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Abstract. Advanced Persistent Threats (APTs) represent a sophisticated and 

persistent cybersecurity challenge, characterized by stealthy, multi-phase, and 

targeted attacks aimed at compromising information systems over an extended 

period. Developing an effective Intrusion Detection System (IDS) capable of de-

tecting APTs at different phases relies on selecting network traffic features. How-

ever, not all of these features are directly related to the phases of APTs. Some 

network traffic features may be unrelated or have limited relevance to identifying 

malicious activity. Therefore, it is important to carefully select and analyze the 

most relevant features to improve the IDS performance. This work proposes a 

feature selection and classification model that integrates two prominent machine 

learning algorithms: SHapley Additive exPlanations (SHAP) and Extreme Gra-

dient Boosting (XGBoost). The aim is to develop lightweight IDS based on a 

selected minimum number of influential features for detecting APTs at various 

phases. The proposed method also specifies the relevant features for each phase 

of APTs independently. Extensive experimental results on the SCVIC-APT-2021 

dataset indicated that our proposed approach has improved performance com-

pared to other standard techniques. Specifically, both the macro-average F1-score 

and recall reached 94% and 93 %, respectively, while reducing the complexity of 

the detection model by selecting only 12 features out of 77.  

Keywords: Intrusion detection system, Advanced Persistent Threats, SHAP, 

Feature Selection, SCVIC-APT-2021.  

1 Introduction 

Advanced Persistent Threat (APT) is a multi-layered cyber-attack characterized by 

sophistication and a prolonged duration [1]. APTs often remain undetected for extended 

periods while exfiltrating sensitive data or causing severe disruptions. An APT follows 

a series of phases known as the kill chain, where an attacker must complete each phase 

to reach their objective. Each phase includes one or more classes of threats or attacks.  

The APT protection market is expected to grow to over 23 billion U.S. dollars by 2028, 



up from 10 billion U.S. dollars in 2024. This significant growth highlights the increas-

ing need for robust cybersecurity tools for detecting APTs such as Intrusion Detection 

Systems (IDSs), Endpoint Protection Platforms (EPPs), and Threat Intelligence Plat-

forms (TIPs) [2]. 

An IDS is a security tool designed to monitor network traffic to spot any malicious 

activities or breaches of security policies. By scrutinizing network and system data, an 

IDS looks for unusual patterns that may signal potential attacks or unauthorized access 

[3]. IDS models are developed using machine learning (ML) algorithms that enable the 

system to learn how to distinguish between normal and malicious network traffic. These 

algorithms are typically referred to as classification algorithms because they categorize 

incoming data into different classes, such as 'normal' or 'malicious.' By training on his-

torical traffic data, the IDS can identify patterns and anomalies that indicate potential 

threats, making it an essential tool for maintaining network security [4] [5]. 

To produce a dependable IDS model capable of accurately detecting anomalies, the 

quality and composition of the dataset are crucial. A well-curated dataset ensures that 

the IDS can effectively identify deviations from normal behavior, leading to more reli-

able anomaly detection. The dataset must consist of a set of features, which are specific 

data attributes that serve as input to the classification algorithm. These features could 

include various characteristics of network traffic or system behavior, such as packet 

size, traffic volume, protocol types, connection duration, and user activity patterns. The 

classification algorithm uses these features to learn and identify patterns associated with 

both normal operations and security threats. 

The input features for IDS models come from network traffic flow, often extracted 

using specialized tools like CICFlowMeter [6]. These tools convert raw network traffic 

stored in PCAP files (Packet Capture) into CSV files. For developing reliable IDS that 

can detect advanced threats like APT, it is preferable to train and evaluate IDS using a 

specialized APT dataset, with two important characteristics. Firstly, the datasets should 

include labelled samples representing various phases of an APT. This allows research-

ers to identify and distinguish between different phases of an APT, which is more ef-

fective than simply classifying traffic as "normal" or "malicious”. For example, a da-

taset can contain different APT phases of traffic. By training a model to recognize these 

distinct phases, it becomes possible to detect not only the presence of an attack but also 

its progression, enabling more targeted and timely responses to each phase of the APT 

[7].  This, in turn, facilitates the development of more sophisticated and adaptive IDS 

solutions capable of effectively detecting and mitigating APTs. Secondly, the dataset 

should have fewer but more. 

relevant features. While many features can provide insights into network activity, 

not all are equally useful for distinguishing between normal and malicious traffic. 

Therefore, strategically selecting the most pertinent features is crucial. This not only 

enhances IDS performance but also reduces training time, prevents overfitting, and 

strengthens the overall robustness of the IDS models [8]. Furthermore, reducing the 

number of features in an IDS can lead to a more lightweight and efficient system, es-

pecially in resource-constrained environments like IoT networks. Lightweight IDS op-



erate effectively with minimal computational resources, such as memory and pro-

cessing power. This is because they require less data to process, resulting in faster de-

cision-making and lower latency in threat detection. 

The feature selection method is mainly divided into two approaches: model-specific 

and model-agnostic. In the first approach, the method is closely linked to the internals 

of the model. The relevance or importance of a feature is determined by the model’s 

structure and particular learning algorithm. Examples include coefficients in linear 

models (such as Lasso and Ridge) and feature importance scores, like those generated 

by Random Forest (RF) [9]. 

Model-agnostic approaches consider the ML model as a black box, meaning they 

can be applied to any kind of model. The advantage of these approaches is that they are 

faster to implement since they do not require interaction with the model to assess feature 

importance. However, analyzing features can help make the inner workings of the black 

box more transparent and understandable. Explainable Artificial Intelligence (XAI) 

methods, specifically SHapley Additive exPlanations (SHAP), can be used to explain 

the output of the ML model by analyzing the features. This method relies on SHAP 

values from game theory. In this framework, each feature is treated as a player, and the 

goal is to estimate the contribution of each feature toward the predicted outcomes. 

