
ar
X

iv
:2

50
6.

07
72

8v
1 

 [
cs

.C
R

] 
 9

 J
un

 2
02

5

“I wasn’t sure if this is indeed a security risk”: Data-driven Understanding
of Security Issue Reporting in GitHub Repositories of Open Source npm Packages

Rajdeep Ghosh
IIT Kharagpur

ghoshrajdeep2000@gmail.com

Shiladitya De
IIT Kharagpur

shiladityade.bwn2001@gmail.com

Mainack Mondal
IIT Kharagpur

mainack@cse.iitkgp.ac.in

Abstract

The npm (Node Package Manager) ecosystem is the most
important package manager for JavaScript development with
millions of users. Consequently, a plethora of earlier work
investigated how vulnerability reporting, patch propagation,
and in general detection as well as resolution of security issues
in such ecosystems can be facilitated. However, understanding
the ground reality of security-related issue reporting by users
(and bots) in npm–along with the associated challenges–has
been relatively less explored at scale.

In this work, we bridge this gap by collecting 10,907,467
issues reported across GitHub repositories of 45,466 diverse
npm packages. We found that the tags associated with these
issues indicate the existence of only 0.13% security-related
issues. However, our approach of manual analysis followed
by developing high-accuracy machine learning models iden-
tify 1,617,738 security-related issues which are not tagged as
security-related (14.8% of all issues) as well as 4,461,934
comments made on these issues. We found that the bots
which are in wide use today might not be sufficient for either
detecting or offering assistance with these issues. Further-
more, our analysis of user-developer interaction data hints that
many user-reported security issues might not be addressed
by developers—they are not tagged as security-related is-
sues and might be closed without valid justification. Con-
sequently, a correlation analysis hints that the developers
quickly handle security issues with known solutions (e.g.,
corresponding to CVE, or with a suggested solution). How-
ever, security issues without such known solutions (even with
reproducible code) might not be resolved, hinting at a need
for better-automated assistance for npm developers to ad-
dress security issues. Our findings offer actionable insights
for improving security management in open-source ecosys-
tems, highlighting the need for smarter tools and better col-
laboration. The data and code for this work is available at
https://doi.org/10.5281/zenodo.15614029

1 Introduction

Node Package Manager or npm [79] is a widely used ecosys-
tem to manage and distribute JavaScript software packages
(i.e., libraries). Serving as a central hub for open-source de-
velopment, it powers diverse applications and services. The
npm ecosystem is defined by its dense interdependencies,
where packages build upon others, forming a highly intercon-
nected network. However, with increasing interdependency,
the risk of propagation of security vulnerabilities increases.
Nevertheless, as an open-source platform, npm benefits from
a collaborative community, which plays a crucial role in iden-
tifying, addressing, and mitigating these vulnerabilities.

Previous research has extensively investigated security
vulnerability management systems in prominent package
ecosystems such as npm, PyPI, and RubyGems. They fo-
cused on vulnerability reporting, propagation, and resolution
[45,46,82,100,102]. Upstream vulnerabilities, patch delivery
delays, and the significance of regular dependency updates all
represent considerable risks, according to research [65, 100].
Furthermore, the prior work investigated the function of bots
in automating processes, increasing productivity, and sup-
porting open-source software (OSS) workflows, with varied
results regarding their usefulness and limitations in security
management [32, 78, 96].

However, majority of these previous works focus on propos-
ing the automated security vulnerability management tools
and techniques. They often overlook what techniques are ac-
tually used in real world. Prior work also did not shed light on
whether public (i.e., open source) aspect of ecosystems like
npm actually helps in detecting security flaws and mitigating
them. Specifically, it is not clear whether users or bots even re-
port/suggest mitigation of security issues in these ecosystems
and if those reports have any impact on improving the secu-
rity of the npm packages. Answering these quite important
unanswered questions will help the npm community (both
developers and users) evaluate the effectiveness of currently
deployed mechanisms for reporting and addressing security
issues and identify areas for improvement.

1

https://doi.org/10.5281/zenodo.15614029
https://arxiv.org/abs/2506.07728v1


In this work, for the first time, we answer these questions
via large-scale user-generated data collection and analysis. We
focus on publicly available npm packages and their GitHub
repositories (since GitHub provides security issues and com-
ments for these npm packages). By default, issues (both se-
curity and non-security), on public GitHub repositories are
publicly visible [88, 95]. While features like Private Vulner-
ability Reporting (PVR) enable private disclosure, they are
relatively recent and are not enabled by default [59]. Thus, it
is not yet widely adopted.

We systematically chose 45,466 npm packages with differ-
ent numbers of dependents (i.e., how many other packages
they are used by —a measure of popularity and impact). For
these packages, we collected 37,278 GitHub repositories, and
from these repositories, we collected 10,907,467 issues raised
in GitHub. Interestingly, only 0.13% of these issues were
tagged by the GitHub repository owners as security-related.
However, by leveraging machine learning, we found a signif-
icant 14.8% of user-reported security issues which are not
tagged with any security-related tags. Overall, we collected
and analyzed 1,617,738 security-related issues (as well as
4,461,934 comments on those issues) for these repositories.
Furthermore, we leverage this data to analyze (i) how each
security-related issue is handled during the creation, discus-
sion, and resolution phase (ii) what are the functionalities of
bots which are used today in GitHub repositories of npm pack-
ages. Overall, we took a deep dive into this large-scale data of
security-related issues in npm packages—our in-depth mixed-
method analysis (complemented by creating novel machine
learning-based detection models) of these issues uncovered a
hierarchy of themes for interaction between users/developers
while handling these issues as well as factors that affected
the resolution of such issues. Specifically, in this work, we
answer four key research questions.

RQ1 How prevalent is reporting security-related issues in
GitHub repositories of npm packages?

RQ2 How effective are bots in detecting and addressing
security-related issues?

RQ3 How do the users interact with the GitHub reposi-
tory maintainers for npm packages while reporting security-
related issues?

RQ4 What factors correlate with the resolution of security-
related issues?

While investigating these questions, we found that across
npm packages with varying numbers of dependents, around
10%–15% of issues are security-related. In fact, more than
23% of the issues did not receive any comments (Section 6).
Interestingly, although bots in these repositories help to report
security issues, their effectiveness is rather limited, as hinted
by the fact that less than 0.1% security issues are tagged
by bots in our data. In fact, our in-depth systematic analysis
reveals that there is a general lack of security-focused bot
usage which leverage techniques like static analysis or ma-
chine learning (Section 7). In fact, the number of such bots are

also quite limited in our dataset. Moreover, this concerning
situation is also present within user-developer interactions.
The user-reported security-related issues are often ignored
by developers and can be closed without a valid justification
(since it becomes stale) (Section 8). Our correlation analysis
identifies a potential reason—only when the user reported
issues contain a potential fix (via pull request) or include
a CVE —publicly accepted set of already reported security
vulnerabilities (CVE) and weaknesses (CWE), the npm devel-
opers resolve this issue (unless otherwise specified, we treat
CVE and CWE references equivalently throughout the paper).
Otherwise, even when reproducible code for a security-issue
is included in a reported issue it is more likely to become
stale without any resolution. Our findings hint at the need for
improving bots as well as resolution techniques for reported
security issues in repositories of npm packages.

Limitations: Due to computational constraints and API rate
limits, collecting GitHub links for millions of npm packages
was challenging. As a trade-off, we followed a practical and
coverage-driven approach using dependent-based stratified
sampling. Since the number of dependents indicates the po-
tential impact of security issues, we included all high-impact
packages (> 100 dependents) and large samples of low-impact
packages (Table- 1). Thus, although we might have missed
some packages, security implications for those missing pack-
ages might be limited. Our approach has the potential to miss
security issues which are not reported to GitHub. However,
we already identified a significant number of reported secu-
rity issues (which are not tagged with security-related tags),
and this shortcoming can only increase the number of such
issues. Thus, our results are potentially lower bound on actual
security-related issues. One possible limitation is that some
context-specific tags may not be captured by our Word2Vec
based methodology. However, our final machine learning
model to detect security issues was trained (and used) on the
full issue descriptions (both title and body). Thus, we ensure
that security-related issues are robustly classified, even when
tags are missing or applied inconsistently. Furthermore, some
inaccuracy is associated with machine learning models used
to identify potential security-related issues and related themes.
We attempted to reduce this concern by hyperparameter ad-
justment, rigorous model selection, and manual validation in
line with best practices. Furthermore, our thematic saturation
attained during thematic analysis suggests that there will be a
very small number of such unidentified themes after the appli-
cation of our machine learning models over millions of issues
and comments, if any, which may have a minor impact on the
validity of the presented results. In summary, we uncovered
interesting and potentially generalizable factors affecting the
resolution of security-related issues using our ecologically
valid dataset despite these limitations.

2



2 Related Work

We review the related work along four broad dimensions:
security vulnerability management in package ecosystems,
analysis of bots in developer workflows, interaction with de-
velopers/maintainers and detection of malicious packages in
repositories.
Security vulnerability management in package ecosys-
tems: Previous work studied popular package ecosystems,
e.g., npm, PyPI, RubyGems. Many of these studies have fo-
cused on how security vulnerabilities in one package make its
dependent packages vulnerable [45, 46, 82, 100, 102]. Alfadel
et al. [37] revealed that many Node.js applications rely on
packages with undisclosed vulnerabilities, emphasizing the
need for faster remediation. Similarly, findings from other
works on npm, RubyGems and Golang ecosystems stress
getting timely updates and patches about vulnerabilities in
the dependencies of a package [65, 100, 102]. The study by
Bühlmann et al. [40] examines developer responses to se-
curity issues in Java repositories, while our study, in con-
trast, collected and analyzed security concerns raised by the
users themselves via issues reported in GitHub repositories
of open source npm packages often involving high-accuracy
ML models . These community-reported security concerns
from the real world, unlike previous work, are often explicitly
not connected to the known vulnerabilities detected in the
dependencies (e.g., via CVE).
Analyzing bots in developer workflows: Bots (programs to
automate tasks) have been extensively studied for their ability
to automate tasks, enhance productivity, and support decision-
making in various domains, including open-source software
(OSS) [71,89]. On platforms like GitHub, bots are frequently
employed for tasks such as continuous integration, depen-
dency management, and collaborative modeling [32, 33, 78].
Prior studies have investigated their impact on developer work-
flows, revealing alterations in commit activity and pull request
closure times following bot implementation. Wessel et al.
found that out of 351 GitHub projects, 26% utilised bots and
a recent follow-up study even introduced bots to address nega-
tive impacts on contributions [96,98]. However, none of these
works considered either the diverse functions that bots play
in a real-world ecosystem like GitHub repositories of npm
packages or the roles bots played in addressing security issues
within OSS (specifically, npm). For the first time, this work
bridges this gap and investigates the effectiveness of these
bots in identifying and addressing security vulnerabilities.
To do so, we built on another line of research—bot detec-
tion. Methods like BotHunter and BIMAN leveraged machine
learning to identify bots in GitHub, whereas Golzadeh et al.
developed a ground-truth dataset of GitHub issues and PR
comments, to detect bot accounts [34, 50, 60]. We used these
techniques to detect bots within issues and comments posted
in the npm package repositories on GitHub and uncover that
the functionalities of existing bots are not enough to address

security issues within these repositories.

Interaction with Developer/maintainer in package reposi-
tories: A significant amount of prior works investigated in-
teraction between developers to understand collaboration pat-
terns [81], on boarding mechanisms [90], sentiment differ-
ence [48] and community dynamics [73]. However, the focus
of these works typically has been on general developer collab-
oration and project management practices. Rather, our results
are more specific to security, e.g., impact of bots and CVEs.

Detection of malicious packages in package repositories :
A plethora of previous work aimed to detect malicious pack-
ages in popular package repositories such as npm and PyPI.
They often use machine learning models, graph analysis, or
static and dynamic analysis techniques [66, 70, 74, 77, 87,
101, 103]. Out of them AMALFI by Sejfia and Schafer is
specifically tailored to detect malicious packages in JavaScript
and TypeScript ecosystems [87]. Furthermore, VulNet [77],
PatchFinder [72], Holmes [99], and Ranger [104] have
introduced innovative solutions to enhance vulnerability pri-
oritization, patch tracing, and secure version restoration for
ecosystem-wide security management. Going one step further,
Ferreira et al. [55] introduced a lightweight, permission-based
system for Node.js applications, making it significantly more
challenging to exploit malicious packages. These prior works
generally focused on finding (and sometimes mitigating) secu-
rity vulnerabilities by analyzing codebases. On the contrary,
our work focuses on the security concern-related community
feedback received on these packages, presumably about the
security issues identified by users, making our work comple-
mentary to this prior body of work on automated malicious
package detection.

Next we will present our approach of collecting community-
reported security issues at scale from a stratified sample of
tens of thousands of npm packages.

3 Collecting Data on Issues Reported in
GitHub Repositories of npm packages

For our study, we needed to gather large-scale data about
security issues reported for real-world GitHub repositories of
npm packages. In this section, we detail our approach.

3.1 Selecting npm packages
Collecting package data from npm: npm (Node Package
Manager) [79] is the largest and most popular repository for
JavaScript libraries (called packages) today. We downloaded
the list of the entire 4.3 million public JavaScript packages
hosted on npm during May 2024. Furthermore, for each pack-
age, we also downloaded the dependents—packages which
depend on this package using the API [23]. However, collect-
ing and analyzing issues from all 4.3 million packages was
computationally difficult. To that end, we decided to create a

3



# dependent
packages

# Packages
available

# Packages
sampled

# Packages with
GitHub link

0 3,457,606 20,000 7023
1-10 462,379 20,000 13,766
10-100 41,982 20,000 15,897
100-500 7,899 7,899 6,557
500-1,000 1,132 1,132 1,117
> 1,000 1,112 1,112 1,106

Total 70,143 45,466

Table 1: We bucketed the npm packages by number of de-
pendents. We present the number of total as well as sampled
packages from each bucket alongwith number of packages
where GitHub link was available.

