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Abstract—Recent attempts at source tracing for codec-
based deepfake speech (CodecFake), generated by neural audio
codec–based speech generation (CoSG) models, have exhibited
suboptimal performance. However, how to train source tracing
models using simulated CoSG data while maintaining strong
performance on real CoSG-generated audio remains an open
challenge. In this paper, we show that models trained solely on
codec-resynthesized data tend to overfit to non-speech regions
and struggle to generalize to unseen content. To mitigate these
challenges, we introduce the Semantic-Acoustic Source Tracing
Network (SASTNet), which jointly leverages Whisper for seman-
tic feature encoding and Wav2vec2 with AudioMAE for acoustic
feature encoding. Our proposed SASTNet achieves state-of-the-
art performance on the CoSG test set of CodecFake+ dataset,
demonstrating its effectiveness for reliable source tracing.

Index Terms—Anti-spoofing, source tracing, audio deepfake
detection, neural audio codec, explainability

I. INTRODUCTION

Deepfake detection determines whether the given speech is
a bona fide speech or a deepfake speech. Numerous challenges
and datasets [1, 2] have been introduced, such as ASVspoof
[3–7] and ADD [8, 9]. Recently, attention has shifted from
merely detecting deepfake speech to tracing its source. Source
tracing offers important insights into the origin or generation
algorithm of a deepfake speech, which is especially valuable
in out-of-domain detection scenarios. For example, Track 3 of
ADD 2023 [9] focused explicitly on identifying the underlying
algorithms of deepfake utterances, and Interspeech 2025 is
hosting a special session1 about deepfake source tracing.

The simplest approach to source tracing [10] involves map-
ping deepfake utterances back to the specific attack model
ID that generated them [9]. To enhance generalization, the
field has shifted toward attribute-based source tracing [11–
14]. Rather than treating each deepfake system as a unique
category, this method groups systems according to shared
attributes, reflecting the fact that many deepfake pipelines
reuse common components. By focusing on these attributes,
models can more effectively trace spoofing algorithms that
were unseen during training but are built from known elements
during training [14]. Drawing on well-defined properties from
traditional text-to-speech (TTS) and voice conversion (VC)
architectures, researchers have concentrated on classifying
attributes such as input types [14], acoustic models [12, 14],
speaker representations [13], and vocoders [11–14], etc.

*Equal Contribution. † Corresponding Author
1https://deepfake-total.com/sourcetracing

However, these prior studies target source tracing in tradi-
tional TTS/VC systems, and only initial efforts have explored
codec-based speech generation (CoSG) [15] models. Xie et
al. [16] treat source tracing as a closed-set classification
problem—identifying known CoSG system IDs and using
a binary out-of-distribution detector, but this approach fails
when multiple unseen generators are encountered. Although
there has been a series of recent works on source tracing [17–
19], few focus on codec-based deepfake speech [20, 21]. More
recently, Chen et al. [22] utilize the organized CodecFake+[21]
taxonomy, which covers vector quantization schemes, auxil-
iary objectives, and decoder types, to formulate three source-
tracing tasks grounded in codec attributes. They [22] also
show that a model trained on codec-resynthesized data suffers
from severe generalization issues when evaluated on CoSG-
generated speech, driven by unseen codec types.

This paper further demonstrates that a model trained on
codec re-synthesis speech tends to overfit to non-speech re-
gions and unseen speech content. To address these challenges,
we propose a Semantic-Acoustic Source Tracing Network
(SASTNet) that leverages a semantic Encoder, a coarse-to-fine
acoustic Encoder that jointly preserves content and captures
fine-grained codec signatures, resulting in significant improve-
ments in codec-based deepfake source tracing on CodecFake+
[21]. Codebase will be released to support future research 2.

II. BACKGROUND

Neural audio codecs [15, 23–26] leave “fingerprints” across
three axes: vector quantization, auxiliary objectives, and de-
coder type. Together, these axes span most codec designs
and enable robust tracing of codec-based deepfake. Building
on the taxonomy, Chen et. al. [22] define three multi-class
classification tasks for CodecFake source tracing:

• Vector Quantization Classification (VQ Task): Four-
class classification: classifies a waveform as real or
generated by a model with codec using multi-codebook,
single-codebook, or scalar quantization.

