization gap typically widens,
indicating that encryption can negatively affect generalization
capabilities. Notably, MobileNetV1 experiences the most sig-
nificant increase in the generalization gap at 100% encryption,
suggesting substantial vulnerability to overfitting under high
encryption overhead. Conversely, ResNet34, EfficientnetB0,
and MobileNetV2 maintain relatively smaller gaps even at
higher encryption ratios, demonstrating robustness against
generalization degradation caused by encryption overhead.

C. Analysis of Model Size vs. Testing Accuracy

We investigate the relationship between model size (mea-
sured in the number of parameters) and testing accuracy
under both unencrypted and fully homomorphically encrypted
settings. Figure 9 plots each model’s parameter count on a
logarithmic scale against its test accuracy at 0% and 100%
encryption.

Fig. 9. Testing accuracy as a function of model size (log scale) for both
unencrypted (0%) and fully encrypted (100%) models.

The results reveal several key trends. ResNet34 and Ef-
ficientNetB0, both with relatively high parameter counts,
achieve the highest test accuracies in both encrypted and unen-
crypted settings, suggesting the advantages of increased model
capacity. However, MobileNetV2 stands out by maintaining
strong accuracy and robustness under encryption, despite being
the smallest in size. This makes it a highly efficient option for
resource-constrained or privacy-sensitive applications. In con-
trast, MobileNetV1 shows a notable drop in both test accuracy
and privacy-preserving performance under full encryption,
indicating that architectural design, not just model size, plays a
critical role in resilience to homomorphic encryption overhead.

Overall, the transition to fully encrypted training leads
to some accuracy degradation across all models, but the
extent varies depending on architecture. While larger models
can offer superior performance, they are not always the
most practical under encryption constraints. EfficientNetB0
and MobileNetV2, in particular, strike a favorable trade-off
between model complexity and encryption robustness. These
findings underscore the importance of careful model selection
in privacy-preserving federated learning, where both accuracy
and computational efficiency must be balanced.

D. Multi-metric Model Analysis for Accuracy and Efficiency

To comprehensively compare the impact of encryption ratios
on each model, we visualize four key metrics for each model
and scenario using radar plots (see Figures 10, 11, 12, and 13)
below. Each axis is constructed directly from the experimental
data, without additional assumptions:

• Accuracy (A(r)):
Test set accuracy at encryption ratio r.

A(r) = TestAccuracyr

• Computational Efficiency (Ecomp(r)):
Normalized inverse training time, with Tr denoting the

8



training time (in hours) at ratio r:

Ecomp(r) = 1− Tr − Tmin

Tmax − Tmin

where Tmin and Tmax are the minimum and maximum
training times across all models and scenarios.

• Generalization Efficiency (Egen(r)):
Normalized measure of the generalization gap between
training and test accuracy:

Egen(r) = 1− (TrainAccuracyr − TestAccuracyr)−∆min

∆max −∆min

where ∆r = TrainAccuracyr − TestAccuracyr, and
∆min,∆max are the minimum and maximum gaps across
all experiments.

• Efficiency of Training Loss (Eloss(r)):
Normalized inverse of the average traning loss value:

Eloss(r) = 1− Lossr − Lmin

Lmax − Lmin

with Lossr the average loss at ratio r, and Lmin, Lmax

the min/max values observed.

Radar plots effectively illustrate the trade-offs and perfor-
mance stability across different models under varying en-
cryption levels. MobileNetV2 consistently demonstrates strong
computational efficiency and stable accuracy, making it par-
ticularly well-suited for scenarios requiring both performance
and privacy. EfficientNetB0 achieves high accuracy but incurs
greater computational overhead, indicating a trade-off between
performance and resource consumption. ResNet34, while de-
livering excellent accuracy and low loss due to its large pa-
rameter count, suffers from significant computational penalties
at higher encryption ratios. In contrast, MobileNetV1 shows
notable vulnerability, with its accuracy degrading more rapidly
as encryption intensity increases. These visual comparisons
underscore the importance of balancing accuracy, efficiency,
and encryption overhead when selecting models for privacy-
preserving federated learning.