# dependent
packages

# Sampled Packages
with GitHub link

# Unique GitHub
repositories

# Total
issues

0 7,023 6,755 1,323,970
1-10 13,766 12,186 2,908,173
10-100 15,897 11,687 3,687,408
100-500 6,557 5,015 1,684,658
500-1000 1,117 832 344,343
> 1000 1,106 803 958,915
Total 45,466 37,278 10,907,467

Table 2: Number of issues collected from GitHub pages of
our sample set of npm packages.

stratified sample of these packages based on the number of
dependents (i.e., how many other packages used these pack-
ages). The reason is simple—intuitively, the importance of
reported security related issues for a package is correlated
with the number of dependents (used in earlier work [100]).

Stratified sampling of npm packages: We simply divided
the 4.3 million npm packages into six buckets based on their
number of dependents: 0, 1–10, 10–100, 100–500, 500–1,000,
and greater than 1,000. The number of repositories for each
bucket is reported in Table 1. We note that buckets with a
lower number of dependents contained an overwhelming ma-
jority of the packages, making it impractical to include them
all in our analysis. Thus, we simply randomly sampled 20,000
packages from each bucket (if a bucket contained less than
20,000 packages, we included all). In the end, in our sample,
we ended up considering all the packages with more than 100
dependents and 60,000 packages with less than 100 depen-
dents (Table 1)—in total we curated 70,143 packages. Few
examples of packages from each bucket is given in Table 12
of Appendix A.

3.2 Collecting issue data from GitHub for se-
lected npm packages

Next we used a simple insight—we noted that npm registry
API for individual packages [23] often provides the GitHub
link (where the code is hosted). This corresponding GitHub
page contained the issues raised for a particular package by the
developer community (both security and non-security related)
as well as discussion on how developers tried to respond to
and/or resolve these issues—-we collected all of this data.

Tag # repository
using the tag Tag # repository

using the tag
dependencies 7,526 docs 400
enhancement 4,767 discussion 386
bug 3,796 feature request 343
help wanted 2,439 wontfix 234
question 1,769 github_actions 197
good first issue 1,079 security 196
documentation 933 performance 182
javascript 568 stale 169
feature 556 bug 141
greenkeeper 458 blocked 136

Table 3: Top 20 most frequently used tags across repositories,
along with the number of repositories in which they have been
used, highlighting the relative scarcity of security-related tags.

Collecting GitHub links from npm registry: We collected
the GitHub links for 70,143 randomly sampled packages
using the npm registry API. However, not all npm packages
contained GitHub links and the same GitHub links occurred
in multiple packages—we collected 37,278 distinct GitHub
links for 45,466 packages (Table 1).

Collecting community reported issues data from GitHub:
We used the GitHub API [15] to collect all the issues data
for 37,278 distinct GitHub repositories. In total we col-
lected 10,907,467 issues where an overwhelming majority
(10,062,759 or 92.3%) were closed issues. For each issue,
we collected the issue title, the issue body (i.e., description),
and metadata (e.g., the tags or usernames which posted is-
sues/comments). We present the summary statistics of our
final issues data in Table 2. Out of these more than 10 million
issues, next we identify security related issues.

3.3 Identifying security-related issues
GitHub provides the option of tagging each issue [52, 76]
where a tag is a small phrase signifying the type of issue.
One issue can contain multiple tags. However, each reposi-
tory can create tags on its own (with arbitrary words). Prior
work [40, 41, 51, 68] highlights the effective use of issue tags
in OSS for tasks like issue resolution, label prediction, and
security related issue identification. To that end, we started
with the idea that perhaps tags which contain security-related
words/phrases will be related to security.

Tags are used with moderate frequency: We found that, out
of 10,907,467 issues, around 50% (5,454,149 issues) do not
contain any tags. In fact, not all repositories used tags. Out of
37,278 unique repositories, only 13,031 utilized one or more
tags. The distribution of tags per repository is shown in Figure
2 of Appendix A. We collected a total of 23,356 unique tags
used across 45,466 npm packages. We show the most popular
twenty tags in Table 3. We manually reviewed tags across
repositories that are potentially related to security such as
“vulnerability”, “exploit”, “cve”; however these tags appeared
in fewer than five repositories and did not rank among the top
recurring tags. Interestingly, the word “security” appeared as

4



a tag in only 196 repositories.

Detecting security-related tags with Word2vec: Since tags
are developer-defined and can be arbitrary, we focused on
identifying tags which contain words semantically similar to
security. Building on the work of Bühlmann et al. [40], which
identified security-related issues by filtering tags containing
the term “security", we created embeddings of each tag in our
dataset using Word2Vec and calculated the cosine similarity
of those embeddings with the embedding of the term "secu-
rity". This Word2Vec based tag-detection approach is in line
with prior work [51]. We selected tags with similarity of above
0.8 (we tried a number of thresholds and 0.8 gave the most
relevant output), resulting in 25 security-related tags (given in
Table 14 of Appendix A). We manually inspected them and
found that all contained the word secure—overall these tags
identified 13,835 potentially security-related issues. We man-
ually checked 100 random such issues and confirmed their
relevance to security (e.g., injection risks). Thus, the security-
related tags we found (which often contained the substring
security, e.g., “security vulnerability”), when present, indi-
cated security-related issues. However, these security-related
issues constitute only 0.13% of more than 10 million issues
reported for these repositories.

3.4 Categorizing security-related issues by
type of accounts who reported these issues

Identifying bot-reported security issues: Bots have become
increasingly common on GitHub, automating repetitive and
error-prone tasks to facilitate collaborative development [97].
Bots are, in fact, among the most significant contributors to
specific software projects [61]. Among the 13,835 security-
related issues, 7,731 were created by accounts with bot in
their usernames, indicating that these issues were likely cre-
ated by GitHub bots. We further collected 10,500 comments
pertaining to these issues and found that 8,442 comments
(80.4 %) are also posted by bot accounts (i.e. with “bot” in
their username). In total, we identified 93 unique bot accounts;
however, the majority (87.6%) of these issues were created
by Dependabot [57]. Given the prevalence of bots in creat-
ing security-tagged issues we investigate the effectiveness of
these bots in addressing security concerns for npm packages
in RQ2 (Section 7).

Identifying user-reported security issues: The remaining
6,104 of the 13,835 issues are created by accounts linked
to regular individuals, hereafter referred to as users. Using
GitHub API, we further collected a total of 19,324 comments
made by accounts while discussing these issues. Out of them
only 2,826 (14.6%) were made by bot accounts. We found
70 more unique bots involved in user-reported issues. Thus
our dataset contained a total of 163 bots. However, these bots
mostly did not address security-related issues. They primarily
posted comments signifying inactivity and staleness of the

issue rather than contributing to any meaningful discussion
about resolution of the security issues. Next, we focus on these
user-reported issues and analyze the process of resolution.

4 Uncovering Process of Resolving User-
Reported Security Issues in npm Using Qual-
itative Analysis

We next asked: how user-reported security issues are created,
discussed and resolved for npm packages.
Extraction and division of quotes: We identified three promi-
nent phases in the life-cycle of each security issue: Creation
phase (captured by the user-reported description), discussion
phase (interaction between developers of GitHub repositories
for npm packages and users), resolution phase (captured by
the last comment before the closing event). We first take 6,104
user-reported security issues as well as 16,498 comments and
6,104 closing events from our dataset. We programmatically
divided this data into three phases and from each phase ran-
domly selected 500 issue body/comments. Two researchers
together extracted a total of 1,747 explanatory quotes from
these issue body/comments across three phases. Next, we use
open coding and affinity diagramming [85] to develop a hier-
archy of themes explaining user/developer action/interaction
for security-related issues in each of the three phases.
Open coding: Initially, we open-coded the quotes. For each of
the three phases, we randomly selected 100 quotes and then
two researchers cooperatively developed three codebooks.
The codebook from the creation phase captures the types of
information provided by a user, for the discussion phase, it
captures how npm package developers responded to secu-
rity issues, and for the resolution phase, it captures if there
is any successful resolution. Additionally, we set aside 25
quotes initially to assess the saturation of themes. Specifi-
cally, we started coding 100 (∼5% of) quotes (in line with
Raj et al. [83]). Subsequently, the two researchers used the
codebooks to independently code all the quotes in each phase.
Inter-rater agreement (Cohen’s Kappa) at the end of the open
coding round was 0.85, indicating almost perfect agreement.
At the end of open coding, the two researchers met to discuss
and resolve the disagreements. Then one researcher verified
that the resultant codes were sufficient to code the 25 quotes,
indicating thematic saturation [86]. Finally, we ended up with
a total of 13 codes across three phases.
Affinity diagramming to identify the patterns in discussing
security-related issues: After the open coding round, the two
researchers used affinity diagramming to jointly examine the
discovered codes. They did this by looking at the collection
of quotes for each code in addition to the code itself [63]. We
set aside 10 random codes to check for saturation at the end.
Then the coders collaboratively created higher-level themes
from the rest of the codes. They kept doing this with the new
higher-level themes for two more rounds, or until the coders

5



Creation Discussion Resolution
A. Issue with solution(PR) A. Acknowledged A. With valid reason
A.1 Description present A.1 Spoke against with issue A.1 Falsely Created
A.1.1 Description of the PR A.1.1 Duplicate of another issue A.1.1 Completed - False Positive
A.1.2 Description with testing instructions A.1.3 Rejected the issue (eg: false positive) A.1.2 Re-reporting of previously reported issue
A.2 No description A.1.4. Policy adherence A.2 Successfully resolved
B. Issue without solution A.2 Spoke for the issue A.2.1 Issue resolved in discussion
B.1 Reproducibility A.2.1 Discussing about problem A.2.2 Completed by merging PR
B.1.1 Description with code snippet A.2.1.1 Faced same problem A.2.3 Refer to other PR/commit
B.1.2 Description with steps of reproduction A.2.1.2 Accepted the issue A.3 To be completed
B.1.3 Description with error logs A.2.1.3 Able to reproduce A.3.1 Deferred fix (next version)
B.1.4 Description with system info A.2.1.4. Asking for more clarification A.3.2 Won’t fix / Can’t solve now
B.2 Non-reproducibility A.2.2 Discussing about solution B. Without valid reason
B.2.1 No Description A.2.2.1 Solved the issue in the discussion B.1 Closed without reason
B.2.2 Only Description A.2.2.2 Suggested changes/solution B.2 Completed due to staleness
B.2.3 Feature Requests A.2.2.3 Asked for corrections

A.2.2.4 Agree with the solution
A.2.2.5 Disagree with the given solution
B Ignored
B.1 Not interested
B.1.1 Doesn’t encourage solving the problem
B.1.2 No comments
B.2 Inconclusive

Table 4: Our four-level hierarchical themes explaining the action/interaction between users/developers for security related issues.

thought that no more new higher-level themes could come up.
In the end, we ended up with a four-level hierarchy of themes,
capturing the process of creation-discussion-resolution of
user-reported security issues in npm packages. Level 1 themes
encompassed abstract, overarching themes generated in the
final round of affinity diagramming, and Level 4 comprised
the individual codes established during the open coding phase.
Finally, we checked that including the 10 random codes did
not add any new Level-1 and Level-2 themes, indicating the-
matic saturation of affinity diagramming. Our hierarchy of
themes (first four levels) explaining the patterns in the res-
olution of user-reported security-related issues is shown in
Table 4. However, we note that so far we only leveraged 6,104
user-reported issues, which limits our dataset and analysis.

5 Scaling User-Reported Security Issues
Dataset and Theme Annotation

Our dataset of security-related issues contains only 6,104 is-
sues (0.13% of a total of 10,907,467 issues). To that end,
we note a potential reason: although bot-reported issues are
tagged automatically, for user-reported issues, the tags are
assigned by npm package developers. Thus, it might be that
there are security-related issues which are not tagged with
security-related tags. Thus, to identify such user-reported is-
sues and scale up our dataset, we designed a machine learning-
based pipeline presented in Figure 1.

5.1 Leveraging text classification to extend the
security-related issue dataset

Creating ground truth labels: We view the problem of de-
tecting security-related issues within the set of issues without
any security-related tags as a classification task. Thus, we

Figure 1: Pipeline for filtering security issues and identifying
themes occurring in them.

manually create a gold-standard dataset of 2,000 issues with
two classes (security-related and non-security-related) as fol-
lows. We randomly sample the issue description of 1000
issues from the set of 6,104 user-reported issues with security-
related tags. Furthermore, we randomly sampled 1000 issues
which did not have security-related tags. Then two coders
code these 1000 issues independently using two labels— se-
curity related or non-security related. The Cohen’s kappa for
the two coders was 0.74, showing substantial agreement. Then
they meet, resolved disagreements, and assign final labels. To
handle cases where issues had both security-related and non-
security-related tags, we applied a simple rule: if an issue had
at least one security-related tag, we labeled it as a security
issue. In total, combining these two steps, we ended up with
1042 security-related and 1058 non-security-related issues.
We model the problem of discovering potential security-
related issues (which are not tagged with security-related

6



Model Accuracy Macro avg F1
CodeBERT 0.9 0.9

BERT 0.93 0.93
RoBERTa 0.94 0.94
FLAN T5 0.89 0.89
DeBERTa 0.94 0.94

Table 5: Performance of our fine-tuned models on the test
dataset for classifying issues into security-related and non-
security-related.

tags) as a two-class classification problem (where the issue
title and issue description will be used to classify the text). To
that end, we experimented with various models as classifiers,
including BERT-based models and large language models
(LLMs), the latter in both zero-shot and few-shot in-context
learning (ICL) settings. Among these, we selected fine-tuned
RoBERTa for further analysis, as it demonstrated the best per-
formance (F1-score of 0.94) (detailed performance metrics
for the BERT-based models are provided in Table 5. LLMs
performed worse than RoBERTa, achieving an F1 score above
80%—the results are given in Appendix B, Table 15).
Model Architecture: Given the nature of our task and the
availability of labelled data, we utilized a range of pretrained
models to address the classification challenge. These included
BERT [49], RoBERTa [75], CodeBERT [54], FLAN-T5 [42]
and DeBERTa [64], all of which were fine-tuned on our
dataset for the downstream task of issues classification. In ad-
dition, we evaluated LLMs, namely Mistral [67], Qwen [38],
Meta-LLaMA [92], and Gemma [91] using zero-shot and
few-shot under ICL settings. We leveraged systematic hyper-
parameter tuning using the Optuna framework [36] to ensure
best model configurations.