• Auxiliary Objective Classification (AUX Task): Three-
class classification: classifies a waveform as either real
or generated by a model with a codec using semantic
distillation, or disentanglement objectives.

• Decoder Type Classification (DEC Task): Three-class
classification: classifies an input utterance as real or
generated by a model with codec employing a time- or
frequency-domain decoder.

2https://github.com/ResponsibleGenAI/CodecFake-Source-Tracing

https://deepfake-total.com/sourcetracing
https://github.com/ResponsibleGenAI/CodecFake-Source-Tracing
https://arxiv.org/abs/2506.07294v2
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Fig. 1. The Overview of Semantic-Acoustic Source Tracing Network.

Additionally, a traditional anti-spoofing task is included:
• Binary Spoof Detection (BIN Task): Classifies each

input utterance as bona fide or spoofed speech.

III. SEMANTIC-ACOUSTIC SOURCE TRACING NETWORK

In this section, we introduce our Semantic-Acoustic Source
Tracing Network (SASTNet) and explain the intuition behind
its design. Chen et al. [22] previously applied a self-supervised
learning model as a front-end feature extractor, followed
by a classifier for source tracing, but their approach often
emphasizes acoustic information at the expense of semantic
cues. In contrast, we recognize that effective source tracing
requires both the fine-grained acoustic patterns introduced by
codec distortions and the preservation of semantic consistency.
Indeed, Kawa et al. [27] have shown that combining semantic
and acoustic features yields better capture of deepfake arti-
facts. Because relying solely on acoustic cues from codec
distortions overlooks a critical fact: even codec-unprocessed
speech exhibits spectral and temporal differences when the
spoken content changes. If we focus only on acoustic features
and ignore linguistic content, natural variations caused by
different words or pronunciations can be mistaken for codec
artifacts. In contrast, by preserving semantic information, the
network can focus on the content-irrelevant information of
the input utterance and then isolate only those subtle acoustic
deviations that are independent of what is being said.

Figure 1-(a) shows the framework of SASTNet. Given
an input waveform, the model predicts the codec source
label based on the tasks defined in Section II. SASTNet
has three components: two front-end encoders and a back-
end classifier. Front-end encoders include a Semantic En-
coder, which extracts high-level linguistic embeddings, and a
Coarse-to-Fine Acoustic Encoder, which captures both coarse-
grained and fine-grained codec-specific acoustic features. The
backend classifier is a component of three two-layer cross-
modal Transformers, Semantic-to-Acoustic (SA), Acoustic-to-
Semantic (AS), and Fusion Transformer, each built around a

cross-attention mechanism. In the SA Transformer, semantic
features serve as queries while acoustic features act as keys
and values; the AS Transformer swaps these roles. The Fusion
Transformer then takes AS outputs as queries and SA outputs
as keys and values to integrate both modalities. Finally, an
AASIST [28] backend model uses the fused representation to
produce the source-tracing prediction. The detailed settings of
each block are described in the following sections.

A. Semantic Encoder

The Semantic Encoder leverages a frozen, pre-trained Whis-
per [29] model to generate content-robust embeddings that
serve as a stable anchor for source tracing. By verifying that
two utterances share identical linguistic content, these embed-
dings ensure the network ignores natural acoustic variations
caused by different words or pronunciations and focuses only
on codec-induced distortions. Concretely, let x denote the
raw input waveform. We first zero-pad x to a fixed duration
of 30 seconds, yielding xpad. We then pass xpad through
Whisper’s encoder to obtain a feature tensor spad ∈ R1500×768.
Because only the initial tokens cover the same time span as
our acoustic features, we truncate spad to the first 256 non-
padding time steps: strunc ∈ R256×768. To align with the
acoustic sequence length, we apply one-dimensional average
pooling over every two consecutive time steps in strunc. This
yields the final semantic representation Os ∈ R128×768. During
training, Whisper’s weights remain frozen to preserve high-
level phoneme- and word-level consistency. This design forces
the acoustic branch to align its features only when the semantic
anchor Os, indicates that spoken content is identical.

