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Abstract

Recent advancements in watermarking techniques have enabled the embedding of
secret messages into AI-generated text (AIGT), serving as an important mecha-
nism for AIGT detection. Existing methods typically interfere with the generation
processes of large language models (LLMs) to embed signals within the generated
text. However, these methods often rely on heuristic rules, which can result in
suboptimal token selection and a subsequent decline in the quality of the gener-
ated content. In this paper, we introduce a plug-and-play contextual generation
states-aware watermarking framework (CAW) that dynamically adjusts the embed-
ding process. It can be seamlessly integrated with various existing watermarking
methods to enhance generation quality. First, CAW incorporates a watermarking
capacity evaluator, which can assess the impact of embedding messages at different
token positions by analyzing the contextual generation states. Furthermore, we
introduce a multi-branch pre-generation mechanism to avoid the latency caused by
the proposed watermarking strategy. Building on this, CAW can dynamically adjust
the watermarking process based on the evaluated watermark capacity of each token,
thereby minimizing potential degradation in content quality. Extensive experiments
conducted on datasets across multiple domains have verified the effectiveness of
our method, demonstrating superior performance compared to various baselines in
terms of both detection rate and generation quality.

1 Introduction

Watermarking has become a crucial method for detecting AI-generated text (AIGT), addressing
growing concerns over LLM misuse and content authenticity [1–3]. Mainstream watermarking
methods embed perturbations as identification tags into LLM outputs through modifications to the
models’ generation mechanisms [4–7]. Existing LLMs adhere to a similar framework, wherein
the model first computes the probability distribution over the vocabulary, and then selects the next
token based on certain sampling strategies. To incorporate secret messages into generated content,
watermarking methods generally rely on heuristic strategies to reweight the probability distribution
or modify the sampling strategy. For example, Kirchenbauer et al. [5] propose a watermark that
modifies token probability by dividing the vocabulary into “red” and “green” tokens, and promote the
use of green tokens during sampling. However, the perturbation introduced by the watermark methods
can result in the sub-optimal selection of tokens and even lead to serious errors in the generated
content, which can substantially degrade the generation quality. Such impacts on text quality may
diminish the willingness of model owners and publishers to deploy watermarks.
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Question: There are 15 trees in the 
grove … (5-shot) 
Question: 
Elizabeth collected 7 starfish with 5 arms
each and one seastar with 14 arms. How
many arms do the animals she collected
have in total? Let's think step by step.

𝑉𝑉

𝑝𝑝

9 3
𝑉𝑉

𝑝𝑝

9 3

WatermarkNo Watermark

Elizabeth collected 7 starfish with 
5 arms each, so 7 x 5 = 35 arms.
She also collected one seastar with 14 
arms. So 7 x 5 + 14 = 43 arms in total.
The answer is 43.

PPL: 6.4169

Low PPL
But Wrong!

Elizabeth collected 7 starfish with 
5 arms each. 5 * 7 = 35 arms.
She also collected one seastar with 14 
arms. 14 + 35 = 49 arms.
The answer is 49.

PPL: 7.1734

High PPL
But Correct!

Figure 1: Comparison between watermarked and unwatermarked outputs on Llama2-13b with
GSM8K dataset. Watermarking introduces sampling disturbances that distort key information and
cause incorrect answers, which the perplexity metric fails to capture.

Although existing methods have explored preserving output quality, they mostly rely on isolated
token confidence, assuming high-confidence tokens are irreplaceable [5, 8–11]. Based on this,
tokens with high-confidence distributions are typically exempt from watermarking. However, this
mechanism relies solely on isolated token confidence, which may misidentify irreplaceable generated
content due to localized informational bias or insufficiency. In particular, complex tasks near or
beyond LLM knowledge boundaries may result in low confidence for critical tokens. Thus, these
methods still encounter watermark-induced quality degradation. For example, Fig 1 shows the
responses of the Llama2-13b model to a math problem from the GSM8K dataset with and without
KGW watermarking[5]. The model originally generates a correct answer, yet watermarking leads to
suboptimal sampling at key positions, causing computational errors. While red-highlighted tokens
denote unwatermarked high-confidence tokens, their confidence levels alone cannot reliably identify
critical information to ensure output quality, as clearly demonstrated in Fig 1. Thus, further research
is needed to enhance the effectiveness of watermarking output quality.

Furthermore, while some studies claim that their watermarking methods are quality-preserving based
on perplexity evaluations[5, 12, 13], our findings indicate that such assessments are inadequate for
capturing fine-grained flaws. Perplexity reflects a model’s predictive ability by averaging inverse
probabilities over the output. However, the actual quality of the output may be dominated by a small
number of critical tokens. Specifically, errors in these pivotal elements can severely degrade the entire
text’s quality, while perplexity may not vary substantially since the fluency and coherence levels
remain unchanged. For instance, as shown in Fig. 1, the watermarked output contains errors in critical
figures that result in an incorrect overall response. Nevertheless, the response remains coherent,
resulting in no significant difference in its perplexity metric. In this case, perplexity cannot indicate the
accuracy of generated content and thus fails to measure text quality comprehensively. In conclusion,
the selection of an appropriate evaluation protocol is crucial for the design of quality-preserving
watermarking techniques aimed at enhancing the accuracy of generated content.

To address the challenges above, we propose a plug-and-play watermarking framework with con-
textual generation states awareness (named CAW), which can be seamlessly integrated with various
existing watermarking techniques to improve text quality. The core idea of our work is to adaptively
adjust the watermarking embedding process through awareness of the impact on the generation
quality. First, CAW incorporates a watermark capacity evaluator to assess the impact of embedding
messages at different token positions through contextual generation states awareness. Specifically,
we define watermark capacity as the importance level of semantic information carried by a token,
which equivalently indicates its bearable watermark strength. Preliminary experimental results show
that contextual generation states are important for assessing watermark capacity, and the synergistic
incorporation of the current token and its contextual generation states yields optimal model perfor-
mance. In addition, a multi-branch pre-generation mechanism is employed in CAW to mitigate the
impact of combining both past and future generation states on generation latency. This mechanism
utilizes tree attention[14] to pre-generate potential sampling strategies and their corresponding proba-
bility branches, enabling efficient decoding iterations. As a plug-and-play framework, CAW can be
seamlessly integrated with existing watermarking methods to minimize potential quality degradation
without compromising their original structure, thus showing good generalization ability and high
practicality. We conduct extensive experiments across two real-world datasets and four foundation
models to evaluate the detection rate and text quality of CAW. Experimental results demonstrate that,
compared to SOTA baselines, CAW achieves superior performance in terms of both watermarking
detection rate and generation accuracy, while maintaining the watermarking robustness and efficiency.
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2 Related Works

Reweighting-based Watermarking. Reweighting-based watermarks work by modifying the model’s
output logits or probability distribution during inference before sampling. Kirchenbauer et al. [5]
propose the first LLM watermarking method using logits reweighting, which randomly splits the
vocabulary into green and red lists, increasing the selection probability of green tokens. Later works
improve this approach from different angles [15, 7]. Liu et al. [15] uses a separate neural network
for vocabulary partition to enhance unforgeability. Zhao et al. [7] adopts a fixed partition instead
of hashing previous tokens, improving security guarantees. Some studies extend watermarking to
multi-bit formats for embedding more information [16–18]. Others focus on improving robustness
against attacks like paraphrasing [19, 20]. These studies primarily emphasize method robustness,
typically evaluating text quality using only basic perplexity measurements. Consequently, achieving
an optimal balance between text quality and robustness remains challenging.

