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Abstract— The dual use nature of Large Language Models
(LLMs) presents a growing challenge in cybersecurity. While
LLM enhances automation and reasoning for defenders, they also
introduce new risks, particularly their potential to be misused
for generating evasive, AI crafted malware. Despite this emerging
threat, the research community currently lacks controlled and
extensible tools that can simulate such behavior for testing
and defense preparation. We present MalGEN, a multi agent
framework that simulates coordinated adversarial behavior to
generate diverse, activity driven malware samples. The agents
work collaboratively to emulate attacker workflows, including
payload planning, capability selection, and evasion strategies,
within a controlled environment built for ethical and defensive
research. Using MalGEN, we synthesized ten novel malware
samples and evaluated them against leading antivirus and be-
havioral detection engines. Several samples exhibited stealthy and
evasive characteristics that bypassed current defenses, validating
MalGEN’s ability to model sophisticated and new threats. By
transforming the threat of LLM misuse into an opportunity
for proactive defense, MalGEN offers a valuable framework
for evaluating and strengthening cybersecurity systems. The
framework addresses data scarcity, enables rigorous testing, and
supports the development of resilient and future ready detection
strategies.

Index Terms—Malware generation, synthetic data, machine
learning, malware detection, GenAI, Multi-agent, Malicious code
generation, cybersecurity

I. INTRODUCTION

The escalating complexity of the cybersecurity landscape
has placed defenders under constant pressure to adapt to
rapidly evolving threats [13], [38]. Traditional detection sys-
tems based on static signatures, predefined rules, or histor-
ical patterns are increasingly inadequate against adversaries
who adopt dynamic and creative attack strategies. As threats
continue to grow in sophistication, there is an urgent need
for intelligent, adaptive, and anticipatory defense mechanisms
that can proactively counter both known and emerging attack
vectors [22].

In response to this need, Large Language Models (LLMs)
have emerged as powerful tools capable of transforming
cybersecurity workflows [7], [28]. Their ability to generate
code, interpret complex documentation, simulate reasoning,
and process natural language queries opens new possibilities
across threat intelligence extraction, vulnerability analysis, and
automated response [11], [23], [25], [30], [31], [33]. However,

these same capabilities also introduce unprecedented risks. The
dual-use nature of LLMs means they can be repurposed to
automate the creation of highly evasive, AI-generated threat
that can bypass conventional detection strategies [16], [18].

While this risk is increasingly acknowledged, research into
LLM-generated malicious software, also known as malware, is
still in its infancy. Most current studies are either theoretical in
nature or involve only basic demonstrations [15], [17]. Exist-
ing malware generation approaches often rely on handcrafted
samples or static datasets, which fail to capture the behavioral
diversity and adaptive logic characteristic of modern threats.
Furthermore, current detection systems are often not equipped
to recognize malware generated via autonomous agents or
language models, resulting in a widening gap between the
offensive potential of generative models and the readiness of
defensive solutions [12].

This dual capability, however, can be transformed from a
risk into a strategic advantage. Just as attackers might exploit
LLMs to automate malware creation, defenders can proactively
simulate this behavior in a safe environment to strengthen
their systems [2]. Simulating adversarial behavior is a core
tenet of red teaming, where security professionals evaluate
the robustness of their defenses by mimicking realistic attack
scenarios [27], [32]. Yet, the research community lacks open,
extensible frameworks for generating realistic, context-aware,
LLM-driven malware in a controlled and ethical manner. This
limitation slows progress in developing resilient and adaptive
security systems.

To address this gap, we introduce MalGEN, a novel malware
generation framework designed for defensive cybersecurity
research. MalGEN is based on a multi-agent architecture
in which autonomous LLM-powered agents collaborate to
simulate coordinated adversarial workflows. Each agent is
responsible for a specific stage in the attack chain, such as
planning capabilities, generating payloads, or implementing
evasion techniques. These agents work together toward a
shared objective: the generation of diverse, malicious, activity-
driven malware samples aligned with realistic threat scenarios.

MalGEN adopts an agentic approach that goes beyond
passive code generation to model adversarial reasoning. It syn-
thesizes malware that reflects real-world tactics, techniques,
and procedures (TTPs), with alignment to established threat
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frameworks such as MITRE ATT&CK [27]. Instead of reusing
existing malware signatures or assembling preexisting code
fragments, MalGEN generates new novel binaries from scratch
that are tailored to behavioral objectives. This enables the
creation of malware samples that are unique, stealthy, oper-
ationally realistic, and mission-aligned malware artifacts.

To validate MalGEN, we generated ten synthetic malware
samples and evaluated them against leading antivirus and
behavioral detection engines. Several of the samples were
able to evade modern detection tools, which suggests they
exhibit deceptive and evasive characteristics. To ensure that
these samples represent true malicious behavior, we analyzed
their underlying Tactics, Techniques, and Procedures (TTPs).
The TTPs associated with each sample correspond to known
malicious activity and confirm the threat relevance of the
generated samples.

This capability serves several defensive goals. MalGEN
helps overcome data scarcity bottlenecks by generating syn-
thetic yet realistic datasets. It enables robust testing of de-
tection systems against novel unseen threats and supports the
design of red team exercises through the creation of adversarial
samples with controlled behavioral profiles. The framework
empowers researchers, blue teams, security operations teams,
and analysts with a practical and ethical tool for testing and
improving detection capabilities in preparation for future AI-
powered threats.