Overall, these plots enable an at-a-glance comparison of
how privacy mechanisms affect each model, and support
evidence-based model selection for privacy-preserving feder-
ated learning.

Fig. 10. Performance trade-off analysis of MobileNetV2 under selective
encryption.

Fig. 11. Performance trade-off analysis of MobileNetV1 under selective
encryption.

Fig. 12. Performance trade-off analysis of EffecientnetB0 under selective
encryption.

9



Fig. 13. Performance trade-off analysis of Resnet34 under selective encryp-
tion.

In addition, the experimental results reveal a non-linear
relationship between encryption ratio and model performance.
Selective encryption effectively balances accuracy, compu-
tational cost, and privacy. As the proportion of encrypted
parameters increases, all models exhibit the expected trade-
offs, namely, slight reductions in computational efficiency and
communication performance. However, these declines remain
manageable, supporting the practicality of selective encryption
for federated learning.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

The integration of CKKS-based leveled homomorphic en-
cryption using TenSEAL within a federated learning frame-
work demonstrates strong potential for mitigating gradient
leakage attacks while maintaining data privacy. Our experi-
mental results on the CIFAR-10 dataset show that this ap-
proach achieves effective privacy preservation with minimal
impact on model accuracy and comparable computational
efficiency. These findings underscore the practical viability
of selectively encrypted FL for real-world, privacy-sensitive
applications—such as in connected and autonomous vehicles,
and offer a compelling foundation for further research and
deployment in secure collaborative machine learning systems.

While the findings of this research demonstrate the fea-
sibility of integrating federated learning and homomorphic
encryption for real-world applications such as connected
and autonomous vehicles, several critical challenges remain.
These include managing computational overhead, fine-tuning
encryption parameters, and ensuring scalability. Future re-
search should explore hardware acceleration techniques, as
HE imposes significant computational costs; leveraging trusted
execution environments (TEEs) and other specialized hardware
could make large-scale encrypted FL more viable. Another
promising direction is hybrid privacy-preserving approaches
that combine HE with methods like Secure Multi-Party Com-
putation or Differential Privacy to strike better trade-offs
between security, efficiency, and model accuracy. Additionally,
there is a need for dynamic encryption parameter adapta-
tion, where encryption strength and resource usage can be

adjusted in real time based on threat levels or model sensi-
tivity. To address bandwidth and latency concerns, reducing
communication overhead through techniques such as model
sparsification, compression, or selective encryption remains
an open challenge. Lastly, progress in this field would ben-
efit from standardized benchmarking frameworks to evaluate
HE-enabled FL systems across consistent metrics, including
accuracy, training time, and privacy guarantees.

In addition, future research in CAV-focused FL should
address several key challenges to enhance the practicality
and security of privacy-preserving systems. First, low-latency
encrypted model updates are essential to reduce communica-
tion delays and support real-time decision-making in vehicular
environments. Second, heterogeneous hardware integration
must enable efficient encrypted computation across the diverse
and resource-constrained embedded platforms within CAVs.
Third, robustness against adversarial threats remains critical,
requiring advanced defenses not just for DLG but against
poisoning, model inversion, and gradient leakage attacks.
Finally, cooperative edge infrastructure, such as roadside units
(RSUs) and fog nodes, should be leveraged to facilitate secure,
encrypted model aggregation and distribution among high-
mobility vehicles. Advancing these directions will help pave
the way for secure, intelligent, and privacy-aware autonomous
systems, contributing to the future of smart and trustworthy
transportation networks.

ACKNOWLEDGMENT

This research was partially supported by Embry-Riddle
Aeronautical University Faculty Innovative Research in Sci-
ence and Technology (FIRST) grant.

REFERENCES

[1] R.-Y. Huang, D. Samaraweera, and J. M. Chang, “Exploring threats,
defenses, and privacy-preserving techniques in federated learning: A
survey,” Computer, vol. 57, no. 4, pp. 46–56, 2024.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[4] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques, pp. 223–238, Springer, 1999.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 169–178, 2009.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in cryptology–
ASIACRYPT 2017: 23rd international conference on the theory and
applications of cryptology and information security, Hong kong, China,
December 3-7, 2017, proceedings, part i 23, pp. 409–437, Springer,
2017.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, pp. 1273–1282, PMLR,
2017.