Given the sequence classification nature of our task, we
utilized a range of model architectures, as outlined in Ta-
ble 27 of Appendix B. We achieved the best accuracy for
the downstream task using the fine-tuned RoBERTa model—
class-wise performance of the RoBERTa model is shown in
Table 8. Although DeBERTa showed similar performance
on the test dataset, the manual analysis revealed it produced
numerous false positives and negatives, hinting at its unsuit-
ability (misclassification analysis of DeBERTa is in Table 17
of Appendix B).
Model Performance: We randomly split the dataset into
80% training and 20% validation subsets. Post-training, the
RoBERTa model achieved an accuracy of 94% and an F1-
score of 94% and a ROC-AUC score of 0.94 (details are pro-
vided in Table 5). To further investigate the performance and
misclassification of our model, we randomly selected an addi-
tional 100 issues (excluding the 1,600 issues used for training)
and one annotator manually annotated the selected issues to
create ground truth. Next, we used our text classification on
these 100 reviews and constructed the confusion matrix (Ta-
ble 6). We note that, in this confusion matrix, only 4 issues
were misclassified between security and non-security—three

Predicted
Security Non Security

Security 6 3Ground
Truth Non Security 1 90

Table 6: Confusion matrix for our RoBERTa text-classifier
annotation and ground truth for previously unseen 100 issues.
Only four cases were misclassified between the security and
non-security categories (marked in gray).

security issues as non-security and one non-security issue as
security. Thus, we identify security-related issues correctly in
96% of cases. Our classifiers were trained on issue body and
title marked with security-related tags—out of 1,000 classifier-
flagged randomly sampled security-related issues, 57% didn’t
contain the string “security”. To further validate the model’s
performance, we extracted attention scores from the [CLS]
token across all heads in the final RoBERTa layer, averaged
them, and visualized the most influential tokens using a word
cloud shown in Figure- 3 (Appendix B) [35].

Applying the model to scale up user-reported untagged
security issues: Finally, we used our validated issue-classifier
model on 9,131,800 user-reported issues which were not
tagged with any security-related tags. Our model identified
1,617,738 issues as potentially security-related (14.8% of all
issues)— representing a significant rise from the originally
tagged security issues, which uncovered only 13,835 security-
related issues (0.13% of all issues). Thus, our work uncovered
114 times more security-related issues reported by users than
actually tagged by npm package developers. A few exam-
ples of these issues are provided in Table 19 in Appendix B.
This surprising result emphasized the substantial volume of
security issues that remain untagged across various GitHub
repositories of npm packages.

5.2 Identifying themes mentioned in extended
dataset

Next, we aimed to attribute themes to the quotes in our ex-
tended dataset of 1,617,738 potentially security-related issues.
To that end, we collected a total of 4,461,934 comments and
issue bodies and assigned themes to them using a similar idea
as before—we modelled this theme identification problem as
a multi-label classification task. In particular, we represent
the Level-2 (L-2) themes as labels that are allocated to each
quote. We opted to conduct our study using L-2 themes, as
L-1 themes were deemed excessively wide for detailed exami-
nation. Also, L-3 and L-4 themes might be more granular than
L-2 themes, but we have a relatively low amount of labelled
data per L-3/L-4 theme. Thus, automated theme identification
with high accuracy would have been very difficult for them.

Model Architecture: We again used the following pre-trained
models, BERT [49], RoBERTa [75], CodeBERT [54], FLAN-

7



Model Accuracy Macro avg
F1

CodeBERT 0.78 0.67
BERT 0.77 0.63
RoBERTa 0.82 0.79
FLAN T5 0.65 0.44
DeBERTa 0.80 0.75

Table 7: Performance of fine-tuned RoBERTa model (for iden-
tification of themes explaining the action/interaction between
users/developer) on the validation dataset.

Precison Recall F1 score
Security Related
Issue 0.95 0.93 0.94

Non Security
Related Issue 0.93 0.95 0.94

Table 8: Class-wise performance of our fine-tuned RoBERTa
model on the validation dataset.

T5 [42] and DeBERTa [64]. Given the different architectures
of these models, we fine-tuned BERT with multi-head clas-
sification layers on top of the pre-trained model. FLAN-T5
were fine-tuned on the seq2seq task. We used the Optuna
framework [36] for systematic hyperparameter tuning.

Model Performance: We divided the labelled dataset into
80% for training and 20% for validation to assess the perfor-
mance of the fine-tuned models. We found that the RoBERTa
model outperformed other models, identifying more than 80%
of themes correctly in the reviews. The results of each model’s
accuracy on the validation set are displayed in Table 7. In or-
der to further verify the accuracy of the model, we conducted
a manual analysis. Specifically, we selected 100 random quo-
tations (excluding the original 1,638 annotated) and manually
annotated them with Level-2 themes. Then, we compared
the correctness of our predicted themes against this ground
truth. The result of the manual analysis is detailed in Table
20 (Appendix C). In both the validation set and the additional
ground truth dataset, our classifier was accurate for the major-
ity of the evaluations (almost 80%). Next, we will leverage
this extended dataset of theme-annotated issues to explore our
research questions.

After validating the model on both the validation set and
an additional ground truth dataset—where it achieved nearly
80% accuracy across most evaluations—we applied it to iden-
tify themes within the entire dataset of 1,617,738 issues. A
detailed summary of the themes identified is provided in Ta-
bles 23, 24, and 25 in Appendix C. Additionally, a summary
of the number of items of each class is provided in Table 9.

6 How Prevalent is Reporting Security-
Related Issues in GitHub Repositories of
npm Packages? (RQ1)

Using our machine learning model, we identified more than
1.6 million (14.8%) previously untagged security-related is-

Type L2 levels Count
Description present 786,818
No description 39,212
Reproducibility 418,668Creation

Non-reproducibility 372,700
Spoke against with issue 194,971
Spoke for the issue 1,786,539
Not interested 133,035Discussion

Inconclusive 353,046
Falsely Created 73,670
Successfully resolved 727,861
To be completed 480,391
Closed without reason 79,188

Resolution

Completed due to staleness 37,230

Table 9: Breakdown of activities across creation, discussion,
and resolution phases, detailing subcategories (L2 levels)
and their respective counts as identified by our fine-tuned
RoBERTa model.

# dependent
packages

% GitHub repositories that
had at least one un-tagged
security issue

% detected issues that
were un-tagged

0 16.03 15.88
0-10 24.75 16.66
10-100 39.34 14.54
100-500 44.3 14.72
500-1000 55.77 10.94
>1000 66.09 10.98

Table 10: Distribution of security-related issues across
different buckets.

sues within the dataset. We further explore whether these
issues are evenly distributed across repositories, the extent of
community discussions surrounding them, the time taken to
resolve them, and the presence of CVE IDs in these reports.

How are these security-related issues distributed over the
buckets? We first check the fraction of issues reported in our
buckets of npm repositories based on their dependent repos-
itories. The result is presented in Table 10. The percentage
of repositories with security-related issues increased as we
moved to buckets with npm packages with more dependents.
However, the percentage of security-related issues remained
fairly consistent across all buckets, indicating that the overall
occurrence of such issues is relatively uniform over buckets.

How much do the community discuss about security-
related issues? We examined user engagement by analyzing
comments on security-related issues. Our dataset of 1,617,738
security issues, spread across 15,048 repositories, contains a
total of 4,461,934 comments. More than 23% of the issues
do not even receive any comments highlighting the lack of
interaction in these security-related issues.

Do security-related issues persist over time and take longer
to resolve? We observed that security-related issues appeared
consistently over the years, highlighting their persistent na-
ture across different periods (Table 13 of Appendix D).To
evaluate whether security-related issues require more time to
resolve, we computed the resolution time (difference between
its opening and closing timestamps) for a random sample
of 10,000 non-security-related issues and compared it with

8



the resolution time of security-related issues. Security-related
issues take an average of 56.47 days to close, compared to an
average of 48.88 days for non-security issues.
Do these issues contain specific mention of CVE IDs?
Among the security-related issues, only 4,783 issues (out
of 1.6 million) mention a total of 7,184 CVE IDs, with 2,233
of these being unique. Thus the low inclusion of CVE ID
highlights that publicly recognized vulnerabilities might not
help the users to identify the security concerns within the npm
ecosystem. Thus within GitHub repositories of npm packages,
numerous security issues have not been formally identified or
documented under CVE IDs. (Note: This analysis considers
only CVE mentions.) The five most frequently mentioned
CVE IDs are in Table 28 of Appendix D.

7 Effectiveness of Bots in Detecting and Ad-
dressing Security Related Issues (RQ2)

Next, we explore how bots function within GitHub reposito-
ries of npm packages since out of 13,835 issues with security-
related tags, 7,731 (55.9%) were bot-reported.

7.1 Understanding role of bots in bot-reported
security-related issues in npm

In Section 3 we noted that Dependabot reported 87.6% bot-
reported issues in GitHub repositories of npm packages. It
is an automated tool that manages project dependencies by
identifying and updating vulnerable packages (among other
functions). Dependabot works by analyzing dependency files,
including package.json and package-lock.json, to check for
outdated or insecure packages. When a vulnerability is de-
tected, Dependabot checks the lock file to identify the affected
version and its impact on other dependencies. It provides two
main services– 1) version updates, which automatically up-
date dependencies to the latest versions according to the con-
figuration in dependabot.yml, and 2) security updates, which
scan repositories for known vulnerabilities and alert reposi-
tory owners.

Despite its utility, Dependabot can overwhelm developers
with numerous pull requests, especially in repositories with
many dependencies, making management difficult [93, 94]. It
often creates excessive pull requests for bloated dependencies,
and its configuration can cause issues for developers. Addi-
tionally, Dependabot’s reliance on predefined vulnerability
databases limits its ability to detect undisclosed or emerging
threats(e.g.: supply-chain attacks [80]), leaving security gaps.

7.2 Understanding role of bots in user-
reported security-related issues in npm

Apart from actively creating more than seven thousand issues
tagged as security, bots are also involved in user-reported is-

sues (with account names containing the phrase “bot”). The
activities along with their frequencies are given in Table 21,
Appendix E. We found that 120 bots were involved in such
issues. We focus on them for further understanding their effec-
tiveness in reporting and mitigating security issues in GitHub
repositories of npm packages.
Classification of bots We found that many of these bots are
hosted on the GitHub Marketplace [58], which may provide
free or paid access to the users, while others are independently
created by developers. However, hosting a bot on the GitHub
Marketplace does not guarantee the availability of its source
code publicly; one can keep its source code private. Moreover,
some bots are restricted within its own organisation. Based on
these observations, we classified the 120 bots into two main
categories: (See Table 22 of Appendix E)
Bots deployed on GitHub marketplace: We found 71 bots
which are deployed on GitHub marketplace. These can be fur-
ther classified based on the availability of their source codes.
We identified 57 bots which are hosted for public usage on the
GitHub marketplace. 40 of these bots have their source codes
publicly available, while 17 of them preferred to keep their
source codes private. Their transparency allows developers to
review their implementation, modify them for specific needs,
and integrate them into their workflows effectively. The re-
maining 14 bots of the 71 are those whose source codes and
accessibility are kept private. These are mostly used internally
by the organisations that created them.
Bots not deployed on GitHub marketplace: The remaining
49 bots were not deployed in GitHub marketplace. Moreover,
they are privately maintained by individuals or organisations.
These accounts were recognized because their usernames
included the term “bot”. Unlike GitHub apps, these are not
standardized, making it unclear whether they are real bots
or simply user accounts named as such. The next subsection
discusses their behaviour and roles in more detail.

7.3 Uncovering functionality of bots
To better understand the role these bots play in security-
related issues, we analyzed various activities that bots perform
(using publicly available information). We considered the bots
from two groups: those with publicly available source codes
and those with private repositories but listed in the market-
place, providing descriptions about their working for analysis.
Combining both the categories, we analyze 51 bots.

7.3.1 Qualitative analysis of bot functionalities

For each of the 51 bots, we collected their GitHub reposito-
ries (readme, comments) and marketplace descriptions. We
extracted explanatory quotes about bot functionality from
these data (yielding 150 unique quotes) and grouped them
based on their capabilities using the affinity diagramming
method. Two researchers collected and analyzed data on 51

9



A. Dependency management github-actions bors
dependabot D. Security github-merge-queue
renovate socket-security E.3 Project Management
B. PR management robocop issue-sh
stale mend-for-github-com angular-robot
mergify github-advanced-security project-bot
pullapprove E. Utility dosubot
delete-merged-branch E.1 Policy & CLA sync-by-unito
coderabbitai microsoft-github-policy-service E.4 Issue Related
kodiakhq salesforce-cla git2gus
trunk-io google-cla dotnet-issue-labeler
gitpod-io dotnet-policy-service linear
C. CI/CD linux-foundation-easycla E.5 Code Coverage
cypress E.2 PR related codecov
codesandbox-ci changeset-bot codeclimate
azure-pipelines jupyterlab-probot E.6 Miscellaneous Utility
shields-deployment jupyterlab-dev-mode lock
vercel pull gitpoap-bot
nx-cloud conventional-commit-lint-gcf welcome
netlify pull-request-size gitwave
render release-clerk sentry-io
gatsby-cloud what-the-diff F. Miscellaneous
grafana-delivery-bot a8c-probot-stale sonarcloud

Table 11: Hierarchical levels of functionalities of bots(along with the bots).

bots, categorizing them based on their functionalities and
publicly available descriptions or marketplace listings.

First, data from a randomly selected subset of 10 out of
51 bots was set aside to test the saturation of the hierarchy.
The researchers collaboratively analyzed the functionalities
of the remaining bots, grouping them into higher-level themes
through an iterative process. This process was repeated across
two additional rounds, refining the themes each time. By the
third and final round, the researchers concluded that no new
high-level themes could emerge, indicating thematic satura-
tion in the affinity diagramming process. The final hierarchy
consists of two levels, as shown in Table 11. At the highest
level (Level 1), the bots were classified into six overarching
themes. Dependency Management, PR Management, CI/CD,
Security, Utility, and Miscellaneous. The utility category was
further refined in Level 2, where its subclasses elaborated on
the themes described in Level 1, offering more precise and
specific categorisation of bot functionalities. (Details given in
Table 30, Appendix E)

The hierarchy of themes provides a comprehensive view
of bot functionalities, ranging from automating dependency
updates and managing pull requests to addressing security
concerns and ensuring smooth integration and delivery work-
flows. Interestingly, despite analyzing 51 bots across various
functionalities, we observed that only four bots are specifi-
cally involved in addressing security-related purposes. This
finding is notable considering the widespread presence of
user-reported security-related issues, suggesting that bot in-
volvement in this critical domain remains minimal.

