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Abstract. Nowadays, the Internet of Things (IoT) is widely employed,
and its usage is growing exponentially because it facilitates remote mon-
itoring, predictive maintenance, and data-driven decision making, es-
pecially in the healthcare and industrial sectors. However, IoT devices
remain vulnerable due to their resource constraints and difficulty in ap-
plying security patches. Consequently, various cybersecurity attacks are
reported daily, such as Denial of Service, particularly in IoT-driven so-
lutions.
Most attack detection methodologies are based on Machine Learning
(ML) techniques, which can detect attack patterns. However, the focus
is more on identification rather than considering the impact of ML algo-
rithms on computational resources.
This paper proposes a green methodology to identify IoT malware net-
working attacks based on flow privacy-preserving statistical features. In
particular, the hyperparameters of three tree-based models – Decision
Trees, Random Forest and Extra-Trees – are optimized based on energy
consumption and test-time performance in terms of Matthew’s Correla-
tion Coefficient.
Our results show that models maintain high performance and detection
accuracy while consistently reducing power usage in terms of watt-hours
(Wh). This suggests that on-premise ML-based Intrusion Detection Sys-
tems are suitable for IoT and other resource-constrained devices.
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1 Introduction

Nowadays, Internet of Things (IoT) devices and their interconnections are be-
coming exponentially important in everyday life, from industry [32] to houses,
vehicles, and smart cities of interconnected systems [20]. Such devices have low
capabilities in terms of energy and computational resources compared to desk-
top and server computers. They are often employed to measure specific data,
i.e., sensors, and control mechanical systems or forces, i.e., actuators. With the
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advent of Artificial Intelligence (AI), these devices are becoming more intelligent
and capable of making decisions independently [2].

Over the years, IoT devices and interconnected networks have been found to
be susceptible to various vulnerabilities [21], which have allowed several types of
cybersecurity attacks, such as data exfiltration, Denial of Service (DoS), and its
Distributed variant (DDoS). Most of the time, these attacks are perpetrated by
malware specifically designed for IoT systems, which are generally equipped with
limited operating systems (OS) based on the Linux kernel, such as Miraii [1],
and Torii [30], and Hide&Seek [7]. Detecting the presence of malware in an
IoT environment is crucial as a first step to counteract a large number of cyber-
attacks, given the growing importance of IoT devices, their security disadvan-
tages [25], and the limited resources they are provided with.

In this work, we focused on three detection strategies based on network com-
munications made by IoT devices, which normally communicate with remote
servers for data exchange. When malware takes control over the expected oper-
ability, the packet transmissions change, and attack patterns can be identified
to detect anomalous behavior. These systems, called Intrusion Detection Sys-
tems (IDS), are generally deployed on-premise in ad-hoc devices, i.e., firewalls
or routers, which work as access points for the IoT devices, or they are host-
based, running directly on the device under analysis. However, these systems
are typically resource-consuming, especially if they rely on Machine Learning
(ML) algorithms [12], which require significant computational power and mem-
ory, making them unsuitable for deployment on resource-constrained devices.

To the best of our knowledge, few works at the state of the art focus on
Green Machine Learning for network security applications [16, 27], that is, op-
timizing the underlying ML model to find a balance between drained energy
and performance. Indeed, a green ML strategy is necessary mainly for two as-
pects. First, maintaining high detection performance while reducing consumed
energy allows the deployment of IDS on-premise directly in IoT devices. Second,
the longer an attack remains undetected, the greater the energy consumption
will be due to malware operation and legitimate activities the IoT device may
perform. As a consequence, the operability lifecycle of the device diminishes,
causing the so-called e-waste [22] of electronics. Therefore, reducing the size of
detection algorithms and the consumed energy would increase the device’s life.
Additionally, reducing the overall energy consumed is fundamental to decreasing
the equivalent carbon footprint, helping to combat climate change.