SHAP values compare the model's prediction with and without each player to determine 

their impact on the game [10]. SHAP provides two levels of explanation: local expla-

nations, which determine what features matter for a particular individual prediction, 

and global explanations, which provide insights into how the model makes predictions 

and the relative importance of different features in the prediction process [11].  

Recent IDS models are often developed based on advanced ML techniques to en-

hance their detection capabilities. One such technique is XGBoost, a highly effective 

gradient boosting algorithm that has demonstrated superior performance in intrusion 

detection tasks. XGBoost excels at handling large-scale datasets and capturing complex 

patterns within the data, making it particularly suitable for the dynamic and evolving 

nature of network security. As a powerful ensemble learning technique, XGBoost is 

well-suited for managing large, complex datasets, such as the vast amounts of network 

traffic data generated in modern computing environments. It builds a sequence of weak 

predictive models iteratively and combines them into a strong predictive model. 

In this study, we employ SHAP, a robust and model-agnostic method for understand-

ing feature importance, alongside the XGBoost algorithm to introduce a novel feature 

selection method. This method efficiently develops IDS models, preserving model ac-

curacy while simplifying and reducing computational costs for data analysis. 

Our contribution to this study involves: 

 Proposing a hybrid feature selection system that combines the strength part of the 

SHAP analysis and XGBoost learning method. 

 Determining the global features related to APT phases, as well as the local features 

relevant to each phase independently. 

 Developing a lightweight IDS based on the minimum number of relevant features 

for detecting APTs at various phases. 



The rest of this paper is organized as follows: In Section 2, we provide an overview of 

related works on detecting APT attacks. The main characteristics of APTs and the de-

tails of APT phases are introduced in Section 3. The methodology is outlined in Section 

4. Section 5 presents the proposed feature selection method. Experimental setup and 

data preprocessing are declared in section 6. Results and discusses our study, focusing 

on the main findings present in Section 7, we summarize the main conclusions and 

contributions of our research in Section 8. 

2 Related Works 

In this section, we provide an overview of current studies related to APT detection, 

focusing on the methodologies and ML models.  

Joloudari et al. in [12] proposed a DL model with six layers to extract and select 

APT features from the hidden layers of the neural network. This model was compared 

with the C5.0 decision tree and Bayesian classification models using the NSL-KDD 

dataset —an enhanced version of KDD-CUP, where duplicated records were removed 

and minority samples were increased—for evaluation [13]. Although the proposed 

model demonstrated the highest accuracy at 98.85% and the lowest false positive rate 

at 1.13%, established it as the preferred choice, it relies on the NSL-KDD dataset, which 

may not fully capture the complexity of real-world APT attacks that often involve more 

sophisticated, multi-stage techniques. 

In [14], Shang et al. proposed a model to detect unknown APTs by analyzing net-

work flow features in the communication channel between APT attacks and the C&C 

server, which attackers use to control compromised systems in a targeted network. This 

study employed two deep neural networks: a Long Short-Term Memory (LSTM) net-

work to extract time series features at the packet level and a Convolutional Neural Net-

work (CNN) to extract flow-based features. These features were then combined and 

reduced using the Principle Component Analysis (PCA) dimensionality reduction 

method. In the final step, different classifiers were used to detect the C&C channel of 

unknown APT attacks. While the study achieved an F1-score of 96%, it did not specif-

ically detect individual phases of the APT lifecycle. Additionally, the model's complex-

ity increased due to the incorporation of three different models for feature selection. 

Martín Liras et al. in [15] proposed an approach for identifying the most discrimina-

tory features that can distinguish APT-related malware from non-APT malware execut-

ables. They recommend using features from static, dynamic, and network-related anal-

yses to achieve this goal. The study successfully identified 238 out of 1941 features 

related to APT attacks using three different feature selection methods: variance, the χ2 

statistical test, and a tree-based estimator. The dataset with the selected features was 

evaluated for its accuracy in classifying APT-related malware using different ML algo-

rithms, including logistic regression, Support Vector Machines (SVM), K-nearest 

neighbor (KNN), and RF. Although the experiment with the RF classifier achieved im-

pressive results (an F1-score of 89% and an accuracy of 98%), the study did not repli-

cate real-world scenarios by distinguishing between APT and normal traffic. 



Due to the extended duration required to execute an APT attack, Yu, Keping et al. 

[16] leveraged this characteristic for the detection process in an Industrial Internet of 

Things (IIoT) environment by analyzing the time series of each phase. Each attack 

phase requires different time series data. They used a Bidirectional Encoder Represen-

tations from Transformers (BERT) model, which is a DL model specifically designed 

to capture long attack sequences and extended attack durations characteristic of APT 

attacks. The BERT model was compared with three other models: Perceptron, LSTM, 

and CNN. The results demonstrated that the BERT model outperformed the other mod-

els in terms of accuracy, achieving a rate as high as 99%. Although the study catego-

rized the attacks into four levels based on sequence length, this approach does not ac-

curately represent the actual phases of an APT.  

Do Xuan, Cho and Dao, Mai Hoang [17] proposed a novel method for detecting APT 

attacks by leveraging network traffic analysis combined with DL models. They employ 

individual DL models such as Multilayer Perceptron (MLP), CNN, and LSTM, which 

were integrated into a combined DL framework to analyze and detect APT attacks in 

network traffic. The detection process involves two main phases: first, the IP addresses 

are used to analyze network traffic into flows. The combined DL models are then em-

ployed to extract IP features from these flows. Second, using the features extracted in 

the first phase, the model classifies IPs as either APT attack IP addresses or normal IP 

addresses.The accuracy ranges between 93% and 98% due to the combination of DL 

models. 

