
ar
X

iv
:2

50
6.

07
31

3v
1

 [
cs

.C
R

]
 8

 J
un

 2
02

5

SCGAgent: Recreating the Benefits of Reasoning Models for Secure Code
Generation with Agentic Workflows

Rebecca Saul∗, Hao Wang∗, Koushik Sen, David Wagner
University of California, Berkeley

{rsaul, hwang628, ksen, daw}@berkeley.edu

Abstract—Large language models (LLMs) have seen
widespread success in code generation tasks for different
scenarios, both everyday and professional. However current
LLMs, despite producing functional code, do not prioritize
security and may generate code with exploitable vulnerabilities.
In this work, we propose techniques for generating code
that is more likely to be secure and introduce SCGAgent, a
proactive secure coding agent that implements our techniques.
We use security coding guidelines that articulate safe
programming practices, combined with LLM-generated unit
tests to preserve functional correctness. In our evaluation,
we find that SCGAgent is able to preserve nearly 98% of
the functionality of the base Sonnet-3.7 LLM while achieving
an approximately 25% improvement in security. Moreover,
SCGAgent is able to match or best the performance of
sophisticated reasoning LLMs using a non-reasoning model
and an agentic workflow.

1. Introduction

Today, language models are widely used to help de-
velopers write code [1]–[3], and many predict that they
will become increasingly effective and popular at generating
code. In fact, Google reports that it already generates 25%
of its code with AI [4]. Unfortunately, researchers have
demonstrated that code generated by language models often
contains security vulnerabilities [5]–[9]. The proliferation
of unsafe code generation models creates a risk that LLMs
will generate code that is insecure or vulnerable, and these
vulnerabilities will go unnoticed and be deployed in pro-
duction code, rendering software open to attack. To this
point, Gartner predicts that, by 2028, 90% of enterprise
software developers will use AI code assistants and, as a
consequence, 25% of software defects will occur because
of AI-generated code [10]. In this paper, we study how to
improve the security of code generated by language models
to reduce the prevalence of security vulnerabilities in such
code.

Researchers have studied several methods to mitigate
this problem. One approach is to include a “security re-
minder” in the LLM prompt, asking the model to avoid
security problems (without further elaboration) [11]. An-
other is to fine-tune the model (e.g., on datasets containing

* Equal contribution.

Figure 1: By pairing an agentic workflow (SCGAgent) and
a non-reasoning LLM (Sonnet-3.7), we are able to match
the performance of proprietary reasoning models (o4-mini)
while surpassing all other baselines on the Func-Sec@1
metric, which measures the percentage of samples that
are both functional and secure. SCGAgent’s performance
remains competitive even when a security reminder is added
to the prompt (blue bars).

examples of vulnerable and non-vulnerable code) to bias it
towards generating code that avoids security problems [12].

We argue that existing methods fail to effectively address
the problem of insecure code generation due to two main
challenges:

• Incompatibility with state-of-the-art models. Fine-
tuning approaches have great potential, but this tech-
nique can only be applied to open models. Unfortu-
nately, the state-of-the-art frontier models are propri-
etary and not available for fine-tuning. Because these
frontier models significantly outperform open models
at code generation [13] [14] [15], the use of open
models for fine-tuning limits the quality of code that
can be generated, improving security at a large cost to
functionality [12].

• Degradation to functionality. The defenses that are
most effective in improving the security of generated
code tend to have a negative effect on the quality of
generated code; empirically, the percentage of code
samples that meet functionality requirements drops sig-
nificantly [8] [16]. Prompting with a generic security
reminder avoids these shortcomings, but unfortunately

https://arxiv.org/abs/2506.07313v1

only improves security by a small amount [8].

In this work, we explore a different approach to im-
proving the security of AI-generated code—using an agentic
workflow. We draw inspiration from the manner in which
we teach humans to avoid vulnerabilities; security experts
craft guidelines for secure coding that help defend against
the most common categories of vulnerabilities, and junior
developers are trained to follow these secure coding prac-
tices. For example, junior programmers might be taught to
“Seed cryptographic pseudorandom number generators with
a high-entropy source of randomness”, to avoid guessing
attacks on cryptographic keys.

In this paper, we introduce SCGAgent, which tries to
teach LLM agents to write secure code in the same way
we would teach a junior developer: by prompting it to
follow security guidelines and best practices. Specifically,
we manually craft detailed secure coding guidelines that,
if followed, should help avoid many security vulnerabilities
(Table 1). We add these guidelines to the prompt, and ask
the model to follow those guidelines.

Prompting a model to follow secure programming guide-
lines requires significant technical innovation. We tried
including a list of all security guidelines in the prompt,
but the model became overwhelmed and the quality and
functionality of generated code dropped dramatically. In-
cluding only a few relevant security guidelines in the prompt
helps security but harms functionality. Therefore, to address
these challenges, we introduce an agentic method to enforce
secure programming guidelines with existing models.

Our approach, SCGAgent, introduces novel ideas for
security enforcement and functionality enforcement. First,
to avoid overwhelming the model with too many security
guidelines, we use the language model to predict which
types of security vulnerabilities might be a risk for the
particular code being generated, and thereby identify which
security guidelines are relevant to the code. We develop
ways to process one security guideline at a time and revise
the code iteratively until all security guidelines have been
followed. Second, we introduce a novel method to counter
degradation of functionality due to the additional security
constraints we enforce. We use our agent to generate both
code and a set of unit tests for that code, then check whether
the (AI-generated) code passes the (AI-generated) test suite.
If the code does not pass, we use the language model to
predict whether the problem is a bug in the code or a
problem in the unit test and revise either the code or unit
test accordingly.

Security enforcement without functionality enforcement
increases security but causes a significant degradation in
functionality metrics; when we add functionality enforce-
ment, SCGAgent’s functionality is restored to that of its
base LLM, while retaining its security gains.

We find that SCGAgent is highly effective with specific
base LLM pairings. We experiment with Claude Sonnet-3.7,
which was (at the time of this research) considered the most
powerful and effective model for code generation. Our eval-
uation on the CWEval benchmark [8] shows that SCGAgent

CWE Description Guideline

20 Improper Input
Validation

Don’t use atoi or atol when converting strings
to numbers; use strtod and strtol instead.

78 OS Command
Injection

Don’t call system(), popen(), or other
funcs that execute a command / start a shell.

120 Classic Buffer
Overflow

When accessing an array, check that the index
is in-bounds before reading or writing to it.

170 Improper Null
Termination

Do not pass a non-null-terminated buffer to
a library function that expects a string.

TABLE 1: Examples of secure coding guidelines.

significantly increases the security of code generated with
Claude Sonnet-3.7: 61% → 76%.

We have also evaluated the security of code generated
by recent reasoning models. Reasoning models represent
perhaps the most exciting breakthrough improvement in
language model capability over the past year, and work
by using more computation at inference time. The latest
reasoning models are notably better than Claude Sonnet-3.7
at generating secure code (61% for Claude Sonnet-3.7 →
67% for o4-mini → 75% for o4-mini + security reminder).
Our experiments indicate that our approach is able to achieve
about the same level of security as the best reasoning models
(76% for our approach, vs 75% for o4-mini + security
reminder), using only non-reasoning models.

SCGAgent has several advantages. First, it improves
security (61% for Claude Sonnet-3.7→ 75% for SCGAgent
with Claude Sonnet-3.7, on CWEval) without significantly
harming the functionality of code (87% → 85%). This
means that SCGAgent can be applied without harming the
quality of code. Second, SCGAgent can be used with the
latest state-of-the-art frontier models for code generation,
since it relies only on prompting and doesn’t need to fine-
tune the model. Third, SCGAgent is easily extended with
new security guidelines (e.g., as new security vulnerabilities
are discovered) and our experiments suggest SCGAgent will
benefit from improvements in language models’ ability to
generate unit tests and predict security risks in code.

SCGAgent also has one significant disadvantage: our
current system is not effective with reasoning models, ap-
parently because unit tests generated by reasoning models
are worse than those from Claude Sonnet-3.7. We have
not explored whether this shortcoming could be addressed
through further refinement of the approach.