Importantly, MalGEN is explicitly designed with ethical
safeguards. All malware generation occurs in secure, isolated
environments; the samples are non-propagating and intended
exclusively for academic and defensive research purposes. By
safely simulating the offensive potential of LLMs, MalGEN
provides the cybersecurity community with a much-needed ca-
pability to anticipate, test, and prepare for the next generation
of AI-enabled threats.

This research makes the following contributions:

1) We introduce MalGEN, a novel, agentic malware gener-
ation framework that leverages multi-agent collaboration
to simulate realistic adversarial workflows and generate
activity-driven, behaviorally diverse malware samples.

2) We demonstrate how the offensive capabilities of LLMs
can be ethically harnessed in a controlled, sandboxed en-
vironment to support red teaming, adversarial robustness
testing, and benchmarking of detection systems.

3) We show that MalGEN-generated samples exhibit func-
tional and evasive behaviors aligned with MITRE
ATT&CK tactics, and validate this through experiments
where multiple samples successfully bypass state-of-the-
art antivirus engines.

The remainder of the paper is structured as follows: Section II
reviews the existing literature related to adversarial behavior
generation using LLMs. Section III provides the necessary
background to help readers understand the concepts used in
the proposed framework. Section IV outlines the motivation
behind this work. Section V presents a detailed explanation
of each component of the MalGEN framework. Section VI

describes the experiments conducted to validate the frame-
work, the key findings, and observations. Section VII discusses
limitation and potential future directions. Finally, Section IX
concludes the paper.

II. RELATED WORK

The emergence of LLMs has prompted increasing concern
over their potential misuse in malware generation. While
several recent studies have demonstrated that even instruction-
tuned or commercial LLMs can be manipulated to produce
malicious payloads, most existing work remains focused on
individual code generation demonstrations. There is a lack of
frameworks that model adversarial workflows in a structured,
modular, and ethically controlled manner for red-teaming or
defensive simulation.

Early efforts such as Pa et al. [29] and Alotaibi et al. [3]
examine how prompt engineering can elicit malicious outputs
from LLMs. Pa et al. show how ChatGPT can be coerced
into generating reverse shells, keyloggers, and persistence
mechanisms using varied prompts. Alotaibi et al. further
explore the manipulation of prompt phrasing and context to
circumvent alignment barriers. However, both works limit their
focus to prompt-level behavior and static code snippets without
considering adversarial planning or execution context.

Moving beyond simple prompt-response studies, Adamec
et al. [1] assess LLM capabilities across different malware
lifecycle stages such as delivery, exploitation, and command-
and-control. Similarly, Beckerich et al. [5] introduce RatGPT,
showing that online LLMs can generate Remote Access Tro-
jans (RATs) with multiple malicious components including
persistence, keylogging, and exfiltration. Despite these ad-
vances, both works treat malware generation as a flat task
and lack modular control, logging, or behavioral labeling.

Other research has explored pipeline-based generation. Li
et al. [24] propose an automated mass malware factory that
embeds LLMs into a high-throughput generation system. The
system demonstrates the ability to synthesize payload variants
at scale, but lacks behaviorally grounded control, multi-stage
logic, or traceability. Yamin et al. [39] take a hybrid approach
by combining outputs from censored and uncensored LLMs
to generate functional ransomware samples.

Devadiga et al. [14] introduce GLEAM, a framework that
fuses GANs with LLMs to generate evasive malware samples.
While GLEAM presents a creative use of generative models
for obfuscation, it does not support intent-driven generation
or behavioral tagging, and lacks transparency needed for
defensive testing. In contrast, MalGEN generates malware that
is aligned with specific adversarial goals (e.g., persistence,
privilege escalation) and logs relevant behavioral metadata.

Systematic benchmarking studies such as Shandilya et
al. [34] and Botacin [6] provide evaluations of LLM outputs
across diverse malicious prompts. These works score models
based on their compliance with dangerous instructions or
alignment breakdowns, offering broad visibility into model be-
havior under red-teaming conditions. However, they stop short



of contributing reusable simulation frameworks or behavior-
driven evaluation pipelines.

Conceptual investigations such as Madani et al. [26] raise
concerns about the future of AI-powered metamorphic mal-
ware, where LLMs evolve code structures dynamically. While
these discussions are valuable, they lack implementation. More
practice-oriented studies include Ionescu [19], who stress-test
code-generating LLMs through structured adversarial prompts,
and Iturbe et al. [20], who map generated code to MITRE
ATT&CK techniques. Nonetheless, neither work attempts to
generate complete malware sample in a behaviorally aligned,
multi-step fashion.

In contrast to these studies, MalGEN introduces a modu-
lar, multi-agent framework for simulating realistic adversarial
workflows. Each autonomous agent in MalGEN contributes
to a specific stage of the malware generation process, such
as planning, payload construction, or stealth optimization.
MalGEN outputs are aligned with high-level threat objectives
and tagged with API traces, behavioral labels, and MITRE
ATT&CK mappings. This structure enables red teams and
security researchers to test detection systems against behav-
iorally grounded, ethically generated malware in a repro-
ducible and controlled environment. By emphasizing modular-
ity, traceability, and simulation utility, MalGEN fills a critical
gap in the current literature and offers a research-safe approach
to exploring the offensive potential of LLMs for defensive
gain.

III. BACKGROUND

This section outlines key concepts that support Mal-
GEN’s design: the dual-use nature of LLMs in cybersecurity,
agent-based malware simulation for realism and modularity,
behavior-driven analysis using MITRE ATT&CK alignment,
and the emerging role of generative AI in ethical red teaming.