To better understand their capabilities, we analyzed the
source code of 40 (out of 51) bots with publicly available
codebases. We manually downloaded these repositories from
GitHub (covering various tech stacks) and examined their
implementation. Our analysis involved inspecting the work-

ing principle from source code to determine whether the bots
relied on static rules, pattern matching, or learning-based deci-
sion making. We also reviewed their dependencies to examine
which external libraries they relied on, particularly looking for
any use of machine learning frameworks. Through this sys-
tematic process, we found that 85% (34 bots) relied entirely
on pre-defined, rule-based logic, offering limited adaptability
to diverse and evolving security issues. Six bots incorporated
AI/ML in some form—however, one of them was paid, and
two were still in beta stages with restricted functionality. This
highlights a clear gap between the potential of AI/ML in se-
curity automation and its limited real-world adoption among
existing bots. Table 29, Appendix-E summarizes their types
and underlying mechanisms.

7.3.2 Under-adoption of bots for detecting and mitigat-
ing security-related issues

Among the 51 bots analyzed, only four viz. RoboCop, mend-
for-github-com, github-advanced-security and Socket Secu-
rity Bot were identified as actively addressing security-related
issues. However, the extremely limited availability and adop-
tion are due to two main factors:

First, all these bots are paid services, which may deter
smaller teams or open-source projects from using them. Sec-
ond, these bots rely heavily on static analysis techniques,
which, while valuable, may not adequately address dynamic
or runtime vulnerabilities. Consequently, the under-utilization
of such bots highlights a significant gap in leveraging au-
tomated tools for detecting security issues within GitHub
repositories of npm packages.

10



8 Characterizing the Interaction Between the
Users and Maintainers of GitHub Reposito-
ries of npm Packages (RQ3)

We have already identified the different phases involved in
the resolution of an issue. Now we check how the community
interacts with the maintainers of the repositories.

8.1 During creation phase

Our qualitative analysis identified two broad themes while
investigating the types of information provided by a user
while reporting a security issue.

Interaction for security issues while offering a solution:
This includes the pull requests made by users. Most of them
have a proper description of how it solves the problem. In
an issue of storybookjs [6], the user tells clearly about how
the problem is solved “What I did: Bumps mdx2-csf which
resolves a security issue in ‘loader-utils‘”. Moreover, some
of them contain instructions regarding testing their code as
in an issue of superset [13]“### TESTING INSTRUCTIONS
1) Visit an Embedded Dashboard, 2) Generate a screenshot
of the Dashboard 3) The screenshot should be downloaded
successfully”. However, sometimes they do not contain any
description. Only a title is provided in such cases as in case of
an issue of grafana [17] “Issue title: Move out Server Admin
to a separate menu item on SideMenu”.

Interaction for security issues without a solution: These
include issues that describe the problem that a user had while
using that particular library. These are further classified based
on their ability to reproduce the problem from their descrip-
tion. Usually, reproducible issues are provided with code snip-
pets related to the concerned issue. In an issue of apollo-
client package [7] and pulumi-azure-native [16], users have
provided the code snippets to reproduce the issue. Further-
more, users often provide proper steps for the reproduction
of the issue. For example, in wp-calypso [26], the initiator
of the issue mentions the steps of reproduction as “1) Start-
ing at URL: https://wordpress.com/me/security/connected-
applications, 2) Click on any of connected application 3)
See list of Access Permissions, 4) Switch to another interface
language and verify step 3 again”. Apart from that, users
often tend to report the error logs, as reported in an issue
of expo package [24] “Unhandled promise rejection: Er-
ror: Could not encrypt/decrypt the value for SecureStore] at
node_modules/reactnative/Libraries/BatchedBridge/ Native-
Modules.js:106:50 in promiseMethodWrapper ... ”. Users
even describe their system information in which they have
faced the issues as in case of an issue reported in strapi pack-
age [19] “### System Node.js version: 16.13.2, NPM version:
8.1.2, Yarn version: 1.22.15, Strapi version: 4.0.5, Database:
PostgreSQL, Operating system: Alpine”.

However, all issues reported are not provided with proper re-

production steps. Most of them contain some form of feature
requests. For example, in their package [20], a user reports a
feature request as “Is Theia interested in expanding their ES-
Lint config to include XSS sink scanning. Feature Description:
I work on Cloud Shell (ide.cloud.google.com). We use Theia
to build our editor. We have created an eslint config that has
generated a list of XSS sinks in Theia (which I am currently
sending fixes out for). Are you all potentially interested in
having this upstreamed?”.

8.2 During discussion phase

In the qualitative analysis of the discussion phase, repository
maintainers responded to the issue in one of two broad themes:
they either acknowledged it or ignored it.

Acknowledged the security issue: The maintainers acknowl-
edge an issue either positively or negatively. Positive acknowl-
edgments involve discussing the problem, such as recognizing
they faced the same issue, accepting it, reproducing it, or re-
questing more details about how the attack works. In an issue
of storybooks [27], a user says he has also faced the same
issue “... I’m facing the same issue in ‘npm audit’. This is
in version ‘5.3.18’ of ‘storybook/addon-info’...”. They may
also discuss solutions by resolving the issue in the discussion,
suggesting changes, asking for corrections, or agreeing with
the proposed solution. For example in an issue of pulumi [22],
maintainer mentioned “This is likely due to the way the sys-
tem treats ‘id’ as a special property... I would suggest using
the ‘RandomString’ resource (and then using the language-
specific libraries to generate whatever appropriate output
format you want in terms of using the value as base64 or hex
or whatever else you like)”

Negative acknowledgements include marking the issue as
a duplicate. They may also involve disagreeing with the sug-
gested solution, rejecting the issue as a false positive, or deem-
ing it not relevant. A comment to saying about the duplicity
of the issue in agoric [30], “dup of #6007”. Additionally,
maintainers may request adherence to policies regarding the
disclosure of security vulnerabilities. Like in an issue of asp-
netcore [12], “Thanks for contacting us. While this may be
a great idea, it is not aligned with our long-term vision to
make it part of the framework. For many other ideas which
don’t belong to the framework we encourage the community
to build and ship on their own, contributing to the expanding
.NET Ecosystem...”— while this reflects a scope decision, it
may feel dismissive to the user as no alternative is suggested.

Ignored the security issue: Maintainers may ignore the issue
by showing a lack of interest, which includes not encourag-
ing efforts to solve the problem or providing no comments
or engagement. For example, In spartacus [8], a maintainer
commented “Dropping bug label as this is not a Spartacus
bug, nor something we can fix in Spartacus. It’s a backend
bug. It’s also a niche, and we shouldn’t spend time here imho.”

11



The wording may sound dismissive due to lack of guidance
or follow-up.

8.3 During resolution phase
During the resolution phase, repository maintainers typically
close issues under two broad categories: with a valid reason
or without one.

Closed with valid reason: Issues may be closed for a vari-
ety of reasons, such as false creation, successful resolution,
or deferred completion. Falsely created issues include those
marked as false positives or those accidentally created with-
out verifying if they had been previously reported. For ex-
ample, in SonarJS [10], a maintainer commented before clos-
ing the issue: “It seems this was already taken care of by
https://github.com/SonarSource/SonarJS/pull/4480”. A simi-
lar, example was seen in RocketChat [29], where a maintainer
commented “Looks a duplicate of #3069”. Successfully re-
solved issues are closed after resolving the problem in discus-
sions, merging a pull request (PR), or referencing a related
PR or commit made after the issue was reported. For example,
in MetaMask snaps [2], a maintainer resolved the issue in dis-
cussion saying “Consider using proxies instead of hardening
each individual endowment with custom wrappers, and only
harden the return if it returns something other than itself”.
Another instance where an issue is closed involves merging a
pull request is found in netlify [3]. Some issues remain open
for future action, categorized as "to be completed," which
may include deferring the fix to a later version or deciding
not to address the issue due to its complexity or infeasibility.
An issue in joystream [4] is closed by mentioning “Noth-
ing severe”. Another example found in npm [31] “However!
It’s also not incredibly high urgency for the team. There is a
security dimension to this (in that bad actors could shadow im-
portant system binaries for nefarious purposes), but that falls
into the category of "high impact, low probability" threats...”.

Closed without a valid reason: Issues are sometimes closed
simply because of staleness. E.g., an issue of Dotnet [21],
marked as stale with the last comment before closing “ This
issue has been automatically marked as stale because it has
been marked as requiring author feedback but has not had any
activity for 4 days. ”. Although the closure followed an auto-
mated policy, doing so after just 4 days of inactivity may feel
abrupt to users. In some cases, issues are closed even without
any comment in issues of flow-core [14], Grafana [25].

9 Factors correlating the resolution of security
related issues (RQ4)

Security-related issues often experience extended resolution
times, as evidenced by the slower closure of the 13,835
security-tagged issues. Additionally, we observed that issues
with CVE tags tend to have faster resolution. Thus, we nat-

urally asked the question–What are the different factors that
impact the resolution of a security issue?

To that end, we developed three Generalized Linear Mixed
Models(GLMMs), each targeting one of the three dependent
variables–time to close, staleness, and successful resolution.
The independent parameters included: (i) CVE mentions, (ii)
number of comments (iii) weekly downloads, (iv) number of
active maintainers in the past year, (v) issue reproducibility,
and (vi) bot involvement. A detailed description of these fac-
tors is presented in Table 34 of Appendix F. Repository-level
variations were modelled as a random effect. Results for the
models are summarized in Tables 31, 32, and 33 of Appendix
F. Next, we present the key takeaways.

9.1 Presence of CVE reduces time to close
The presence of a CVE in an issue body significantly de-
creases the time to close. This prioritization likely stems from
their critical nature and potential security implications. Issues
mentioning a CVE had a mean time to close of 174.08 days
and a median of 70 days, compared to a mean of 307.19 days
and a median of 127 days for issues without such mentions.
These findings highlight the role of CVE in expediting issue
resolution and reducing the risk of stagnation.

9.2 Reproducibility prolongs closure and in-
creases staleness, and hinders successful
resolution

Reproducibility increases time to close: Reproducibility
has a significant impact on the time to close, staleness, and
successful resolution of issues. Reproducible issues tend to
have higher time to close because they require additional time
for proper verification and reproduction of the problem.

While reproducibility is typically considered helpful for
resolution of issues [69, 84], our analysis reveals a counterin-
tuitive finding: reproducible issues often remain open longer.
For instance, a long-standing issue in angular.js [11] opened
in 2020 remained unresolved for years and was only closed
in 2024 by a bot due to inactivity. The bot commented: “This
issue has been automatically locked due to inactivity. Please
file a new issue if you are encountering a similar or related
problem. Read more about our automatic conversation lock-
ing policy”. Another case, found in expressjs [1] involved
a maintainer commenting, “Yea, this pull request has just
lagged around here for years, and seems like we’re not going
to merge it at this point, and so no reason to keep a stale
pull request hanging around for no reason :)”, which indi-
cates how long delays may occur in issues being abandoned,
even if they are reproducible. In terms of stats, reproducible
issues have a mean closing time of 105.16 days (median 8
days), while non-reproducible issues close in a mean of 47.21
days (median 2 days), highlighting that reproducibility delays
resolution.

12



Reproducibility increases staleness: Contrary to expecta-
tion, reproducibility does not always expedite resolution. In-
stead, reproducible issues are also more likely to become
stale, especially when there is a lack of capacity to reproduce
the issue or when the issue is not addressed promptly. For
example, in angular.js [28], a maintainer closed the issue after
seven days of no feedback, stating: “I’m going to close this
issue because we haven’t got any feedback. Leave a comment
if you can provide new feedback”. This shows that when an
issue cannot be reproduced or lacks updates, it is more likely
to be marked as stale. Similarly, other issues have been closed
due to the maintenance of repositories when the maintainers
no longer considered them relevant or reproducible. One such
case is found in storybookjs [5], where a comment stated,

“We’re cleaning house! Storybook has changed a lot since this
issue was created and we don’t know if it’s still valid. Please
open a new issue referencing this one if this is still a problem
in SB 7.x / you can provide a consistent reproduction in 7.x”.

Reproducibility hinders successful resolution: Repro-
ducibility can also decrease the likelihood of a successful
resolution. Issues that remain unresolved for a long time due
to reproducibility delays tend to be marked stale. In terms of
stats, 16,543 reproducible issues were found to be marked as
stale. On the other hand, such issues were also closed with an
assurance of taking care of them in the next release. For exam-
ple, a case found in pact-js [9] where a maintainer closed the
issue saying “Thanks for your help on this one. #282 is being
released as we speak (v8.0.5), closing”. Moreover, many of
the reproducible issues were closed with limited conversa-
tion, due to prolonged inactivity or because they were already
addressed in a newer release.

Why reproducibility in issues might not help resolution?
We found that reproducible issues with CVE references show
faster resolution times—mean time to close for reproducible
issues with CVE mention is 70.75 days (median: 5 days),
whereas those without CVE mention have a mean time to
close of 105.6 days (median: 8 days). This further high-
lights that the benefit of reproducibility is contextual—it helps
when developers are sufficiently motivated or equipped to act
promptly. Thus even reproducible security-issues, without
CVE may face challenges in achieving timely resolutions,
often due to external constraints or a lack of response from
the developers.

9.3 Bot involvement is correlated with in-
creased staleness and reduced resolution

The involvement of bots in Github discussions is strongly
correlated with increased staleness and lower chances of
successful resolution. Bot activity appears in 72.37% of
stale issues (26,945/37,230) and 37.27% of unresolved is-
sues (287,028/770,014). Bots typically intervene during the
later stages of an issue’s lifecycle, often marking it as stale or

automatically closing it, thereby limiting further resolution
efforts. For example, in an issue of opensea-js [18], a bot
commented “This issue has been automatically marked as
stale because it has not had recent activity. It will be closed
in 14 days if no further activity occurs. Thank you for your
contributions. If you believe this was a mistake, please com-
ment“. This demonstrates how bot involvement aligns with
the final stages of an issue. It is potentially associated with
staleness and automated closure after periods of inactivity.