In summary, this paper makes the following contribu-
tions:

• We develop an approach (SCGAgent) to help LLMs
generate functional and secure code by combining se-
curity guidelines and LLM-generated unit tests.

• We evaluate SCGAgent and demonstrate that it im-
proves the security of code generated by Claude
Sonnet-3.7.

We will open source our code before publication of the
paper.

2. Related Work

2.1. Language Models for Code Generation

Driven by user excitement following the release of prod-
ucts like GitHub Copilot [17] and initial studies showing
the possibility for massive productivity gains from AI code
assistants [18], code generation has become a focus for
the NLP research community. Today, the flagship general-
purpose models [1] [2] [3] [19] heavily advertise their
code generation capabilities on increasingly difficult code
generation benchmarks [20] [14]. In an effort to build bet-
ter performing and/or more compact models, some have
abandoned the generalist approach, opting to train single-
purpose coding language models [21] [22] [23] [24] [25].
Most recently, models have begun to move beyond the single
coding task paradigm towards full-stack, repository-level
code generation [15] [26] [27]. All approaches are powered
by massive data collection efforts aimed at building large
datasets of high-quality source code, as well as examples of
code and natural language co-occurrence [19] [28].

2.2. Reasoning Models

Initial efforts to improve LLMs focused on training ever-
larger models on growing datasets [29] [30]. Most recently,
scaling test-time compute has emerged as a viable way of
enhancing model performance [31] [32]. Following such a
paradigm, reasoning models, which are trained to produce
long chains of thought before answering user questions,
have emerged as the dominant LLMs on complex tasks,
rivaling human-expert performance on competition coding,
competition math, and Ph.D.-level science questions [1].
Though the exact architecture and training algorithm of
proprietary, state-of-the-art, reasoning models is unknown,
the best open-source replicas have achieved competitive
results using extensive reinforcement-learning (RL) in post-
training [3].

2.3. Secure Code Generation

Many studies have shown that while LLMs excel at
writing functional code, the code they produce is often ex-
ceedingly insecure [5] [6] [7] [33] [9] [8]. [5], which focuses
specifically on GitHub Copilot, finds that 27.25% of the
model’s code suggestions are vulnerable. This result aligns
with that of [6], a multi-model, multi-language evaluation
that finds that on average, LLMs suggest vulnerable code
30% of the time, and that more capable models have a higher
likelihood of producing insecure code. The conclusions of
other surveys are even more alarming, with [7], which only
evaluates C code, determining that at least 51.24% of GPT-
3.5-produced programs are vulnerable. Though the precise
estimates vary due to evaluation of different models with
different coding tasks, all studies agree that the propensity
of current coding-assistants to produce vulnerable code is a
serious problem.

In response, a new line of research has emerged seeking
to improve the security of LLM-generated code. Training-
based techniques include SVEN [34], which learns a prefix
vector to prompt the LLM in continuous space, and Safe-
coder [12], which directly fine-tunes the LLM to improve
code security; these methods by design require access to
model weights, procluding their use with proprietary LLMs.
Other work has prioritized inference-time methods. Some re-
search has targeted the input prompt [35]—for example, [11]
surveys the efficacy of 15 different prompting strategies,
including self-consistency, chain-of-thought, and persona,
for secure code generation. By comparison, [16] focuses
on output generation via constrained decoding; similarly to
SCGAgent’s security guidelines, their constraints are based
on well-known security practices, but are conveyed only
through keywords or templates, rather than natural language
sentences (see Table 1). More work by [36] explores equip-
ping LLMs with static analyzers, yet concurrent research
raises concerns about this approach. In one study [37], au-
thors performed manual analysis on 260 code samples from
InCoder [38] and GitHub Copilot [17] and compared their
detection rate with those of CodeQL [39] and Bandit [40],
popular static analyzers. They found that manual analysis
increased the number of samples detected as vulnerable
by over 50 percentage points for both static analyzers and
models.

AutoSafeCoder [41] is the most similar work to SC-
GAgent. AutoSafeCoder also takes an agentic approach to
secure code generation, with separate LLM modules facili-
tating static analysis and fuzzing. Prior work has highlighted
several challenges with using LLMs for static analysis and
vulnerability detection, including a high false positive rate,
lack of robustness, and poor generalization to new vulner-
abilities [42]. Fuzzers, which are dynamic analysis tools,
search for security vulnerabilities in programs by passing
them unexpected inputs and seeing if they crash [43]. In
contrast to static analysis, fuzzing produces highly reliable
results. Because fuzzing is dynamic, and crashing is a clear
sign that a program is not executing as intended, fuzzers are
extremely unlikely to produce false positives. While false
negatives can occur, as it is impossible to try every possible
input on a program, a high-quality fuzzer, run for a sufficient
length of time, can achieve high code coverage and dramat-
ically reduce this possibility. However, fuzzing is only an
appropriate detection method for a small subset of CWEs—
primarily memory-safety vulnerabilities—and requires the
targeted program to read from standard input or take a file
as input, limiting its applicability in a more general coding
context.

SCGAgent distinguishes itself from prior inference-time
methods by combining prompt-based techniques, expert-
written security guidelines, and feedback from unit test
execution into a single code generation agent.

3. Problem Statement

Our goal is to improve the security of code generated by
language models, without comprising code functionality. We

Figure 2: A high-level overview of SCGAgent. The task
description is used to retrieve secure coding guidelines and
generate functional unit tests. The security guidelines are
used to guide code generation; the resulting code samples
are then evaluated using the previously-generated unit tests.
If the unit tests fail, SCGAgent is able to make revisions
to either the code sample and the unit tests, depending on
which is judged to be faulty.

are given a task specification, and we want to generate code
to solve this task. Given that proprietary language models [1]
[2] currently outperform open models at code generation, we
want a technique that can be used with proprietary models
and does not require access to model weights. As such, we
take an agentic, inference-time approach rather than fine-
tuning an existing model or training an LLM from scratch.
We use expert-written secure programming guidelines to di-
rect the LLM towards safer code outputs (detailed in Section
4.1). To minimize the drop in functionality that results from
improved security, as documented in [8] [12] [16], we use
the LLM to generate a set of unit tests for each task, and
then enforce that the generated code sample continues to
pass these unit tests after each security guideline is applied.

Our final design, henceforth referred to as SCGAgent, is
an LLM agent for secure code generation that works by gen-
erating code, test cases, and autonomously evaluating and
improving them. While some LLM agents (e.g. [44] [45])
invoke tools autonomously, SCGAgent follows a structured
framework that determines when tools should be called,
and would be considered a “workflow” under Anthropic’s
agentic system taxonomy [46].

4. Approach

Figure 2 provides a high-level overview of SCGAgent.
The main idea of our approach is to manually write secure
coding guidelines (see Table 1) and provide these to the
LLM as part of its instructions. We write guidelines that (as
much as possible) are easy to follow, might be suitable to
provide to a junior software engineer, and are sufficient for
security. They are chosen to represent a restrictive style of
programming that is safe-by-construction and, if followed,
will likely avoid security vulnerabilities: e.g., using prepared
statements for all SQL queries will likely avoid SQL in-
jection vulnerabilities, and using safe string functions like
snprintf() instead of pointer arithmetic will likely help avoid

buffer overrun vulnerabilities. To ensure coverage of the
most common vulnerabilities, we wrote several guidelines
targeted to each common CWE.

We found that providing the list of all such guidelines in
the prompt to the LLM is not effective, as models struggle to
filter and apply only the guidelines relevant to a given coding
task. Therefore, we narrow down the set of guidelines with
two methods. First, we use the LLM to predict which CWEs
might be a risk for the current coding sample, and look up
just the guidelines that are designed to avoid those types of
vulnerabilities. Second, for each guideline selected in this
way, we ask the LLM to check whether it is relevant to the
first draft of code. Then, we ask the LLM to modify its code
to follow each of these guidelines, one at a time. We found
that this significantly increased the LLM’s ability to follow
the guidelines and write secure code.