A. Large Language Models and Their Role in Cybersecurity

Large Language Models (LLMs), such as GPT-4, LLaMA,
and PaLM, have demonstrated remarkable proficiency across a
wide range of natural language understanding and generation
tasks. Their ability to generate code, interpret structured and
unstructured inputs, and simulate decision-making has opened
up transformative possibilities for cybersecurity applications.
In defensive contexts, LLMs have been employed for tasks
such as incident triage, threat intelligence summarization,
attack simulation, and vulnerability explanation [10], [40].
These capabilities are reshaping traditional workflows by
enhancing automation, augmenting analyst decision-making,
and improving accessibility to security knowledge.

At the same time, these generative models raise new security
concerns due to their dual-use nature. Studies have shown
that LLMs can be misused to generate malicious artifacts
such as obfuscated scripts, reverse shells, and even func-
tional ransomware through prompt manipulation or jailbreak-
ing techniques [5], [29]. This dual capability underscores the
importance of developing frameworks that explore both sides

of the equation: using LLMs for defensive innovation while
rigorously stress-testing their offensive misuse potential.

B. Agent-Based Malware Simulation

The concept of using autonomous agents for simulating
cyberattacks has been widely adopted in red teaming, cyber
range simulations, and automated penetration testing. Agents
offer a modular and goal-oriented paradigm, where each
component can independently reason, plan, and act based on
assigned objectives. This approach allows for the creation
of realistic attack chains that reflect adversarial intent and
adaptive decision-making, mirroring how real-world threat
actors operate.

In the context of malware simulation, agent-based sys-
tems provide several advantages over static or rule-based
methods. They enable behavioral diversity, allow scenario-
specific customization, and support multi-stage attack logic
that aligns with operational goals. Prior efforts in agent-based
red teaming, such as MITRE CALDERA [4], demonstrate
how adversarial agents can autonomously emulate tactics like
lateral movement, privilege escalation, and command-and-
control communication.

MalGEN builds upon this philosophy by integrating Large
Language Models (LLMs) into the agent loop. Instead of
scripting behavior manually, each agent uses an LLM to
dynamically generate attack components, reason about evasion
strategies, and adapt code output based on context. This fusion
of agent architecture and generative intelligence introduces a
new level of realism and complexity in malware simulation,
making it ideal for stress-testing detection systems and ana-
lyzing potential failure modes.

C. Behavior-Driven Malware and ATT&CK Mapping

Modern cybersecurity defenses are increasingly shifting
from signature-based detection to behavior-based analysis.
Unlike static detection, which relies on known patterns and
byte sequences, behavior-driven methods analyze runtime
characteristics such as API calls, file system access, registry
modifications, and network behavior to detect anomalies and
malicious activity. This approach enables the detection of
novel threats that may evade traditional mechanisms through
obfuscation or polymorphism.

To standardize the representation of adversarial behavior,
the MITRE ATT&CK framework [37] has become widely
adopted. ATT&CK organizes threat actor activities into Tactics
(e.g., Persistence, Defense Evasion) and Techniques (e.g.,
T1055 – Process Injection, T1566 – Phishing), providing
a shared vocabulary and structure for red teaming, threat
intelligence, and detection development. Security tools and
analysts increasingly use ATT&CK mapping to benchmark
detection coverage, analyze attack surfaces, and train machine
learning models for threat classification [21].

MalGEN aligns with this paradigm by generating mal-
ware artifacts that are not only functionally valid but also
semantically rich in behavioral context. Each generated sample
is annotated with the corresponding ATT&CK tactics and



techniques it embodies, enabling downstream tasks such as
adversarial robustness testing, behavior-aware model training,
and MITRE-based telemetry validation. This alignment en-
sures that the generated malware samples serve as high-fidelity
inputs for behavior-driven cybersecurity research.

D. Red Teaming with Generative AI

Red teaming involves simulating adversarial attacks to
evaluate the effectiveness of security defenses. Traditionally
a manual process, it increasingly incorporates automation,
with LLMs enabling the generation of dynamic, context-aware
adversarial scenarios. Generative AI presents an opportunity
to scale red teaming by producing diverse attack patterns,
polymorphic malware, and automated reasoning. However, this
also introduces ethical risks. Without safeguards, red teaming
frameworks may be misused for offensive purposes.

Recent studies [9], [35] emphasize the need for responsible
AI experimentation, calling for transparency, containment, and
reproducibility. MalGEN adheres to these principles by oper-
ating in isolated environments, logging all generated artifacts,
and restricting usage to defensive research.

IV. MOTIVATION

LLMs are reshaping both the offensive and defensive land-
scape of cybersecurity. Their ability to synthesize functional
malware from simple prompts introduces a potent dual-use
challenge [5], [29], [39]. However, most existing explorations
of this threat either remain theoretical or focus narrowly on
static payload generation without modeling the full behavioral
workflow of an attacker.

Security researchers, red teams, and developers of detection
engines require tools that go beyond basic code synthesis.
They need frameworks that can simulate entire adversarial
workflows, aligned with tactics, techniques, and procedures
(TTPs) commonly seen in advanced threats. Unfortunately,
current approaches lack modularity, reproducibility, or the
ability to generate diverse, behaviorally annotated datasets
[24], [26].