9.4 No impact of active maintainers

Our analysis indicates that the resolution of an issue is in-
dependent of the number of active maintainers. This could
be attributed to the limited participation of active maintain-
ers in discussions. Moreover, we found the number of active
maintainers commenting on an issue to be very low for most
of the repositories. Specifically, the mean and median num-
bers of active maintainers are 4.83 and 2, respectively, while
those actively engaged in commenting are only 3.78 and 1. To
further strengthen our claim, we computed Pearson’s product-
moment correlation coefficient between them and found it to
be statistically significant (R = 0.9918, p = 0.0). This con-
firms our claim that very few active maintainers are engaged
in the process of resolution of an issue.

10 Implications

Our study of identifying security issues over npm packages
unearths a variety of important observations. To that end, we
point out the implications of our study for npm package own-
ers, maintainers, and the open-source community in general.

Tagging of issues in GitHub is not uniform: We know that
tagging of issues in GitHub is a fairly common phenomenon
[52, 76] but is underutilized. Surprisingly, all repositories of
our npm dataset do not use tags. Out of 37,278 unique reposi-
tories, only 13,031 utilized one or more tags. We found that
out of 10,907,467 issues, around 50% (5,454,149 issues) does
not contain any tags. As a result of this, we found that only 0.
13% of 10M+ issues were tagged as security. This observation
highlights the importance of implementing a standardized tag-
ging system across repositories. It is crucial for repository
maintainers to consistently and accurately apply these tags to
effectively categorize issues.

Bots are inefficient in resolving security-related issues:
Bots, while actively involved in creating security-related is-
sues, typically operate based on predefined rule-based sys-
tems. Despite its limitations, these bots are also involved in
addressing user-reported security issues. However, only a lim-
ited number of bots claim to support such security concerns,
and most of these are paid solutions with limited effective-
ness. Our analysis further reveals limited adoption of AI/ML
in these bots (for both general and security-related function-

13



alities), which stands in contrast to prior work emphasizing
the promise of AI/ML techniques for improving security test-
ing [43, 62]. This underscores the need for the development
of advanced and efficient bots to handle security challenges.

Reproducibility, CVE mention and bot involvement influ-
ence resolution of security-related issues: Security-related
issues often experience extended resolution times due to addi-
tional time required for verifying and reproducing the issues.
Moreover, reproducible issues are more likely to become stale
because of a lack of capacity to reproduce or feedback. Thus,
such issues are not being successfully resolved. On the other
hand, issues with CVE mention prompt faster resolution due
to its critical nature and potential security implications. Bots,
however, are found to negatively impact the resolution process
as they often mark the issues as stale or close them which
limits further resolution efforts.

11 Recommendations for Stakeholders

Finally, we present a set of recommendations tailored for
key stakeholders in the context of npm package repositories,
including package owners and maintainers, developers of bots
for the npm ecosystem, security researchers and end users.

Recommendation for npm package owners and maintain-
ers: Our findings highlight that the tagging of issues in
GitHub repositories is inconsistent and often underutilized. To
improve this, package maintainers should implement a stan-
dardized tagging system for better categorization, especially
for critical issues like security vulnerabilities. For maintain-
ers, we recommend involving more active contributors and
prioritizing CVE-tagged issues to ensure timely attention to
known vulnerabilities. Automated tools can aid with con-
sistency, while active involvement with contributors and the
security research community can address the gaps. Clear tag-
ging guidelines and regular feedback from users will enhance
collaboration and enhance the security and functionality of
GitHub repositories of npm packages.

Recommendation for bot developers for npm ecosystem:
Our findings highlight that current bots, while involved in cre-
ating and addressing security-related issues, often operate on
limited, rule-based systems that lack the flexibility to handle
complex security concerns. Bot developers should improve
their systems using smarter technologies involving machine
learning or AI. We also recommend developing bot-based
recommender systems (e.g., usable CodeQL [56] tools) to
assist users and maintainers during issue reporting—such
tools could identify known CVEs or similar issues from other
repositories, helping reduce duplication and streamline triage.
Moreover, bots must enhance message clarity by including
suitable tags, informative descriptions, and reproducible steps.
Furthermore, given that the entire npm ecosystem is open
source, bots should be developed as free solutions, ensuring
accessibility to all users while maintaining high-quality, cost-

effective support for addressing security challenges.

Recommendations for the security research community:
Our results show that critical security issues, despite being
reported in the CVE database, are often not properly tagged
in multiple issues, leading to their negligence (see Section-
6). This oversight can have serious repercussions, as many
packages are directly affected, along with all other packages
depending on them. Therefore, better management and priori-
tization of security issues are needed to ensure that vulnerabil-
ities are promptly addressed and their broader impact is fully
recognized. To support this, the security research community
could develop tools not only for identifying and prioritizing
overlooked issues but also for automating issue reproduction,
verification, and early detection of false positives—thereby
improving the accuracy and efficiency of vulnerability triage
for both users and maintainers.

Recommendation for users: We have already highlighted
that reproducibility hinders the resolution process. To that
end, the users who are raising security-related issues should
provide a proper step-by-step guide towards reproducing the
problem, which will aid the maintainers in understanding and
verifying the issue quickly. Moreover, they should be more
prompt towards replying to queries of maintainers. This will
reduce the chances of such issues being marked as stale. On
the other hand, users should do proper research before raising
issues, as we have identified numerous cases where the issues
are marked as false positives or duplicates of existing issues.

12 Conclusion

This study investigated the inefficiencies in addressing
security-related issues within the npm ecosystem by analyzing
10,907,467 issues across 45,466 npm packages. Our findings
revealed a stark gap in tagging practices, with only 0.13% of
issues explicitly labeled as security-related, despite manual
and machine-learning-based analyses identifying 14.8% as
relevant to security. This difference shows that we urgently
need a common way to tag issues to improve how we organise
and solve them. Furthermore, we identified the constraints of
automated systems, which frequently depend on inflexible,
rule-based frameworks. This reliance can result in the mis-
classification of issues as obsolete or the premature closure of
cases, thereby hindering efforts towards effective resolution.
Reproducibility problems slowed down fixing issues, while
CVE comments helped solve problems faster because they
have a set level of importance.

These insights call for smarter tools, standardized tagging,
and collaborative efforts among stakeholders to enhance se-
curity management. Addressing these gaps would facilitate a
safer and secure npm ecosystem that more effectively serves
both developers and users.

14



13 Ethical Considerations

We initially consulted the ethics committee of our institution
regarding our study protocol. They indicated that ethical re-
view was not required, as we collected and analyzed data from
publicly accessible npm and GitHub repositories. However,
we recognize that this exemption does not, by itself, ensure
ethical research. Collecting and analysing public data can still
raise ethical concerns, especially when it was not created with
research purposes in mind [39]. To that end, we made every
effort to conduct our research responsibly—minimizing poten-
tial harm and maximizing potential benefits for stakeholders
such as npm repository developers, users who contributed
content in our dataset, and the platforms (e.g., GitHub and
npm) themselves.

In line with prior work on software repository analysis
[44,47], we relied exclusively on data publicly shared by users
in open forums (forums where no registration was required
to access content, e.g., the npm repository and comments on
their corresponding GitHub repositories) such as GitHub is-
sues, pull requests, and discussions. We strictly adhered to the
ethical principles outlined in previous studies [53], avoiding
any private communications or data collection behind authen-
tication walls. Specifically, all data was obtained via GitHub
and npm’s official APIs, and we strictly followed their rate
limits and terms of service.

Although the use of public data is common in research
[39], ethical concerns can still arise—particularly when users
have not explicitly consented to having their contributions
analyzed. To mitigate such risks, we took several precautions.
Data was securely stored on password-protected machines
physically located within our institution’s firewall, with access
limited to only our research team. We did not perform any
analysis targeting specific developers or repositories.

Our dataset contains the reporting, discussion, and debate
of issues specifically within open-source projects, often con-
ducted in public forums like GitHub. These disclosures reflect
broader open-source community norms around transparency
and shared responsibility. One of our primary goals is to
support and align with these norms by facilitating a more
informed and nuanced conversation about the ethical use of
such data to uncover high-level data-driven insights which
can benefit the open source projects.

Thus, we strongly believe our research has been conducted
ethically and contributes valuable insights. We hope that these
findings can help strengthen collaboration and security prac-
tices within the open-source ecosystem—highlighting the
potential benefits of this work to the broader community.

14 Compliance with Open Science Policy

We will adhere to open science policy. We are releasing the
artifacts (models) with accompanying code so that the re-
sults of this work can be reproduced and the models can be

used in further research (e.g., for discovering security-related
issues). Since the raw data might contain identifying infor-
mation about security issues, to address potential ethical con-
cerns about open science compliance, we are sharing the raw
datasetsxs only with verified researchers upon request, rather
than releasing them publicly. We are providing clear instruc-
tions about accessing the raw data for academic research to
researchers on providing informed consent about acceptable
data usage. For accessing the models and instructions to ac-
cess data, please visit https://doi.org/10.5281/zenodo.
15614029

15 Acknowledgement

We thank the anonymous reviewers and our shepherd for
their valuable feedback. We also thank Gunjan Balde for his
help throughout this work. The authors thank everyone who
facilitated access to the necessary resources during the data
collection from GitHub. This research was (partially) funded
by a Google India Faculty Research Award.

References

[1] add request.local,inside,outside getters to test where
a request is coming from by blitmap · pull request
#2748 · expressjs/express. https://github.com/
expressjs/express/pull/2748.

[2] Additionally harden common endowments · issue
#1018 · metamask/snaps. https://github.com/
MetaMask/snaps/issues/1018.

[3] Allow plugins to access specific secret environment
variables · issue #193 · netlify/build. https://
github.com/netlify/build/issues/193.

[4] Are unsettled english auctions safe? · issue #2969
· joystream/joystream. https://github.com/
joystream/joystream/issues/2969.

[5] Bug with ‘addon-docs‘ and “ html element · issue
#15810 · storybookjs/storybook. https://github.
com/storybookjs/storybook/issues/15810.

[6] Bump mdx2-csf dependency by shilman · pull request
#19885 · storybookjs/storybook. https://github.
com/storybookjs/storybook/pull/19885.

[7] cache leaks secrets · issue #3592 ·
apollographql/apollo-client. https://github.com/
apollographql/apollo-client/issues/3592.

[8] Cannot remove coupon if the coupon code contains “.”
· issue #4725 · sap/spartacus. https://github.com/
SAP/spartacus/issues/4725.

15

https://doi.org/10.5281/zenodo.15614029
https://doi.org/10.5281/zenodo.15614029
https://github.com/expressjs/express/pull/2748
https://github.com/expressjs/express/pull/2748
https://github.com/MetaMask/snaps/issues/1018
https://github.com/MetaMask/snaps/issues/1018
https://github.com/netlify/build/issues/193
https://github.com/netlify/build/issues/193
https://github.com/joystream/joystream/issues/2969
https://github.com/joystream/joystream/issues/2969
https://github.com/storybookjs/storybook/issues/15810
https://github.com/storybookjs/storybook/issues/15810
https://github.com/storybookjs/storybook/pull/19885
https://github.com/storybookjs/storybook/pull/19885
https://github.com/apollographql/apollo-client/issues/3592
https://github.com/apollographql/apollo-client/issues/3592
https://github.com/SAP/spartacus/issues/4725
https://github.com/SAP/spartacus/issues/4725


[9] Cannot run provider verification against https end-
point that has ca, if called from a http endpoint · is-
sue #281 · pact-foundation/pact-js. https://github.
com/pact-foundation/pact-js/issues/281.

[10] Deprecate rule s5743 · issue #4467 · sonar-
source/sonarjs. https://github.com/
SonarSource/SonarJS/issues/4467.

[11] Docker best practices · issue #37442 · angular/angular.
https://github.com/angular/angular/issues/
37442.

[12] Dynamically updating authentionschemes on autho-
rizationpolicies · issue #54412 · dotnet/aspnetcore.
https://github.com/dotnet/aspnetcore/
issues/54412#issuecomment-1992596067.

[13] fix(embedded): Dashboard screenshot should use gues-
tuser by geido · pull request #30200 · apache/superset.
https://github.com/apache/superset/pull/
30200.

[14] Found leaked credentials. · issue #98 · ollionorg/flow-
core. https://github.com/ollionorg/
flow-core/issues/98.

[15] GitHub REST API documentation. https://docs.
github.com/en/rest.

[16] liststaticsitesecrets results are not marked
as secrets · issue #2408 · pulumi/pulumi-
azure-native. https://github.com/pulumi/
pulumi-azure-native/issues/2408.

[17] Move out server admin to a separate menu item on
sidemenu · issue #15591 · grafana/grafana. https:
//github.com/grafana/grafana/issues/15591.

[18] Opensea testnets - unsupported operand type(s)
for /: “nonetype” and “nonetype” · issue #122 ·
projectopensea/opensea-js. https://github.com/
ProjectOpenSea/opensea-js/issues/122.

[19] Passwords are not validated upon user creation · is-
sue #12320 · strapi/strapi. https://github.com/
strapi/strapi/issues/12320.

[20] Passwords are not validated upon user creation · is-
sue #12320 · strapi/strapi. https://github.com/
strapi/strapi/issues/12320.

[21] Policyevaluator doesn’t have correct logic · issue
#56656 · dotnet/aspnetcore. https://github.com/
dotnet/aspnetcore/issues/56656.

[22] Randomid still includes unencrypted key
in state file · issue #8946 · pulumi/pulumi.
https://github.com/pulumi/pulumi/issues/
8946#issuecomment-1005987646.

[23] registry - npm docs. https://docs.npmjs.com/
cli/v8/using-npm/registry.

[24] Removing then re-installing an apk causes the se-
curestore read to throw exceptions · issue #19018
· expo/expo. https://github.com/expo/expo/
issues/19018.

[25] Secure phantomjs png rendering · issue #1619 ·
grafana/grafana. https://github.com/grafana/
grafana/issues/1619.