Javed et al. in [18] developed multiple models, including XGBoost, RF, SVM, and 

AdaBoost for detecting APTs in the IIoT domain. The KDDCup99 [21] dataset was 

used to assess the performance of these models. The main finding of this study shows 

that,  AdaBoost method outperformed the other techniques, achieving an accuracy of 

99.9% with an execution time of 0.012 seconds for APT detection. However, the study 

did not utilize a specified APT dataset containing distinct APT phases. 

In [19], Javed et al. developed a DL model capable of detecting hidden APT attacks 

in Cyber-Physical Systems (CPSs) integrated with the IIoT in real-time. The authors 

utilized a Graph Attention Network (GAN) to capture the behavioral features of the 

attack. Two datasets, DAPT2020 [22] and Edge IIoT, were used to evaluate the study. 

The results showed that for the DAPT2020 dataset, the model achieved 96.97% accu-

racy with a prediction time of 20.56 seconds. For the Edge I-IoT dataset, the model 

achieved 97.5% accuracy with a prediction time of 21.65 seconds. 

Dinh‑Dong Dau et al. in [20] for improving detection accuracy to APT stages in the 

SCVIC-APT-2021 dataset  , a combination of preprocessing steps is used [22]. These 

steps included addressing data imbalance using techniques such as resampling, over-

sampling, undersampling, and cost-sensitive learning. They evaluated the processed 

data using a range of ML, DL, and ensemble learning algorithms. Among these, 

XGBoost achieved a Macro F1-score of 95.20%, while LightGBM reached 96.67%, 

demonstrating significant performance. However, the research did not specify which 

preprocessing technique improved the detection accuracy. 

Table 1, summarizes the reviewed works in terms of the used model, adopted da-

tasets for evaluation, and highlights their limitations.  



Table 1: Summarized related works 

Work Proposed system Dataset Model Limitations 

[12] 
Utilizing a DL model with six layers to extract intricate patterns 
and relationships from network traffic for APT detection. 

NSL-KDD 
DL, C5.0, and 
Bayesian 

 The study did not utilize a specified APTs dataset. 

 There is no multi-phase detection. 

[14] 

Detecting unknown APTs by analyzing network flow features that 

traverse the communication channel between the APT attacks and 

the C&C server. 

Contagio blog malware 

and  bigFlows.pcap of 

TcpPlay 

LSTM, CNN, and 
GBDT 

 There is no multi-phase detection. 

 High complexity due to the use of multiple models for 

feature selection. 

[15] 
Exploiting static, dynamic, and network-related features to distin-
guish APT-related malware from non-APT malware executables. 

Private dataset RF 
 The study did not compare selected APT features with 

normal traffic. 

[16] 

Classifying APT attacks in IIoT environment by analyzing long 

attack sequences and extended attack durations using a proposed 

BERT schema. 

Private dataset LSTM and CNN 
 The study did not utilize a specified APTs dataset. 

 High complexity due to the use of two DL models. 

[17] 

Detecting APT by analyzing network traffic flows and extracting 
IP features using the combined DL models, which are then used 

to classify IPs as either APT attacks or normal. 

CTU-13 
MLP, CNN, and 

LSTM 

 There is no multi-phase detection. 
 High complexity due to the use of multiple DL models. 

 The method does not detect individual APT attacks. 

[18] 
Developing multiple ML models for detecting APTs in the IIoT 

domain. 
KDDCup99 

XGBoost, RF, 
SVM, and Ada-

Boost 

 The study did not utilize a specified APTs dataset. 

[19] 

Detecting hidden APT attacks in Cyber-Physical Systems (CPSs) 
integrated with the IIoT in real-time, utilizing a graph attention 

network to capture the attacks’s behavioral features. 

DAPT2020 and edge 

IIoT 
GAN  There is no multi-phase detection. 

[20] 
Improve the detection accuracy for APT stages by applying dif-

ferent preprocessing techniques. 
SCVIC-APT-2021 

XGBoost, RF 

Light GBM 

 The research did not specify which preprocessing tech-

nique improved the detection accuracy. 



The key issues identified from previous related works are that researchers did not 

use datasets specifically designated for APT attacks. Additionally, APTs can have 

unique features that may not be well captured in traditional intrusion detection datasets. 

Using a dataset tailored to APT scenarios can help ensure the proposed techniques are 

effective in the specific context of APT detection. 

Another limitation is that the reviewed literature did not address multi-phase detec-

tion scenarios. As mentioned in the introduction section, APT often involves a series of 

coordinated phases. The phase at which an attack is detected can significantly affect the 

mitigation strategy employed by the target organization. For example, if the APT is 

detected early, such as during the initial compromise, the organization can focus on 

containment and eradicating the threat by isolating infected systems. 

3 APT Background 

APT is an extended cyber-attack aimed at gaining unauthorized access to a target net-

work or server while remaining undetected for a prolonged period. To achieve this ob-

jective, the APT progresses through a series of phases, as illustrated in Fig. 1. 

 

 

Fig. 1. APT phases 

 Reconnaissance Phase: In this phase, the APT attacker gathers information about the 

target to be used in the next phases. Various resources are utilized for this, including 

details about the organization’s size, location, and IT infrastructure. Additionally, 

information related to the organization's employees, such as decision-makers, access 

levels, contact details, and social media profiles, may also be collected. Furthermore, 

information about the organization's network such as IP addresses, network topol-

ogy, and firewall configurations, may also be gathered [21]. Attackers employ vari-

ous techniques to accomplish this phase, such as social engineering, where employ-

ees of the organization receive malicious information through phishing emails or 

phone calls. Another technique involves scanning the target system to identify vul-

nerabilities without triggering any defensive mechanisms. 

 Initial Compromise Phase: The attacker selects an appropriate entry point into the 

target system based on the information identified during reconnaissance. An entry 

point would include those IoT devices that are the most vulnerable to cyber-attacks 

since extensive security measures have not yet been implemented due to their limited 

processing power, normally running on outdated firmware [22]. Early detection of 



APT at this stage is crucial for minimizing damage, preventing data breaches in the 

subsequent phases, and safeguarding the organization's reputation and critical assets. 