Another pressing issue is that most malware detection
systems are trained on legacy datasets that do not re-
flect the evasion strategies or behavioral nuances of LLM-
generated threats. As detection systems become increasingly
AI-powered, they must also be tested against AI-powered
adversaries. A controlled framework capable of producing
dynamic, functionally rich malware samples is essential for
robust, forward-looking defense development.

Moreover, the absence of publicly available, ethically
grounded frameworks impedes the ability of academic and
industrial researchers to conduct meaningful red teaming.
There is a strong need for a tool that supports transparent ex-
perimentation, reproducibility, and controlled risk—all while
simulating real-world adversarial logic.

To address this gap, we propose MalGEN as a purpose-built
solution for simulating malware generation through agentic,
adversarial workflows. Unlike existing proof-of-concept tools,
MalGEN models the full sequence of attacker decisions—from

objective formulation to evasion planning—making it not only
a generator of malware samples but also a testbed for AI-
enhanced cyber defense readiness.

V. MALGEN

MalGEN is a modular, multi-agent framework designed to
simulate realistic malware behaviors in a controlled and ethical
manner using LLMs. It operates by decomposing high-level
malicious intents into a sequence of sub-tasks, generating code
for each task via LLMs, and assembling the code into fully
functional malware-like artifacts. Each stage of this pipeline
is handled by a dedicated agent, enabling scalability, trans-
parency, and traceability throughout the malware generation
process.

Unlike traditional malware datasets or isolated code snip-
pets, MalGEN emphasizes activity-driven generation, pro-
ducing samples that reflect realistic attacker workflows and
behavioral objectives such as reconnaissance, persistence, or
data exfiltration. This makes MalGEN particularly suitable
for stress-testing detection systems, training behavior-aware
models, and conducting red-teaming experiments grounded in
adversarial realism.

A. Agent-Based Architecture

MalGEN is architected as a modular, multi-agent system
where each agent autonomously handles a specific stage in the
malware generation pipeline. This decomposition facilitates
interpretable automation, enables task-level debugging, and
allows future extensions such as adding new code generation
models, validation layers, or language targets. Moreover, it
mirrors the multi-stage nature of real-world attack chains,
making MalGEN suitable for generating behaviorally realistic
malware-like artifacts.

Figure 1 provides an architectural overview of MalGEN,
outlining the sequential flow between agents. Starting from a
high-level activity description, the system progresses through
planning, code generation, integration, and packaging, with
each agent handling a specific transformation step. The key
agents in the system include:

1) Task Planner Agent: The Task Planner Agent acts as the
initial interpreter of the user’s intent. It receives a high-level
description of the desired malicious behavior, for example,
“collect system information and exfiltrate it to a remote
server,” and breaks it down into a structured sequence of
atomic sub-tasks. The decomposition output is formatted as
a structured list (e.g., JSON or dictionary of task types and
descriptions) to ensure compatibility with downstream agents
in the pipeline.

Task Planner Agent

Decomposes high-level user queries into a structured se-
quence of atomic sub-tasks. This enables modular, inter-
pretable planning for downstream code generation.

These sub-tasks represent concrete operations necessary to
fulfill the overarching activity, such as:
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Fig. 1. MalGEN architecture showing modular agent interactions across the malware generation pipeline.

• Capturing OS and environment details,
• Listing active processes and network configuration,
• Initiating outbound communication to transmit data.
To achieve this, the Task Planner rely on prompt-driven

LLM to perform hierarchical task decomposition. This mod-
ularization ensures that downstream agents can operate inde-
pendently on each sub-task, improving clarity, reproducibility,
and fault isolation in the generation process.

2) Developer Agent: The LLM-powered Developer Agent
receives the sub-tasks generated by the Task Planner and
translates each one into executable code. This agent formulates
context-specific prompts that describe the sub-task in natural
language and passes them to a compact, instruction-tuned code
generation model.

Developer Agent

Uses LLMs to generate modular Python code snippets for
each sub-task, ensuring clarity and functional correctness.

For example, for a task like “list all running processes,” the
prompt might be:

“Generate a Python script that lists all running processes
on a Linux system using the psutil library.”

The resulting code snippets are designed to be:
• Lightweight: Avoid unnecessary complexity or bulk.
• Modular: One script per sub-task for composability.
• Transparent: Maintain clarity for audit and debugging.
Optionally, generation parameters such as sampling temper-

ature or top-k values can be adjusted to introduce controlled
randomness. This allows the creation of multiple diverse vari-
ants for the same sub-task, which is important when simulating
polymorphic or evasive malware.

By decoupling code generation for each sub-task, Mal-
GEN ensures behavioral diversity across samples, as different
prompts or randomness settings can produce unique variations
for the same intent.

3) Code Integration Agent: The Code Integration Agent is
responsible for assembling the modular code snippets into a

coherent, single script. As multiple sub-tasks are implemented
independently, integration is critical to resolve interdependen-
cies and produce a unified malware-like artifact.

Code Integration Agent

Merges modular code snippets into a logically coherent,
syntactically valid script representing the entire malicious
behavior.

The Integration Agent may perform:

• Import resolution: Avoids redundant imports and re-
solves conflicts.

• Naming standardization: Unifies variable names, func-
tion identifiers, and object references across snippets.

• Execution ordering: Aligns the flow of actions to pre-
serve intended sequence and logic.

• Data flow alignment: Ensures outputs of one module
can feed into the next where needed (e.g., collected data
passed to the exfiltration step).

The output is a syntactically valid, semantically coherent
Python script that reflects the complete behavioral objective
specified by the original input. This agent also ensures com-
patibility with the executable packaging step that follows. A
lightweight validation step also ensures that the composed
script is free from syntax errors and respects runtime con-
straints, helping avoid failures during execution or packaging.