B. Coarse-to-Fine Acoustic Encoder

The goal of the acoustic branch is to isolate low-level codec
fingerprints while filtering out irrelevant noise and background
artifacts. We design a coarse-to-fine acoustic encoder: a fine-
tuned Wav2Vec 2.0 XLS-R (0.3B) [30] first captures broad
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codec-introduced anomalies, and a multi-decoder AudioMAE
module then masks and reconstructs those embeddings to sup-
press noise and amplify residual, codec-specific fingerprints.
Our multi-decoder AudioMAE is extended by a single decoder
AudioMAE [31]. For simplicity, we refer to Wav2Vec 2.0
XLS-R (0.3B) as W2V2 in the following section. The view of
the coarse-to-fine Acoustic Encoder is shown in Figure 1-(b).

In the first stage, a W2V2 model fine-tuned on the cor-
responding source-tracing task is employed to extract ro-
bust, coarse-grained representations associated with different
codecs. The initiation of fine-tuning here aims to enable W2V2
to capture more neural codec characteristics. Given an input
waveform x, the W2V2 generates initial embeddings ecoarse.

In the second stage, these embeddings are subsequently
refined by a multi-decoder AudioMAE framework, which is
inspired by the bottleneck architecture can purify some irrel-
evant information [32–34]. Within AudioMAE, the encoder’s
output h is simultaneously passed to all decoders, each of
which produces its own class-specific output {eifine}Ni=1, where
N denotes the number of classification classes. Then, we use
a multi-decoder scheme: since each class-specific autoencoder
reconstructs inputs from its own class more accurately than
others, the decoder with the best reconstruction indicates the
corresponding class [35]. Leveraging this property, we employ
a multi-head attention (MHA) mechanism to enable the model
to focus on the reconstruction quality across all decoders. The
informative representation h serves as the query (Q), while
econcat

fine , representing the concatenation of all reconstructed
outputs from each decoder, serves as both the keys (K) and
values (V). The MHA output Oa serves as the final acoustic
feature, allowing a more accurate identification of the codec
responsible for generating the input audio.

C. Semantic-Acoustic Fusion

The fusion module uses content-robust semantic embed-
dings as a stable anchor alongside acoustic features, which
capture inherent codec-related patterns. Inspired by audio-
visual synchronization [36, 37], a learnable cross-attention
mechanism [38] then extracts semantic–acoustic mismatch
features, which are inspired by audio-visual synchroniza-
tion. Specifically, three Transformer modules learn these
mismatches from different perspectives. Firstly, in the SA
Transformer Encoder, semantic queries attend to acoustic
keys/values to produce OSA, forcing the semantic stream
to highlight codec-induced distortions. Secondly, in the AS
Transformer Encoder, acoustic queries attend to semantic
keys/values to produce OAS, downweighting any acoustic com-
ponents aligned with the anchored content. Finally, these two
conditioned maps are passed through a Fusion Transformer
that uses OAS as queries and OSA as keys and values to yield
Ofusion, which is then fed into the AASIST classifier.

D. Loss Function

The SASTNet integrates two loss functions: a classification
loss Lcls from the AASIST backend and a reconstruction loss
Lrecon from AudioMAE. To balance these objectives, we adopt

the Automatic Weighted Loss (AWL) [39], which computes a
weighted sum of the reconstruction and classification losses:

Loverall = AWL(Lcls, Lrecon) (1)

where two learnable weights, wcls and wrecon, are automatically
adjusted during training to optimize the contribution of each
loss term. The classification loss Lcls is computed as the cross-
entropy loss between the output scores of AASIST and the
ground truth. The reconstruction loss Lrecon for multi-decoder
AudioMAE is defined as follows:

Lrecon = LMSEy
+max

(
0,m+ LMSEy

− LMSEother

)
(2)

where y denotes the input label, m denotes the margin,
and LMSEy

represents the Mean Squared Error between the
masked region of the input ecoarse and the corresponding
reconstructed region of output eyfine from decodery . LMSEother

refers to the average MSE between the masked region of
ecoarse and corresponding reconstructed masked regions of
other outputs eifine from decoderi, for i ̸= y. Note that the
input ecoarse is masked only during training. During inference,
ecoarse is fed directly into the encoder without masking.