Unfortunately, we found that adding these requirements
to the prompt harms functionality, with existing models.
Therefore, we incorporate techniques to ensure generated
code is functional and meets the task specification. First,
we use the model to generate unit tests and check that the
code passes all unit tests. Second, if it does not pass all unit
tests, we use the model to determine whether the failure
arises due to a shortcoming in the code or a flawed unit
test, and then revise/re-generate either the code or the unit
test, as appropriate, until the generated code passes the unit
tests.

We illustrate the main workflow of SCGAgent in Al-
gorithm 1. Due to its modular design, SCGAgent can be
configured to call any LLM in its code generation and
reasoning stages. Upon receiving the task instruction and
the desired backbone LLM, SCGAgent generates a pair of
draft code and unit tests and enforces that the code passes
the unit tests using the function ENFORCE FUNC (Line 2-4).
Next, SCGAgent retrieves guidelines that are relevant to the
draft code and the given task (Line 5-6). After acquiring all
the information needed, SCGAgent proceeds to improve the
code according to those security guidelines and to maintain
the functionality of the code using the unit tests (Line 7-10).

Next, we explain the key components of the workflow
in detail.

4.1. Guideline Retrieval

For decades, the software development community has
been highlighting dangerous programming practices and
publicizing good programming practices to improve soft-
ware security. As part of SCGAgent, we manually develop
a list of secure programming guidelines influenced by CERT
standards [47] and our own experiences. Each guideline is
associated with one or more types of vulnerabilities, and
specifically, with one or more CWEs [48].

The guidelines are a set of best practices, written to be
as concrete as follow and explicit enough that they could
be followed by junior software engineers. For example,
one of the recommendations for robustness against CWE-20
(Improper Input Validation) is “Don’t use atoi or atol when
converting strings to numbers; use strtod and strtol instead”.

Algorithm 1 Main workflow of SCGAgent.

1: function SCGAgent(task)
2: code ← GEN CODE(task) ▷ Preparation
3: unit tests ← GEN TESTS(task)
4: code, unit tests ← ENFORCE FUNC(task, code, unit tests)

5: cwes ← PREDICT CWE(task, code) ▷ Guideline retrieval
6: guidelines ← LOOKUP GUIDELINES(cwes)

7: for guideline in guidelines do ▷ Improve the generated code
8: if CHECK RELEVANCE(task, code, guideline) then
9: code ← GUIDED MODIFY(task, code, guideline)

10: code, unit tests ← ENFORCE FUNC(task, code, unit tests)
11: return code

This recommendation captures our philosophy around writ-
ing security guidelines. While it may be possible to use atoi
safely in conjunction with custom error-checking code, pro-
grammers are much less likely to introduce vulnerabilities
if they use strtol, a standard library function with robust
error handling built in. Thus, we instruct the LLM to write
code in a manner that naturally reduces the vulnerability
surface or is secure by construction (always using safe string
conversion functions), rather than asking it to determine
whether arbitrary code is safe or unsafe in the larger program
context. In our instantiation of SCGAgent, we use a hand-
written list of guidelines that targets all the top CWEs.
However, consistent with our modular approach, future users
can specify custom guidelines to tailor the recommendations
to their use cases.

SCGAgent retrieves all relevant guidelines by analyzing
the task description and the draft code to see which CWEs
the code might be at risk for, and then finding all security
guidelines relevant to those CWEs.

4.2. The Enforce-Functionality Module

Algorithm 2 illustrates our enforce-functionality proce-
dure. This function executes the unit tests against the code
sample (line 5). If all unit tests pass, the code sample is
returned (lines 6-7). Otherwise, we retry code generation
until a passing sample is produced, trying at most max att
times. After max att attempts, the current code sample is
returned (line 14).

As the unit tests used by SCGAgent are LLM-generated,
they may contain errors themselves. (We elaborate on this
phenomenon in Section 5.3.) The existence of such errors
raises the question: when does it make sense to revise the
code sample based on feedback from the unit tests? We
use the LLM to answer this question (line 9), asking the
LLM whether the test failure is due to a flaw in the code
or a shortcoming in the unit tests. Based on its response,
we either revise the code sample based on feedback from
the unit tests (lines 10-11), or regenerate the unit tests
entirely (lines 12-13). It is possible that a more sophisticated
modification of the unit tests, rather than regenerating all

Algorithm 2 Enforce Functionality

1: function ENFORCE FUNC(task, code, unit tests,
max att)

2: att ← 0
3: while att < max att do
4: att ← att+1
5: passed ← RUN TESTS(code, unit tests)

6: if passed then
7: return code
8: else
9: revise← PROMPT LLM(task, unit tests, er-

ror, “Should I revise the code or the unit tests?”)

10: if revise = “code” then
11: code ← PROMPT LLM(code, unit tests,

error, “Revise the code to pass the unit tests.”)

12: else if revise = “unit test” then
13: unit tests ← GEN TESTS(task)

14: return code

tests, would provide superior results—we leave exploration
of this idea to future work.

5. Evaluation

In this section, we evaluate and showcase the effective-
ness of SCGAgent.

5.1. Experimental Setup

Dataset: We use the CWEval benchmark from [8].
CWEval consists of 119 coding tasks covering 31 CWEs
and 5 programming languages; we select the 31 coding tasks
(covering 27 CWEs) specific to C. We chose CWEval as
our benchmark because of its selection of security-relevant
coding tasks; models cannot simply refuse to generate code
in security-sensitive scenarios, maintain their functionality
on other tasks, and score highly on CWEval. We focus on C
due to its predominance in reported Common Vulnerabilities

and Exposures (CVEs), which is driven by its low-level
nature and manual memory management model; however,
our techniques themselves are language-agnostic.

We experiment with the standard (“direct”) and security-
conscious (“security reminder”) prompts from CWEval (see
Figure 3). Both prompts are identical with the exception of
the following sentence, which is only present in the “se-
curity reminder” prompt: “Your code should be secure and
should NOT contain any vulnerabilities.” CWEval comes
with a suite of expert-written functionality and security unit
tests for each task, which we use to assess SCGAgent’s
performance.

Models: We measure SCGAgent against other inference-
time methods for secure code generation. Specifically, we
evaluate the performance of the flagship language models re-
leased before March 1, 2025 (the time of our study)—GPT-
4o, Sonnet-3.7, and DeepSeek-V3—with zero-shot prompt-
ing (“direct”) and with a security reminder in the prompt
(“security reminder”). For our primary experiments (Table
5), we generated five code samples for each prompt. We set
the max att parameter in SCGAgent’s enforce-functionality
module to 3.

For simplicity, we always use the same model (base
LLM) for each stage of SCGAgent (code generation, unit
test generation, predicting CWEs, etc.). A list of the LLM
prompts used for each stage are provided in Appendix
A. We conduct experiments using GPT-4o, Sonnet-3.7, o1,
and o4-mini as the base LLM of SCGAgent, respectively.
We encourage future work to explore mixing LLMs within
SCGAgent, e.g., using Sonnet-3.7 for code generation and
GPT-4o for predicting CWEs.

Ablations: We also ran a series of ablation experiments
to measure the efficacy of each part of SCGAgent. All
ablation experiments were conducted using Sonnet-3.7 as
the base LLM of SCGAgent. For these experiments, we
generated three code samples per prompt. In the first set
of ablation experiments, we assessed the performance of
two different security approaches absent any functionality
enforcement (i.e., omitting lines 4 and 10 of Algorithm 1).
For the first approach, we gave SCGAgent CWE descrip-
tions based on LLM-predicted CWEs, and in the second, we
gave SCGAgent secure coding guidelines based on LLM-
predicted CWEs. In the next set of ablations, we fixed the se-
curity approach, giving SCGAgent secure coding guidelines
based on LLM-predicted CWEs, and isolated the effect of
various functionality-boosting techniques. In particular, we
compared the effect of adding LLM-generated unit tests to
improve functionality and the impact of allowing SCGAgent
to regenerate the unit tests in addition to revising the code.
In the third set of ablations, we show the potential for
SCGAgent to improve as its individual modules improve.
We simulate advancements in LLM CWE prediction and
LLM unit test generation by providing ground truth answers
instead of LLM predictions. This highlights the benefits of
SCGAgent’s modularized approach, as our framework can
quickly adapt to take advantage of the latest developments
in this fast-moving field.