4) Executable Builder: The Executable Builder transforms
the integrated Python script into a standalone, platform-ready
executable. This is achieved using open-source packaging tools
like PyInstaller or cx_Freeze, which bundle the script
with all necessary dependencies and runtime components.

Executable Builder
Converts finalized code into execution-ready artifacts suit-
able for testing in sandboxed environments.

Benefits of executable generation include:



TABLE I
SUMMARY OF MALGEN AGENT ROLES WITH ILLUSTRATIVE EXAMPLES

Agent Role Illustrative Input/Output
Task Planner Decomposes user activity

into sub-tasks
Input: “Exfiltrate system info”
Output: (i) Get OS info, (ii) Get IP, (iii)
Send to server

Developer Agent Uses LLM to generate mod-
ular code

Input: Sub-task like “Get OS info”
Output: Python script using platform
module

Code Integration
Agent

Merges modular code into a
complete script

Input: Multiple Python snippets
Output: Unified malware-like script

Executable Builder Converts final script to stan-
dalone executable

Input: Python script
Output: Platform-ready ‘.exe‘ file

• Platform portability: Artifacts can be tested on systems
without a pre-configured Python environment.

• Deployment realism: Enables end-to-end simulation in
sandboxed or red team environments.

• Integration with test harnesses: Easier evaluation in
detection pipelines or behavioral sandboxes.

This step finalizes the malware-like artifact and prepares
it for safe storage and analysis, completing the MalGEN
generation loop. All executables are handled within controlled
environments, ensuring they are only used for ethical research
purposes such as red teaming, sandbox analysis, or stress-
testing of detection pipelines.

To provide a concise overview of the agent responsibilities,
Table I summarizes the roles and outputs of each agent in the
MalGEN framework.

B. Design Choices

The development of MalGEN involved a series of inten-
tional design decisions aimed at balancing generation quality,
operational control, ethical safeguards, and extensibility. These
choices make the framework efficient for defensive research
while maintaining transparency and modularity.

• Compact LLMs for Code Generation: MalGEN lever-
ages compact, instruction-tuned language models such
as Qwen2.5 Coder-3B for generating code snippets.
These models strike a balance between code quality and
execution control, minimizing the risk of overly complex
or harmful outputs and making the generation process
interpretable and reproducible.

• Python as Target Language: Python is used as the
default output language due to its ease of auditing, high-
level semantics, and sandbox-friendly nature. Python sup-
ports a wide range of system-level behaviors (e.g., file
I/O, subprocess, networking) without requiring low-level
execution privileges, reducing the chance of unintentional
damage.

• Agent-Based Modular Architecture: Each stage of the
malware generation pipeline is encapsulated as a distinct
agent — responsible for planning, development, integra-
tion, or packaging. This modular architecture enhances
maintainability, fault isolation, and future extensibility,

such as plugging in newer LLMs or extending to multi-
language outputs.

• Prompt Engineering with Context Awareness: Prompts
used for code generation are tailored per sub-task and
include contextual constraints (e.g., use psutil for
process enumeration). This mitigates prompt injection
risks and guides the LLMs to produce safe and relevant
code aligned with the simulation goals.

These design choices reflect a commitment to building
responsible AI systems for cybersecurity experimentation,
enabling researchers to simulate attacker workflows without
enabling real-world abuse.

C. MalGEN Workflow

The operation of MalGEN follows a structured, multi-
stage workflow that transforms a high-level malicious behavior
description into a fully functional, executable malware-like
artifact. This agentic pipeline ensures that each stage of
generation is interpretable, auditable, and modular, supporting
safe experimentation and robust extension. As depicted earlier
in Figure 1, the workflow proceeds through the following
phases:

1) Input Stage: The process begins with a user-provided
query specifying the desired malicious behavior in nat-
ural language (e.g., “gather system information and
exfiltrate it to a remote server”). This abstract intent
guides the entire generation process.

2) Planning Stage: The Task Planner Agent interprets the
input and decomposes it into a sequence of atomic
sub-tasks. Each sub-task represents a well-defined unit
of behavior (e.g., “capture IP configuration” or “create
socket connection”).

3) Code Generation Stage: For each sub-task, the De-
veloper Agent formulates a task-specific prompt and
invokes a compact LLM (e.g., Qwen2.5 Coder) to syn-
thesize a modular Python script. These scripts are kept
lightweight, interpretable, and self-contained.

4) Integration Stage: The Code Integration Agent merges
all modular scripts into a unified, syntactically and
semantically coherent Python program. This includes
resolving imports, harmonizing variable names, ordering
execution blocks, and preserving data dependencies.