In this paper, we employed a dataset of common network cyberattacks in dif-
ferent IoT scenarios [26] (e.g., DoS and port-scanning) to identify post-mortem
anomalies based on network features. We optimized the hyperparameters of three
tree-based ML algorithms to minimize energy consumption during the testing
phase while maximizing performance. We demonstrate that accuracy is not sig-
nificantly affected by lower power usage. Our approach can be seen as an adap-
tive, energy-efficient IDS designed for network traffic detection.

To this end, we sketch two modes of operation:
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a) non-green, i.e., the training phase, in which the ML algorithm is optimized
on a server, enabling fast learning and handling large training datasets, while
still prioritizing power usage reduction during testing;

b) green mode during runtime in resource-constrained devices, triggering alerts
when an anomaly is detected as in the testing phase.

In this way, the algorithm is trained with large datasets to account for most
learning patterns, while the algorithm running on-premise lowers power con-
sumption, maintaining similar accuracy.

In summary, i) we developed a detection methodology based on networking
post-mortem features, optimizing the ML algorithms for energy consumption
in terms of µWh and performance during the testing phase; ii) we selected
only statistical features per flow without considering the body of the packets,
i.e., a privacy-preserving approach; iii) we compared different ML algorithms to
understand which is the most green during the testing phase; and iv) we defined
the importance of false negative flows not detected by the system.

The rest of the paper is organized as follows. Section 2 reviews the literature
on detecting malware networking communication and the energy consumption
of ML systems, and Section 3 describes the dataset, features, and employed
algorithms. Section 4 discusses the results of the classification with respect to the
performance and energy consumption of the models. Finally, Section 5 discusses
the limitations of the approach and future works.

2 Related Works

This section reviews recent works on current advancements in energy estimation
with respect to AI technologies in Section 2.1, and the state-of-the-art regarding
the detection of IoT malware through traffic patterns in Section 2.2.

2.1 Energy Consumption Measurement

Advancements in computer science technology powered by Cloud Computing
and AI have substantially increased the demand for energy resources. This rise
in energy consumption affects the feasibility of implementing cybersecurity solu-
tions in battery-powered systems like IoT and mobile environments, while also
contributing to CO2 emissions, exacerbating environmental challenges such as
climate change. Thus, the reduction of software energy consumption is becoming
an interesting topic for the research community [9, 34, 33]. A recent survey [13]
reviewed two techniques for estimating the energy consumption of algorithms
to better design software: i) hardware-level to compute the energy efficiency of
hardware components (i.e., CPU, RAM, and I/O peripherals); ii) software-level
through simulation or real-time estimation at the instruction level to trace the
consumed energy by performance counter profiling or instruction-set simulation.

Among the most recent approaches, Budennyy et al. proposed Eco2AI [6],
a framework that measures energy consumption in terms of Joules or KWh,
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focusing on CPU, GPU, and RAM real-time evaluation. PyJoule3 employs the
Intel RAPL (Running Average Power Limit) technology to estimate the power
consumption of CPU, RAM and integrated GPU. Additionally, Antony et al.
proposed Carbon Tracker, a tool to track the energy and carbon footprint of
ML models. The authors evaluated the tool’s efficiency by comparing the esti-
mations with the actual measurements done in monitoring 1 training epoch for
two models, i.e., CNN and Autoencoders, with errors between 5% and 19%. Due
to its efficiency and attested good results, in this work we based the optimiza-
tion of detection algorithms on the measurements done by Carbon Tracker as
explained in Section 3.

Other works, besides measuring the energy efficiency of neural network mod-
els and their training, suggest ways to reduce consumption. Tipp et al. [28]
suggest, among other methods, reducing idle time when accessing memory to
eliminate excess energy due to idle power drawn and reducing memory access
by using specialized hardware to hold larger parameters in cache.

2.2 Detection of IoT Malware Traffic

The rapid evolution of IoT devices has attracted malware authors interested
in exploiting security vulnerabilities through malicious software, whose aim is
generally to gain unauthorized privileges in the network to which IoT devices
are connected, like in the case of Mirai [1] and SILEX [23] attacks. For this
reason, one of the main approaches to identify this kind of malicious activity is
to leverage the network patterns they generate.