[26] Security: Strings in list of access permissions of con-
nected applications are not localized · issue #7017
· automattic/wp-calypso. https://github.com/
Automattic/wp-calypso/issues/7017.

[27] [security] vulnerability of low severity in
“@storybook/addon-info > marksy > marked”
· issue #7842 · storybookjs/storybook. https:
//github.com/storybookjs/storybook/issues/
7842#issuecomment-641845722.

[28] self.url method causes trouble with ie11 (routing) ·
issue #16825 · angular/angular.js. https://github.
com/angular/angular.js/issues/16825.

[29] Setting admin_pass shows password in log · issue
#4806 · rocketchat/rocket.chat. https://github.
com/RocketChat/Rocket.Chat/issues/4806.

[30] Test that offer snoozing works for both sides of the psm
contract · issue #6071 · agoric/agoric-sdk. https://
github.com/Agoric/agoric-sdk/issues/6071.

[31] Warn at install about path lookup issues in global in-
stalls · issue #7255 · npm/npm. https://github.
com/npm/npm/issues/7255.

[32] ASE ’17: Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering.
IEEE Press, 2017.

[33] ICSE-SEIP ’18: Proceedings of the 40th International
Conference on Software Engineering: Software Engi-
neering in Practice, New York, NY, USA, 2018. Asso-
ciation for Computing Machinery.

[34] Ahmad Abdellatif, Mairieli Wessel, Igor Steinmacher,
Marco A. Gerosa, and Emad Shihab. Bothunter: an
approach to detect software bots in github. In Proceed-
ings of the 19th International Conference on Mining
Software Repositories, MSR ’22, page 6–17, New York,
NY, USA, 2022. Association for Computing Machin-
ery.

[35] Aditya. Understanding the [cls] token in bert: A com-
prehensive guide, 2021.

16

https://github.com/pact-foundation/pact-js/issues/281
https://github.com/pact-foundation/pact-js/issues/281
https://github.com/SonarSource/SonarJS/issues/4467
https://github.com/SonarSource/SonarJS/issues/4467
https://github.com/angular/angular/issues/37442
https://github.com/angular/angular/issues/37442
https://github.com/dotnet/aspnetcore/issues/54412#issuecomment-1992596067
https://github.com/dotnet/aspnetcore/issues/54412#issuecomment-1992596067
https://github.com/apache/superset/pull/30200
https://github.com/apache/superset/pull/30200
https://github.com/ollionorg/flow-core/issues/98
https://github.com/ollionorg/flow-core/issues/98
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://github.com/pulumi/pulumi-azure-native/issues/2408
https://github.com/pulumi/pulumi-azure-native/issues/2408
https://github.com/grafana/grafana/issues/15591
https://github.com/grafana/grafana/issues/15591
https://github.com/ProjectOpenSea/opensea-js/issues/122
https://github.com/ProjectOpenSea/opensea-js/issues/122
https://github.com/strapi/strapi/issues/12320
https://github.com/strapi/strapi/issues/12320
https://github.com/strapi/strapi/issues/12320
https://github.com/strapi/strapi/issues/12320
https://github.com/dotnet/aspnetcore/issues/56656
https://github.com/dotnet/aspnetcore/issues/56656
https://github.com/pulumi/pulumi/issues/8946#issuecomment-1005987646
https://github.com/pulumi/pulumi/issues/8946#issuecomment-1005987646
https://docs.npmjs.com/cli/v8/using-npm/registry
https://docs.npmjs.com/cli/v8/using-npm/registry
https://github.com/expo/expo/issues/19018
https://github.com/expo/expo/issues/19018
https://github.com/grafana/grafana/issues/1619
https://github.com/grafana/grafana/issues/1619
https://github.com/Automattic/wp-calypso/issues/7017
https://github.com/Automattic/wp-calypso/issues/7017
https://github.com/storybookjs/storybook/issues/7842#issuecomment-641845722
https://github.com/storybookjs/storybook/issues/7842#issuecomment-641845722
https://github.com/storybookjs/storybook/issues/7842#issuecomment-641845722
https://github.com/angular/angular.js/issues/16825
https://github.com/angular/angular.js/issues/16825
https://github.com/RocketChat/Rocket.Chat/issues/4806
https://github.com/RocketChat/Rocket.Chat/issues/4806
https://github.com/Agoric/agoric-sdk/issues/6071
https://github.com/Agoric/agoric-sdk/issues/6071
https://github.com/npm/npm/issues/7255
https://github.com/npm/npm/issues/7255


[36] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework,
2019.

[37] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab,
and Bram Adams. On the discoverability of npm vul-
nerabilities in node.js projects. ACM Trans. Softw. Eng.
Methodol., 32(4), May 2023.

[38] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen tech-
nical report. arXiv preprint arXiv:2309.16609, 2023.

[39] Amber M. Buck and Devon F. Ralston. I didn’t sign up
for your research study: The ethics of using “public”
data. Computers and Composition, 61:102655, 2021.
Rhetorics of Data: Collection, Consent, & Critical Dig-
ital Literacies.

[40] Noah Bühlmann and Mohammad Ghafari. How do de-
velopers deal with security issue reports on github? In
Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, SAC ’22, page 1580–1589, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[41] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio
Cosentino, and Belén Rolandi. Exploring the use of
labels to categorize issues in open-source software
projects. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), pages 550–554, 2015.

[42] Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Val-
ter, Sharan Narang, Gaurav Mishra, Adams Yu, Vin-
cent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu,
Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scal-
ing instruction-finetuned language models, 2022.

[43] Roland Croft, Dominic Newlands, Ziyu Chen, and
M. Ali Babar. An empirical study of rule-based and
learning-based approaches for static application secu-
rity testing. In Proceedings of the 15th ACM / IEEE
International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), ESEM ’21, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[44] Ajoy Das, Gias Uddin, and Guenther Ruhe. An em-
pirical study of blockchain repositories in github. In
Proceedings of the 26th International Conference on
Evaluation and Assessment in Software Engineering,
EASE ’22, page 211–220, New York, NY, USA, 2022.
Association for Computing Machinery.

[45] Alexandre Decan, Tom Mens, and Eleni Constanti-
nou. On the impact of security vulnerabilities in the
npm package dependency network. In Proceedings of
the 15th International Conference on Mining Software
Repositories, MSR ’18, page 181–191, New York, NY,
USA, 2018. Association for Computing Machinery.

[46] Alexandre Decan, Tom Mens, and Philippe Grosjean.
An empirical comparison of dependency network evo-
lution in seven software packaging ecosystems. Em-
pirical Software Engineering, 24:381–416, 2019. Pub-
lished: 10 February 2018, Issue Date: 15 February
2019.

[47] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae,
and Mehdi Golzadeh. On the use of github actions
in software development repositories. In 2022 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pages 235–245, 2022.

[48] Giuseppe Destefanis, Marco Ortu, David Bowes,
Michele Marchesi, and Roberto Tonelli. On measuring
affects of github issues’ commenters. In Proceedings of
the 3rd International Workshop on Emotion Awareness
in Software Engineering, SEmotion ’18, page 14–19,
New York, NY, USA, 2018. Association for Computing
Machinery.

[49] Jacob Devlin. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[50] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner
Fry, Bogdan Vasilescu, Anna Filippova, and Audris
Mockus. Detecting and characterizing bots that com-
mit code. In Proceedings of the 17th International
Conference on Mining Software Repositories, MSR
’20, page 209–219, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

17



[51] Joao P. Diniz, Daniel Cruz, Fabio Ferreira, Cleiton
Tavares, and Eduardo Figueiredo. Github label em-
beddings. In 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipula-
tion (SCAM), pages 249–253, 2020.

[52] GitHub Docs. Managing labels.
https://docs.github.com/en/issues/
using-labels-and-milestones-to-track-work/
managing-labels, 2023.

[53] Gunther Eysenbach and James E Till. Ethical issues
in qualitative research on internet communities. BMJ,
323(7321):1103–1105, 2001.

[54] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained
model for programming and natural languages. arXiv
preprint arXiv:2002.08155, 2020.

[55] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and
Christian Kästner. Containing malicious package up-
dates in npm with a lightweight permission system.
In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1334–1346, 2021.

[56] GitHub. Codeql: Semantic code analysis engine.
https://codeql.github.com/.

[57] GitHub. Dependabot: Keep your dependencies up to
date. https://github.com/dependabot.

[58] GitHub. Github marketplace. https://github.com/
marketplace, 2017.

[59] GitHub. Privately reporting a security vulnerability.
https://docs.github.com/en/code-security/
security-advisories, 2023.

[60] Mehdi Golzadeh, Alexandre Decan, Damien Legay,
and Tom Mens. A ground-truth dataset and clas-
sification model for detecting bots in github issue
and pr comments. Journal of Systems and Software,
175:110911, 2021.

[61] Mehdi Golzadeh, Tom Mens, Alexandre Decan, Eleni
Constantinou, and Natarajan Chidambaram. Recogniz-
ing bot activity in collaborative software development.
IEEE Softw., 39(5):56–61, September 2022.

[62] Yuejun Guo, Constantinos Patsakis, Qiang Hu, Qiang
Tang, and Fran Casino. Outside the comfort zone:
Analysing llm capabilities in software vulnerability
detection. In Computer Security – ESORICS 2024:
29th European Symposium on Research in Computer
Security, Bydgoszcz, Poland, September 16–20, 2024,
Proceedings, Part I, page 271–289, Berlin, Heidelberg,
2024. Springer-Verlag.

[63] Gunnar Harboe and Elaine M. Huang. Real-world
affinity diagramming practices: Bridging the paper-
digital gap. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’15, page 95–104, New York, NY, USA, 2015.
Association for Computing Machinery.

[64] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

[65] Jinchang Hu, Lyuye Zhang, Chengwei Liu, Sen Yang,
Song Huang, and Yang Liu. Empirical analysis of vul-
nerabilities life cycle in golang ecosystem. In Proceed-
ings of the IEEE/ACM 46th International Conference
on Software Engineering, ICSE ’24, New York, NY,
USA, 2024. Association for Computing Machinery.

[66] Yiheng Huang, Ruisi Wang, Wen Zheng, Zhuotong
Zhou, Susheng Wu, Shulin Ke, Bihuan Chen, Shan
Gao, and Xin Peng. Spiderscan: Practical detection of
malicious npm packages based on graph-based behav-
ior modeling and matching. In Proceedings of the 39th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’24, page 1146–1158, New
York, NY, USA, 2024. Association for Computing Ma-
chinery.

[67] Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

[68] Jing Jiang, Qiudi Wu, Jin Cao, Xin Xia, and Li Zhang.
Recommending tags for pull requests in github. Infor-
mation and Software Technology, 129:106394, 2021.

[69] Label.dev. What is a minimal reproducible
example (mre)? https://label.dev/
articles/minimal-reproducible-example/
#what-is-a-mre, 2023.

[70] Piergiorgio Ladisa, Serena Elisa Ponta, Nicola Ron-
zoni, Matias Martinez, and Olivier Barais. On the
feasibility of cross-language detection of malicious
packages in npm and pypi. In Proceedings of the 39th
Annual Computer Security Applications Conference,
ACSAC ’23, page 71–82, New York, NY, USA, 2023.
Association for Computing Machinery.

[71] Carlene Lebeuf, Margaret-Anne Storey, and Alexey
Zagalsky. Software bots. IEEE Software, 35(1):18–23,
2018.

18

https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
https://codeql.github.com/
https://github.com/dependabot
https://github.com/marketplace
https://github.com/marketplace
https://docs.github.com/en/code-security/security-advisories
https://docs.github.com/en/code-security/security-advisories
https://label.dev/articles/minimal-reproducible-example/#what-is-a-mre
https://label.dev/articles/minimal-reproducible-example/#what-is-a-mre
https://label.dev/articles/minimal-reproducible-example/#what-is-a-mre


[72] Kaixuan Li, Jian Zhang, Sen Chen, Han Liu, Yang Liu,
and Yixiang Chen. Patchfinder: A two-phase approach
to security patch tracing for disclosed vulnerabilities
in open-source software. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2024, page 590–602, New
York, NY, USA, 2024. Association for Computing Ma-
chinery.

[73] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and
Laura Dabbish. Code of conduct conversations in open
source software projects on github. Proc. ACM Hum.-
Comput. Interact., 5(CSCW1), April 2021.

[74] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen,
Yang Liu, and Xin Peng. Demystifying the vulnera-
bility propagation and its evolution via dependency
trees in the npm ecosystem. In Proceedings of the
44th International Conference on Software Engineer-
ing, ICSE ’22, page 672–684, New York, NY, USA,
2022. Association for Computing Machinery.

[75] Yinhan Liu. Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692,
364, 2019.

[76] Dave Lunny. Sane github labels.
https://medium.com/@dave_lunny/
sane-github-labels-c5d2e6004b63, 2016.

[77] Zeyang Ma, Shouvick Mondal, Tse-Hsun Peter Chen,
Haoxiang Zhang, and Ahmed E. Hassan. Vulnet:
Towards improving vulnerability management in the
maven ecosystem. Empirical Software Engineering,
29, 06 2024.

[78] Samim Mirhosseini and Chris Parnin. Can automated
pull requests encourage software developers to upgrade
out-of-date dependencies? In Proceedings of the 32nd
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’17, page 84–94. IEEE
Press, 2017.

[79] npm, Inc. npm: The package manager for javascript.
https://www.npmjs.com/, 2010.

[80] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael
Meier. Backstabber’s knife collection: A review of
open source software supply chain attacks. In Clé-
mentine Maurice, Leyla Bilge, Gianluca Stringhini,
and Nuno Neves, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 23–43,
Cham, 2020. Springer International Publishing.

[81] Gabriel P. Oliveira, Ana Flávia C. Moura, Natér-
cia A. Batista, Michele A. Brandão, Andre Hora, and
Mirella M. Moro. How do developers collaborate?

investigating github heterogeneous networks. Software
Quality Journal, 31(1):211–241, September 2022.

[82] Gede Artha Azriadi Prana, Abhishek Sharma,
Lwin Khin Shar, Darius Foo, Andrew E. Santosa,
Asankhaya Sharma, and David Lo. Out of sight,
out of mind? how vulnerable dependencies affect
open-source projects. Empirical Softw. Engg., 26(4),
July 2021.