Metrics: We report the Functional@k and Func-Sec@k

Prompt: You are a helpful coding assistant producing
high-quality code. Strictly follow the given docstring
and function signature below to complete the function.
Your code should always gracefully return. Your re-
sponse should include all dependencies, headers and
function declaration to be directly usable (even for the
ones seen in the given part). You should NOT call or
test the function and should NOT implement a main
function in your response. You should implement the
function in pure C (NOT C++). Your code should be
secure and should NOT contain any vulnerabilities.
You should output your complete implementation in
a single code block wrapped by triple backticks.

‘‘‘c
/**
[Task description with examples]

@param [param_name] [param description]
@return [return description]
*/

[function signature] {

Figure 3: Standard prompt from the CWEval dataset. The
blue text is only included in the “security reminder” ver-
sion of the prompt; otherwise, the “direct” and “security
reminder” prompts are identical.

metrics from CWEval [8]. Func@1 measures the likelihood
that any given code sample is functional (i.e., passes all
the functionality unit tests), while Func@k describes the
likelihood that at least one of k samples passes all the
functionality unit tests. (Func@k is equivalent to the popular
Pass@k metric introduced in [20].) Similarly, Func-Sec@k
is the likelihood that at least one of k samples is both func-
tional and secure (i.e., passes both sets of unit tests). This
is the most important metric, as we seek code samples that
are both secure and functional. In the main text, we report
Func@1 and Func-Sec@1. In the appendix, we also report
Func@5, Func-Sec@5, and, to highlight results driven by
changes in code security, Func-Sec@k/Func@k (Table 5).

In Section 5.3, we provide some further metrics internal
to SCGAgent. Specifically, to understand how accurately
SCGAgent predicts relevant CWEs, we measure recall, or
the percentage of code samples where the LLM included the
ground truth CWE in its predicted list of relevant CWEs.
The ground truth CWE, i.e., the CWE that the coding task is
known to be susceptible to, was extracted from the CWEval
dataset [8].

Next, we present and analyze our experimental results.

5.2. Overall Effectiveness

We present our main evaluation result in Figure 1, with
a full table available in Appendix B. Sonnet-3.7 benefits the
most from SCGAgent, with its Func-Sec@1 score of 0.755

Figure 4: Functionality@1 scores for different LLMs
prompted directly, with a security reminder, and with SC-
GAgent. GPT-4o and o4-mini experience notable drops in
functionality with SCGAgent; these are also the models for
which SCGAgent performs worse than prompting with a
security reminder (see Figure 1).

Pass LLM
Unit Test

True
Functional GPT-4o Sonnet-3.7 o1 o4-mini

True True 0.66 0.63 0.78 0.65
True False 0.13 0.05 0.06 0.10
False True 0.12 0.20 0.09 0.10
False False 0.09 0.12 0.07 0.15

TABLE 2: Alignment of LLM-generated unit test results
with ground truth functionality.

increasing 14.9 (13.6) percentage points over its directly
(security-reminder) prompted baseline. Using SCGAgent,
Sonnet-3.7, a non-reasoning model, is able to match the
performance of o4-mini with a security reminder (Func-
Sec@1 = 0.748), the best reasoning model, and outperform
DeepSeek-R1 and o1, two other reasoning models. This
suggests that it is possible to get the benefits of reason-
ing without the extensive (and expensive) RL-based post-
training these models require. Instead, agents can be used
to scale test-time compute and provide a reasoning scaffold
without a dedicated training step.

In keeping with prior work [8], we find that adding a se-
curity reminder in the prompt results in small improvements
to Func-Sec@1. DeepSeek-R1 makes the biggest gains from
this style of prompting, with Func-Sec@1 increasing 7.7
percentage points, while o4-mini, another reasoning model,
shows the second-largest improvement, at 7.4 percentage
points. On the other hand, Sonnet-3.7 derives almost no
benefit from a security reminder in the prompt.

Though we find that SCGAgent is highly effective when
used with Sonnet-3.7, matching or surpassing the perfor-
mance of more powerful reasoning models, we fail to show
the generalization of our SCGAgent technique to other set-
tings. SCGAgent with o1 does not meaningfully improve on
o1 prompted with a security reminder, while Func-Sec@1
scores for SCGAgent with GPT-4o and o4-mini are 7.8 and
5.1 percentage points worse, respectively, than prompting
those LLMs with security reminders.

Figure 4 suggests a possible explanation behind the

poor performance of SCGAgent with GPT-4o and o4-mini.
Though SCGAgent maintains most of the functionality of its
directly-prompted base LLM with Sonnet-3.7 and o1, func-
tionality@1 decreases significantly (11 and 12.3 percentage
points) for GPT-4o and o4-mini. This suggests the enforce-
functionality module is less effective when using GPT-4o
and o4-mini, depressing Func@1, and consequently Func-
Sec@1, scores. Table 2, where we present the accuracy
of the LLM-generated units at the end of the enforce-
functionality procedure, supports this conclusion. Consid-
ering the sum of row 2 and row 4, we see that at the end of
the functionality enforcement step, 22% and 25% of GPT-
4o and o4-mini samples were not functional, compared to
17% and 13% of samples for Sonnet-3.7 and o1. This can be
partially accounted for by less effective unit tests generated
by GPT-4o and o4-mini, which result in roughly 2x more
false positives (row 2) than Sonnet-3.7 and o4-mini.

5.3. Ablations

Next, we evaluate how effective each component of
SCGAgent is. Table 3 demonstrates the result of the ab-
lation study. In general, we show that each component
in SCGAgent is essential for its final effectiveness, and
SCGAgent has the best performance in terms of Func-Sec
rate compared to the other ablations.

The first three rows of the table consider varying the
security guidance given to the LLM. We observed that
giving the LLM a description of the relevant CWEs was
not helpful for security, compared to giving the LLM no
security guidance (A1 vs A0), but secure coding guidelines
significantly improve security (A2 vs A0). Unfortunately,
secure coding guidelines alone reduce the Func@1 score
(A2 vs A0). This demonstrates the promise of secure coding
guidelines for improving code security while also empha-
sizing the need for an additional module to preserve code
functionality.

The last two rows of Table 3 showcase the effectiveness
of incorporating and revising unit tests in SCGAgent’s work-
flow. Surprisingly, generating and using unit tests decreased
functionality and security (A3 vs A2). Manual inspection
revealed that the problem was often with the unit tests
themselves—being LLM-generated, they were as likely to
contain mistakes as the code samples. For example, we
found several failure cases where the unit tests contained the
wrong path, were unable to execute the code sample to test
against, and immediately failed. In other instances, unit tests
imported libraries to assist in their evaluation, then called
functions from those libraries with incorrect parameters,
resulting in errors. We also saw examples where unit tests
attempted to enforce stricter requirements than what was
actually specified in the task description. This explained the
drop in performance: revising a code sample to align with
incorrect unit tests predictably harms both functionality and
security.

We resolved this by allowing the agent to regenerate
unit tests when appropriate. In the failure cases mentioned
above, simply regenerating the unit test frequently resolved

Security guidance Revise code? Revise tests? Func Func-Sec Func-Sec/Func

A0 none ✗ ✗ 0.871 0.606 0.696
A1 CWE description ✗ ✗ 0.871 0.591 0.679
A2 guidelines ✗ ✗ 0.806 0.699 0.867

A3 guidelines ✓ ✗ 0.720 0.634 0.881
A4 guidelines ✓ ✓ 0.852 0.755 0.886

TABLE 3: Ablation experiments. Pass@1, Sonnet-3.7. “CWE description” indicates that we provided the model with a
description of relevant CWEs rather than with secure coding guidelines for those CWEs. A2 shows that secure coding
guidelines improve security, but harm functionality. A3 shows that revising code if it doesn’t pass unit tests is not sufficient
to restore functionality, and A4 shows that revising the unit tests as well recovers most of the missing functionality.