The goal is for the class-specific decoder to yield a lower
reconstruction error compared to decoders not associated with
the input class. This design ensures that each decoder is
specialized in reconstructing inputs from its designated class.
When the LMSEother is lower than LMSEy

, the second term in
the loss becomes positive, increasing the overall reconstruction
loss as a penalty. Conversely, if LMSEy

is smaller than
LMSEother by at least m margin, the penalty term becomes
zero, resulting in no additional loss. The margin m = 0.1 is set
from observations that the MSE of the original single-decoder
version of AudioMAE typically converges to 0.02–0.05. This
setting enforces a minimum separation between the target
decoder and the others, promoting class-specific specialization.

IV. SOURCE TRACING

A. Experimental Setup

We investigate source tracing in CodecFake+ [21] dataset,
which comprises two subsets: CoRS (speech resynthesized by
pre-trained neural audio codec models) and CoSG (speech
generated by codec-based speech generation models). For
model training, we followed Chen et al. [22] and used
taxonomy-guided balanced sampling to maximize data diver-
sity under limited computational resources, selecting a subset
of spoofed samples accordingly. The CoRS Train dataset
contains 42,965 bona fide and 42,965 spoofed audio samples.
Depending on the sampling strategy, different CoRS subsets
are used. For example, when performing the AUX task, we
use only the AUX subset of CoRS Train. For evaluation, we
adopt the CodecFake+ protocol, which includes three subsets:
CoRS Test, CoSG Test (known codec), and CoSG Test (All).

Additionally, to assess the effects of unseen speech and
silence on performance, we sampled subsets from CoRS: For
training, we only use CoRS samples with utterance IDs ≤ 250,
referred to as the CoRS Train (utt. ID ≤ 250) set. For
testing, we split into two subset: a CoRS Test (Seen) set with
utterance IDs ≤ 250 and CoRS Test (Unseen) set > 250.
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TABLE I
F1 SCORE (%) ↑ OF EVALUATION ON DIFFERENT SOURCE TRACING TASKS.

(a) Vector Quantization Classification
Model CoRS CoSG (kn. codec) CoSG (All)

Random 32.26 29.21 30.79
S-VQ [22] 97.39 42.94 35.26
SASTNet 98.94 46.94 48.17

(b) Auxiliary Objective Classification

Model CoRS CoSG (kn. codec) CoSG (All)

Random 28.78 30.94 31.04
S-AUX [22] 97.15 32.80 19.44

SASTNet 97.90 48.13 43.47

(c) Decoder Types Classification

Model CoRS CoSG (kn. codec) CoSG (All)

Random 38.97 36.89 34.37
S-DEC [22] 97.96 46.73 27.26

SASTNet 97.72 48.03 40.71

During training, the model sees only utterances from CoRS
Train (utt. IDs ≤ 250), while CoRS Test (Unseen) evaluates its
ability to generalize to new content. For a detailed discussion,
please refer to Section V-A.

We adopt W2V2-AASIST [40] 3 as backbone and train
three baseline models on the CoRS Train set under different
sampling strategies, referred to as S-VQ, S-AUX, and S-
DEC. All input raw waveforms with a length of 82,200
samples at a sampling rate of 16,000 Hz, with RawBoost [41]
augmentation. For AudioMAE a patch size of 16 is used, and
during training, a masking ratio of 0.4 is applied, divided
equally between time and spectral dimensions. No masking is
applied during inference. We train models on an NVIDIA RTX
4090 GPU with a batch size of 12 for 40 epochs. The initial
learning rate is 5× 10−6, and the weight decay is 1× 10−4.