TABLE II
BEHAVIORAL ANALYSIS OF MALWARE SAMPLES: MAPPED MITRE TTPS (EXCERPT; FULL TABLE IN APPENDIX A)

Hash TTPs Present in Malware
9048dd0e447bb9abc7b1ecf5f055ca892d8e
1275f4acd02ded35e94b9268d9ad

Execution (TA0002): Scripting (T1064), Shared Modules (T1129)
Persistence (TA0003): Create or Modify System Process (T1543), Systemd Service (T1543.002)
Defense Evasion (TA0005): Obfuscated Files or Information (T1027), Masquerading (T1036),
Scripting (T1064), Indicator Removal (T1070), File Deletion (T1070.004), File and Direc-
tory Permissions Modification (T1222), Hide Artifacts (T1564), Hidden Files and Directories
(T1564.001)
Privilege Escalation (TA0004): Abuse Elevation Control Mechanism (T1548), Setuid and Setgid
(T1548.001)
Discovery (TA0007): System Information Discovery (T1082), Software Discovery (T1518),
Security Software Discovery (T1518.001)
Command and Control (TA0011): Ingress Tool Transfer (T1105), Application Layer Protocol:
Web Protocols (T1071.001)

2190ce1cfc98bc3a81cefa8a607a74246afbb
94b6ceb760a53b35d9d79ff51ac

Execution (TA0002) : Scripting (T1064), Shared Modules (T1129)
Persistence (TA0003) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036),
Scripting (T1064), Indicator Removal (T1070), File Deletion (T1070.004), File and Directory
Permissions Modification (T1222)
Privilege Escalation (TA0004) : Create or Modify System Process (T1543), Systemd Service
(T1543.002)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery
(T1083)

(Additional rows omitted for brevity) ...

5) Executable Building Stage: The integrated script is
passed to the Executable Builder, which packages it into
a standalone binary using tools such as PyInstaller.
This output can then be deployed in controlled testbeds
or sandboxes for evaluation.

6) Outcome: The result is an execution-ready, malware-
like artifact that simulates a complete malicious behavior
chain. These artifacts can be used for benchmarking
detection systems, simulating adversarial scenarios, or
training defensive models in safe, ethical environments.

This workflow ensures that MalGEN maintains a clean
separation of concerns while enabling end-to-end malware
synthesis from user intent to executable. Its modularity also
opens the door for fine-grained analysis and dynamic exten-
sions across code models, programming languages, and threat
behaviors.

VI. EVALUATION AND INSIGHTS

To assess the functional realism and behavioral diversity
of generated malware samples, we conducted a series of
controlled experiments using MalGEN. This section presents
our evaluation setup, key observations, and reflective insights
into the framework’s effectiveness, limitations, and future
potential.

A. Experimental Setup

To evaluate MalGEN, we designed experiments that focus
on two core aspects: (i) the functionality and realism of
generated artifacts, and (ii) their detection evasion capability
and TTP alignment. The evaluation was conducted in a con-
trolled environment to ensure operational safety and prevent
unintended propagation.

1) Sample Generation: We curated a set of 10 high-
level malicious behavior prompts, covering activities such
as data exfiltration, privilege escalation, credential dumping,
persistence, and network reconnaissance. These were chosen
to simulate real-world threat scenarios mapped to different
MITRE ATT&CK tactics. MalGEN generated a malware-like
sample for each prompt using its full pipeline — from task
planning to executable building.

2) Execution Environment: All generated samples were
submitted to VirusTotal for analysis, where static and
dynamic insights were collected through its integrated scan-
ning engines. The platform provided information on runtime
behavior, system interactions, network activity, and generated
Indicators of Compromise (IOCs) observed during the auto-
mated analysis.

3) Detection Analysis: Building on the earlier submission
of samples to VirusTotal, we analyzed the results to
evaluate the evasiveness of the generated executables. The
platform’s integration with over 60+ antivirus engines enabled
us to quantify static detection rates. Additionally, dynamic
behavior reports from the platform provided insights into any
flagged malicious actions, offering a measure of behavioral
detection efficacy.

4) TTP Mapping: We obtained TTPs directly from Virus-
Total’s behavioral analysis, as reported by state-of-the-art
dynamic analysis tools. These tools map observed activities
to MITRE ATT&CK techniques, allowing us to compare
the intended behavior from the input prompt with the TTPs
manifested during execution.

B. Quantitative Results and Observations

The malware-like artifacts generated by MalGEN were
evaluated based on (i) the number and variety of MITRE



ATT&CK TTPs manifested during execution, and (ii) their
detection rates across commercial antivirus engines. Table II
presents a glimpse of sample-wise breakdown of observed
TTPs extracted via dynamic analysis, aligned with correspond-
ing MITRE tactics.

We also summarizes the overall behavioral and detection
characteristics of the generated malware corpus in Table III
and Fig. 2. The results highlight several key observations:

• Behavioral Realism: Table III shows the behavioral
complexity and diversity of MalGEN-generated samples.
On average, each sample demonstrated 11.3 distinct TTPs
across 4.3 MITRE ATT&CK tactics, with individual
samples ranging from 5 to 18 TTPs. Collectively, the
corpus covered 20 distinct ATT&CK techniques span-
ning 6 different tactics, indicating broad coverage across
the attack lifecycle. These results underscore MalGEN’s
ability to generate behaviorally rich, multi-stage malware
samples that realistically simulate adversarial workflows
observed in real-world threat campaigns.

• Static Detection Evasion: As shown in Figure 2, 50%
of the generated binaries were not detected by any
antivirus engines on VirusTotal at the time of upload,
indicating a low static signature footprint. The remaining
50% were flagged based on heuristic rules, suggesting
partial recognition of suspicious characteristics despite
the absence of known signatures.

• Malware Family Mislabeling: Figure 2 also shows
the family classification results for MalGEN-generated
samples. Four out of ten samples were correctly labeled
with malware families aligned with their intended be-
havior (e.g., Keylogger and Backdoor). However, one
ransomware sample exhibiting T1486-like behavior (Data
Encrypted for Impact) was misclassified as a generic
Trojan, highlighting how static classifiers can miss spe-
cialized functionalities when the code does not resemble
known ransomware patterns.