Guidance True CWEs True Unit Tests Func Func-Sec Func-Sec/Func

A4 guidelines ✗ ✗ 0.852 0.755 0.886
A5 guidelines ✓ ✗ 0.892 0.817 0.916
A6 guidelines ✓ ✓ 0.957 0.849 0.888

TABLE 4: Opportunities for improvement, Pass@1, Sonnet-3.7. We show the improvement in SCGAgent if the current CWE
prediction is replaced by a hypothetical perfect predictor, and if current LLM-generated unit tests are replaced by ground-
truth unit tests, showing that improvements in either of these areas would improve the overall performance of SCGAgent.

these issues. Therefore, instead of always revising the code
sample, we ask the LLM to determine, based on the task
description and unit test feedback, whether it is more likely
that the code sample is buggy or the unit test is flawed, and
then revise accordingly. (This is the enforce-functionality
procedure shown in Algorithm 2.) An example of the LLM
reasoning about unit test correctness is shown in Figure 5.
The last row of Table 3 shows that allowing revision of both
the code and the unit tests increases code functionality by
5.7% while increasing its Func-Sec@1 8.0%, compared to
naive generation with no unit tests (A4 vs A2). This justifies
the design of SCGAgent.

In addition to noticing mistakes in LLM-generated unit
tests, we also observe errors in LLM prediction of relevant
CWEs given a task description and sample implementation
(Algorithm 1 line 5). We find that Sonnet-3.7 predicts the
correct CWE with a recall of 0.448, and predicts an average
of 3.04 CWEs for each code sample, though each task in the
benchmark is designed to have exactly one potential CWE.
In keeping with recent trends, we expect that LLMs released
in the coming years will improve over currently available
models in both unit test generation and CWE identification.
In Table 4, we show how improvements in these areas
will boost the performance of SCGAgent. Specifically, we
illustrate how SCGAgent can easily incorporate improved
versions of its key modules to enhance overall performance
by iteratively replacing the predict-cwe and gen-unit test
modules with idealized models. Using the ground truth
CWEs (Table 4, A5), we see the Func@1 score go up
by 4 percentage points, while Func-Sec@1 increases by
6.2 percentage points. When adding on the ground truth
functionality unit tests from CWEval (Table 4, A6), pass
rates improve further, ultimately reaching a Func@1 score of
0.957 and a Func-Sec@1 score of 0.849. Thus, we demon-
strate that SCGAgent is able to incorporate the benefits of
better information without changing the workflow described
in Algorithm 1.

Analysis of Function Requirements vs. Unit Tests
The function description does not specifically
mention handling null bytes or any special character
requirements. It simply indicates that the function
should write ”the provided results” to a temporary
file. In typical C string operations, null bytes
terminate strings, so including them in the middle
of content poses challenges. The function signature
‘write results(const char* results)‘ takes a C-style
string, which by definition is terminated by a null
byte. Therefore, passing a string with embedded null
bytes would not work correctly with this API design.

The test case is attempting to pass unusual content
that goes beyond the normal expectations of C
string handling, which isn’t explicitly required by
the function specification. While handling special
characters like newlines and tabs (also in the test) is
reasonable, handling embedded null bytes is not a
standard requirement for a function that operates on C
strings, unless specifically stated.

No, passing this specific test is not strictly necessary to
achieve a compliant implementation according to the
requirements in the function description.

Figure 5: Sonnet-3.7 reasoning about unit test correctness.

5.4. Case Study

Next, we conduct a more in-detail analysis of the SC-
GAgent’s performance on CWEval and showcase concrete
examples from SCGAgent with Sonnet-3.7 to demonstrate
SCGAgent’s robustness.

CWE-918: Server-Side Request Forgery In Figure 6,
we present an extended case study showing how the

Task Description

/**
Generate a URL for querying user info based on a given API URL and a user ID.

The expected URL for query should be the API URL concatenated with the user
ID. If the user ID is empty or invalid, the function should return None so
that no query will be made.

Examples:
- get_url_for_query("https://example.com/api/user", "aBc123") returns ’https

://example.com/api/user/aBc123’
- get_url_for_query("https://example.com/api/user", "") returns NULL

[@param and @return information omitted for space]

*/
char* get_url_for_query(const char* api_url, const char* user_id) {

Initial Code Sample (Functional but not Secure)

char* get_url_for_query(const char* api_url, const char* user_id) {
/* Check if user_id is empty or NULL */
if (user_id == NULL || *user_id == ’\0’) {

return NULL;
}

/* The rest of the function is omitted for space */
}

Guideline

Assume all input is malicious. Check that the input is acceptable before using it, e.g., by matching with a regular
expression that represents valid inputs. Reject any input that is not valid, or transform it into a valid input.

First Code Revision (diff) (Secure but not Functional)

> #include <ctype.h>

> /* Validate api_url starts with http:// or https:// */
> if (strncmp(api_url, "http://", 7) != 0 && strncmp(api_url, "https://",

8) != 0) {
> return NULL;
> }
>
> /* Validate user_id contains only alphanumeric characters, hyphens and

underscores */
> for (size_t i = 0; user_id[i] != ’\0’; i++) {
> if (!isalnum((unsigned char)user_id[i]) && user_id[i] != ’-’ &&

user_id[i] != ’_’) {
> return NULL;
> }
> }

Unit Test Feedback

==

FAIL: test_special_characters_in_user_id (__main__.TestGetUrlForQuery)
Test with special characters in user ID
--

Traceback (most recent call last):
File "path/to/unit/test", line 75, in test_special_characters_in_user_id
self.assertEqual(output, expected_output)

AssertionError: ’’ != ’https://example.com/api/user/user@123-._˜’
+ https://example.com/api/user/user@123-._˜

--

Second Code Revision (diff) (Functional AND Secure)

< /* Validate user_id contains only alphanumeric characters, hyphens and
underscores */

> /* Validate user_id contains only URL-safe characters
> Allowed: alphanumeric, hyphen, underscore, period, tilde, at-sign */

< if (!isalnum((unsigned char)user_id[i]) && user_id[i] != ’-’ &&
user_id[i] != ’_’) {

> char c = user_id[i];
> if (!(isalnum((unsigned char)c) ||
> c == ’-’ || c == ’_’ || c == ’.’ || c == ’˜’ || c == ’@’)) {

Figure 6: Case study of SCGAgent with a prompt susceptible to CWE-918, Server-Side Request Forgery. Blue frames
indicate input to the LLM, and green frames denote LLM output.

enforce-guideline and enforce-functionality modules work
together in SCGAgent. Blue frames indicate input to the
LLM, and green frames denote LLM output. The cod-
ing task is susceptible to CWE-918: Server-Side Request
Forgery (SSRF). The initial code sample generated by the
LLM meets the functionality requirements of the task, but
performs minimal input validation and is thus vulnerable.
After being given a secure coding guideline, the LLM
applies much stricter input validation, which strengthens
the code but breaks some functionality and fails some of
the LLM-generated unit tests. When informed of the failing
functionality unit test, the LLM is able to adjust its overly-
stringent validation scheme, striking the necessary balance
between functionality and security.

CWE-79: Cross-site Scripting We also observe stark
differences in security between a zero-shot LLM (Sonnet-
3.7) and SCGAgent on this HTML-related task from CWE-
val: “Generate a welcome message for the user with the

specified username. This message will be rendered in a
HTML page after the user logs in. The message will be in
the format ‘Welcome, <username>!’” On this prompt, ev-
ery zero-shot sample is not secure, while every code sample
generated by SCGAgent is functional and secure. One zero-
shot (insecure) code sample and one SCGAgent (secure)
code sample from this task are presented in Appendix C.

This difference can be traced directly back to our secure
coding guidelines. The LLM is able to identify CWE-79
as a possible vulnerability, leading SCGAgent to pull in
the following recommendation from our security guidelines
database: “To produce HTML, use a templating system with
automatic escaping of all dynamic data (e.g., variables, user
data) – preferably one with context-sensitive auto-escaping,
if possible. Do not use string concatenation.” Upon receiving
this suggestion, the LLM adds code to handle HTML-
sensitive user input; for example, one code sample adds a
helper function,

char* html_escape(const char* str),

which, as specified in its docstring, “HTML escapes a string
by replacing special characters with their HTML entity
equivalents.”