B. Results

We present a comparison between the performance of
SASTNet and baseline models across three source tracing
tasks in Table I. Each row represents a distinct model, and
corresponding F1 scores are derived from the model trained on
the VQ, AUX, or DEC tasks. Each column denotes a different
evaluation subset. Since this work focuses on improving
single-task performance, we do not include multitask results
for comparison with the previous work [22].

By examining F1-score changes from CoRS to CoSG (kn.
codec), we see that SASTNet outperforms all baselines on the
three tasks but still experiences roughly a 50% drop in F1-
score. This shows that, while more robust than prior models,
SASTNet remains affected by artifacts introduced during gen-
erative modeling. In CoSG (All), SASTNet’s performance in
the AUX and DEC tasks drops by only 5%–8% compared
to CoSG (kn. codec). Conversely, in the VQ task, SASTNet
actually improves by 1.23% on CoSG (All) versus CoSG
(kn. codec). Taken together, these results demonstrate that
SASTNet generalizes well to unseen codecs and maintains
strong source tracing performance across different generative
modeling and codec scenarios.

3https://github.com/TakHemlata/SSL Anti-spoofing

(a) CoRS

p227 306 (real)

p227 306 (snac)

p227 306 (DAC24)

(b) CoSG

UniAudio (S-AUX F1=0%)

USLM (S-AUX F1=100%)

MaskGCT (S-AUX F1=5.76%)

Fig. 2. The failure case study of codec-based deepfake source tracing.

TABLE II
F1 SCORES (%) ↑ OF BASELINE MODELS TRAINED ON CORS TRAIN
(UTT. IDS ≤ 250) AND TESTED ON CORS TEST (SEEN & UNSEEN)

Model
CoRS Test (Seen) CoRS Test (Unseen)

original data rm sil diff original data rm sil diff

S-VQ 93.62 69.04 -24.58 93.98 67.55 -26.43
S-AUX 93.70 69.45 -24.25 94.18 66.93 -27.25
S-DEC 92.05 68.21 -23.84 93.09 67.52 -25.57

V. ANALYSIS AND DISCUSSION

A. The Reason for Model Generalization Failures

Prior work [22] discussed how unseen codec types and
generative modeling may affect model generalizability. In this
section, we further identify two additional factors, silence and
unseen content, that affect model generalization.

1) Silence: One challenge is silence variability: inconsistent
pauses at utterance boundaries disrupt codec-signature align-
ment, causing models to focus on noise in silent segments
rather than learning content-independent features. Figure 2(a)
shows that CoRS contains silent intervals in both bona fide and
resynthesized speech. This occurs because the CoRS samples
in CodecFake+ are derived from the untrimmed version of
VCTK [42], which includes silence at the beginning and
end of each utterance. Since silence is present in both bona
fide and spoofed samples of different spoofing algorithms, it
may go unnoticed during lab experiments but later leads to
degradation when encountering samples with different silence
characteristics in the real world. When the model is trained on
CoRS with silence at the begining and end of each utterance it
can achieve perfect source-tracing F1 scoreson samples with
long silences as shown in Figure 2(b). However, the model
suffer performance degradation when facing samples with
short silences, e.g., from UniAudio [43] and MaskGCT [44].
We further analyzed the correlation between silence and per-
formance by correlating the proportion of silent samples with
F1 scores in CoSG (ρVQ = 0.62, ρAUX = 0.60, ρDEC = 0.75).
These findings also appear in deepfake detection [45, 46] and
highlight the need to model robustly against silence variability.

2) Unseen Content or Speakers: Unseen content and speak-
ers are both notable challenges, which means that linguistic
contexts or speaker information not present in the training set
introduce phonetic and prosodic patterns outside the model’s
learned distribution, thereby reducing performance. Experi-
ments: We conducted a controlled experiment on CoRS set to
isolate the effects of silence and variability in speech content

https://github.com/TakHemlata/SSL_Anti-spoofing
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TABLE III
ABLATION ANALYSIS OF SILENCE AND UNSEEN SPEECH EFFECTS ON
SASTNET. MODELS WERE TRAINED ON CORS TRAIN (UTT. ID≤250)
AND EVALUATED ON CORS TEST (SEEN & UNSEEN) USING F1-SCORE.