One of the first works was published by Bilge et al. [5] in 2012, whose main
goal was to propose invariant network features without considering the appli-
cation protocols due to differences in each client/server communication. In par-
ticular, they selected flow size-based, client access pattern-based features, and
temporal ones to characterize the variability of client flow volume as a function
of time. Recently, Davanian et al. [11] proposed a methodology to identify live
C&C servers with zero-priori knowledge to separate the C2-bound traffic from
other traffic accurately. Their methodology is based on a SYN-DATA-aware ap-
proach, depending on the number of SYN flags and the data exchanged. More-
over, they focus on a grammar-based representation of the traffic, considered as
a dialog, to create a fingerprint-aware identification method. Barradas et al. [4]
adapted the existing methodologies for C&C traffic with TLS 1.3 protocol, which
improves the TCP handshake protocol. They employed features related to the
packet sizes, discarding all timing features since they are affected by the distance
between client and server, as well as by network conditions.

Other works, have addressed the multi-classification problem to identify sev-
eral kinds of attacks in IoT networks, e.g., Denial of Service (DoS), and Port
Scanning with several Machine Learning algorithms [18, 10] by considering both
temporal and content-based features reaching accuracies in the order of 90%.

3 https://github.com/powerapi-ng/pyJoules
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Despite the importance of in-edge attack identification [17, 15], and its ef-
ficient resource management, few existing works addresses the usage of green
machine learning algorithms for network security applications [16, 27]. The cur-
rent proposed approaches (e.g., TinyML4 techniques) reduce the size of learning
algorithms to be suitable for IoT devices, selecting one method over the other
without a real optimization step based on the power usage.

3 Methodology

This section introduces the proposed methodology to optimize ML models based
on both energy consumption and performance, as depicted in Figure 1. Specif-
ically, Section 3.1 describes the employed dataset, Section 3.2 discusses the ex-
tracted features, and Section 3.3 introduces the model training approach with
the optimization strategy.

pcap
dataset

feature extraction train-test splitting feather data

dataset labeling labels

ML

Energy 
consumption

Label

Fig. 1: Training workflow with the basic blocks of the methodology: dataset la-
beling, feature extraction, training, and energy-based optimization.

3.1 Dataset

To evaluate the approach, we used the Aposemat IoT-23 dataset [26] by Garcia
et al., a freely available labeled dataset of multiple PCAP network capture files.
The dataset contains benign and malicious traffic involving a variety of IoT
sources (e.g., smart hubs, smart lights, door lock devices) and malware.

4 https://github.com/mit-han-lab/tinyml
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The NFStream5 tool was employed to analyze the PCAP files, obtain the label
of the flows, and extract several meaningful statistical features, computed when
a flow is closed, (i.e., utilizing the totality of a connection), since our approach
is tailored to post-mortem traffic analysis. To identify each flow in the PCAP,
we employed the five-tuple (source IP address, source IP port, destination
IP address, destination IP port, timestamp) to match the identifiers of the

original dataset in the file labels. The dataset was originally labeled by the
authors Garcia et al. using the network traffic analyzer Zeek6. Moreover, to
remove noise, we dropped the flows with multiple contrasting labels (e.g., a flow
belonging both to a Mirai and Kenjiro botnet), or with no existing match in
the Zeek results.

Table 1 shows the list of flow counts per class. Our processed dataset con-
tains malicious traffic from seven malware tools: Kenjiro, Mirai, Hakai, IRCBOT,
Hajime, Hide&Seek, and Muhstick, which represent the majority of malware
found in real-world scenarios [31]. As noticeable, the majority of malware samples
belong to the port-scan attack and the dataset is unbalanced in the malware/be-
nign flows ratio. However, as it will be detailed in Section 4.4, we reduced it by
removing this class of attack, making the dataset nearly balanced and obtaining
better results.

class family flows

Malicious

IRCBOT – port scan 3627968
Kenjiro – port scan 3525075
Mirai – port scan 3236207
Hajime – port scan 506947
Hide and Seek – port scan 9558
Muhstik – port scan 3671

Mirai – C&C 559
Hakai – C&C 103

Kenjiro – DoS 776087
Mirai – DoS 18344
Muhstik – DoS 298

Benign - 1532194

Table 1: Flow count grouped by class and attack types, i.e., port scan, C&C
and DoS attacks.