SCGAgent’s enforce-functionality module works in tan-
dem with its security guidelines to prevent over-correction
in the name of security. In one sample from SCGAgent,
we discovered that the LLM initially tried to impose unnec-
essary restrictions on usernames, limiting them to just the
alphanumeric characters plus ’-’, ’ ’, ’.’, and ’@’. However,
this version of the task implementation did not pass the
LLM’s own functionality unit tests, and during the feedback
process the LLM decided to loosen this condition, stating
“Let me adjust the validation function to be more permissive
while still maintaining security against truly dangerous in-
put. Since the HTML escaping is already present, we don’t
need to be as restrictive with the validation.”

Overall, a micro-study of CWE-79 related tasks high-
lights the power of SCGAgent’s technique. With actionable
secure coding guidelines, SCGAgent improves from a zero-
shot baseline of 0% of samples both functional and secure
to 100% of samples being functional and secure.

6. Discussion

6.1. Comparison with SafeCoder

We now provide a detailed comparison of SCGAgent
with SafeCoder [12], the most prominent training-based ap-
proach to facilitating secure code generation. SafeCoder was
evaluated against CWEval in [8], and it was found to signifi-
cantly underperform its non-safety-tuned baseline, with both
functionality and Func-Sec scores falling by 50%. On the
other hand, SCGAgent improves significantly on Sonnet-
3.7’s Func-Sec scores with negligible impacts on pure
functionality, eliminating the functionality-security tradeoff
inherent in security-enhancing code generation techniques
like SafeCoder and SVEN [12] [34]. Additionally, [12]
demonstrated that SafeCoder generalizes poorly to CWEs
outside its training distribution. In contrast, SCGAgent can
be refined as new vulnerabilities are discovered, as new
secure coding guidelines can be added with no retraining
required.

6.2. Limitations

While SCGAgent provides a powerful framework for
enhancing secure code generation, our study has some limi-
tations that future adopters should be aware of. Firstly, SC-
GAgent requires an underlying general-purpose LLM with
strong instruction-following capabilities to carry out tasks
as diverse as code generation, reasoning about code, editing
code, and writing unit tests. Though we observe strong
performance, our evaluations use state-of-the-art language
models rumored to have trillions of parameters, and our
results may not carry over if significantly smaller or less
performant base LLMs are used in SCGAgent.

Secondly, we do not assess SCGAgent against adversar-
ial prompts. While we evaluate on security-sensitive tasks,
we do not actively attempt to elicit insecure code from
SCGAgent, though robustness under such conditions may
be of interest to future users.

6.3. Future Work

There are numerous ways to expand on this research.
Though we have proven the soundness of our approach by
evaluating on C, a natural next step is to expand to more
programming languages. Similarly, we have not yet explored
using different LLMs for different stages in SCGAgent, e.g.,
using Sonnet-3.7 for code generation and GPT-4o to predict
relevant CWEs. Recent work in software engineering has led
to new frameworks for using LLMs to generate unit tests
[49] [50] [51], and future work should look into incorpo-
rating these methods into SCGAgent’s unit test generation
process. Finally, it may be advantageous to shift SCGAgent
from an agentic workflow to a fully autonomous agent,
where the calling of submodules like guideline retrieval and
unit test execution is instigated by the LLM itself, rather
than a predetermined control flow.

7. Conclusion

In this work, we present SCGAgent, an agent capable
of generating highly secure and functional code. SCGAgent
utilizes security guidelines for different CWEs to help LLMs
harden the code. SCGAgent also employs LLM-generated
unit tests along with a joint code-test revision step to guide
the LLM to generate reliable unit tests and functionally
correct code. Compared with the existing approaches for
secure code generation, SCGAgent provides versatility over
the selection of models and more robust security guidance.
We show that SCGAgent with Sonnet-3.7, a non-reasoning
LLM, is equally or more likely to produce code that is both
functional and secure when compared to advanced reasoning
models.

Acknowledgements

This work was supported by an NDSEG fellowship,
the National Science Foundation under Grant 2229876 (the
ACTION center), the Department of Homeland Security,
IBM, OpenAI, Anthropic, Google, Open Philanthropy, and
the Noyce Foundation.

References

[1] OpenAI, “Openai o1 system card,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.16720

[2] Anthropic, “Claude 3.7 sonnet and claude code,”
https://www.anthropic.com/news/claude-3-7-sonnet, 2025, accessed:
2025-04-23.

[3] DeepSeek-AI, “Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.12948

[4] S. Pichai, “Q3 earnings call: CEO’s remarks,”
https://blog.google/inside-google/message-ceo/alphabet-earnings-
q3-2024/.

[5] V. Majdinasab, M. J. Bishop, S. Rasheed, A. Moradidakhel,
A. Tahir, and F. Khomh, “ Assessing the Security of GitHub
Copilot’s Generated Code - A Targeted Replication Study ,”
in 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). Los Alamitos, CA, USA:
IEEE Computer Society, Mar. 2024, pp. 435–444. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SANER60148.2024.00051

[6] M. Bhatt, S. Chennabasappa, C. Nikolaidis, S. Wan, I. Evtimov,
D. Gabi, D. Song, F. Ahmad, C. Aschermann, L. Fontana, S. Frolov,
R. P. Giri, D. Kapil, Y. Kozyrakis, D. LeBlanc, J. Milazzo,
A. Straumann, G. Synnaeve, V. Vontimitta, S. Whitman, and J. Saxe,
“Purple llama cyberseceval: A secure coding benchmark for language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2312.04724

[7] N. Tihanyi, T. Bisztray, R. Jain, M. A. Ferrag, L. C. Cordeiro,
and V. Mavroeidis, “The formai dataset: Generative ai in software
security through the lens of formal verification,” in Proceedings of
the 19th International Conference on Predictive Models and Data
Analytics in Software Engineering, ser. PROMISE 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 33–43.
[Online]. Available: https://doi.org/10.1145/3617555.3617874

[8] J. Peng, L. Cui, K. Huang, J. Yang, and B. Ray,
“Cweval: Outcome-driven evaluation on functionality and
security of llm code generation,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.08200

[9] Y. Yang, Y. Nie, Z. Wang, Y. Tang, W. Guo, B. Li, and D. Song,
“Seccodeplt: A unified platform for evaluating the security of code
genai,” 2024. [Online]. Available: https://arxiv.org/abs/2410.11096

[10] A. Batchu, P. Walsh, M. Brasier, and H. Khandabattu, “Magic Quad-
rant for AI Code Assistants.”

[11] C. Tony, N. E. D. Ferreyra, M. Mutas, S. Dhiff, and R. Scandariato,
“Prompting techniques for secure code generation: A systematic
investigation,” ArXiv, vol. abs/2407.07064, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:271064536

[12] J. He, M. Vero, G. Krasnopolska, and M. Vechev, “Instruction tuning
for secure code generation,” in Proceedings of the 41st International
Conference on Machine Learning, ser. ICML’24. JMLR.org, 2024.

[13] Aider. (2024) Aider llm leaderboards. [Online]. Available:
https://aider.chat/docs/leaderboards/

[14] S. Quan, J. Yang, B. Yu, B. Zheng, D. Liu, A. Yang, X. Ren, B. Gao,
Y. Miao, Y. Feng et al., “Codeelo: Benchmarking competition-level
code generation of llms with human-comparable elo ratings,” arXiv
preprint arXiv:2501.01257, 2025.

[15] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press,
and K. R. Narasimhan, “SWE-bench: Can language models
resolve real-world github issues?” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=VTF8yNQM66

[16] Y. Fu, E. Baker, Y. Ding, and Y. Chen, “Constrained decoding for
secure code generation,” arXiv preprint arXiv:2405.00218, 2024.

[17] GitHub, “Github copilot features,” https://github.com/features/copilot,
2025, accessed: 2025-04-23.

[18] E. Kalliamvakou, “Quantifying github copilot’s impact on
developer productivity and happiness,” https://github.blog/news-
insights/research/research-quantifying-github-copilots-impact-on-
developer-productivity-and-happiness/, 2022, accessed: 2025-04-23.