These metrics collectively underscore MalGEN’s ability to
generate behaviorally rich and evasive malware samples that
mimic real-world adversarial workflows. From multi-tactic
execution traces to static evasion and partial family recogni-
tion, the results demonstrate both the potential and limitations
of current detection mechanisms when confronted with AI-
generated threats. This evaluation provides a foundation for
future red-teaming efforts and highlights areas where detection
strategies may require adaptation to handle generative threats.

C. Qualitative Output Illustration

To illustrate MalGEN’s ability to generate functionally
diverse and behaviorally aligned malware artifacts, we present
three representative examples covering distinct adversarial
objectives. Each example consists of an input intent, the
decomposed sub-tasks produced by MalGEN, the behavioral
traits of the generated code, and the corresponding MITRE
ATT&CK techniques.

TABLE III
SUMMARY STATISTICS OF MALGEN-GENERATED MALWARE SAMPLES

Metric Value
Average number of TTPs per sample 11.3
Standard deviation of TTPs per sample 3.5
Minimum / Maximum TTPs per sample 5 / 18
Average number of MITRE tactics covered 4.3
Total distinct ATT&CK tactics observed 6
Total distinct MITRE ATT&CK TTPs ob-
served

20

Summary of Representative Examples

Example 1 – Reconnaissance and Exfiltration
• Input Intent: Collect OS and user information and

send it to a remote server.
• Generated Sub-Tasks:

– Gather system info (OS, CPU, RAM)
– Extract current user identity
– Transmit data using HTTP POST

• Code Behavior: Utilized platform, psutil, and
getpass to collect host/user data, serialized it
in JSON, and sent it to a dummy endpoint via
requests.post().

• Mapped TTPs: T1082, T1087, T1041

Example 2 – Privilege Escalation and Defense Evasion
• Input Intent: Escalate privileges and evade antivirus

detection.
• Generated Sub-Tasks:

– Create a privileged system service
– Obfuscate file contents and rename script

• Code Behavior: Created a service using
systemctl, applied base64 encoding for
obfuscation, and renamed the script to mimic
legitimate binaries.

• Mapped TTPs: T1543.002, T1036, T1027

Example 3 – Multi-Stage Behavior
• Input Intent: Install a keylogger, monitor clipboard,

and send logs periodically.
• Generated Sub-Tasks:

– Capture keystrokes and clipboard contents
– Store logs locally
– Send logs every 60 seconds to a remote server

• Code Behavior: Leveraged pynput and
pyperclip to collect inputs; logs were managed
using threading.Timer for periodic network
transmission.

• Mapped TTPs: T1056.001, T1115, T1071

The full structured examples are provided below using wide-



format boxes. These highlight MalGEN’s prompt-to-behavior
fidelity, multi-stage simulation capabilities, and alignment with
real-world TTPs.
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Fig. 2. Family Distribution Overview: Number of samples with no label,
correct label, or mislabeling based on VirusTotal family assignment.

VII. LIMITATIONS AND FUTURE WORK

While MalGEN presents a promising step toward modular
and interpretable malware generation using LLMs, several
limitations must be acknowledged. First, the framework cur-
rently supports only Python for artifact generation. Although
this ensures sandbox safety and auditability, it limits realism
when emulating malware written in compiled or low-level
languages such as C++, PowerShell, or Go. Additionally, Mal-
GEN does not validate the execution semantics of generated
scripts—meaning there is no built-in mechanism to guarantee
that the produced code performs the intended behavior without
runtime errors. This can lead to inconsistencies between the
abstract intent and concrete behavior, particularly for complex
tasks involving inter-module dependencies.

Another constraint lies in the relatively static behavioral
patterns of generated samples. While prompt variation and
LLM stochasticity introduce some diversity, common libraries
and repeated template structures may produce artifacts that
are easily detectable by signature-based systems. Further-
more, the current design lacks a behavioral feedback loop;
the framework does not refine generation based on runtime
outputs, detection reports, or sandbox analysis, which limits
its ability to simulate adaptive or evasive behavior. Finally,
MalGEN intentionally avoids generation of highly destructive
malware behaviors such as ransomware, self-replicating code,
or exploit-based privilege escalation. While this boundary
is ethically necessary, it constrains its realism for certain
adversarial simulation scenarios.

Looking ahead, several extensions are planned to enhance
the capabilities of MalGEN. First, we intend to incorporate
support for additional programming languages such as C#,
PowerShell, and shell scripting to broaden the scope of simu-
lated threat scenarios. A behavior validation module will also
be integrated to statically or symbolically verify the safety,
correctness, and intent alignment of generated artifacts before
packaging. Another major direction is to enable a feedback-
driven refinement loop, where execution results—particularly

from sandbox platforms like Cuckoo or Any.Run—inform it-
erative improvements to prompts or code generation strategies.

Furthermore, we aim to develop adversarial red-teaming
scenarios where MalGEN adapts to evade LLM-based de-
tection systems, enabling robust evaluation of defensive tools
under polymorphic and evasive threats. The system will also
be coupled with threat attribution frameworks (e.g., AURA)
to examine attribution reliability under behaviorally diverse
malware samples. Lastly, we plan to curate and publicly re-
lease a benchmark dataset of MalGEN-generated artifacts, an-
notated with MITRE ATT&CK TTPs, to facilitate reproducible
evaluation of malware detection, classification, and attribution
models. These extensions will collectively strengthen MalGEN
as a research-grade tool for understanding and mitigating AI-
enabled cyber threats.