Systems under attack require comprehensive security solutions that address diverse 

tactics, including IDSs, endpoint protection, network segmentation, and continuous 

security monitoring. 

 Lateral Movement Phase: During this phase, attackers seek to expand their presence 

and move laterally across the network to compromise additional systems and re-

sources. The primary objective is to explore the network, escalate privileges, and 

access valuable information. In large companies or organizations, the network envi-

ronment typically comprises multiple domains or subnetworks. 

 Pivoting Phase: During an APT attack, the assailant extends their assault by navi-

gating through different network segments, allowing them to expand their reach be-

yond the initially compromised system. 

 Data Exfiltration Phase: This phase involves transferring data to the attacker's sys-

tems, often using the malware's built-in upload functions. In some cases, the attacker 

used network protocols such as FTP, HTTP and HTTPS [23].  

 Evidence Removal Phase: The final phase involves deleting log data and removing 

malware to cover the attackers’ tracks.  

In this study, we introduced methods for identifying the key features pertinent to 

each phase of the APT. These identified features contribute to the development of light-

weight IDS systems that can detect APTs at various phases using a minimal set of rel-

evant features. This enables organizations to recognize and respond to threats much 

earlier in the APT lifecycle. Early detection allows security teams to intervene and con-

tain attacks before they can escalate, potentially averting significant data breaches or 

system compromises.  

4 Methodology 

This section reviews the algorithms and techniques used in developing the proposed 

feature selection approach. Section 4.1, elaborates on the ML algorithm where 

XGBoost is utilized as the classifier for identifying APT phases. Section 4.2 discusses 

the feature selection methods, focusing on the use of SHAP as a model-agnostic ap-

proach used in the development of the proposed method. 

4.1 XGBoost 

Extreme Gradient Boosting (XGBoost) is a popular ML algorithm for regression and 

classification tasks. It operates on the principles of ensemble learning, by combining 

predictions from multiple weak learners typically decision trees. The core of XGBoost 

lies in its objective function, which guides the model parameters during the training 

process. 

The objective function, represented by (1), comprises two components. The first com-

ponent is the loss function, 𝑙(𝑦𝑖  , �̂�𝑖), which measures the difference between the actual 



value 𝑦𝑖  and the predicted value  �̂�𝑖 . The second component is a regularization term, 

𝛺(𝑓𝑘), designed to prevent overfitting by penalizing model complexity [24]. 
  

𝑜𝑏𝑗(𝜃) =  ∑ 𝑙(𝑦𝑖  , �̂�𝑖)
𝑛

𝑖=1
+ ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1
 

 

(1) 

XGBoost uses features as splitting points during model construction in the training 

process. The algorithm proposes candidate splitting points for each feature, evaluates 

these points and selects the best split based on an evaluation score that improves the 

model's predictions [25].  

Reducing the number of features in the dataset results in fewer potential splits to 

evaluate. This reduction decreases the training time, as the algorithm can iterate more 

quickly over the dataset and requires less data to store in memory [26][27]. Addition-

ally, minimizing the number of features helps build a more accurate model by focusing 

on the most important patterns in the data, which can prevent overfitting. 

The XGBoost algorithm boasts several key characteristics that make it an ideal 

choice for developing IDS, where balancing speed and accuracy is crucial. One of its 

strengths is an advanced tree pruning technique, which stops the construction of a tree 

when further splitting does not improve the model's performance [28]. This results in a 

more efficient model with optimal depth, thereby reducing training time and enhancing 

prediction speed. Furthermore, IDS often contend with imbalanced datasets, where nor-

mal traffic significantly surpasses malicious activities. XGBoost effectively addresses 

this issue by optimizing its performance for skewed data distributions, ensuring accu-

rate identification and classification of attacks even in unbalanced scenarios [29]. These 

capabilities enable XGBoost to produce accurate and interpretable outcomes with low 

computational overhead, setting it apart from more complex and resource-intensive ap-

proaches like Deep Neural Networks (DNNs). 

Also, The combination of XGBoost and the SHAP method (which will be explained 

in the next section) significantly contributes to faster and more accurate detection. This 

integration is largely attributed to XGBoost's tree-based framework, which inherently 

supports efficient SHAP value computation. By utilizing the binary splits within 

XGBoost's decision trees, SHAP values can be calculated rapidly, providing a clear and 

efficient assessment of feature contributions. This tree structure not only accelerates the 

computation process but also enhances the interpretability of the model’s predictions, 

making it an ideal choice for feature selection in IDS. 

 

 

 

 



4.2 Features Selection Techniques 

Feature selection is the process of identifying the most relevant subset of features that 

enhance ML performance. This process reduces model complexity, increases efficiency 

by training with fewer features, and conserves computational resources [30]. 

There are three feature selection methods: filter-based, embedded methods, and 

wrapper-based. Filter-based methods select relevant features based on their statistical 

properties without considering the specific ML algorithm to be used. A drawback of 

this method is that it does not account for interactions between features. Common filter 

methods include Correlation Coefficient (C.C), Chi-Square and Analysis of Variance 

(ANOVA). In embedded methods such as Lasso Regression (LR), relevant features are 

selected during the training process of the ML model. However, this method is inher-

ently tied to the specific model being used. The third method, wrapper-based, selects 

features based on the model’s performance on various subsets of features, using a 

greedy search strategy to find the best subset. Although wrapper methods can be com-

putationally expensive, they capture feature interactions and provide accurate predic-

tions. Wrapper-based requires high computational cost because identifying the best fea-

ture subset requires training an ML model and measuring its performance for each po-

tential subset [31]. 