Sampling-based Watermarking. Unlike reweighting-based methods, sampling-based watermarking
preserves the original token probability distribution and instead modifies the sampling procedure.
Aaronson and Kirchner [6] propose the first such method using a pseudo-random hash to alter token
sampling. Kuditipudi et al. [21] introduce two distortion-free sampling-based watermarking strategies.
Christ et al. [22] present cryptographically-inspired undetectable watermarks using a pseudo-random
function. Fu et al. [23] extend Aaronson and Kirchner [6] by introducing uncertainty to enhance
output diversity. Dathathri et al. [24] propose tournament sampling and validate it on commercial
LLMs. Zhu et al. [25] design a dual-watermarking method using contrastive search. These methods
also face the common challenge of balancing quality and robustness.

Existing Efforts on Enhancements of Text Quality. Recent efforts have aimed to improve text
quality during watermarking, using methods such as entropy-based token selection [8, 9, 11], and
semantic-aware vocabulary partitioning [26, 27]. However, entropy-based methods may misidentify
key tokens because they evaluate each token in isolation, ignoring contextual semantics that determine
token importance in meaning. Meanwhile, vocabulary-partitioning strategies are inherently tied to
reweighting-based mechanisms and thus cannot be applied to sampling-based watermarking, limiting
their generalizability across different frameworks. Overall, most techniques use heuristic token
manipulation, often degrading semantic quality. We instead explore contextual generation states for
more adaptive, quality-preserving watermarking (see Appendix A for details).

3 Method

3.1 Framework Overview

This section presents the framework of CAW step by step, illustrating its adaptive watermarking
process (Fig 2). During LLM decoding, CAW operates as a plugin that determines whether and
how strongly to inject a watermark at each token position. This decision is guided by the token’s
watermark capacity, defined as its semantic importance and tolerance to perturbation. Hence, CAW
incorporates a watermark capacity evaluator based on contextual generation states, namely the
probability distribution of previous and subsequent token positions, to assess the impact of watermark
injection at each token position. The watermark capacity prediction is then used to determine whether
to inject a watermark and the intensity of the watermark. To reduce latency from using future context,
a multi-branch pre-generation mechanism is adopted. Tree attention enables efficient pre-computation
of logits for multiple candidates, improving both inference speed and memory usage.

Here, we will gradually introduce the overall procedure in 6 steps: Step 1: Decode M at position i to
obtain the token distribution p(ti) ∈ ∆(V). Step 2: Determine all P potential watermark sampling
or reweighting strategies at position i, where P represents the total number of possible strategies.
The strategy here is determined by the variable controlling watermark strength in various methods,
with different strategies representing different watermarking strengths. We define the sequence
of all candidate tokens at position i as t′i = [t

′(ori)
i , t

′(1)
i , ..., t

′(P )
i ], For each strategy, we get the

corresponding candidate for position i to form the candidate token sequence t′i. Step 3: For each
candidate token in t′i, pre-generate logits at position i+ 1. Perform tree attention decoding [14] to
obtain all candidate distributions p(ti+1), namely [p(ti+1 | t′(ori)i ), p(ti+1 | t′(1)i ), ..., p(ti+1 | t′(P )

i )],
where p(ti+1 | ·) represents the probability distribution at position i+ 1 given the token determined
at position i. Step 4: Combine the distribution at position i with the distributions of its preceding
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Figure 2: Architectural overview of CAW, highlighting its plug-and-play integration capability. CAW
dynamically optimizes watermark embedding through watermark capacity evaluation with contextual
generation states awareness and the multi-branch pre-generation mechanism.

and subsequent contextual positions. Input the joint distribution [p(ti−1), p(ti), p(ti+1 | t′(ori)i )] into
the watermark capacity evaluator E for Ĉi, namely the contextual generation states aware watermark
capacity at position i. Step 5: Based on the predicted watermark capacity Ĉi, select the appropriate
watermark strength and further determine the corresponding watermarking strategy from the P
candidates in Step 2. The token ti ∈ t′i is finalized. Step 6: Use the pre-generated p(ti+1 | ti) to
proceed to the next decoding iteration. In this way, p(ti+1) has been pre-generated, so it will not
cause additional latency. The six key steps outlined above form a complete decode iteration for CAW
as shown in Fig 2, which can be seamlessly and efficiently integrated with both reweighting-based
and sampling-based watermarking methods.

3.2 Watermark Capacity Evaluator

Motivation and Design. This subsection introduces the contextual generation states-aware watermark
capacity evaluator, a core component of the whole framework. It evaluates contextual generation
states to estimate the impact of watermark embedding at each token, enabling CAW to adaptively
watermark with minimal quality degradation.

We define watermark capacity as the significance of the semantic information conveyed by a token,
reflecting its tolerance to watermark strength and inversely related to embedding impact. It is inversely
related to the impact of embedding secret information at the token position. Intuitively, this capacity
depends on both the token and its surrounding context. Accordingly, we design a watermark capacity
evaluator that estimates embedding impact at each position by analyzing contextual generation states
in real time. Figure 9 in Appendix C illustrates the structure of the proposed watermark capacity
evaluator. We use the contextual probability distribution during generation as input and output the
watermark capacity at token position ti. Letting the evaluator be E , the process is:

Ĉi = E
(
[p(ti+k)]

N+

k=−N− ; Θ∗
)
, (1)

where Ĉi ∈ (0, 1) is the predicted capacity, and Θ∗ is the trained parameter. −N−, N+ determine
the contextual range in input. We implement E as a 3-layer fully connected network. To train and
evaluate it, we define a task using human-written responses as references, with GPT-4o marking
quality-critical segments as ground truth. We denote [p(ti+k)]

N+

k=−N− as p(ti) for brevity.