Model Front-end Modules CoRS (Seen) CoRS (Unseen)

W2V2 MAE Whisper orig. rm sil orig. rm sil

S-AUX ✓ 93.70 69.45 94.18 66.93

S-MAE [47] ✓ 89.08 65.27 88.96 39.27
M-MAE ✓ 93.42 67.73 92.66 55.30

Whisper + M-MAE ✓ ✓ 85.01 71.45 84.16 60.29

Pretrained W2V2+ M-MAE ✓ ✓ 95.68 79.96 96.37 79.91
Tuned W2V2+ M-MAE ✓ ✓ 96.56 83.69 96.79 82.15

SASTNet (Pretrained W2V2) ✓ ✓ ✓ 95.10 86.54 95.29 86.22
SASTNet (Tuned W2V2) ✓ ✓ ✓ 98.74 89.77 98.51 89.76

on source-tracing performance. During training, the model
was trained on the CoRS Train (utt. IDs ≤250) set. For
evaluation, we used CoRS Test (Seen) set and CoRS Test
(Unseen) set to assess the model’s performance on both famil-
iar and unfamiliar speech content. Additionally, we evaluated
the impact of silence by comparing model performance on
audio with and without silent segments, aiming to determine
whether the model had over-fitted to silence.
Results: Table II presents the results of single-task baseline
models evaluated on the CoRS Test (Unseen) set along with
CoRS Test (Seen) set. Excluding silent segments from the
input led to a substantial performance decline, with the single-
task model’s F1 score decreasing by approximately 27%. This
suggests that the presence of silence has a detrimental effect
on the baseline models’ performance. When evaluated on
seen speech, the F1 score is approximately 69%, whereas on
unseen speech, it decreases to around 67%, indicating that
the model’s effectiveness further diminishes when processing
unseen speech content. This suggests that the CoSG dataset,
which lacks silence and unseen speech components relative to
CoRS, poses a challenge for models to generalize to CoSG.

In summary, in Sections IV-B and V-A, we show how four
variables, namely generative modeling process, unseen codec
types, silence diversity, and unseen speech, combine to limit
model generalization and tracing fidelity.

B. The Impact of Semantic and Acoustic Encoder

To gain deeper insights into how the semantic and acoustic
encoders contribute to generalization under the effects of
silence, unseen speech, codec type, and generative modeling,
we conducted an ablation study on the AUX task and present
the results in Tables III and IV. We compare models using
different semantic and acoustic encoders by evaluating various
front-end configurations as follows:

• MAE-only: This configuration uses mel-spectrograms as
input to the MAE module. We further divide this setting
into S-MAE (Single-Decoder MAE) and M-MAE (Multi-
Decoder MAE) based on the number of decoders used.

• Whisper + MAE: The MAE processes mel-spectrograms
to extract acoustic features, which are then fused with
semantic features extracted from Whisper.

• W2V2 + MAE: Here, we replace the MAE’s mel-
spectrogram input with W2V2 SSL features. We consider

TABLE IV
ABLATION STUDY OF CODEC TYPES AND GENERATIVE MODELING

EFFECTS ON SASTNET. THE MODEL WAS TRAINED ON THE CORS TRAIN
SET USING AUX BALANCED SAMPLING AND EVALUATED ON THE

STANDARD CodecFake+ EVALUATION SET.

Model Front-end Modules F1 (%) ↑

W2V2 MAE Whisper CoRS CoSG
(kn.)