A frequently used technique for implementing the wrapper method is sequential fea-

ture selection, which can be performed in a forward or backward manner. In the forward 

approach, the method iteratively adds the best new feature to the set of selected features 

in a greedy manner, starting with an empty set and adding features until no further 

improvement is observed. Conversely, the backward approach begins with all features 

and iteratively removes the least important ones until no further improvement is 

achieved [32]. 

In this work, we utilized the forward selection technique with SHAP values as a 

feature ranking method. SHAP values explain model predictions by decomposing the 

output into contributions from each feature. For a given prediction f(x) of an instance 

x, SHAP uses the Shapley value framework to assign each feature a value representing 

its contribution to the prediction. The model’s prediction can be expressed as the sum 

of the base value (expected output) and the SHAP values of the features as in (2): 

 

𝑓(𝑥) = ∅0 + ∑ ∅𝑖

𝑀

𝑖=1

 

 

(2) 

 

Where: 

 𝑓(𝑥) is the model's prediction for instance 𝑥, 

 ∅0 is the base value (the mean model prediction over the entire dataset), 

 𝑀 is the total number of features, 

 ∅𝑖 is the SHAP value of feature 𝑖, representing its contribution to the prediction. 



 
The SHAP value ∅𝑖 of feature 𝑖 is calculated as in (3): 

 

∅𝑖 =  ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆 ⊆𝐹∖{𝑖}

 [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

 

(3) 

 

This formula accounts for all possible subsets 𝑆 of the feature set 𝐹, where the term 

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] is the marginal contribution of feature 𝑖 to the prediction. The 

weighting factor  
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
  ensures fair attribution of the feature's contribution by 

considering the order of features in different subsets. 

Thus, the prediction is explained as the base value ∅𝟎 , adjusted by the SHAP values 

∅𝐢 of each feature that together explain how features have contributed to the final pre-

diction. 

 

5 Proposed Feature Selection Method 

Fig. 2 illustrates the workflow of the proposed method, detailing the process for devel-

oping a feature selection method aimed at identifying the key features essential for ac-

curate predictions or classifications by the model. 

 

The pipeline initiates with reading the dataset and preprocessing it to ensure it is 

appropriately prepared for model training. Next, feature analysis is conducted to obtain 

Fig. 2. Proposed method pipeline 



feature importance scores, which are utilized to select only the most relevant features. 

The proposed method is described in the following steps: 

 Step 1: The first step of the pipeline involves reading the dataset used to evaluate the 

proposed method. The IDS dataset comprises features extracted from network traffic 

flow such as packet size, flow duration, and protocol type using specialized tools 

like CICFlowMeter and NetFlow. However, not all these features are standardized 

for ML. So, preprocessing is a very vital step in using them in any ML model. The 

preprocessing involves the removal of biased features, dealing with null values, and 

conversion of categorical features into numeric.  

 

 Step 2: In this step, we analyze the features, beginning with training the XGBoost 

algorithm. Once the model is trained, an explainer object is created to elucidate the 

inner workings of the trained model. This explainer helps us understand how the 

model makes predictions based on the input features. We then leverage the SHAP 

method on the explainer object to analyze the testing set, computing SHAP values 

for each data point to provide insights into the contribution of each feature to the 

model's predictions. The output of this step is a list of SHAP features importance 

scores in decreasing order. Additionally, SHAP analysis in this phase allows us to 

generate informative plots that help in understanding how individual features influ-

ence model predictions.  

 

 Step 3: In this step, we determine the most relevant features using the forward selec-

tion technique, functioning as a wrapper feature selection method. However, we do 

not utilize a greedy search in this selection process. Instead, we commence with an 

empty feature set, denoted as (𝑆𝑏𝑒𝑠𝑡), and add the top feature (𝑗) from the SHAP 

feature importance score list obtained in Step 2.  After adding each feature, we eval-

uate the model's performance, specifically in terms of the macro-averaged F1-score, 

denoted as (𝑓1𝑏𝑒𝑠𝑡
). We continue to iteratively add top features until there is no fur-

ther improvement in the model's performance is observed. This selection strategy 

allows us to avoid searching through all possible combinations of feature subsets, 

concentrating only on the top features in the list, thus reducing the computational 

cost of the selection algorithm. Ultimately, the selected features in the set (𝑆𝑏𝑒𝑠𝑡) 

represent the subset of features that yield the best performance according to the 

macro averaging F1-score metric. The forward selection process is described in Al-

gorithm 1. 

 

 

 

 

 

 

 

 

 



Algorithm1: Feature Selection using SHAP Values and XGBoost 

1 Input: SHAP features an importance score list 

2 Output: Set of relevant  features 𝑆𝑏𝑒𝑠𝑡 

3 𝑓1𝑏𝑒𝑠𝑡
=  0     

4 𝑆𝑏𝑒𝑠𝑡  = { }     // Initialize an empty set of selected features  

5 for  𝑗 in range of (num-features) do       

6  𝑆𝑛𝑒𝑤 = 𝑆𝑏𝑒𝑠𝑡 U {𝑗}    // Add top  feature  𝑗  

7   Train   XGBoost model    with    𝑺𝒏𝒆𝒘 

8   𝑓1𝑛𝑒𝑤
=  macro averaging F1-score metric (XGBoost model)  

9         If    𝑓1𝑛𝑒𝑤
> 𝑓1𝑏𝑒𝑠𝑡

    

10   𝑓1𝑏𝑒𝑠𝑡
=  𝑓1𝑛𝑒𝑤

        //  Update best performance 

11     𝑆𝑏𝑒𝑠𝑡 = 𝑆𝑛𝑒𝑤       // Update selected features 

12         end 

13 end 

 

 

6 Experimental Setup 
The proposed algorithm was implemented using Python 3.9. The implementation was 

carried out on a computer equipped with an Intel(R) Core(TM) i5-6300U CPU 

(2.40GHz) and 8GB of DDR4 RAM. The hyperparameters of XGBoost were carefully 

tuned to optimize the model's performance during training, as outlined in Table 2. 