[9] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50–60, 2020.

10



[10] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning, pp. 5132–5143,
PMLR, 2020.

[11] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” in ITCS, pp. 309–325, 2012.

[13] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[14] L. de Castro, R. Agrawal, R. Yazicigil, A. Chandrakasan, V. Vaikun-
tanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic encryption
need compute acceleration?,” arXiv preprint arXiv:2112.06396, 2021.

[15] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “{BatchCrypt}:
Efficient homomorphic encryption for {Cross-Silo} federated learning,”
in 2020 USENIX annual technical conference (USENIX ATC 20),
pp. 493–506, 2020.

[16] H. Fang and Q. Qian, “Privacy preserving machine learning with ho-
momorphic encryption and federated learning,” Future Internet, vol. 13,
no. 4, p. 94, 2021.

[17] W. Jin, Y. Yao, S. Han, J. Gu, C. Joe-Wong, S. Ravi, S. Avestimehr, and
C. He, “Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system,” arXiv preprint arXiv:2303.10837,
2023.

[18] X. Sun, F. R. Yu, and P. Zhang, “A survey on cyber-security of connected
and autonomous vehicles (cavs),” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 6240–6259, 2021.

[19] J. Alsamiri and K. Alsubhi, “Federated learning for intrusion detection
systems in internet of vehicles: a general taxonomy, applications, and
future directions,” Future Internet, vol. 15, no. 12, p. 403, 2023.

[20] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing fed-
erated learning through an adversarial lens,” in International conference
on machine learning, pp. 634–643, PMLR, 2019.

[21] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in federated
learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

[22] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to {Byzantine-Robust} federated learning,” in 29th USENIX security
symposium (USENIX Security 20), pp. 1605–1622, 2020.

[23] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP), pp. 3–18, IEEE, 2017.

[24] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[25] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, “Securing con-
nected & autonomous vehicles: Challenges posed by adversarial machine
learning and the way forward,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 2, pp. 998–1026, 2020.

[26] A. Chattopadhyay, K.-Y. Lam, and Y. Tavva, “Autonomous vehicle:
Security by design,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 11, pp. 7015–7029, 2020.

[27] P. Sharma, D. Austin, and H. Liu, “Attacks on machine learning:
Adversarial examples in connected and autonomous vehicles,” in 2019
IEEE International Symposium on Technologies for Homeland Security
(HST), pp. 1–7, IEEE, 2019.

[28] “Microsoft SEAL (release 4.1).” https://github.com/Microsoft/SEAL,
Jan. 2023. Microsoft Research, Redmond, WA.

[29] S. Halevi and V. Shoup, “Design and implementation of helib: a
homomorphic encryption library,” Cryptology ePrint Archive, 2020.

[30] “PALISADE Lattice Cryptography Library (release 1.11.3).” https://
palisade-crypto.org/, May 2021.

[31] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
arXiv preprint arXiv:2104.03152, 2021.

[32] R. Agrawal and A. Joshi, On architecting fully homomorphic encryption-
based computing systems. Springer, 2023.

[33] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11264–
11272, 2019.

[34] A. Ibarrondo and A. Viand, “Pyfhel: Python for homomorphic encryp-
tion libraries,” in Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pp. 11–16, 2021.

11

https://github.com/Microsoft/SEAL
https://palisade-crypto.org/
https://palisade-crypto.org/

	Introduction
	Background and Related Work
	Federated Learning
	Encrypting Model Parameters with HE
	Integration of HE with Federated Learning for Practical Applications

	Adversarial Attacks on FL Architectures in CAV Applications
	Selective Parameter Encryption with CKKS
	Overview of the Workflow and Parameter Integration
	Implementation with Selective Encryption

	Experimental Setup
	Discussion
	Accuracy Comparison: With and Without Homomorphic Encryption
	Analysis on Generalization Gap
	Analysis of Model Size vs. Testing Accuracy
	Multi-metric Model Analysis for Accuracy and Efficiency

	Conclusion and Future Research Directions
	References