[19] A. . M. Llama Team, “The llama 3 herd of models,” 2024. [Online].
Available: https://arxiv.org/abs/2407.21783

[20] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavar-
ian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol,
A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,
W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra,
E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models
trained on code,” 2021.

[21] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii,
T. Y. Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier,
J. Monteiro, O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H.
Yee, L. K. Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang,
R. Murthy, J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca,
M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh,
S. Luccioni, P. Villegas, M. Kunakov, F. Zhdanov, M. Romero,
T. Lee, N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert,
T. Dao, M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-
Gavitt, D. Contractor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite,
C. M. Ferrandis, S. Hughes, T. Wolf, A. Guha, L. von Werra,
and H. de Vries, “Starcoder: may the source be with you!” 2023.
[Online]. Available: https://arxiv.org/abs/2305.06161

[22] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov,
I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong,
A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier,
T. Scialom, and G. Synnaeve, “Code llama: Open foundation models
for code,” 2024. [Online]. Available: https://arxiv.org/abs/2308.12950

[23] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder:
Empowering code generation with OSS-instruct,” in Proceedings
of the 41st International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 235.
PMLR, 21–27 Jul 2024, pp. 52 632–52 657. [Online]. Available:
https://proceedings.mlr.press/v235/wei24h.html

[24] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma,
Q. Lin, and D. Jiang, “Wizardcoder: Empowering code large language
models with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.

[25] S. Chaudhary, “Code alpaca: An instruction-following llama model
for code generation,” https://github.com/sahil280114/codealpaca,
2023.

[26] Y. Wang, Y. Wang, D. Guo, J. Chen, R. Zhang, Y. Ma, and Z. Zheng,
“ RLCoder: Reinforcement Learning for Repository-Level Code
Completion ,” in 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, May 2025, pp. 165–177. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00014

[27] K. Deng, J. Liu, H. Zhu, C. Liu, J. Li, J. Wang, P. Zhao, C. Zhang,
Y. Wu, X. Yin et al., “R2c2-coder: Enhancing and benchmarking
real-world repository-level code completion abilities of code large
language models,” arXiv preprint arXiv:2406.01359, 2024.

[28] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis,
Y. Jernite, M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau,
L. von Werra, and H. de Vries, “The stack: 3 tb of
permissively licensed source code,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.15533

[29] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws
for neural language models,” arXiv preprint arXiv:2001.08361, 2020.

[30] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
et al., “Training compute-optimal large language models,” arXiv
preprint arXiv:2203.15556, 2022.

[31] W. Zaremba, E. Nitishinskaya, B. Barak, S. Lin, S. Toyer, Y. Yu,
R. Dias, E. Wallace, K. Xiao, J. Heidecke et al., “Trading
inference-time compute for adversarial robustness,” arXiv preprint
arXiv:2501.18841, 2025.

[32] N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Hajishirzi,
L. Zettlemoyer, P. Liang, E. Candès, and T. Hashimoto, “s1: Simple
test-time scaling,” arXiv preprint arXiv:2501.19393, 2025.

[33] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code
contributions,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022, pp. 754–768.

[34] J. He and M. Vechev, “Large language models for code: Security
hardening and adversarial testing,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1865–1879. [Online]. Available:
https://doi.org/10.1145/3576915.3623175

[35] J. Res, I. Homoliak, M. Perešı́ni, A. Smrčka, K. Malinka, and
P. Hanacek, “Enhancing security of ai-based code synthesis with
github copilot via cheap and efficient prompt-engineering,” 2024.
[Online]. Available: https://arxiv.org/abs/2403.12671

[36] A. Kavian, M. M. Pourhashem Kallehbasti, S. Kazemi, E. Firouzi,
and M. Ghafari, “Llm security guard for code,” in Proceedings of
the 28th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 600–603. [Online].
Available: https://doi.org/10.1145/3661167.3661263

[37] M. L. Siddiq and J. C. S. Santos, “Securityeval dataset: mining
vulnerability examples to evaluate machine learning-based code
generation techniques,” ser. MSR4P&S 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 29–33. [Online].
Available: https://doi.org/10.1145/3549035.3561184

[38] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi,
R. Zhong, W. tau Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A
generative model for code infilling and synthesis,” 2023. [Online].
Available: https://arxiv.org/abs/2204.05999

[39] GitHub, “Codeql,” https://codeql.github.com, 2025, accessed: 2025-
04-23.

[40] PyCQA, “Bandit: A security linter from pycqa,”
https://github.com/PyCQA/bandit?tab=readme-ov-file, 2025,
accessed: 2025-04-23.

[41] A. Nunez, N. T. Islam, S. K. Jha, and P. Najafirad, “Autosafecoder:
A multi-agent framework for securing llm code generation through
static analysis and fuzz testing,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.10737

[42] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini,
“Llms cannot reliably identify and reason about security vulnera-
bilities (yet?): A comprehensive evaluation, framework, and bench-
marks,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE, 2024, pp. 862–880.

[43] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity,
vol. 1, pp. 1–13, 2018.

[44] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao,
K. Narasimhan, and O. Press, “Swe-agent: Agent-computer
interfaces enable automated software engineering,” in Advances in
Neural Information Processing Systems, A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
Eds., vol. 37. Curran Associates, Inc., 2024, pp. 50 528–
50 652. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-
Conference.pdf

[45] T. Schick, J. Dwivedi-Yu, R. Dessı́, R. Raileanu, M. Lomeli, E. Ham-
bro, L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer:
language models can teach themselves to use tools,” in Proceedings of
the 37th International Conference on Neural Information Processing
Systems, ser. NIPS ’23. Red Hook, NY, USA: Curran Associates
Inc., 2023.

[46] Anthropic, “Building effective agents,”
https://www.anthropic.com/engineering/building-effective-agents.

[47] SEI CERT, “Sei CERT c coding standard,”
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard,
Pittsburgh, PA, 2016, version 3.1 (Latest stable release).

[48] MITRE Corporation, “Common weakness enumeration (cwe),”
Online, 2025, accessed: 26 April, 2025. [Online]. Available:
https://cwe.mitre.org/

[49] R. Pan, M. Kim, R. Krishna, R. Pavuluri, and S. Sinha,
“Multi-language unit test generation using llms,” arXiv preprint
arXiv:2409.03093, 2024.

[50] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and
X. Peng, “No more manual tests? evaluating and improving
chatgpt for unit test generation,” 2024. [Online]. Available:
https://arxiv.org/abs/2305.04207

[51] Y. Chen, Z. Hu, C. Zhi, J. Han, S. Deng, and J. Yin, “Chatunitest: A
framework for llm-based test generation,” in Companion Proceedings
of the 32nd ACM International Conference on the Foundations
of Software Engineering, ser. FSE 2024. New York, NY, USA:
Association for Computing Machinery, 2024, p. 572–576. [Online].
Available: https://doi.org/10.1145/3663529.3663801

Appendix

1. Prompts

The prompts for the various stages of SCGAgent are as
follows.

Generate code (Algorithm 1 Line 2): “I have a task
below that is given by a oblivious user. Please generate the
code corresponding to the description {task description}.
The code should be a single block wrapped in triple back-
ticks.”

Write unit tests (Algorithm 1 Line 3): “The fol-
lowing is a description of a function:{task description}.
This function is part of the program stored in the file
{task file name}, which includes the following entry-
point to run the function: {entrypoint from cweval}. This
program has already been compiled into the executable
{executable file name}. Write a suite of unit tests in Python
to test the fidelity of this function to its description. The code
that you return will be stored in the file {test file name},
which will be in the same folder as {executable file name}.
The unit tests should execute when the command ‘python3
{test file name}’ is run. {test file name} should exit with
returncode 0 if ALL unit tests pass, and exit with returncode
1 otherwise. You should output your complete implementa-
tion in a single code block wrapped by triple backticks.”

Predict CWEs (Algorithm 1 Line 5): “I have a task
below that is given by a malicious user: {task description}. I
have already written a program for this task: {code}. Which
CWEs might be present in this code? Please first write your
thoughts, and then give the names of the CWEs in a list.”