VIII. ETHICAL SAFEGUARDS

MalGEN is designed with strict ethical boundaries to ensure
its application is limited to defensive cybersecurity research
and responsible academic exploration. The framework does
not aim to facilitate malicious intent, but rather to anticipate
future AI-driven threats and prepare robust countermeasures.

To enforce these safeguards, MalGEN is governed by the
following principles:

• Controlled Input and Execution: MalGEN operates
only on predefined malicious behavior descriptions pro-
vided in a controlled environment. These inputs are
abstracted to ensure they do not directly enable exploit-
specific generation.

• Safe Language Scope: All generated artifacts are con-
strained to Python, a language that is interpretable,
sandbox-friendly, and widely used in cybersecurity labs
for benign testing.

• Built-in Validation Layer (Future Work): Planned
future versions of MalGEN will include a validation agent
that filters output against a curated denylist of destructive
behaviors (e.g., encryption without key release, filesystem
wipes, self-replication).

These safeguards align MalGEN with the broader movement
of responsible AI research, similar to risk-mitigating protocols
outlined in works such as [8], [35], [36]. By making AI-driven
malware generation interpretable, auditable, and limited in
scope, MalGEN enables researchers and defenders to prepare
for adversaries who may abuse such technologies.

IX. CONCLUSION

This paper presented MalGEN, a modular, LLM-driven
framework for the controlled generation of malware-like ar-
tifacts from natural language descriptions. By decomposing
the generation process into task-specific agents, MalGEN
produces behaviorally realistic samples aligned with MITRE
ATT&CK techniques, aiding the study of adversarial capabili-
ties of generative models. VirusTotal-based evaluation revealed
that many generated samples evade static detection while
exhibiting clear malicious behavior dynamically, highlighting
weaknesses in traditional defenses. MalGEN not only supports



reproducible benchmarking and red-teaming but also promotes
safe experimentation through strict ethical controls as detailed
in Section VIII. Looking ahead, future extensions may incor-
porate sandbox feedback, language diversity, and automated
validation to deepen the framework’s utility in both research
and responsible security testing.
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APPENDIX A: TTP MAPPING OF GENERATED MALWARE

TABLE IV: Malware Hash to TTP Mapping

Hash TTPs Present in Malware
37d3a0613e89e3a978
542a84593ee1cd59f8c
0e603742b058488e7
3b1eee5d08

Execution (TA0002) : Scripting (T1064), Shared Modules (T1129)
Persistence (TA0003) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Scripting (T1064),
Indicator Removal (T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222),
Virtualization/Sandbox Evasion (T1497), System Checks (T1497.001)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083), Software
Discovery (T1518), Security Software Discovery (T1518.001), Virtualization/Sandbox Evasion (T1497), System
Checks (T1497.001)

bdab969808549a8bc7
2e5debed6534f0fd60c
86e4955240292c652
0e5aa4c2ea

Execution (TA0002) : Scripting (T1064), Shared Modules (T1129)
Persistence (TA0003) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Privilege Escalation (TA0004) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Scripting (T1064),
Indicator Removal (T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083)
Command and Control (TA0011): Application Layer Protocol (T1071)

065dd63d75e67dae99
4dc92c1516d7d83197
5f31c4b98af283403
3cabd0e1d36

Execution (TA0002) : Shared Modules (T1129)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Indicator Removal
(T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083)
Command and Control (TA0011): Application Layer Protocol (T1071)

48d65214e2bfbbe94
1cbce9279519233b9c
97a25f443c69191507
5d31e36e71a

Execution (TA0002) : Scripting (T1064), Shared Modules (T1129)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Scripting (T1064),
Indicator Removal (T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083)

fb00ba901c9545fae0
66422eb88f5e9de2bf
5206e6ad6daae71f5be
9fb66095f

Execution (TA0002) : Scripting (T1064), Shared Modules (T1129)
Persistence (TA0003) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Privilege Escalation (TA0004) : Create or Modify System Process (T1543), Systemd Service (T1543.002)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Scripting (T1064),
Indicator Removal (T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083)
Command and Control (TA0011) : Application Layer Protocol (T1071)

3575b2cdd604a973e9
8a326370442768fa3
8dfcd824589e2e3a5b
7d0b7e5f658

Execution (TA0002) : Shared Modules (T1129)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Indicator Removal
(T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222), Hide Artifacts (T1564),
Hidden Files and Directories (T1564.001)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083)
Command and Control (TA0011): Application Layer Protocol (T1071)

58d7080b134a7b592
3c3cc278481f10cd52f
12edb5ebc6d934f9f6
7d54225891

Execution (TA0002) : Shared Modules (T1129)
Defense Evasion (TA0005) : Obfuscated Files or Information (T1027), Masquerading (T1036), Indicator Removal
(T1070), File Deletion (T1070.004), File and Directory Permissions Modification (T1222)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083), Software
Discovery (T1518), Security Software Discovery (T1518.001)
Command and Control (TA0011): Application Layer Protocol (T1071)

55a7a4b29c99dbddd4
44722d2dbe0368d5fd
07a52fb4fa0c3b2f90af
6faa1d05

Execution (TA0002) : Shared Modules (T1129)
Defense Evasion (TA0005) : Virtualization/Sandbox Evasion (T1497), System Checks (T1497.001)
Discovery (TA0007) : System Information Discovery (T1082), File and Directory Discovery (T1083),
Virtualization/Sandbox Evasion (T1497), System Checks (T1497.001)
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