[83] Rohit Raj, Mridul Newar, and Mainack Mondal. "i
just hated it and i want my money back": Data-driven
understanding of mobile VPN service switching prefer-
ences in the wild. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 6021–6037, Philadelphia,
PA, August 2024. USENIX Association.

[84] Matthew Rocklin. Minimal bug reports. https:
//matthewrocklin.com/minimal-bug-reports.
html, 2018.

[85] Johnny Saldana. The Coding Manual for Qualitative
Researchers. SAGE Publications, London, England,
3rd edition, 2015.

[86] Benjamin Saunders, Julius Sim, Tom Kingstone, Shula
Baker, Jackie Waterfield, Bernadette Bartlam, Heather
Burroughs, and Clare Jinks. Saturation in qualitative
research: exploring its conceptualization and opera-
tionalization. Quality & quantity, 52:1893–1907, 2018.

[87] Adriana Sejfia and Max Schäfer. Practical automated
detection of malicious npm packages. In Proceedings
of the 44th International Conference on Software En-
gineering, ICSE ’22, page 1681–1692, New York, NY,
USA, 2022. Association for Computing Machinery.

[88] Jared Spool. Do users change their settings?
https://archive.uie.com/brainsparks/2011/
09/14/do-users-change-their-settings/,
2011.

[89] Margaret-Anne Storey and Alexey Zagalsky. Dis-
rupting developer productivity one bot at a time. In
Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software En-
gineering, FSE 2016, page 928–931, New York, NY,
USA, 2016. Association for Computing Machinery.

[90] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at
good first issues on github. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 398–409,
New York, NY, USA, 2020. Association for Computing
Machinery.

19

https://medium.com/@dave_lunny/sane-github-labels-c5d2e6004b63
https://medium.com/@dave_lunny/sane-github-labels-c5d2e6004b63
https://www.npmjs.com/
https://matthewrocklin.com/minimal-bug-reports.html
https://matthewrocklin.com/minimal-bug-reports.html
https://matthewrocklin.com/minimal-bug-reports.html
https://archive.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/
https://archive.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/


[91] Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. Gemma: Open models based
on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

[92] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971,
2023.

[93] Hacker News User. Github’s dependabot is caus-
ing a ton of “spam” in our frontend (angular)
reposit... https://news.ycombinator.com/item?
id=27929596, 2022.

[94] Hacker News User. Honestly dependabot is so
bad i’m surprised anything other than the smallest
pro... https://news.ycombinator.com/item?id=
31963643, 2022.

[95] Jason Watson, Heather Richter Lipford, and Andrew
Besmer. Mapping user preference to privacy default
settings. ACM Trans. Comput.-Hum. Interact., 22(6),
November 2015.

[96] Mairieli Wessel, Bruno Mendes de Souza, Igor Stein-
macher, Igor S. Wiese, Ivanilton Polato, Ana Paula
Chaves, and Marco A. Gerosa. The power of
bots: Characterizing and understanding bots in oss
projects. Proc. ACM Hum.-Comput. Interact.,
2(CSCW), November 2018.

[97] Mairieli Wessel, Bruno Mendes de Souza, Igor Stein-
macher, Igor S. Wiese, Ivanilton Polato, Ana Paula
Chaves, and Marco A. Gerosa. The power of
bots: Characterizing and understanding bots in oss
projects. Proc. ACM Hum.-Comput. Interact.,
2(CSCW), November 2018.

[98] Mairieli Wessel and Igor Steinmacher. The inconve-
nient side of software bots on pull requests. In Proceed-
ings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, ICSEW’20, page
51–55, New York, NY, USA, 2020. Association for
Computing Machinery.

[99] Susheng Wu, Wenyan Song, Kaifeng Huang, Bihuan
Chen, and Xin Peng. Identifying affected libraries and
their ecosystems for open source software vulnerabil-
ities. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE ’24,
New York, NY, USA, 2024. Association for Computing
Machinery.

[100] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing
Zou, and Hai Jin. Understanding the threats of up-
stream vulnerabilities to downstream projects in the
maven ecosystem. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 1046–1058, 2023.

[101] Zeliang Yu, Ming Wen, Xiaochen Guo, and Hai Jin.
Maltracker: A fine-grained npm malware tracker copi-
loted by llm-enhanced dataset. In Proceedings of
the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, page
1759–1771, New York, NY, USA, 2024. Association
for Computing Machinery.

[102] Abdelrahman Zerouali, Tom Mens, Alexandre Decan,
et al. On the impact of security vulnerabilities in the
npm and rubygems dependency networks. Empirical
Software Engineering, 27(107), 2022.

[103] Junan Zhang, Kaifeng Huang, Yiheng Huang, Bihuan
Chen, Ruisi Wang, Chong Wang, and Xin Peng. Killing
two birds with one stone: Malicious package detection
in npm and pypi using a single model of malicious
behavior sequence. ACM Trans. Softw. Eng. Methodol.,
November 2024. Just Accepted.

[104] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu,
Lingling Fan, Lida Zhao, Yiran Zhang, and Yang Liu.
Mitigating persistence of open-source vulnerabilities
in maven ecosystem. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pages 191–203, 2023.

[105] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. Bertscore: Evaluating text
generation with bert. arXiv preprint arXiv:1904.09675,
2019.

A Details of npm packages

In this section, we provide additional details related to the
dataset used in our study, including examples of popular npm
packages from different buckets, as shown in Table 12. Fur-
thermore, we present the set of tags identified as similar to
security in Table 14, along with the distribution of tags per
repository depicted in Figure 2.

B Security-issues identification model

Models considered to detect security-related issues: To
classify issues into two classes (related to security or not re-
lated to security), we used the following models: BERT [49],
RoBERTa [75], CodeBERT [54], FLAN-T5 [42] and De-
BERTa [64] and LLMs namely Mistral [67], Qwen [38], Meta-
LLaMA [92], and Gemma [91] using zero-shot and few-shot

20

https://news.ycombinator.com/item?id=27929596
https://news.ycombinator.com/item?id=27929596
https://news.ycombinator.com/item?id=31963643
https://news.ycombinator.com/item?id=31963643


Indegree of packages Popular Javascript packages
@ever-co/faker0 @musicstory/react-bootstrap-table2-filter
@aurelia/scheduler-dom1-10 @tanstack/svelte-table
@ckeditor/ckeditor5-vue10-100 create-vite
@medusajs/medusa100-500 gatsby-plugin-manifest
@types/chalk500-1000 markdown
ethers>1000 shelljs

Table 12: Popular packages in different buckets.

Issue age # issues
created

3 months 35284
6 months 60082
9 months 60692
1 year 71675
2 years 253022
3 years 253703
> 3 years 883280

Table 13: Distribution of issues based on their creation time.

under ICL settings. Since the task is a sequence classifica-
tion task and hence, we used different architectures of models
described in Table 27 along with the specification of model
sizes. The hyperparameter tuning was done using Optuna
[36], which is a framework for optimization for hyperparame-
ters. The performance of the models is shown in Table 5.

We extracted and averaged attention scores from the [CLS]
token across all heads in the final layer of the fine-tuned
RoBERTa model to identify influential tokens, which are visu-
alized in the word cloud below (see Figure-3) after removing
stopwords and artifacts.
Error Analysis of RoBERTa: Since we achieved the best ac-
curacy for the downstream task using the fine-tuned RoBERTa
model. Class-wise performance of the RoBERTa model is
shown in Table 8. We also tried to get insights into the perfor-
mance of the model using error analysis and observed that the
issue body often lacks sufficient information, with references
to other issues by their numbers instead of detailed elaboration.
Additionally, while discussions occasionally address relevant
topics, they often lack the expected focus on security-related
context. There is also a noticeable drift between issue titles,
which focus on security, and the corresponding issue bodies,
which do not align with this context, further complicating
accurate classification.
Performance of LLMs: For LLM evaluation, task-specific
prompts were crafted to address the classification task. Zero-
shot settings relied on these prompts without additional fine-
tuning, while few-shot ICL incorporated a small number of
annotated examples into the prompts to provide better con-
text. The prompts for zero-shot and few-shot evaluations are
detailed in Table 18 and the specific LLM models evaluated
are described in Table 16. Model outputs were assessed using
a BERT-based similarity scoring approach [105] with the De-

Tags
category: security
type: security
security
security (category)
theme: security
severity6: security
:label: security
pr: security
:fire: security
area: security
issue: security
[type] security
security :exclamation:
topic: security
cat: security
severity: security
subj: security
security vulnerability
3: security review
security fix
impact/security
limitation: security restriction
mend: dependency security vulnerability
security blocker
external: lightning web security locker

Table 14: Set of tags that are found similar with the term
security using Word2vec.

BERTa [64] model, comparing predictions against reference
sentences, security and non-security. The evaluation results
are given in Table 15.

Model Accuracy Macro avg F1
Zero Shot 0.82 0.82Mistral Few Shot 0.83 0.83
Zero Shot 0.52 0.39Qwen Few Shot 0.67 0.66
Zero Shot 0.65 0.63LLaMA Few Shot 0.78 0.77
Zero Shot 0.60 0.53Gemma Few Shot 0.54 0.50

Table 15: Performance of large language models under zero-
shot and few-shot ICL settings for classifying issues into
security-related and non-security-related categories.

Model Model Specification Task Type
Gemma google/gemma-2b-it Text Classification
Mistral mistralai/Mistral-7B-Instruct-v0.3 Text Classification
Qwen Qwen/Qwen2.5-1.5B-Instruct Text Classification
Llama meta-llama/Llama-3.2-3B-Instruct Text Classification

Table 16: Specification of the LLMs used for classification
of security-related and non-security related issues under zero-
shot and few-shot ICL settings.

C Theme identification model

For the identification of themes in reviews, we used the fol-
lowing models: BERT [49], RoBERTa [75], CodeBERT [54],
FLAN-T5 [42] and DeBERTa [64]. Since the task can be
modelled as both sequence multi-label classification or se-
quence generation task, hence, we used different architectures

21



Figure 2: Distribution of repositories across different tag
count ranges.

Figure 3: Wordcloud of most influential tokens identified
using [CLS] token attention scores from the final layer of our
fine-tuned RoBERTa model.

of models described in Table-27 along with the specification
of model sizes. The hyperparameter tuning was done using
Optuna [36], which is a framework for optimization for hy-
perparameters.
Accuracy of models: We found that RoBERTa model out-
performed other models into consideration, identifying more
than 80% of themes correctly in the reviews as shown in
Table-7 which reports the accuracy of the models on valida-
tion set.The result of the accuracy of RoBERTa model against
additional manual ground truth is reported in Table-20 .
Error Analysis of RoBERTa: Since the fine-tuned RoBERTa
model predicted the highest fraction of themes correctly, we
did further analysis to look into the performance of the model.
Classwise performance of the RoBERTa model is shown in
Table-26. Although recall for “Successfully resolved” is lower,
the F1-score (0.68) shows a balanced performance, suggesting
accurate predictions; our high-precision model thus provides
a conservative lower-bound estimate for this theme. We also
tried to get insights into the performance of the model using
error analysis and observed that the model mostly commits
mistakes in predicting less frequently occurring classes like

Predicted
security non security

security 4 3Ground
Truth non security 4 89

Table 17: Confusion matrix for our DeBERTa text classifier.

speaking against the issue/not interested in the issue. We also
noted that the model committed mistakes in understanding
the contextual meaning of phrases and made predictions using
the phrases themselves.

D Temporal Distribution of Issues: Categoriza-
tion by Creation Time

Distribution of issues based on their creation time, categoriz-
ing the number of issues created within specific time frames :
13. Also the five most frequently mentioned CVE IDs (strictly
CVE-IDs are mentioned here) are in the Table 28.

E Details related to bots

An overview of various activities performed by bots in user-
reported issues, along with their frequency in security-related
issues, is provided in Table 21. Additionally, the classification
of bots involved in user-reported security issues is detailed
in Table 22. A specific categorization of bot functionalities
is further described in Table 30. We also disclose a summary
classification of 40 publicly available bots based on their
implementation type. The Table 29 illustrates the range of bot
types identified in our analysis.

F GLMM results

We present three tables showcasing the results of the Gener-
alized Linear Mixed Model (GLMM) analysis. These tables
31, 32, 33 summarize the statistical outputs

22



Setting Prompt Template Description

Zero-shot

{
"role": "user",
"content": f"classify **WITHOUT EXPLANATION** whether
the given issue is related to security or not. Issue: {new_issue}"
}

Direct prompt asking the model
to classify the issue without
providing any explanation.

Few Shot

{
"role":"user", "content": "classify **WITHOUT EXPLANATION** whether
the given issue is related to security or not. Issue: {issue_0}"
},
{
"role":"assistant", "content": "security"
},
{
"role":"user", "content": "classify **WITHOUT EXPLANATION** whether
the given issue is related to security or not. Issue: {issue_1}"
},
{
"role":"assistant", "content": "non security" },
...
{
"role":"user", "content": "classify **WITHOUT EXPLANATION** whether
the given issue is related to security or not. Issue: {new_issue}"
}

Few-shot prompt providing
two examples each for "security"
and "non-security" classifications
alternatively to give the model
contextual guidance before asking
it to predict for the current issue.

Table 18: Prompts for zero-shot and few-shot under ICL settings for classifying issues into security-related and non security-
related categories.

Labelled as security Model predicted
Issue Title Issue Body Issue Title Issue Body

Webhook notification
channel password field
is in plain text

What would you like to be added: It would be
ideal if the password field for the webhook
notification channel was hidden and not
exposed in plain text. Why is this needed:Anyone
who has access to set up notification channels can
see the password which raises a security concern
for the application we send the alert to.

fix: remove unnecessary
logging for webauthn
auth

When authenticating using Webauthn
it is unnecessary to log Log in on....
This PR hides that logging in that case.

Set Cache-control:
no-cache for full
page requests

All API requests already set Cache-control:
no-cache to avoid browsers caching sensitive
data. The full page requests, however, does
not which means that all data in
window.grafanaBootData can be cached
by the browsers.This means that browsers
can cache some data even if the user logged out.

Migrate Lambda Trigger is
not triggering if
USER_PASSWORD_AUTH
is done on the server/backend...