5 https://www.nfstream.org/
6 https://zeek.org/
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3.2 Extracted Features

NFStream was also employed to extract various statistical features, listed in
Table 2 for each correctly labeled flow. These features were chosen since using
statistics computed per flow in combination with Machine Learning techniques
to identify attacks is a time-proven approach in the scientific literature [8, 3].
Specifically, we computed each feature for three representations: i) bidirectional,
which includes packets exchanged in both directions of the communication, i.e.,
source and destination; ii) source-to-destination, where features are calculated
solely on packets sent from the source to the destination; and iii) destination-to-
source, which focuses on packets flowing in the reverse direction. We purposely
omitted the IP addresses and ports from the list of features for training and
testing our models since these values are either meaningless or easy to spoof
and especially to train a more generic model adaptable to every situation, while
preserving privacy.

feature unit

protocol
IP version

flow duration

ms
maximum packet inter-arrival time
minimum packet inter-arrival time
mean packet inter-arrival time
standard deviation packet inter-arrival time

transmitted bytes

bytes
maximum packet size
minimum packet size
mean packet size
standard deviation packet size
transmitted packets packets

TCP packets with ACK set

packets

TCP packets with CWR set
TCP packets with ECE set
TCP packets with FIN set
TCP packets with PSH set
TCP packets with RST set
TCP packets with SYN set
TCP packets with URG set

Table 2: Statistical features employed in our methodology. Each statistic has
been computed for the bidirectional, source-to-destination, and destination-to-
source communications.
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Our statistics are based solely on packet timings, and they are computed only
by analyzing the IP and TCP headers, which identify a flow in a communication.
Moreover, the IP payload is not processed, and, therefore, this approach allows
us to be encryption-agnostic with two main advantages. First, our methodology
works equally well when the IP payload is encrypted (e.g., with a TLS or DTLS
connection). Second, our approach safeguards the users’ privacy since the content
of the IP packets is never inspected.

Once we built our dataset, we randomly split it into a training and a test set
following an 80-20 ratio.

3.3 Model training

In our experiments, we tested three of the most employed Machine Learning
algorithms for network security applications [8, 3] using the well-known Python
package scikit-learn7. In particular, the models are tree-based techniques: i) a
decision tree, or single-tree [24], which is a hierarchical model that recursively
splits data based on feature conditions to make predictions. Internal nodes rep-
resent decisions, and leaf nodes represent outcomes; a ii) random forest [19] that
is an ensemble of multiple decision trees that usually shows improved accuracy
over a single tree by carefully deciding how to split the nodes; and iii) extra-trees
(Extremely Randomized Trees) [14], which are also ensembles of trees, but they
split the nodes randomly.

For each algorithm, we leveraged optuna8, a well-known hyperparameter op-
timization framework that helps to automate parameter search, to train four
versions of each model given a function to optimize:

– a default model, that is, the model trained with the default hyperparameters
of scikit-learn;

– a max green model, that is, the optimized model with the lowest energy
consumption at testing time;

– a max MCC model, that is, the optimized model with the highest MCC
(Matthew’s Correlation Coefficient9);

– a balanced model, that is, the model obtained with a multi-objective op-
timization to maximize the MCC and minimize the energy consumption.
Due to how optuna works, we might encounter multiple optimal models. As
specified later in Section 4.3, we selected the best model as the one that is
geometrically closest to the point (0, 1) in the Pareto front, where the first
value is the power consumption and the second is the MCC. In other words,
a model offering good discriminating capabilities and power saving without
sacrificing too much of the two metrics.