Preliminary Experiments. To determine the optimal evaluator, we conduct preliminary experiments
for comparative analysis. These experiments investigate different evaluators and the influence of
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Figure 3: Comparison of watermark capacity modeling methods (Left: Llama2-13B; Right: Vicuna-
13B), showing that contextual states awareness greatly improves performance.

context length on performance. For baseline comparison, we employ the logit delta evaluator and
the entropy evaluator. All evaluators utilize the probability distribution generated by the LLM to
predict watermark capacity at each token position. Specifically, the logit delta evaluator measures
the gap between the top-1 and top-2 logits; a larger delta suggests stronger model preference and
greater impact from watermarking This approach is similar to the intrinsic evaluation mechanisms
found in vocabulary-based methods, such as the KGW approach [5]. The entropy evaluator computes
token-level entropy, where lower values indicate higher determinism and thus lower watermark
capacity [8, 9, 11]. The structure of our proposed evaluator has been previously described. Due to
the typically large vocabulary size of LLMs, we only utilize a limited number of values (100 in our
experiments) from the probability distribution, specifically those corresponding to the highest logits
at a token position, as input features in our analysis.

Fig 3 presents performance comparisons of various watermark capacity evaluators using precision,
recall, and F1 metrics. Experimental analysis yields three key findings. First, the neural network-
based evaluator outperforms traditional logit delta and entropy methods, benefiting from its ability to
process multidimensional information. Unlike manually crafted statistical features, it uses raw ranked
probability distributions and learns patterns via supervised learning. Second, adding contextual
information significantly improves accuracy over isolated-token input, confirming the value of
contextual generation states for capacity estimation. Third, we explore how context window size
affects performance. Integrating contextual probabilities is consistently beneficial, with longer
historical and future contexts (larger N− and N+) yielding gradual accuracy gains. However,
expanding the window also increases latency due to future-token dependencies in causal decoding.
The best trade-off is achieved with immediate left and right context (N− = 1, N+ = 1), as further
expansion offers limited returns. Overall, neural networks effectively leverage contextual generation
states to outperform statistical baselines, striking a balance between informativeness and efficiency
through targeted context window design. This approach provides stronger modeling of token-level
watermark capacity than manual feature-based methods.

Contextual Generation States-Aware Watermarking. CAW adaptively adjusts watermark strength
based on the predicted token capacity. Tokens with Ĉi > θ are left unmodified, preserving the
original probability distribution and sampling strategy to protect semantically important content. For
tokens with Ĉi < θ, watermarking is applied with strength scaled proportionally to capacity. This
adaptive mechanism can be integrated with different watermarking schemes: for sampling-based
methods, the top-K set is dynamically narrowed based on Ĉi; for reweighting-based methods, the bias
δ applied to token logits is scaled accordingly. The specific integration strategies with both categories
are detailed in Appendix D.

3.3 Multi-branch Pre-generation Mechanism

To mitigate the latency introduced by evaluating future token distributions in contextual watermark
capacity estimation, CAW incorporates a multi-branch pre-generation mechanism based on tree
attention, as illustrated in Fig 4. At each decoding step, multiple candidate tokens are generated in
parallel, corresponding to different watermark strength strategies. Naively decoding each candidate
sequentially would incur a high computational cost, while direct batch decoding would consume
substantial GPU memory when the number of candidates is large. To address this, we adopt the
tree attention technique [14], which treats all candidate tokens as child nodes sampled from the
same parent distribution. A specially constructed attention mask disables attention between sibling
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candidates while preserving attention to shared prefix tokens, allowing all candidate branches to be
processed in a single forward pass. This approach significantly reduces both latency and memory
overhead compared to traditional decoding, enabling efficient integration of the watermark capacity
evaluator during generation. Further architectural details can be found in Appendix E.

4 Experiments and Analysis

4.1 Experiments Setups

(a) Sequentially Prediction (Decode for 𝑷𝑷 Times)

(b) Tree Attention-based Prediction (Decode Only Once)
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Figure 4: Details of tree attention decoding. (a)
Sequential attention for each t3 in t′3 requires P +1
computations. (b) Tree attention mask enables a
single computation for all candidates by zeroing
others’ mask values.

We use Llama2 and Vicuna-v1.5 models (7B and
13B) to evaluate the generalizability of CAW.
Two benchmark datasets are used: MMLU (so-
ciology) to assess factual retention and GSM8K
for mathematical reasoning. Unlike open-ended
tasks, these datasets provide standardized an-
swers to better reflect watermark impact. We
apply our plug-and-play watermark framework
to three base methods: KGW [21], Unigram [7],
and EXP [21]. For quality-enhanced plugins,
we compare with the entropy-based strategy [8],
with detection limited to generation-only access
(no prompt/model). We report AUROC and F1
for detection, and task-specific accuracy for text
quality, instead of perplexity, to better capture se-
mantic degradation. All experiments use 5-shot
chain-of-thought prompting with greedy decod-
ing and 200-token limits. Each setup is run five
times. Parameters like δ (for KGW/Unigram)
and top-K (for EXP) are tuned. We compare
“hard” and “soft” watermark settings based on
strength. Implementation follows [28], using a
32GB V100 GPU. More implementation details
are provided in Appendix F.

4.2 Main Results

Tab 1 shows that CAW consistently outperforms baselines: with similar detection rates, it achieves
higher accuracy, and with similar accuracy, it yields better detection performance.

Reasoning Capabilities. From the results of the GSM8K dataset, current text watermarking methods
still inevitably undermine the emerging capabilities of LLM in logical reasoning. Compared to the
three anchor watermarking methods and the entropy-based baseline method, CAW achieves the
optimal trade-off between task accuracy and detection rate. With few-shot and chain-of-thought
prompting, LLM responses to GSM8K tasks include detailed reasoning, providing space for wa-
termark embedding. Even without watermarks, model performance varies due to differences in
architecture and training; for example, Vicuna-v1.5 outperforms Llama2 on reasoning tasks. How-
ever, due to differing probability distributions, achieving similar detection rates across models may
require adjusting parameters—e.g., Vicuna requires a larger δ in vocabulary-based methods than
Llama2. Watermarking methods also vary in effectiveness; EXP shows stronger performance in
reasoning compared to vocabulary-based approaches. Overall, despite differences in model capability
and watermark type, all models show consistent accuracy degradation after watermark injection.
As shown in Tab 1, CAW significantly improved task accuracy while maintaining the detection
rate compared to baselines. In the 7b and 13b versions of the Llama2 and Vicuna-v1.5 models,
CAW achieved the best trade-off between accuracy and detection rate. The CAW method achieves a
detection rate similar to that of the Hard baseline while also attaining accuracy comparable to that
of the Soft baseline. For example, for the Llama2-13b model, CAW improved the detection rate
by 28.32%, 22.31%, and 41.06% compared to three baseline watermarking methods, despite the
detection rates being similar.
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Table 1: Detection rates and task accuracy comparison between baseline methods (KGW, UNI, EXP)
with Soft/Hard strength settings and the proposed CAW. Results demonstrate CAW’s superior text
quality and detection performance through joint optimization.