 

Table 2: Hyperparameter of XGBoost 

Hyperparameter Description Value 

n_estimators Number of trees 100 

learning_rate Step size shrinkage used to prevent overfitting 0.3 

max_depth Maximum depth of a tree 6 

min_child_weight Minimum sum of weights needed in a child node. 1 

objective Loss function to be minimized multisoftmax 

sample_weight Weights for addressing class imbalance Varies by dataset 

gamma Minimum loss reduction required to make a split 0 

lambda L2 regularization term to prevent overfitting 1 

alpha L1 regularization term to prevent overfitting 0 

 



6.1 Experimental Description  

SCVIC-APT-2021 dataset was used to evaluate the proposed method [33]. This dataset 

was selected for modeling APT attacks due to several key factors. It contains real APT 

attacks and covers comprehensive APT phases, as outlined in Table 3, offering a more 

accurate representation of advanced attack behaviours. Additionally, the dataset con-

sists of 84 features, which are crucial for assessing the effectiveness of our method in 

reducing the number of features used in the prediction process. Moreover, the dataset 

not only captures individual APT phases but also provides a holistic view of the inter-

connectedness of their interconnectedness, forming a robust foundation for research in 

APT detection. 

 

Table 3: Attack techniques applied for each phase 

APT phases Attack techniques 

Reconnaissance Scanning and gathering information for both host and network 

Initial Compromise  Very Secure FTP Daemon (VSFTPD) 

Lateral Movement  Pass the Hash/Ticket, Remote Desktop Protocol, WMI 

Pivoting AutoRoute, Socks4a, Proxy Chain 

Data Exfiltration DNS Tunneling, C2 Tunneling, Encode and Encrypt 

 

Several preprocessing steps were applied to prepare the data for the ML model. First, 

specific features such as: 'Flow ID', 'Src IP', 'Src Port', 'Dst IP', 'Dst Port', and 

'Timestamp' were removed to prevent the ML model from biasing towards the attacks 

detection, as these features are used for labeling traffic in the dataset. Next, all samples 

containing null values were removed, reducing the number of samples from 315,607 to 

313,003. Categorical features were then converted into numerical values using the label 

encoder method. Finally, the dataset was split into two sets: 80% for training and 20%, 

ensuring the model could be evaluated on unseen data. Table 4 provides the number of 

samples in the training and testing sets for each class.  

As shown in Table 4, the dataset suffers from an imbalanced classification problem, 

with an unequal distribution of classes in the training set. This imbalance can cause the 

model to become biased towards the majority class, leading to more frequent but incor-

rect predictions for that class. Consequently, the model's performance on the minority 

classes may be significantly worse [32]. 
 

 

 



Table 4: Number of training and testing samples for each class 

Class 

No. of samples 

Total percentage 
Training Testing Total 

Normal Traffic 246253 61564 307817 98.30% 

Reconnaissance 867 217 1084 0.30% 

Initial Compromise 120 30 150 0.04% 

Lateral Movement 695 174 869 0.20% 

Pivoting 1986 496 2482 0.70% 

Data Exfiltration 481 120 601 0.19% 

 

 

To address this class imbalance, class weights were computed for each class 𝑖 in the 

dataset using the following in (4): 
 

𝐶𝑙𝑎𝑠𝑠 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝐶𝑙𝑎𝑠𝑠𝑖 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡
 

 

(4) 

 

These computed class weights were then used to set the sample_weight parameter 

in the XGBoost algorithm, assigning different weights to individual samples. During 

training, XGBoost fits decision trees to the dataset with these sample weights, giving 

more importance to samples from minority classes. This adjustment ensures the model 

focuses on correcting errors made on underrepresented classes. Each decision tree is 

trained on the weighted dataset, progressively improving the model’s performance on 

challenging examples [34]. 

 

6.2 Evaluation Metrics 

The model's performance is evaluated using several metrics, including accuracy (Acc), 

precision (Pre), recall (Rec), and F1-score. Accuracy measures the overall correctness 

of the model’s predictions. Precision assesses how many of the positive predictions are 

actually correct, while recall (also known as the detection rate) quantifies the proportion 

of actual positive that were correctly identified. The F1-score provides a balanced eval-

uation by combining both precision and recall into a single metric. 



These metrics are derived from four fundamental values: true positives (TP) and true 

negatives (TN), where the model correctly predicts the positive and negative classes, 

respectively, and false positives (FP) and false negatives (FN), where the model incor-

rectly classifies the classes. Standard metrics are calculated as in (5), (6), (7), and (8) 

[35].  

 

Accuracy =  
(TP + TN)

(FP + FN + TP + TN)
 (5) 

Precision =  
TP

(TP + FP)
 (6) 

Recall =
TP

(TP + FN)
 (7) 

F1 − score =
2 ∗ (Precision ∗ Recall )

(Precision + Recall )
 (8) 

 

We also utilize macro-averaging for F1-score, recall, and precision, along with the 

weighted-averaging  F1-score, as both approaches are particularly effective in address-

ing class imbalance. Macro-averaging calculates each metric F1-score, recall, and pre-

cision independently for every class and then averages them, ensuring all classes are 

treated equally regardless of their frequency in the dataset. In contrast, the weighted 

F1-score adjusts for class proportions by taking into account the number of true in-

stances in each class. Together, these metrics offer a balanced and comprehensive eval-

uation of the model's performance across all classes, highlighting its effectiveness and 

robustness in managing imbalanced datasets. 

7 Results and Discussion 

This section presents the results of the proposed method for detecting different phases 

of APT. The results of the proposed approach are divided into two subsections. Section 

7.1 outlines the results of applying the proposed feature selection method, focusing on 

its impacts across all classes in the dataset. In Section 7.2, we conduct a comparative 

analysis to demonstrate the effectiveness of our approach. First, we compare the results 

of our feature selection method with different feature selection techniques. Next, we 

assess the overall performance of the developed IDS based on the proposed feature 

selection method in comparison to various IDS-based ML techniques, such as Random 

Forest (RF), DNN, and Decision Tree (DT), and compare it with the existing works 

discussed in Section 2. 