7 https://scikit-learn.org/
8 https://optuna.org/
9 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
matthews_corrcoef.html
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To compute consumed energy, we employed Carbon Tracker which is, as
outlined in Secion 2.1, the best tool at the state of the art able to estimate the
actual power usage.

Model optimization was performed based on energy consumption and per-
formance during the testing phase. That is because the ultimate goal is to lower
resources for the running algorithm on-premises while the training is performed
on the server to account for large datasets. Additionally, due to class imbalance,
model performance is computed with the Matthew’s Correlation Coefficient that
considers all four values of the confusion matrix, i.e., True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN).

CPU Intel® Core™ i9-11950H CPU @ 2.60GHz
RAM 32 GiB

OS Debian GNU/Linux
kernel 6.2.10
Python 3.13.1
scikit-learn 1.6.1
optuna 4.2.0
CarbonTracker 2.0.1

Table 3: Specifics of our experimental setup.

4 Results

This Section discusses the results we obtained. In particular, Section 4.1 outlines
the experimental setup we employed, Section 4.2 gives an overview of the ob-
tained general results, Section 4.3 concerns the hyperparameter tuning results,
and Section 4.4 examines the False Negative samples.

4.1 Experimental setup

The experiments were conducted on a machine equipped with the specifications
in Table 3. In this preliminary work, we employed a server machine for both the
training and testing phases. First, the server is used in the training for large-scale
datasets, which need many resources in terms of memory (RAM), CPU/GPU
usage, storage capabilities, and battery life that IoT devices do not support. We
preferred to use the server even in the testing phase to ensure reproducibility,
precise power measurement, and full control of the experimental setup. As there
is a wide variety of different IoT devices and some of them have proprietary sys-
tems, achieving large reproducibility, adaptability, and comparison of the results
on different systems is difficult because of the different available environments.
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type version Hyperparameter

single-tree

max_depth min_leaf min_split

default ∞ 1 2
max green 1 3 9
max MCC 14 5 29
balanced 13 5 13

(a) Hyperparameters for single-tree classifiers.

type version Hyperparameter

random forest

max_depth min_leaf min_split max_feat estim.

default ∞ 1 2 sqrt 100
max green 71 7 29 14 10
max MCC 11 6 17 11 133
balanced 17 6 20 7 18

(b) Hyperparameters for random forest classifiers.

type version Hyperparameter

extra trees

max_depth min_leaf min_split max_feat estim.

default ∞ 1 2 sqrt 100
max green 169 6 18 6 10
max MCC 18 2 20 23 205
balanced 14 2 18 24 204

(c) Hyperparameters for extra-trees classifiers.

Table 4: Hyperparameter chosen by optuna for each model.

In fact, as mentioned in Section 4.2, the consumed energy remains low (in the
order of µWh), which is in line with the constrained resources of IoT devices [2].
Therefore, while the experiments were conducted on a server, the methodology
remains compatible with resource-constrained environments.

4.2 Overview

Tables 4 and 5 report the selected hyperparameters by optuna for each of the
trained models, and the average energy consumption per testing sample and
model performance in terms of Matthews’ Correlation Coefficient (MCC), bal-
anced accuracy, and F1-score to account for class imbalance in the dataset. These
scores are chosen to consider both the dataset imbalance and the need to keep
false negatives low to avoid malicious flows going undetected.
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type version µWh MCC b. acc. F1

single-tree

default 19.35 0.52 94.70 75.46
max green 6.50 0.23 89.05 6.42
max MCC 8.13 0.60 95.35 76.11
balanced 7.93 0.60 95.32 72.10

random forest

default 299.83 0.52 94.68 75.76
max green 22.72 0.58 95.24 76.70
max MCC 124.90 0.61 95.33 73.85
balanced 28.70 0.61 95.33 74.20

extra-trees

default 284.45 0.526 94.69 75.64
max green 22.04 0.57 95.09 72.26
max MCC 213.38 0.61 95.33 74.38
balanced 49.68 0.60 95.24 74.08

Table 5: Performance statistics of our classifiers. In particular, for each model,
performance is shown in terms of average µWh per test sample, Matthews’ Cor-
relation Coefficient (MCC), Balanced Accuracy, and F1-score.