G
SM

8K
Llama2-13b Vicuna-13b-v1.5 Llama2-7b Vicuna-7b-v1.5

Acc. AUC F1 Acc. AUC F1 Acc. AUC F1 Acc. AUC F1

No watermark 0.2760 - - 0.3080 - - 0.1500 - - 0.2060 - -

KGW-Hard 0.1748 0.9177 0.8552 0.1648 0.9369 0.8728 0.0864 0.9023 0.8307 0.0936 0.9559 0.8894
KGW-Soft 0.2072 0.8836 0.8140 0.2396 0.8686 0.8020 0.1140 0.8496 0.7818 0.1436 0.8994 0.8253

KGW+entropy 0.2114 0.8803 0.8073 0.2468 0.8626 0.7978 0.1044 0.8830 0.8154 0.1592 0.8823 0.8049
KGW+ours 0.2243 0.9207 0.8535 0.2680 0.9120 0.8379 0.1105 0.9169 0.8445 0.1572 0.9474 0.8886

UNI-Hard 0.1820 0.9003 0.8272 0.1936 0.9421 0.8741 0.0896 0.8939 0.8244 0.1004 0.9440 0.8761
UNI-Soft 0.2125 0.8515 0.7869 0.2532 0.8481 0.7819 0.1180 0.8013 0.7472 0.1492 0.8660 0.7923

UNI+entropy 0.2191 0.8694 0.8177 0.2306 0.8537 0.7893 0.1086 0.8447 0.7884 0.1402 0.8812 0.7996
UNI+ours 0.2226 0.9139 0.8460 0.2493 0.9267 0.8522 0.1104 0.9192 0.8517 0.1500 0.9312 0.8582

EXP-Hard 0.1744 0.9561 0.9033 0.1820 0.9496 0.8857 0.0816 0.9535 0.8983 0.1388 0.9138 0.8488
EXP-Soft 0.1968 0.9199 0.8539 0.2148 0.8902 0.8323 0.1076 0.9105 0.8429 0.1576 0.8724 0.8077

EXP+entropy 0.2036 0.9394 0.8811 0.2352 0.9048 0.8394 0.1060 0.9295 0.8636 0.1600 0.8642 0.7958
EXP+ours 0.2460 0.9462 0.8970 0.2412 0.9445 0.8820 0.1084 0.9640 0.9150 0.1604 0.9032 0.8406

M
M

L
U

No watermark 0.7114 - - 0.6318 - - 0.5373 - - 0.6219 - -
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EXP+ours 0.6269 0.9122 0.8364 0.6020 0.9335 0.8654 0.5124 0.8575 0.8145 0.6070 0.9181 0.8454
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Figure 5: Box plots of perplexity and accuracy for non-watermarked text, baselines (KGW, UNI, EXP),
and CAW. P-values show no significant perplexity difference but clear accuracy gaps, highlighting
perplexity’s weakness in reflecting text quality.

Knowledge Memory Capabilities. Results on the MMLU dataset indicate that existing watermarking
methods still negatively impact LLMs’ ability to recall memorized knowledge. Unlike GSM8K,
which emphasizes step-by-step reasoning, MMLU focuses on factual recall embedded in the model’s
parameters. We selected the sociology subset, which contains multiple-choice questions testing
fixed knowledge points without involving reasoning or computation. The few-shot, chain-of-thought
prompting setup allows the model to analyze the question and options before selecting an answer
from A, B, C, or D. As shown in Tab 1, CAW significantly improves accuracy compared to baselines
while preserving a high detection rate. These findings highlight CAW ’s advantage in maintaining
watermark robustness without compromising the model’s knowledge memory capabilities, offering a
more practical and reliable watermarking solution.

Models of different scales. To evaluate CAW across model scales, we tested both 7B and 13B LLMs.
Although their baseline capabilities differ, they show consistent trends under varying watermark
strengths. For example, with the EXP method at around 90% F1 detection, accuracy on GSM8K
dropped by 36.81% (13B) and 45.60% (7B) using the baseline, but only 10.97% (13B) and 27.73%
(7B) with CAW. Smaller models are more impacted, likely due to simpler architectures and fewer
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Figure 6: Pareto front comparisons of CAW and baselines across Llama2 and Vicuna-v1.5 (7B/13B),
with Soft, Medium, and Hard watermarking settings. Results show that CAW consistently achieves a
better trade-off between detection rate and task accuracy.

parameters, making them more sensitive to watermark disruption. In contrast, larger models exhibit
greater determinism, enhancing capacity evaluation and preserving output quality.

Perplexity Analysis. In the main experiment, we use task accuracy to assess fine-grained text quality.
Here, we further examine the validity of perplexity. Using Vicuna-7B on GSM8K for generation and
Llama2-13B for perplexity evaluation, we compared watermark-free, baseline, and CAW outputs.
As shown in Fig 5, perplexity distributions showed no significant differences, while task accuracy
varied substantially, indicating perplexity fails to reflect real quality differences. This highlights the
need for task-specific accuracy in watermark evaluation. Overall, CAW improves output quality
without compromising robustness, making it a practical, plug-and-play enhancement for existing
watermarking methods.

4.3 Trade-off Performance Analysis

Building on the main results, we further analyzed the detection–quality trade-off between CAW
and baseline methods under varying watermark strengths, as illustrated in Fig 6. For each method,
we adjust watermark strength across three settings: soft, mid, and hard. These tiers offer practical
insights—soft configurations preserve text quality with moderate detectability, hard ones favor
detection at the cost of quality, and mid settings aim for a balance. Experiments on both Llama2
and Vicuna-v1.5 models (7B/13B) using GSM8K demonstrate that CAW consistently outperforms
its baselines, achieving full Pareto optimality in all cases. This dominance holds across all model
scales, confirming that CAW offers a generalizable and architecture-agnostic solution for balancing
watermark detectability and generation quality.

4.4 Robustness Analysis

Figure 7 shows the impact of CAW on the attack robustness of the original method. Here, we
conducted experiments using the Llama2-13b and Vicuna-v1.5-13b model on the GSM8K dataset,
comparing the attack robustness of three baseline watermarking methods along with the case of CAW.
In this context, the detection rate loss on the y-axis refers to the value by which the detection rate of
the watermarking method decreases compared to the original case. That is, the smaller the detection
rate loss, the higher the attack robustness.