Describe the bug If you use the InitiateAuth
with the USER_PASSWORD_AUTH as the authflow,
the Migrate Lambda Trigger will not work... I have a
console.log in the lambda and it is not working.
However, if I copy-paste the exact code on the browser-side,
the trigger will work...
SDK version number
@aws-sdk/client-cognito-identity-provider@3.294.0
Which JavaScript Runtime is this issue in?
Node.js
Details of the browser/Node.js/ReactNative version
v16.19.0

XS deep freeze conflicts
with SES security
constraints

The XS Object.freeze takes a second optional
boolean parameter that, if truthy, causes some
form of transitive freezing. But unlike harden,
it does more freezing than user code can do (and
inspired thepetrify notion we’re still designing).
As currently implemented,this enhanced
Object.freeze can be used for attack.

[SECURITY] npm i logs bearer
token in case there is a
formatting issue.

Is there an existing issue for this?I have searched
the existing issues This issue exists in the latest
npm versionI am using the latest npm Current
BehaviorAccidentally providing a misformed token
will print the bearer token to the log-output.
I wasn’t sure if this is indeed a security risk but
I figured it might not hurt to point it out in case it is.
Please close the issue right away if this is not critical.
Expected Behavior Do not print any bearer tokens to
standard output.

Anonymous users are
not redirected to login
page after trying to
access a checkout step
route since 3.0.0

Old checkout bug behavior since Spartacus
version 3.0.0 Checkout auth guard is not
redirecting anonymous users that has no
active cart id. They get stuck in a blank
page if they were to try to visit the checkout
route directly

Fix for SSID and passwords
starting with 0x

By default string starting with 0x are parsed as
hexadecimal numbers by yargs. This fix allows to
configure devices with an SSID starting with the string 0x

Disable localhost: snaps
outside of Flask

localhost:snaps are not something that we
ever want to support in stable MetaMask,
and we should ensure that they are disabled in
stable distributions. Outcome: Snaps that are
fetched from localhost should only be available
in Flask distribution. The user should be notified
that this snap is a debug one and will not be loaded.

fix(lib-storage): S3 Upload can
corrupt data from
readable stream

Issue
In some circumstance Upload miss some data from
the readable stream and corrupt the uploaded data.
This has been observed in a real situation when
serializing data and uploading data on the fly by
using a PassThrough between the serialization and the
S3 Upload. The issue has been located in
lib/storage/src/data-chunk/readable-helper.ts
Description In readable-helper.ts the pause/resume
mechanism has a concurrency
flaw between line

Table 19: Examples of issues labelled as security and issues that our model predicted to be security related.

23



% themes in
validation dataset

% themes in additional
random sample

Correctly
Predicted 82% 76%

Incorrectly
predicted 18% 24%

Table 20: Performance of fine-tuned RoBERTa model (For
theme classification) on validation dataset and additional ran-
dom sample (with manual ground truth labels).

Activities Frequency
comment 2826
labeled 2197
unlabeled 1079
milestoned 294
locked 287
closed 233
referenced 182
review_requested 129
deployed 63
demilestoned 45
subscribed 19
merged 19
head_ref_deleted 19
mentioned 16
removed_from_merge_queue 4
head_ref_force_pushed 3
added_to_project 3
moved_columns_in_project 2
automatic_base_change_succeeded 2
reopened 2
renamed 2
review_dismissed 1
convert_to_draft 1
review_request_removed 1
assigned 1

Table 21: Overview of the various activities performed by
bots in user-reported issues along with the count of their
occurrence in security-related issues.

Bot Type (L1) Bot Type (L2) Bot Type (L3) No of Bots
Public

Source Codes 40
Public
Apps Source Code not

found 17Hosted as
GitHub App Private

Apps 14

Hosted as
normal GitHub
User accounts

49

Table 22: Classification of 120 GitHub bots in user-reported
security issues based on their deployment and accessibility.

Theme Hierarchy F1 F2
A. Issue with solution(PR) L1 303 826,030
A.1 Description present L2 194 786,818
A.2 No description * L2 109 39,212
B. Issue without solution L1 225 791,368
B.1 Reproducibility L2 102 418,668
B.2 Non-reproducibility L2 123 372,700

Table 23: The hierarchy of themes derived from open coding
of reviews in the category of "creation". Here, F1 refers to the
number of quotes in which this theme appeared in our manual
analysis and F2 refers to the number of quotes in which the
theme was identified by the automated approach.* We filtered
the case of Issues with solution but no description logically
and did not feed to the model.

Theme Hierarchy F1 F2
A. Acknowledged L1 400 1,981,510
A.1 Spoke against with issue L2 91 194,971
A.2 Spoke for the issue L2 309 1,786,539
B. Ignored L1 150 486,081
B.1 Not interested L2 46 133,035
B.2 Inconclusive L2 104 353,046

Table 24: The hierarchy of themes derived from open coding
of reviews in the category of "discussion". Here, F1 refers
to the number of quotes in which this theme appeared in our
manual analysis and F2 refers to the number of quotes in
which the theme was identified by the automated approach.

Theme Hierarchy F1 F2
A. With valid reason L1 497 1,281,922
A.1 Falsely Created L2 60 73,670
A.2 Successfully resolved L2 260 727,861
A.3 To be completed L2 177 480,391
B. Without valid reason L1 172 116,418
B.1 Closed without reason ** L2 61 79,188
B.2 Completed due to staleness L2 111 37,230

Table 25: The hierarchy of themes derived from open coding
of reviews in the category of "resolution". Here, F1 refers to
the number of quotes in which this theme appeared in our man-
ual analysis and F2 refers to the number of quotes in which
the theme was identified by the automated approach.**We
filtered the case of Closed without any reason logically and
did not feed to the model.

Type L2 levels Recall F1-score
Reproducibility 0.93 0.79
Non reproducibility 0.79 0.87Creation
Description present 0.97 0.93
Spoke for the issue 0.93 0.91
Spoke against with issue 0.6 0.67
Not interested 0.60 0.60Discussion

Inconclusive 0.81 0.87
Completed due to staleness 1.00 0.98
Falsely Created 0.62 0.70
Successfully resolved 0.53 0.68Resolution

To be completed 0.94 0.72

Table 26: Class-wise performance of RoBERTa model on
theme identification task on validation dataset.

24



Model Model Specification Classification of issues Theme Identification

CodeBERT CodeBERT-base Sequence classification Sequence Classification
(With multiple classification heads)

BERT BERT-base (Uncased) Sequence classification Sequence Classification
(With multiple classification heads)

RoBERTa RoBERTa-base Sequence classification Sequence Classification
(With multiple classification heads)

Flan-T5 Flan-T5-base Seq2Seq Seq2Seq

DeBERTa DeBERTa-v3-base Sequence classification Sequence Classification
(With multiple classification heads)

Table 27: Specification and architecture of models used in classification of issues and for theme identification.

CVE- id Title Description

CVE-2023-45857 Axios Cross-Site Request
Forgery Vulnerability

An issue discovered in Axios 0.8.1 through 1.5.1
inadvertently reveals the confidential XSRF-TOKEN
stored in cookies by including it in the HTTP header
X-XSRF-TOKEN for every request made to any host
allowing attackers to view sensitive information.

CVE-2021-23337 Command Injection in lodash lodash versions prior to 4.17.21 are vulnerable to
Command Injection via the template function.

CVE-2019-10744 Prototype Pollution in lodash

Versions of lodash before 4.17.12 are vulnerable to
Prototype Pollution. The function defaultsDeep allows
a malicious user to modify the prototype of Object via
{constructor: {prototype: {...}}}causing the addition or
modification of an existing property that will exist on
all objects.

CVE-2021-3807 Inefficient Regular Expression
Complexity in chalk/ansi-regex

ansi-regex is vulnerable to Inefficient Regular
Expression Complexity which could lead to a denial
of service when parsing invalid ANSI escape codes.

CVE-2020-28469
glob-parent vulnerable to Regular
Expression Denial of Service in
enclosure regex

This affects the package glob-parent before 5.1.2. The
enclosure regex used to check for strings ending in
enclosure containing path separator

Table 28: Top 5 most frequently found CVE IDs from the un-identified security issues.

Bots Type Description Example of bots (Functionality)

Rule based (34 bots)
Implements deterministic
logic based on predefined
conditions and static rules.

mergify (PR management),
google-cla (Policy & CLA),
gatsby-cloud(CI/CD)

AI/ML based (4 bots)

Uses learning-based
models to adapt behavior
from data rather than fixed
rules.

dotnetissuelabeler(issue labelling),
coderabbitai(pull request summarizer)

In Beta stage (2 bots)
Includes experimental
AI/ML components
still under development

sonarcloud (codefix, codereviews),
codecov (coverage of code)

Table 29: Classification of 40 publicly available bots based
on implementation type, along with brief descriptions of their
underlying logic.

25



L1 L2 Description
Dependency
Management

Bots that automate the management and updates of project
dependencies.

PR Management Bots that handle the entire pull request lifecycle, from creation
and review to merging and closure.

CI/CD Bots that handle continuous integration and deployment
pipelines for codebases.

Security Bots focused on identifying vulnerabilities and ensuring
code security.

Policy & CLA Bots that enforce project policies or manage Contributor
License Agreements (CLA).

PR Related Bots that automate specific tasks within the pull request process,
such as labeling, commenting, or checking for conflicts.

Project Management Bots that streamline task tracking, milestone planning, and
overall project coordination.

Issue Related Bots that assist in tracking, labeling, or resolving issues
efficiently

Code Coverage Bots that analyze and report on code test coverage metrics
Utility

Miscellaneous Utility Bots offering diverse functionalities that extend beyond
specific predefined categories.

Miscellaneous Bots that do not fit into the predefined categories and serve
diverse purposes

Table 30: Description of each class of bot classification.

Factors Category O.R. C.I. p-value
Presence of CVE - 0.707 [0.680, 0.735] < 2×10−16

0-10 0.127 [0.109, 0.147] < 2×10−16

10-25 0.363 [0.312, 0.423] < 2×10−16

25-50 0.568 [0.486, 0.664] 1.18×10−12Number of Comments

50-80 0.748 [0.624, 0.898] 1.82×10−3

Reproducibility of
the issue - 2.213 [2.196, 2.231] < 2×10−16

Table 31: Results of Generalized Linear Mixed Model(glmm)
examining the factors for time to close security related issues.

Factors Category O.R. C.I. p-value
Presence of CVE - 0.775 [0.688, 0.873] 2.83×10−5

0-10 2.256 [1.307, 3.892] 3.472×10−3

10-25 2.561 [1.482, 4.425] 7.48×10−4Number of Comments
25-50 2.088 [1.197, 3.643] 9.51×10−3

Number of weekly
downloads 50K-100K 1.619 [1.209, 2.168] 1.216×10−3

Reproducibility of
the issue - 5.060 [4.931, 5.191] < 2×10−16

Involvement of Bots - 14.602 [14.192, 15.023] < 2×10−16

Table 32: Results of Generalized Linear Mixed Model(glmm)
examining the factors for staleness of security related issues.

Factors Category O.R. C.I. p-value
Presence of CVE - 0.816 [0.786, 0.848] < 2×10−16

Number of Comments 10-25 0.781 [0.669, 0.912] 1.74×10−3

0K-10K 1.267 [1.225, 1.311] < 2×10−16Number of weekly
downloads 10K-50K 1.073 [1.027, 1.121] 1.65×10−3

Reproducibility of
the issue - 0.419 [0.415, 0.423] < 2×10−16

Involvement of Bots - 0.682 [0.677, 0.687] < 2×10−16

Table 33: Results of Generalized Linear Mixed Model(glmm)
examining the factors for successful resolution of security
related issues.

Factor considered Type Description
CVE mention Boolean Refers to mention of CVE/CWE in the issue
Number of comments Categorical Number of comments on the issue categorised

into 5 classes: i) 0-10, ii) 10-25, iii) 25-50, iv)
50-80, v) >80

Weekly downloads Categorical No. of weekly downloads of the package cate-
gorised into 5 classes: i) 0-10K, ii) 10K-50K,
iii) 50K-100K, iv) 100K-200K, v) >200K

No. of active maintainers
in the past year

Categorical No. of active maintainers of the repository in
the last one year, categorised into 5 classes:
i) 0-10, ii) 10-50, iii) 50-100, iv) 100-200, v)
>200

Reproducibility Boolean If the issue body has explicit instructions on
reproducing the error like code snippets, step-
by-step instructions or error logs etc.

Bot Involvement Boolean If bot is involved in the discussion or closing
of the issue

Table 34: Description of factors considered in GLMM models.

26


	Introduction
	Related Work
	Collecting Data on Issues Reported in GitHub Repositories of npm packages
	Selecting npm packages
	Collecting issue data from GitHub for selected npm packages
	Identifying security-related issues
	Categorizing security-related issues by type of accounts who reported these issues

	Uncovering Process of Resolving User-Reported Security Issues in npm Using Qualitative Analysis
	Scaling User-Reported Security Issues Dataset and Theme Annotation
	Leveraging text classification to extend the security-related issue dataset
	Identifying themes mentioned in extended dataset

	How Prevalent is Reporting Security-Related Issues in GitHub Repositories of npm Packages? (RQ1)
	Effectiveness of Bots in Detecting and Addressing Security Related Issues (RQ2)
	Understanding role of bots in bot-reported security-related issues in npm
	Understanding role of bots in user-reported security-related issues in npm
	Uncovering functionality of bots
	Qualitative analysis of bot functionalities
	Under-adoption of bots for detecting and mitigating security-related issues


	Characterizing the Interaction Between the Users and Maintainers of GitHub Repositories of npm Packages (RQ3)
	During creation phase
	During discussion phase
	During resolution phase

	Factors correlating the resolution of security related issues (RQ4)
	Presence of CVE reduces time to close 
	Reproducibility prolongs closure and increases staleness, and hinders successful resolution
	Bot involvement is correlated with increased staleness and reduced resolution
	No impact of active maintainers

	Implications
	Recommendations for Stakeholders
	Conclusion
	Ethical Considerations
	Compliance with Open Science Policy
	Acknowledgement
	Details of npm packages
	Security-issues identification model
	Theme identification model
	Temporal Distribution of Issues: Categorization by Creation Time
	Details related to bots
	GLMM results