Interestingly, the default models offer strong discriminating power, reaching
about 99% balanced accuracy and 76% F1-score. However, they are always the
most energy-hungry, consuming about 13 times more µWh than their max green
counterparts. This is consistent with the default hyperparameters (see Table 4) in
scikit-learn, which were chosen to offer good performance in multiple scenarios,
completely ignoring power consumption.

As expected, the max green models are the most eco-friendly. However, this
version of the single-tree has poor performance with 6% of F1-score and 0.239 of
MCC. This suggests that the green model has a weak correlation between its pre-
diction and the label class. These relatively poor results may be caused by optuna
selecting a max depth of 1 (see Table 4a), meaning that the model makes a single
split based on one feature, oversimplifying the classification. Instead, the other
versions of the single-tree seem to be the most efficient and high-performing,
even with respect to the other models, i.e., random-forest and extra-trees, which
still offer good performance statistics but are highly resource-demanding due to
the ensemble nature of these classifiers, which aggregate multiple weak learners,
requiring more CPU and memory.

4.3 Optimization of the balanced models

This section discusses the hyperparameter tuning process of the balanced version
of the selected models. For each optimization, we asked optuna to perform 64
iterations, i.e., the best number of iterations to achieve good optimization. The
optimizations aimed to maximize the MCC and minimize the energy footprint
during the inference phase. In particular, we refer only to the single-tree model,
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(a) Simplified Confusion Matrix of the balanced single-tree
model.
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(b) Pareto front for the single-tree models. The x-axis shows the mean
energy consumption in terms of µWh, and the y-axis is the MCC
score.

Fig. 2: Confusion Matrix and Pareto front for the single-tree models showing
classification accuracy and the performance in relation to the consumed energy.
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which was found to be the most efficient and to have the highest performance as
outlined in Section 4.2. Similar considerations can be made for the other models.

The Pareto front in Figure 2b helps in understanding how optuna selects
the best models. It shows all the single-tree models tested by optuna in a scat-
ter plot, where the points represent the Pareto front, the x-axis is the mean
energy consumption per sample, and the y-axis represents the performance in
terms of MCC. A solution is considered Pareto-optimal if no other configura-
tion performs better in both objectives simultaneously [29]. Points on the front
are non-dominated, meaning improving one metric would negatively impact the
other.

For example, increasing the MCC beyond a certain point may require a model
that consumes significantly more energy, while reducing energy usage might come
at the cost of lower classification accuracy. This provides a valuable decision
boundary, allowing model selection based on application-specific priorities, such
as maximizing accuracy, minimizing energy usage, or achieving a balanced com-
promise.

The default model (black star) presents high energy consumption (∼19 µWh)
with moderate MCC (∼0.53) and, as noticeable even from Table 5, it is not
efficient but is a reference point for suboptimal optimizations of the model.
The max green (green cross) has the lowest consumption (∼7 µWh), but low
MCC (∼0.4), i.e., it is optimized only for energy consumption, suitable only
if energy minimization is the priority, and accuracy is less critical. Conversely,
the max MCC (red cross) is appropriate when maximizing the performance is
critical, even though the consumed energy is not as low as for the green model
(∼8 µWh). Finally, the balanced model (blue pentagon) is similar to the max
MCC version with similar consumed energy and performance. Indeed, they both
remain eco-friendly, maintaining the generalization capability. This means that
both max MCC and balanced variants are suitable for running on an IoT device.