We test three attack methods including Word-S, Word-D and Word-S-Context. Word-S method refers
to the random synonym replacement of words. Word-D method refers to the random deletion of
words, and Word-S-Context method refers to replacing synonyms based on contextual relevance using
a language model. For fairness, we maintain the same probability of random replacement or deletion
for each method. For each data point, we conducted five repeated trials to obtain the mean and
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Figure 7: Detection rate loss under three attacks on watermarked Llama2-13B and Vicuna-v1.5-13B,
with/without CAW, indicating that CAW preserves original robustness without significant impact.

variance. Due to the use of a fixed vocabulary partition, the Unigram method itself has a high level of
robustness. In contrast, the other two methods that regenerate the random seed based on prefix tokens
exhibit relatively lower robustness. Word-D attack undermines overall robustness most significantly.
In general, CAW has no significant impact on the robustness of various watermarking methods.

4.5 Latency Analysis
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Figure 8: Time and memory overhead of different
CAW implementations (tree attention, sequential,
batch), normalized to the non-watermarked baseline.
Tree attention shows clear efficiency advantages.

As watermarking algorithms are embedded in
LLM inference, minimizing their impact on
speed is critical for practical use. We evaluate
the time and memory overhead of CAW un-
der identical model, prompt, and generation
configurations, averaging results over 10 runs.
The baseline (set to 1) is the model without wa-
termarking. Figure 8 reports relative time and
memory usage during inference. Compared to
the three baseline methods, CAW introduces
less than 15% extra latency due to its multi-
branch pre-generation mechanism. Memory
overhead remains within 5% for KGW and
UNI, and around 10% for EXP due to more
candidate branches. Since CAW does not alter
the detection process, only generation overhead is analyzed. As a comparison, we also provide the
sequential and batch decoding implementations of CAW, demonstrating the spatiotemporal efficiency
advantages of the multi-branch pre-generation mechanism.

5 Conclusion

Watermarking has become a significant mechanism for discerning AIGC from human-generated con-
tent. In this paper, we propose CAW, a plug-and-play and model-agnostic watermark capacity-aware
watermarking framework, which can be seamlessly integrated with various existing watermarking
techniques to enhance generation quality. Unlike existing watermarking methods that modify the
sampling process of LLMs with heuristic rules, an adaptive watermarking embedding strategy is
employed in CAW to adjust the watermark strength, minimizing potential degradation in content
quality. Specifically, CAW incorporates an online watermarking capacity evaluator to model the wa-
termark capacity at different token positions by analyzing the contextual generation states. Moreover,
CAW adopts a multi-branch pre-generation mechanism to prevent the decrease in efficiency caused
by the use of contextual information during generation. The effectiveness of our method has been
verified through extensive experiments on datasets spanning multiple domains, showcasing superior
performance in terms of both detection rate and generation quality compared to various baselines.
Overall, CAW ensures that the watermark remains effective without substantially compromising
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task-specific performance, enhancing the text generation quality while maintaining the watermark de-
tection effectiveness. In the future, we hope to combine our method with more diverse watermarking
frameworks, such as multi-bit watermarking and sentence-level watermarking.

References
[1] Mike Perkins. Academic integrity considerations of ai large language models in the post-

pandemic era: Chatgpt and beyond. Journal of University Teaching and Learning Practice, 20
(2), 2023.

[2] Jie Ren, Han Xu, Pengfei He, Yingqian Cui, Shenglai Zeng, Jiankun Zhang, Hongzhi Wen,
Jiayuan Ding, Hui Liu, Yi Chang, et al. Copyright protection in generative ai: A technical
perspective. arXiv:2402.02333, 2024.

[3] Alexei Grinbaum and Laurynas Adomaitis. The ethical need for watermarks in machine-
generated language. arXiv:2209.03118, 2022.

[4] Xuhong Wang, Haoyu Jiang, Yi Yu, Jingru Yu, Yilun Lin, Ping Yi, Yingchun Wang, Qiao Yu,
Li Li, and Fei-Yue Wang. Building intelligence identification system via large language model
watermarking: A survey and beyond. arXiv:2407.11100, 2024.

[5] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A Watermark for Large Language Models. In ICML, pages 17061–17084, 2023.

[6] Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs, 2022. https://www.
scottaaronson.com/talks/watermark.ppt.

[7] Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv:2306.17439, 2023.

[8] Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv:2305.15060,
2023.

[9] Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text water-
marking detection method. arXiv:2403.13485, 2024.

[10] Bram Wouters. Optimizing Watermarks for Large Language Models. In ICML, pages 53251–
53269, 2024.

[11] Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models.
arXiv:2401.13927, 2024.

[12] Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang.
Unbiased watermark for large language models. arXiv:2310.10669, 2023.

[13] Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A Resilient and
Accessible Distribution-Preserving Watermark for Large Language Models. In ICML, pages
53443–53470, 2024.

[14] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. SpecInfer: Accelerating Large
Language Model Serving with Tree-Based Speculative Inference and Verification. In ASPLOS,
pages 932–949, 2024.

[15] Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and S Yu Philip. An
Unforgeable Publicly Verifiable Watermark for Large Language Models. In ICLR, 2023.

[16] Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and
Xu Sun. Towards Codable Watermarking for Injecting Multi-Bits Information to LLMs. In
ICLR, 2024.

[17] KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. Advancing Beyond Identification: Multi-bit
Watermark for Large Language Models. In NAACL, pages 4031–4055, 2024.

10

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt


[18] Batu Guan, Yao Wan, Zhangqian Bi, Zheng Wang, Hongyu Zhang, Pan Zhou, and Lichao
Sun. Codeip: A grammar-guided multi-bit watermark for large language models of code.
arXiv:2404.15639, 2024.

[19] Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang
Tang. A robust semantics-based watermark for large language model against paraphrasing.
arXiv:2311.08721, 2023.

[20] Ruisi Zhang, Shehzeen Samarah Hussain, Paarth Neekhara, and Farinaz Koushanfar. REMARK-
LLM: A Robust and Efficient Watermarking Framework for Generative Large Language Models.
In USENIX Security, pages 1813–1830, 2024.

[21] Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-
free watermarks for language models. arXiv:2307.15593, 2023.

[22] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable Watermarks for Language Models. In
COLT, pages 1125–1139, 2024.

[23] Jiayi Fu, Xuandong Zhao, Ruihan Yang, Yuansen Zhang, Jiangjie Chen, and Yanghua Xiao.
GumbelSoft: Diversified Language Model Watermarking via the GumbelMax-trick. In ACL,
pages 5791–5808, 2024.

[24] Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes
Welbl, Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable
watermarking for identifying large language model outputs. Nature, 634(8035):818–823, 2024.

[25] Chaoyi Zhu, Jeroen Galjaard, Pin-Yu Chen, and Lydia Chen. Duwak: Dual Watermarks in
Large Language Models. In ACL Findings, pages 11416–11436, 2024.