CoSG
(All)

Random 28.78 30.94 31.04

S-AUX ✓ 97.15 32.80 19.44

S-MAE [47] ✓ 96.67 42.21 35.59
M-MAE ✓ 97.10 38.41 36.64

Whisper + M-MAE ✓ ✓ 95.98 41.74 36.94

Pretrained W2V2+ M-MAE ✓ ✓ 98.62 43.29 36.89
Tuned W2V2+ M-MAE ✓ ✓ 95.81 46.18 41.91

SASTNet (Pretrained W2V2) ✓ ✓ ✓ 94.80 47.28 40.62
SASTNet (Tuned W2V2) ✓ ✓ ✓ 97.90 48.13 43.47

two variants: Pretrained W2V2 + M-MAE, where
W2V2 is initialized with pretrained weights; and Tuned
W2V2 + M-MAE, where W2V2 is initialized with the S-
AUX task-specific weights.

• Our proposed SASTNet has two variants: SASTNet
(Pretrained W2V2), where W2V2 is initialized with
pretrained weights; and SASTNet (Tuned W2V2),
where W2V2 is initialized with the S-AUX weights.

1) Effects of Silence and Unseen Speech.: In Table III,
compared to S-AUX, using MAE alone as the front-end
resulted in a significant decline in F1 score due to the
removal of silence, with S-MAE and M-MAE showing drops
of 49.69 and 37.36, respectively. Notably, M-MAE demon-
strated greater robustness to silence removal than S-MAE.
The Whisper+MAE exhibited a smaller F1 drop of 23.87,
indicating higher robustness compared to both S-AUX and
the MAE-only settings. Similarly, W2V2+MAE showed im-
proved robustness relative to MAE-only, with Pretrained
W2V2+M-MAE and Tuned W2V2+M-MAE resulting in drops
of 16.46 and 14.64, respectively. This suggests that initial-
izing W2V2 with S-AUX improves robustness to silence.
Finally, SASTNet (Pretrained W2V2) and SASTNet
(Tuned W2V2) exhibited the smallest performance degrada-
tion, with drops of 9.07 and 8.75, respectively—approximately
half the drop observed with W2V2+MAE.

For unseen speech content without silence, F1 scores im-
prove across models, from 39.27 for S-MAE to 89.76 for
SASTNet (Tuned W2V2), indicating that multi-decoder
reconstruction, Fine-tuned W2V2, and Whisper-based features
each play a crucial role in enhancing robustness under si-
lence removal and unseen speech conditions. Moreover, mel-
spectrogram inputs exhibit pronounced sensitivity to speech
content: when the input of MAE is mel-spectrograms, the
F1 gap between seen and unseen speech is considerable.
In contrast, substituting mel-spectrograms with SSL features
markedly reduces this discrepancy, indicating that SSL fea-
tures are more invariant to content than mel-spectrograms.

2) Effects of Codec Type and Generative Modeling.: In
Table IV, the performance of S-AUX on CoSG is notably poor,
even falling below the F1 score of the random baseline. This
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(a) S-VQ (b) S-AUX (c) S-DEC

(d) SASTNet (VQ) (e) SASTNet (AUX) (f) SASTNet (DEC)

Fig. 3. Confusion matrices of baseline and SASTNet on CoSG (All) eval-
uation set, row-normalized by true labels, with predictions on the horizontal
axis and true labels on the vertical axis.

indicates that S-AUX fails to perform source tracing on CoSG
data. In contrast, using MAE as the front-end yields better
results. Specifically, on CoSG (All), S-MAE achieves a 35.59
F1 score, while M-MAE reaches 36.64. Across the 17 CoSG
models, M-MAE consistently outperforms S-MAE in three
unseen codecs and in 9 out of 14 seen codecs. These results
suggest that multi-decoder reconstruction improves robustness
when handling unseen codecs and generative modeling.