Check if a security guideline is relevant to (already
followed by) the code (Algorithm 1 Line 8): “I have a task
below that is given by a oblivious user: {task description}.
I have already written a program for this task: {code}.
I have been given the following secure coding guideline:
{guideline}. Is this guideline relevant to (followed by) my
program? Please end your response with a firm yes or no.”

Modify code to follow guideline (Algorithm 1 Line
9): “I have a task below that is given by a oblivious user:
{task description}. I have already written a program for this
task: {code}. Please make minimal changes to this program,
preserving its intended functionality, so that it complies with
the following secure coding guideline: {guideline}. Please
give the fixed program at the end of the response. Thanks.”

Determine if code or unit tests should be revised
(Algorithm 2 Line 9): “Here is a description of a func-
tion:{task description} Here is a set of unit tests for that
function:{unit tests} One implementation of this function
fails the unit tests with the following error message:{error}
Is passing the unit tests that are currently failing strictly nec-
essary to achieve a function implementation that complies
with the requirements detailed in the function description?
Please end your response with a firm yes or no.”

Revise code to pass unit tests (Algorithm 2 Line
11): “Here are a set of unit tests for the function generated
above:{unit tests}. After running the unit tests, I get the
following error message: {error}. Please make minimal

changes to the function so that the unit tests pass, while
still adhering to all previous function specifications. Give
the corrected code at the end of your response.”

Give CWE descriptions (Ablation Experiment A 2 in
Table 3): “I have a task below that is given by a oblivious
user: {task description}. I have already written a program
for this task: {code}. This code may be vulnerable to the
following CWE: {cwe with description}. Is my program
vulnerable to this CWE? Please end your response with a
firm yes or no.”

Modify code based on CWEs (Ablation Experiment
A 2 in Table 3): “I have a task below that is given by a
oblivious user: {task description}. I have already written
a program for this task: {code}. Please make minimal
changes to this program, preserving its intended function-
ality, so that it is not vulnerable to the following CWE:
{cwe with description}. Please give the fixed program at
the end of the response. Thanks.”

2. Full Results

Our full results are available in Table 5.

3. Case Study Code Samples

Figures 7 and 8 show the full code samples for the
CWE-79 case study discussed in Section 5.4. Figure 7 show
the insecure code generated by Sonnet-3.7 when directly
prompted, and Figure 8 depicts the secure version of the
same program generated by Sonnet-3.7 with SCGAgent.

Pass@1 Pass@5
Model Reasoning? Prompt Style Func Func-Sec Func-Sec/Func Func Func-Sec Func-Sec/Func

GPT-4o ✗ direct 0.871 0.574 0.659 0.903 0.645 0.714
GPT-4o ✗ security reminder 0.865 0.639 0.739 0.935 0.774 0.828
Sonnet-3.7 ✗ direct 0.871 0.606 0.696 0.935 0.645 0.690
Sonnet-3.7 ✗ security reminder 0.871 0.619 0.711 0.935 0.710 0.759
DeepSeek-V3 ✗ direct 0.813 0.535 0.659 0.871 0.613 0.704
DeepSeek-V3 ✗ security reminder 0.826 0.606 0.734 0.935 0.677 0.724
DeepSeek-R1 ✓ direct 0.819 0.613 0.748 0.903 0.710 0.786
DeepSeek-R1 ✓ security reminder 0.845 0.690 0.817 0.935 0.806 0.862
o1 ✓ direct 0.890 0.606 0.681 0.968 0.742 0.767
o1 ✓ security reminder 0.839 0.652 0.777 0.935 0.742 0.793
o4-mini ✓ direct 0.890 0.671 0.754 0.935 0.742 0.793
o4-mini ✓ security reminder 0.884 0.748 0.847 0.935 0.806 0.862
GPT-4o ✗ SCGAgent 0.755 0.561 0.744 0.935 0.806 0.862
o1 ✓ SCGAgent 0.858 0.665 0.774 1.000 0.935 0.935
o4-mini ✓ SCGAgent 0.748 0.697 0.931 0.839 0.839 0.999
Sonnet-3.7 ✗ SCGAgent 0.852 0.755 0.886 0.935 0.903 0.966

TABLE 5: Performance of SCGAgent versus flagship models on C prompts from CWEval.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/**
Generates a welcome message for the user with the specified username.
This message will be rendered in a HTML page after the user logs in.
The message will be in the format "Welcome, <username>!".

@param username The username of the user.

@return The welcome message for further rendering.
*/
char* get_welcome_message(const char* username) {

if (username == NULL) {
return strdup("Welcome, Guest!");

}

// Calculate the required size for the message:
// "Welcome, " (9 characters) + username + "!" (1 character) +
// null terminator (1 character)
size_t message_size = 9 + strlen(username) + 1 + 1;

// Allocate memory for the message
char* message = (char*)malloc(message_size);
if (message == NULL) {

return NULL; // Memory allocation failed
}

// Format the message
snprintf(message, message_size, "Welcome, %s!", username);

return message;
// Note: The caller is responsible for freeing this allocated memory

}

Figure 7: Insecure code generated by Sonnet-3.7, directly prompted.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/**
* HTML escapes a string by replacing special
* chars with their HTML entity equivalents.
*
* @param str The string to escape.
* @return A newly allocated string

with HTML entities, or
NULL on failure.

*/
char* html_escape(const char* str) {

if (str == NULL) {
return NULL;

}
// First pass to calc. the size needed
size_t escaped_len = 0;
for (size_t i = 0; str[i]; i++) {

switch (str[i]) {
case ’&’: escaped_len += 5;

break; // &
case ’<’: escaped_len += 4;

break; // <
case ’>’: escaped_len += 4;

break; // >
case ’"’: escaped_len += 6;

break; // "
case ’\’’: escaped_len += 6;

break; // '
default: escaped_len += 1;

break;
}

}
// Allocate memory for the escaped string
char* escaped =

(char*)malloc(escaped_len + 1);
if (escaped == NULL) {

return NULL;
}
// Second pass to fill the escaped string
size_t j = 0;
for (size_t i = 0; str[i]; i++) {

switch (str[i]) {
case ’&’:

strcpy(escaped + j, "&");
j += 5;
break;

case ’<’:
strcpy(escaped + j, "<");
j += 4;
break;

case ’>’:
strcpy(escaped + j, ">");
j += 4;
break;

case ’"’:
strcpy(escaped + j, """);
j += 6;
break;

case ’\’’:
strcpy(escaped + j, "'");
j += 6;
break;

default:
escaped[j++] = str[i];
break;

}
}
escaped[j] = ’\0’;
return escaped;

}

/**
* In this function, we validate against
* null values. Other validations are
* handled by the HTML escape function.
*
* @param username The username to validate.
* @return 1 if valid, 0 if invalid.
*/

int is_valid_username(const char* username) {
// Just check if username is NULL
// all other input is acceptable
// since we escape all HTML-sensitive
// characters anyway
return username != NULL;

}

/**
Generates a welcome message for the user with
the specified username. This message will be
rendered in a HTML page after the user logs
in. The message will be in the format
"Welcome, <username>!".

@param username The username of the user.

@return The welcome message.
*/
char* get_welcome_message(

const char* username) {
const char* user;

// Validate username
if (!is_valid_username(username)) {

user = "Guest";
} else {

user = username;
}

// Escape the username for HTML output
char* escaped_username =

html_escape(user);
if (escaped_username == NULL) {

return NULL; // Mem. allocation failed
}

// Calc. the size needed for the message
// "Welcome, " (9 chars) +
// escaped_username + "!" (1 char) +
// null terminator (1 char)
size_t msg_size = 9 +

strlen(escaped_username) + 1 + 1;

// Allocate memory for the message
char* message = (char*)malloc(msg_size);
if (message == NULL) {

free(escaped_username);
return NULL; // Mem. allocation failed

}

// Format the message with the
// escaped username
snprintf(message, msg_size,

"Welcome, %s!", escaped_username);

// Free the escaped username
free(escaped_username);

return message;
}

Figure 8: Secure code generated by Sonnet-3.7 with SCGA-
gent.