[26] Yu Fu, Deyi Xiong, and Yue Dong. Watermarking Conditional Text Generation for AI Detection:
Unveiling Challenges and a Semantic-Aware Watermark Remedy. In AAAI, pages 18003–18011,
2024.

[27] Liang Chen, Yatao Bian, Yang Deng, Deng Cai, Shuaiyi Li, Peilin Zhao, and Kam-Fai Wong.
WatME: Towards Lossless Watermarking Through Lexical Redundancy. In ACL, pages 9166–
9180, 2024.

[28] Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking.
arXiv:2405.10051, 2024.

[29] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[30] Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What Language Model Architecture and Pretraining Objective
Works Best for Zero-Shot Generalization? In ICML, pages 22964–22984, 2022.

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv:2302.13971, 2023.

[32] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90% chatgpt quality, 2023. https://vicuna.lmsys.org.

[33] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv:2009.03300,
2020.

[34] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv:2110.14168, 2021.

11

https://vicuna.lmsys.org


[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

12



A Further Discussion on Related Work

Existing Efforts on Enhancements of Text Quality. Currently, some research efforts are also
attempting to enhance the output text quality during the watermarking process[12, 8–10, 26, 27].
Some studies have explored unbiased watermarking methods to maintain text quality. For example,
Hu et al. [12] explore unbiased watermark framework by applying certain reweighting functions to
the probability distribution. Such prompt-dependent detection methods face practical limitations,
as original prompts are rarely available, especially for malicious AI-generated text where only the
final output is disseminated. Meanwhile, requirement for the original model also leads to significant
computational overhead. Therefore, despite having good theoretical properties, their practical
effectiveness in real-world scenarios is limited.

Other research in this area uses entropy as a criterion for assessing the importance of tokens, enhancing
the quality of the watermark text[8, 9, 11]. Lee et al. [8] improved the output quality and detection
effectiveness of watermarks by removing low-entropy segments during the generation and detection
of watermarks. Lu et al. [9] propose an entropy-based watermark detection method that gives higher-
entropy tokens higher weights during the detection phase. Liu and Bu [11] introduce an adaptive
watermarking strategy that includes a framework for watermark token identification, which effectively
identifies tokens with high entropy distribution. However, these entropy-based works sometimes
require the use of prompts and generation models to reproduce token logits during the detection
phase. In a realistic detection phase, considering time efficiency and availability, this hypothesis
of possessing a prompt and generation model is stringent and difficult to achieve. Furthermore,
the entropy of a single isolated token presents challenges related to insufficient information and
localized informational bias, lacking contextual semantic awareness. This limitation may result in the
misidentification of irreplaceable tokens.

Several other works utilize semantic-aware vocabulary partitioning methods to enhance watermarking
effectiveness. Fu et al. [26] propose a watermarking method for conditional text generation tasks, by
considering the semantic similarity between token embeddings while partitioning vocabulary. Chen
et al. [27] leverages linguistic prior knowledge regarding the inherent lexical redundancy of LLM
vocabulary to prevent the unavailability of suitable tokens caused by vocabulary partition. However,
these methods can only be applied to vocabulary partition-based watermarking and cannot be used
for sampling-based watermarking. They also overlook that even with embedding similarity, replacing
critical words can substantially impair quality, while token replaceability is highly context-dependent.

In conclusion, most current watermarking methods use heuristic rules to modify the token sampling
process of language models, inevitably leading to the suboptimal selection of semantically important
tokens. While numerous studies have explored various approaches to balance watermark detection
and the quality of output text, opportunities for further improvement remain. Therefore, we aim to
fully consider the differentiated capacity for watermarking information within text content and make
more effective use of the internal states during the inference of large models, jointly optimizing the
security of the watermark and the generated text quality.

B Problem Formulation

Here, we formulate the white-box watermarking problem from a holistic perspective. Note that in our
setup, the input prompt and the generative model are not accessible for detection, considering real-
world conditions. The watermarking framework usually consists of two components, the watermark
encoding process where the hidden information is embedded within the output of model M, and the
watermark detection process where a hypothesis test is applied to the output sequence y to identify its
source.

Consider a generative language model M ∈ V∗ → ∆(V) with a vocabulary V , and a prompt
sequence x ∈ V∗. The model provider shares with the watermark detector a random key k ∈ K∗. The
text generation process with watermarking is denoted as:

y = GenerateWM(M, x, k),V∗ ×K∗ → V∗ (2)

where GenerateWM represents the generation function with watermarking, and y ∈ V∗ is the output
text sequence embedded with secret information. When model M calls GenerateWM to perform
the generation process, it first calculates the probability distribution p(ti) ∈ ∆(V) at position i
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independently. Then, the distribution p(ti) is reweighted, or the subsequent sampling strategy is
modified. A certain decoding function that varies according to different watermarking methods
f : K ×∆(V) → V is employed, to map the key element ki and the distribution p(ti) to a certain
next token.

The detection process is fundamentally a hypothesis testing procedure, with a null hypothesisH0: The
text sequence is generated with no knowledge of GenerateWM. Then a certain detection procedure,
for example, a z-statistic is performed to determine whether y′ ∈ V∗ has been watermarked:

z = Detect(y′, k),V∗ ×K∗ → R (3)

If the z-score z exceeds the predetermined threshold, it is considered that y′ carries a watermark,
leading to the rejection of the null hypothesis H0. Given practical considerations, it is stipulated that
the model M and prompt x are excluded from the detection process. This exclusion arises from the
potential inability to obtain the corresponding prompt during detection and the considerable time
consumption associated with using the original model to regenerate probability distributions.

In general, various watermarking methods employ distinct watermark generation functions
GenerateWM(M, x, k) and detection processes Detect(y, k). Yet, the overall architecture typically
adheres to the framework outlined above.

C Details of Watermark Capacity Evaluator

Let us denote the evaluator as E , this process can be formulated as follows:

Ĉi = E
(
[p(ti+k)]

N+

k=−N− ; Θ∗
)
, (4)

Here, Ĉi in (0, 1) represents the predicted watermark capacity of token ti, and Θ∗ represents the well-
trained parameter of the classifier. The parameters −N− and −N+ regulate the extent of contextual
information considered in the input for E . The specific architecture of E is not restricted. In practice,
we have chosen to implement a three-layer fully connected network. To evaluate watermark capacity,
we establish a task that trains the evaluator and assesses the performance of both our proposed
evaluator and other algorithms in modeling watermark capacity. This task leverages original human
responses from the dataset as reference answers, and utilizes advanced language models (such as
GPT-4o) to automatically identify key textual segments that significantly impact output quality, which
are then annotated as the ground truth for watermark capacity measurement. Utilizing this task, we
can train our proposed watermark capacity evaluator. For simplicity, we denote [p(ti+k)]

N+

k=−N−

as p(ti). The parameters of E , denoted as Θ, as are optimized based on the training set with a
cross-entropy optimization objective.