 



 

7.1 Evaluation of the Proposed Feature Selection Method 

In this section, we evaluate the effectiveness of the proposed feature selection 

method, which leverages SHAP to enhance the interpretability and relevance of se-

lected features across different phases APTs. By utilizing SHAP, the method identifies 

a reduced set of features while providing insights into the contribution and importance 

of each feature in the detection process. Figure 3 shows SHAP values for different 

phases, illustrating the significance of various features in identifying them. This trans-

parency helps us understand each feature's impact on the model's predictions. For in-

stance, features like ‘Idle Max’ and ‘Idle Mean’ have high SHAP values, indicating 

their significant influence on decisions. The colorful bars in the figure illustrate the 

significance of each feature across various APT phases. SHAP values facilitate phase 

specific analysis by indicating the key features at each phase, thereby boosting the mod-

el's detection capabilities. For instance, ‘FWD Init Win Bytes’ plays a crucial role dur-

ing the Reconnaissance phase. Similarly, ‘Idle Max’ is the most critical feature for the 

Normal Traffic phase, whereas ‘Packet Length Std’ stands out as the most influential 

feature in the Data Exfiltration phase. 

 

 

 

For a more detailed explanation, Fig. 4 shows the top 8 important features for each 

APT phase. The y-axis lists the feature names, ranked by importance from top to bot-

tom, while the x-axis displays SHAP values. These values assign importance to each 

Fig. 3. Features importance related to all APT phases 



feature by calculating its  average marginal contribution across all possible feature co-

alitions. SHAP values can be either positive or negative and are depicted as colored 

dots. Positive values indicate that the feature contributes to predicting an attack, while 

negative values suggest contributing to normal traffic. The color represents the feature 

values, with red indicating high values and blue indicating low ones. 

Let us compare two of the most important features in the ‘Initial Compromise’ phase 

with the 'Normal Traffic' class. The first feature is 'Idle Max', which refers to a maxi-

mum period during which a network connection or communication channel is estab-

lished but not actively transmitting data. For the 'smileyface' attack in the ‘Initial Com-

promise’ phase, red dots are predominantly found to the right of the zero line, indicating 

that higher idle times increase the likelihood of the model predicting an attack. Con-

versely, blue dots to the left suggest that lower idle times lead to non-attack predictions. 

This reflects the attacker's goal of staying undetected as long as possible. In the ‘Re-

connaissance’ phase, attackers may engage in low-profile activities while gathering in-

formation about the target network. The 'Idle Max' feature helps detect these subtle 

activities by highlighting extended periods of inactivity or low-level network interac-

tions that deviate from normal behavior. This is visualized with red dots for all attacks, 

while the 'Normal Traffic' class is represented by blue dots, indicating lower values 

consistent with typical communication.  

The second feature, 'Fwd Seg Size Min,' represents the smallest segment byte in the 

forward direction. In the ‘Initial Compromise’ phase, higher values (red dots) suggest 

attack traffic, often due to the transmission of sequences of characters (e.g., a smiley 

face :)) as the username, requiring larger segments. In contrast, 'Normal Traffic', is vis-

ualized with blue dots, where smaller values are typical. 

For further analysis, Fig. 5 provides an in-depth examination of how the model gen-

erates predictions based on individual instances and their feature values. The figure 

presents examples from two distinct classes: 'Normal Traffic' and 'Reconnaissance.' It 

highlights the influence of specific features, such as 'Idle Max' on the model’s predic-

tions. In the 'Reconnaissance' instance, higher 'Idle Max' values contribute to an attack 

prediction, while lower values in the 'Normal Traffic' instance lead to a non-attack pre-

diction. This underscores the crucial role of the 'Idle Max' feature in distinguishing be-

tween these two classes. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4. Ordered features importance for each phase in APT 



 

Table 5 presents the performance metrics for each phase in the dataset using the 

proposed method. The model demonstrates high precision across all classes, particu-

larly excelling in accurately identifying ‘Normal Traffic’ without any errors. This is 

essential for reducing false alarms and maintaining confidence in the model's predic-

tions. 
Table 5: Performance metrics for dataset classes 

Classes Pre Rec F1-score 

Normal Traffic 100% 100% 100% 

Reconnaissance 90% 92% 91% 

Initial Compromise 100% 87% 91% 

Lateral Movement 89% 93% 91% 

Pivoting 96% 97% 97% 

Data Exfiltration 98% 87% 92% 

 

Notably, the model distinguishes each class with 100% accuracy while utilizing only 

12 out of 77 features. This improvement stems from the removal of irrelevant features, 

leading to a more concise and meaningful data representation that the model can learn 

from more effectively. Furthermore, the reduction in the number of features signifi-

cantly decreases the computational cost for both training and prediction.  

 

7.2 Comparative Results 

To evaluate the performance of SHAP-based feature selection in developing a mul-

ticlass classification IDS, we compare it with widely used filter-based feature selection 

(a)           (b)  

Fig. 5. Comparison of feature contributions    (a) 'Normal Traffic’.    (b) 'Reconnaissance'. 



methods, including C.C, Chi2 and ANOVA [28]. In addition to the LR, which is em-

bedded feature selection method. The comparison is made using macro-averaged pre-

cision, recall, and F1-score.  

As shown in Table 6, the SHAP-based feature selection method outperforms both 

filter and embedded feature selection methods across all metrics. This superior perfor-

mance is attributed to SHAP’s ability to capture per-feature importance for each sam-

ple, other methods only assess the relationship between features and the target label. 