Moreover, (Whisper+MAE) integrating Whisper with
MAE leads to a slight performance improvement over MAE
alone, achieving F1 scores of 41.74 on CoSG (kn.) and
36.94 on CoSG (All). Similarly, incorporating W2V2 with
MAE (W2V2+MAE) also enhances performance. Specifically,
Pretrained W2V2+M-MAE yields F1 scores of 43.29
on CoSG (kn.) and 36.89 on CoSG (All), while Tuned
W2V2+M-MAE achieves 46.18 and 41.91, respectively. These
findings indicate that SSL-based features are more robust than
traditional mel-spectrograms in handling unseen codecs and
generative modeling variations. The superior performance of
the Tuned W2V2 could be attributed to its prior knowledge
to codec-related data, whereas the Pretrained W2V2 was
only pre-trained on bona fide samples. As a result, the Tuned
W2V2 is better equipped to capture codec-specific artifacts.

Finally, SASTNet (Pretrained W2V2) achieves F1
scores of 47.28 on CoSG (kn.) and 40.62 on CoSG (All),
while SASTNet (Tuned W2V2) achieves 48.13 and 43.47,
respectively. These results represent a 24̃% F1 improvement
over W2V2+MAE, highlighting the effectiveness of fusing
refined SSL and Whisper features. This fusion enables the
model to better focus on codec-related artifacts with semantic
anchors, thereby enhancing performance on CoSG data.

C. Discussion

To better understanding results, we compared the confusion
matrices of SASTNet and the baseline on the CoSG (All)
dataset, with the results shown in Fig. 3. Notably, SASTNet
demonstrates significantly improved accuracy in detecting un-
seen real speech across the VQ, AUX, and DEC source tracing

(a) Bona fide (S→A) (b) Bona fide (A→S) (c) Bona fide (Fusion)

(d) Encodec (S→A) (e) Encodec (A→S) (f) Encodec (Fusion)

Fig. 4. The Semantic-Acoustic Interaction Attention Maps for Case Study.

tasks. Specifically, on CoSG (All), the accuracy for unseen real
speech improves by 2.63×, 2.7×, and 3.36× compared to the
baseline, respectively. Moreover, SASTNet shows improved
performance in identifying MVQ, None, Disentanglement, and
Frequency-domain codecs, suggesting that it generalizes better
across various codec attributes. This can be attributed to its
joint modeling of semantic and acoustic features, which allows
the model to compare bona fide and codec-resynthesized
versions of the same utterance. By leveraging consistent se-
mantic content with contrast acoustic cues, SASTNet is better
equipped to capture subtle artifacts left from codecs, thereby
enhancing its detection performance.

In Figure 4, we visualize three cross-attention maps from
the last layer of each transformer encoder for a randomly
chosen bona fide Encoder synthesis pair. Figures (a) and
(d) show opposite highlighted regions, indicating that the
SA Transformer focuses on semantic–acoustic mismatches
information (codec distortions). For resynthesized audio, this
produces a wider, more dispersed bright band. Figures (b)
and (e) remain flat and uniform for bona fide speech, and
only exhibit slight brightness at distorted frames for spoofed
audio. This shows that the AS module preserves content-
aligned regions while suppressing interference. Figures (c) and
(f) combine both patterns in spoofed audio, with highlights at
content-aligned and distorted information. This implies that
the Fusion module merges both patterns so the classifier can
focus on codec-specific fingerprints, regardless of content, thus
improving detection precision and generalization.

VI. CONCLUSION

To sum up, we have shown that models trained on neural
codec re-synthesised speech often overfit to silence regions
and fail to generalize across diverse silence conditions or
unseen content. To overcome these limitations, we introduced
SASTNet, which combines a semantic encoder with a coarse-
to-fine acoustic encoder to simultaneously preserve linguistic
content and extract detailed codec fingerprints. Empirical
results confirm that SASTNet substantially improves perfor-
mance in codec-based deepfake source tracing, demonstrating
its effectiveness and robustness.
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VIII. BROADER IMPACTS

In recent years, general-purpose audio language models
have become foundational for speech understanding [48–50].
However, even state-of-the-art systems like GPT-4o still steer
clear of deepfake detection because of safety restrictions [51],
underscoring their blind spots when it comes to synthetic
audio threats. By contrast, SASTNet provides a targeted,
interpretable framework specifically designed to trace codec-
based speech synthesis. We hope our approach sheds light on
this critical problem and spurs further exploration in the field.
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