Θ∗ = argmin
Θ

− 1

|T |
∑

(p(ti),Ĉi)∈T

Ĉi log(E(p(ti); Θ))

+(1− Ĉi) log(E(p(ti); Θ))).

(5)

Figure 9 illustrates the structure of the proposed watermark capacity evaluator.

D Mechanisms of Contextual Generation States-Aware Watermarking

The proposed capacity evaluator enables dynamic estimation of each token’s watermark capacity,
which directly informs its optimal watermark strength. This adaptive approach maximizes watermark
injection while preserving output accuracy, achieving superior trade-offs between detection reliability
and text quality. Specifically, the capacity-to-strength conversion follows a linear mapping scheme
with an empirically determined threshold θ. Tokens with predicted capacity Ĉi > θ receive full pro-
tection through the original probability distribution and sampling strategy, safeguarding semantically
critical positions. For tokens with Ĉi < θ, the system applies watermarking with strength scaled by
their evaluated capacity.

Now, we will discuss combining the watermark capacity evaluator mentioned in the above section
with different watermarking methods when we have Ĉi < θ at position i. Considering the original
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Figure 9: The structure of the contextual generation states-aware watermark capacity evaluator,
which can assess the impact of embedding messages at different token positions. It processes the
joint probability distribution of three consecutive tokens (current token position i with its contextual
neighbors i− 1 and i+ 1) through a deep neural network-based evaluator to predict the normalized
watermark capacity score (Ĉi ∈ [0, 1]) for each token position.

probability distribution as p(ti), the original sampling strategy without watermark is:

t
(ori)
i = argmax

t∈V
p(ti) (6)

For sampling-based methods, the watermark strength variable can be the restriction of the Top-K
candidate pool during each sampling, or a coefficient in the watermark sampling function. Here,
we will explain with Top-K being the watermark strength variable for simplicity. In Step 2, the
framework determines all possible watermark strategies, generating all potential candidates for token
ti. Sampling is performed only among the candidate pool, which contains the tokens that rank in
the top-K by probability. Let the original top-K be K. As mentioned in 3.2, for the token ti, if
we already have the prediction of the evaluator from equation 4, we can correspondingly calculate
K ′ = β θ−Ĉi

θ K. However, in Step 2, since p(ti) = [p(ti−1), p(ti), p(ti+1|t′(ori)i ) has not been
obtained yet, it is temporarily impossible to calculate ŷ and K ′. Therefore, we proactively generate
all potential candidates for the token ti according to all possible values of K ′. All possible values
of K ′ are [1, 2, ..., round(βK)]. Although the watermark capacity value output by the NN-based
evaluator is continuous, the corresponding watermark strength variable top-k is discrete. Consider a
specific watermark strength variable top-K as K. The set of tokens ranked in the top K according to
p(ti) is denoted as VK . The corresponding watermark sampling method is:

twm
i = argmax

t∈topK
F(ti)

1
p(ti) (7)

where F is a random mapping function from V to R, generated using secret key k as a random seed.
Since the values of K are discrete, it is feasible to list all possible K values that the watermark
capacity evaluator might provide, and subsequently enumerate all feasible sampling strategies.

For reweighting-based watermarking methods, the watermark strength variable is the bias value δ
added to the original probability distribution.

δ′ = β
θ − Ĉi

θ
δ (8)

Notice that in the series of methods based on reweighting-based methods led by KGW, although
the watermark strength variable δ is continuous, the division of the red-green list is still discrete.
Therefore, the actual sampling either selects the token with the highest logits from the green table or
the token with the highest logits from the red table, making the specific strategy still discrete.

In general, the preliminary investigation reveals that LLM-generated text inherently possesses
measurable watermark capacity characteristics. Experimental evidence confirms that the internal
inference states of large models reliably indicate watermark capacity potential, with our proposed
evaluator demonstrating superior modeling capabilities.
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E Explanations on Multi-branch Pre-generation Mechanism

We now present a detailed introduction to the proposed multi-branch pre-generation mechanism,
which is a specific elaboration on Step 2 and Step 3 in subsection 3.1. As illustrated in Fig 2,
this mechanism aims to reduce the negative impact of the watermark capacity evaluator on time
efficiency in the overall quality-enhancement framework. While the contextual generation states-
aware watermark capacity evaluator effectively determines token importance and corresponding
watermark strengths, its dependency on next-token probability distributions introduces computational
latency. Our solution pre-generates reweighting or sampling strategies across different watermark
strength levels, producing candidate tokens for each position i. This approach enables parallel
LLM decoding while avoiding sequential processing delays, preserving the base model’s generation
efficiency.

For each sampling strategy, the framework pre-generate logits for all possible candidate tokens
t′i = [t

′(ori)
i , t

′(1)
i , ..., t

′(P )
i ] in Step 3, and perform tree attention decoding [14] to obtain all candidate

distributions p(ti+1). Here, P is the total number of sampling strategies, which corresponds to the
size of the watermark strength variable K. Notice that different strategies may correspond to the
same t′i, and the number of t′i candidates must be equal to or less than K.

Here, we elaborate on the details of tree attention. Most of the widely used LLM architectures use
transformers as the backbone, and attention is the core of each transformer layer[29]. Currently,
most generative language models adopt a decoder-only architecture that utilizes only the transformer
decoder part, which has been shown to be highly effective for text generation tasks[30]. In decoder-
only architecture, the attention calculation is causal. When generating each new token, the model
relies only on the previously generated tokens. To ensure that the model does not use non-causal
information when calculating attention, an attention mask strategy is employed, limiting the visibility
of the self-attention mechanism. Let A be the matrix of attention scores, and the causal attention
mask is as follows:

mask(A)jk =

{
Ajk, if j ≥ k

−∞, if j < k
0 ≤ j ≤ i. (9)

Ajk represents the attention value between token ti and tj , and mask(A)jk represents the result of
masking the attention value between ti and tj . In other words, the attention scores for all prefix tokens
are retained normally, while the attention scores for subsequent tokens are set to −∞, indicating that
the attention output of the j-th token is independent of the subsequent tokens. In Step 3, we need to
make the next inference for P + 1 candidates of t′i simultaneously. If we calculate p(ti+1|t′(ori)i ) for
each candidate t′(j)i sequentially, as shown in Fig 4, it would result in P + 1 calculations, consuming
a substantial amount of computation time. For methods where P can be relatively large, directly
treating the P + 1 token sequences as a batch and allowing the LLM to perform batch decoding
would consume a significant amount of GPU memory.