Additionally, SHAP considers feature relevance through feature interactions, evaluat-

ing each feature's contributions in the context of other features, which enables it to 

capture complex dependencies and interactions between variables.  

 
Table 6: Comparison of Different Feature Selection Algorithms 

Method Relevant 12 Features 

Macro -average 

Pre Rec F1-score 

C.C 

'Bwd Packet Length Std', 'Bwd Packet Length Max', 

'Fwd PSH Flags', 'Bwd IAT Std', 'Packet Length 

Mean', 'Idle Max', 'Packet Length Std', 'ACK Flag 
Count', 'Active Mean', 'Active Max', 'Active Min', 

'Subflow Fwd Bytes' 

0.94 0.89 0.91 

LR 

'Total Bwd packets', 'Total Length of Fwd Packet', 

'Bwd Packet Length Min', 'Bwd Packet Length Std', 

'Fwd PSH Flags', 'Packet Length Variance', 'FIN Flag 

Count', 'SYN Flag Count', 'ACK Flag Count', 'Fwd 
Seg Size Min', 'Active Mean', 'Active Max', 'Active 

Min', 'Idle Max' 

0.94 0.90 0.92 

Chi2 

'Flow Duration', 'Total Fwd Packet', 'Total Length of 
Fwd Packet','Fwd Packet Length Max', 'Fwd Packet 

Length Std', 'Fwd IAT Total','Bwd IAT Total', 'Fwd 

PSH Flags', 'Fwd Header Length','Packet Length 
Variance', 'ACK Flag Count', 'Fwd Act Data Pkts' 

0.88 0.78 0.82 

ANOVA 

'Total Fwd Packet', 'Total Bwd packets', 'Total 

Length of Fwd Packet','Fwd Packet Length Max', 
'Fwd Header Length', 'Bwd Header Length','Packet 

Length Max', 'Packet Length Std', 'ACK Flag 

Count','Bwd Bytes/Bulk Avg', 'Bwd Packet/Bulk 
Avg', 'Fwd Act Data Pkts' 

0.89 0.80 0.84 

SHAP 

'Bwd Packet Length Std', 'Flow Bytes/s', 'Flow IAT 

Min', 'Fwd IAT Mean','SYN Flag Count', 'RST Flag 
Count', 'ACK Flag Count','Subflow Bwd Packets', 

'FWD Init Win Bytes', 'Fwd Seg Size Min','Idle 

Mean', 'Idle Max' 

0.95 0.93 0.94 

 

 

To further assess the performance of the proposed feature selection, we present a 

comparison of the performance of different ML-based IDS methods in Table 7. As 

shown in this table, the proposed XGBoost model with 12 features demonstrates sig-

nificant efficiency and effectiveness in intrusion detection. While its training time of 

67.88 seconds is not the fastest, it is considerably quicker than using 77 features, which 

takes 189.96 seconds. More importantly, the model excels in detection performance, 

achieving 100% accuracy, 95% precision, 93% recall, and 94% F1-score. These metrics 



outperform other methods, including DNN, RF, and DT, which show lower detection 

performance despite faster training or prediction times. The slight trade-off in training 

time for the proposed model is justified by its superior detection capabilities, making it 

an optimal choice for real-world IDSs where accuracy and efficiency are paramount. 

 
Table 7: Performance Comparison of Different IDS Methods 

Method 
No. of 

features 

Time (seconds) 

Acc 

Macro-average 

Training Prediction Pre Rec 
F1-

score 

Proposed 

(XGBoost) 
12 67.88 0.2799 100 % 95% 93% 94% 

XGBoost 77 189.96 0.3280 100 % 95% 94% 94% 

DNN 77 195.44 6.2772 99% 55% 71% 59% 

RF 77 31.13 0.7013 98% 57% 85% 65% 

DT 77 2.11 0.0180 98% 44% 76% 51% 

 

Table 8 further highlights the proposed model outperforms several other research 

studies that used XGBoost as a baseline model on the same dataset.  

 
Table 8: Compression with XGBoost Algorithm in Other Studies 

Reference 
No. of 

features 

Macro-average 

F1-score 

Weighted-average 

F1-score 

Baseline model [33] 77 70.9% 99.4% 

PKI model [36] 49 80.09% Not addressed 

Progressive PKI model [36] 49 81.27% Not addressed 

XGBoost model [37] 77 Not addressed 97% 

Proposed model 12 94% 100% 

 

By selecting only 12 features out of 77, the proposed system significantly reduces 

computational complexity, ensuring scalability and practicality for deployment in high-

speed networks and resource-constrained environments. This feature selection 

minimizes computational overhead by focusing on the most relevant data, enabling 

efficient detection with limited resources. The streamlined feature set reduces data 

storage requirements, simplifies analytical processes, and enhances system 

responsiveness. Consequently, the IDS achieves faster threat detection, allowing 

security teams to respond promptly and mitigate potential attacks effectively. 

 



8 Conclusion 

This study addresses the escalating threat of Advanced Persistent Threats (APTs) by 

developing a robust and resource-efficient Intrusion Detection System (IDS). This sys-

tem is built on a proposed feature selection method, where the XGBoost ML algorithm 

is integrated with Explainable AI (XAI) to select a minimal set of influential features 

for detecting APTs across different phases. The proposed method identifies the most 

relevant features for each phase separately. Results from the SCVIC-APT-2021 dataset 

highlight the effectiveness of the proposed method, showing significant improvements 

in both the macro-average F1-score and recall, reaching 94% and 93%, respectively, 

while reducing the number of relevant features from 77 to only 12. Furthermore, the 

method significantly reduces the training and prediction time without compromising 

detection accuracy. 

This research further advances the field by introducing a new ML model that will 

improve the detection of APTs and their interpretability due to feature selection, mak-

ing the network hardened against advanced cyber-attacks. As future work, we would 

conduct experiments on the method for several APT-related datasets to further evaluate 

its effectiveness. 
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