4.4 Error analysis

As outlined in Sections 4.2 and 4.3, single-tree model variants are the most
efficient both in terms of performance and energy consumption. In particular,
the balanced model, even though similar to the max MCC version, requires fewer
resources and achieves comparable MCC. Figure 2a shows the model confusion
matrix, depicting that legitimate samples are well recognized, while it fails to
clearly recognize a good portion of malicious flows—over 40% of actual true
positives are misclassified. Therefore, even though MCC is good, i.e., greater
than 0, it is not good enough to be comparable with other works at the state-
of-the-art [11] and requires attention due to the criticality of the application.

Analyzing the dataset and the corresponding features, we found that the
models failed to recognize port-scan attacks whose flows are similar to legiti-
mate ones. Therefore, we conducted a study of methodology performance while
removing port-scan attacks from the dataset in Table 1, training only the single-
tree model, which was the best performing of the three selected algorithms. We
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Fig. 3: Comparison between performance of the optimized single-tree models
(i.e., default, max MCC, and balanced) before (left bars) and after (right bars)
port-scanning attack removal. MCC is multiplied by 100 to be suitable for the
graph.

did not optimize the hyperparameters to achieve optimal energy consumption,
as we expected it to have low accuracy.

Figure 3 shows a comparison of single-tree model performance before and
after the removal of port-scan attacks. As noticeable, MCC, Balanced Accuracy
and F1 score increased after removing port-scan attacks while the average con-
sumed µWh reduced. The latter is expected because the less are the flows, the
less complex the model is and therefore less resources are employed.

As before, we analyze the Pareto front in Figure 4. It includes many points
tightly clustered around low consumption (∼2.3–2.6 µWh) with near-perfect
MCC, suggesting that it is possible to reduce energy without compromising the
performance. For example, the max MCC (red cross) offers the absolute best
MCC performance (1.0) but at a slightly higher energy cost, while the balanced
model (blue pentagon) lies on the Pareto front, delivering strong performance
(0.995) with modest energy use (2.35 µWh). On the contrary, the default model
(black star), despite achieving a high MCC (0.9997), is inefficient because it
consumes significantly more energy than necessary, i.e., ∼ 50% more than the
other two versions, for comparable accuracy, as discussed in Sections 4.2 and 4.3.

5 Conclusion

In this work, we tested the energy efficiency of tree-based Machine Learning algo-
rithms trained to detect malicious network traffic generated by common IoT mal-
ware. The methodology is based on flow statistical features to preserve the pri-
vacy of legitimate communications. Additionally, we developed an optimization
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Fig. 4: Pareto front for the tree models after removing port-scanning flows.

strategy with optuna and Carbon Tracker based on testing phase performance,
considering both power consumption in Wh and MCC, while the training stage
does not take power limitations into consideration. The reason is twofold. First,
the trained detection algorithms can run on-premises, ideally on constrained
IoT devices. Second, reducing the energy impact of the testing stage counteracts
energy waste, increases the device operability lifecycle, and reduces the carbon
footprint.

We tested the methodology on a dataset consisting of three IoT attacks,
reaching interesting results. Indeed, the models maintain high performance while
keeping low energy consumption. The balanced version of the models, i.e., mod-
els trained to balance both MCC and µWh, attained about 0.60 MCC and a
reduction of 60 − 90% in consumed resources compared to the models trained
with the default hyperparameters. These results suggest that ML-based IDS sys-
tems are suitable for running on on-premise devices. Additionally, we studied the
model errors and found that the dataset has biases with respect to port-scanning
attacks, which have similar features to legitimate traffic flows.

However, the proposed approach still has some limitations. It is tested on only
one dataset, limiting generalizability with respect to different network topologies
and attacks. Additionally, the experimental setup lacks a constrained device to
run the trained model to compute energy efficiency. Indeed, the optimization
of the hyperparameters with respect to the testing phase results is done on the
same server where the models are trained.

In the future, we plan to improve our methodology with live analysis to test
energy efficiency and inspect incoming network streaming. Additionally, we will
test the approach with Deep Learning algorithms, which are inherently more
energy-demanding than the tree-based algorithms we selected.
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