Therefore, we draw on the tree attention decoding method [14]. Note that all the candidates t′i
are sampled from the same distribution p(ti), and they can be viewed as P + 1 child nodes of a
parent node. For each child node t′(j)i , the only meaningful prefix essentially consists of t(i−1) and
the tokens preceding it; the other candidates for ti that are at the same level do not have a causal
relationship with it. Therefore, in the attention mask, it is sufficient to set the attention scores of each
candidate with respect to the other candidates to −∞.

Figure 4 shows the details of the tree attention decoding for t′i. Let us be at the i-th step, where
the identified prefix tokens are [t0, t1, ..., ti−1]. This includes the tokens within the prompt and
the tokens that have already been generated. Let all possible candidate tokens be t′i, that is, t′i =
[t
′(ori)
i , t

′(1)
i , ..., t

′(P )
i ]. Therefore, for all confirmed prefix tokens [t0, t1, ..., ti−1], the attention mask

remains unchanged and is still as shown in 9. For the candidate t′i, we have:

mask(A)(jk) =

{
A(jk), j ≥ k

−∞, j < k or ψ(j, k)
0 ≤ j ≤ i+ P, (10)

where ψ(j, k) ≡ (i ≤ j ≤ i + P ) and (i ≤ k ≤ i + P ). Based on the lower triangular attention
mask matrix of the basic causal model, mask(A)(jk) between ti and tj that satisfies ψ(j, k) is also
set to −∞. The candidates ti are in a parallel relationship, and only one of them will be determined
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as the final result. Therefore, each of them only computes attention with the prefix tokens that form
the sequence. In this way, the operation can be completed in one computation, avoiding the time
overhead caused by repeated calculations. In addition, this approach saves GPU memory resources
compared to directly using a batch decoding strategy.

In Step 4 and Step 5, we select the corresponding watermark strength based on the calculated
watermark capacity, which means finalizing the watermarking strategy. For different models, the
variables controlling the watermark strength vary. In vocabulary partition-based methods like KGW,
the bias value δ added to the logits of green list tokens represents the watermark strength. In the EXP
method, top−K represents the watermark strength. Once the watermarking strategy is determined,
the model can then decide on the selection of token ti, while also obtaining p(ti+1|ti). We use the
pre-generated p(ti+1|ti) to proceed to the next decoding iteration so it will not cause additional
latency.

F Experiments Setups

Models. We use two large language models, Llama2 [31] and Vicuna-v1.5 [32]. The results in
this article are obtained using the 7B and 13B versions respectively. By conducting experiments on
models with different scales and training methods, we aim to demonstrate the versatility of CAW.

Baselines. Our watermark plugin framework can be directly integrated with existing watermarking
algorithms. Therefore, we selected three established watermarking algorithms as base watermark algo-
rithms to be integrated with different watermark capacity control algorithms. The KGW algorithm[21]
randomly splits the vocabulary into a green list and a red list, and biases tokens in the green list
to facilitate detection. The Unigram algorithm[7] builds on the KGW algorithm by using a fixed
hash key during watermarking to enhance attack robustness. The EXP algorithm[21] employs a
random hash mapping function and biases the selection towards tokens with higher hash values
during watermark detection. We chose the entropy-based method[8] as the baseline for the watermark
capacity control algorithm. Before performing watermark sampling using the base method, it first
calculates the entropy corresponding to the probability distribution of the current token. When
the entropy exceeds a predetermined threshold, watermarking is no longer applied to that token.
Unlike the original method, we take into account more realistic scenarios. Considering efficiency and
feasibility, we do not allow the model and prompt to participate during the detection phase. In other
words, token entropy can only affect the selection during the generation phase, and have no influence
on the detection phase.

Datasets. We selected two representative datasets with standard answers: the MMLU [33] multiple-
choice question dataset and the GSM8K [34] mathematical application problem dataset. The MMLU
dataset, from which we selected the subject of sociology, is primarily used to assess the extent to
which watermarks disrupt the model’s memory of the knowledge itself. The GSM8K dataset is
mainly designed to evaluate the model’s symbolic computation and reasoning capabilities. These two
datasets examine the fundamental capabilities of large models from different perspectives, reflecting
the extent to which watermarks can disrupt the capabilities of large language models. Unlike the
high-degree-of-freedom datasets such as text completion and story generation commonly used in
existing works[35], the dataset we have selected can more comprehensively reflect the extent to which
watermarks disrupt the accuracy of text.

Evaluation Metrics. The evaluation of watermarks focuses on two metrics: detection rate and text
quality. Consistent with previous work, we use the Area Under the Receiver Operating Characteristic
curve (AUROC) and F1 score, two well-established metrics for binary classifiers, as indicators for
watermark detection rate. As for text quality, based on previous discussions, we are no longer using
perplexity as a metric. Instead, we directly use accuracy corresponding to the task. Compared to
perplexity, metrics corresponding to the task reflect the accuracy of the model’s answers, better
demonstrating the impact of the watermark on the model’s knowledge retention and logical reasoning
abilities.

Other Details. For both datasets, a 5-shot prompting method is used in the experiments. At the
same time, the chain of thought technique [36] is also used in prompts, allowing the model to
fully demonstrate its thought process when responding. In this way, the model’s responses contain
information that should be protected, which would affect the overall correctness of the answer if
compromised. At the same time, it also includes tokens of relatively lower importance that can
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withstand a certain degree of replacement. Greedy search is adopted as the sampling method for all
models and datasets. The maximum number of generated tokens for all tasks is set to 200, ensuring
the complete output of the answers. For each data point in Tab 1 and Fig 6, we conducted five
repeated experiments. The key parameters of different watermarking methods have been adaptively
adjusted for different models and datasets. In the vocabulary-based method, γ (the proportion of
green tokens in the whole vocabulary) is consistently set to 0.25, with only δ as the key parameter to
control the watermark strength. In the EXP method, the hash function remains unchanged, and only
top-K serves as the key parameter. Both the baseline method and CAW can adjust the watermark
strength parameter. We refer to implementations with a stronger watermark strength, that is, a higher
detection rate and lower accuracy, as hard baselines, while those with a lower watermark strength are
referred to as soft baselines. The baseline implementation is based on the open-source project from
[28]. As for hardware, the main experiments are conducted on a 32GB NVIDIA V100 GPU.

G Limitation

The datasets used in this study are primarily concentrated on typical and widely used benchmarks.
Although these datasets are representative, our findings may not fully generalize to emerging new
domains with unique knowledge characteristics. Future work should aim to expand the scope of
validation to improve the applicability and generalizability of the method. Additionally, our current
approach focuses on specific watermarking frameworks. In the future, we hope to integrate our
method with more diverse watermarking techniques, such as multi-bit watermarking and sentence-
level watermarking, to further enhance its robustness and flexibility.
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