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Abstract
Modern out-of-order CPUs heavily rely on speculative exe-
cution for performance optimization, with branch prediction
serving as a cornerstone to minimize stalls and maximize
efficiency. Whenever shared branch prediction resources lack
proper isolation and sanitization methods, they may origi-
nate security vulnerabilities that expose sensitive data across
different software contexts.

This paper examines the fundamental components of mod-
ern Branch Prediction Units (BPUs) and investigates how re-
source sharing and contention affect two widely implemented
but underdocumented features: Bias-Free Branch Prediction
and Branch History Speculation. Our analysis demonstrates
that these BPU features, while designed to enhance specula-
tive execution efficiency through more accurate branch his-
tories, can also introduce significant security risks. We show
that these features can inadvertently modify the Branch His-
tory Buffer (BHB) update behavior and create new primitives
that trigger malicious mis-speculations.

This discovery exposes previously unknown cross-privilege
attack surfaces for Branch History Injection (BHI). Based
on these findings, we present three novel attack primitives:
two Spectre attacks, namely Spectre-BSE and Spectre-BHS,
and a cross-privilege control flow side-channel attack called
BiasScope. Our research identifies corresponding patterns
of vulnerable control flows and demonstrates exploitation on
multiple processors. Finally, Chimera is presented: an attack
demonstrator based on eBPF for a variant of Spectre-BHS
that is capable of leaking kernel memory contents at 24,628
bit/s.

1 Introduction

Microarchitectural vulnerabilities pose serious and evolving
threats to modern out-of-order CPUs. Research over the past
few years has demonstrated how performance-oriented op-
timizations, designed to maximize pipeline efficiency, can
be exploited to create a malicious transient execution envi-
ronment capable of leaking sensitive data across different

security contexts [19, 22, 25, 33, 35, 38, 41, 42, 45, 52, 55, 71].
Some findings have also revealed how micro-architectural
side effects can influence the behavior of shared hardware
resources, enabling data disclosure attacks in concurrent exe-
cution environments [15, 34, 40, 43, 44, 56, 58, 65, 70, 73].

Despite extensive efforts to address these issues at the
hardware-software interface, our research reveals that cer-
tain underdocumented micro-architectural features, albeit in-
tended to manage resource sharing and contention, can cre-
ate new attack surfaces when interacting with other micro-
architectural behaviors.

Exploitations. This paper examines history-based branch
prediction and assesses potentially vulnerable behaviors inad-
vertently implemented in processors. Through extensive em-
pirical analyses of multiple processors, we reveal how micro-
architectural handling of resource contention creates distinct
vulnerabilities across different processor designs.

Building on our findings, we present a series of novel attack
flows that can extract secret data from separate software con-
texts. First, we present BiasScope, a coarse-grained control
flow side-channel that exploits the BPU’s bias-free behavior
to leak branch outcomes. Second, we propose two Spectre-
variant attacks, Branch Status Eviction (Spectre-BSE), and
Branch Hisotory Speculation (Spectre-BHS). These attacks
build upon the concept of Branch History Injection (BHI) [8],
but achieve malicious manipulation of the Branch History
Buffer (BHB) indirectly by controlling the branch history
updating mechanisms we investigated. Since they avoid ex-
plicit branch history injection through adversary-controlled
branches, these attacks naturally circumvent existing BHI
mitigations on ARM processors.

While the effectiveness of our attacks heavily depends on
the structure of victim code, we demonstrate vulnerable code
patterns and analyze their relationship to hardware imple-
mentation characteristics. Finally, we present Chimera, a
demonstrator based on eBPF, representative of an end-to-end
attack with Spectre-BHS, capable of leaking kernel memory
at 24,628 bit/s. In the light of recent work [59] that unveiled
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a large residual attack surface for known Spectre attacks in
the Linux kernel, the availability of gadgets that can enable
native Spectre-BSE and Spectre-BHS attacks should certainly
not be underestimated. Research on speculative trojans [72]
further exacerbates the risks associated with these attacks.

Contribution. In summary, this paper makes the following
contribution:

• We systematically analyze resource sharing and con-
tention in modern branch prediction units, identifying
mechanisms that can lead to exploitable behaviors.

• We reveal and evaluate undocumented features in mod-
ern BPUs, introducing new techniques for implicit BHB
manipulation. We exploit these primitives to present
novel side-channel attacks: Spectre-BSE, Spectre-BHS,
and BiasScope, enabling both speculative execution at-
tacks and control flow monitoring across privilege bound-
aries with all Spectre mitigations enabled.

• Through the development of exploitable program pat-
terns and the Chimera end-to-end attack demonstrator
based on eBPF, we highlight the importance of system-
atic analysis in uncovering potential security vulnerabili-
ties in hardware and software designs.

2 Background and Related Work

2.1 Branch Prediction
To minimize branch resolution latency and determine the next
fetch address before branch resolution, processors employ a
Branch Prediction Unit (BPU) that makes educated guesses
based on the historical behavior of branches. The BPU pri-
marily predicts two critical properties of a branch: the target
address (indirect branches) and the taken/not-taken direction
(conditional branches). To enable predictions, the BPU imple-
ments dedicated caches to store learned branch behaviors. The
Branch Target Buffer (BTB) [10, 11, 13, 30] caches target
addresses, enabling early instruction fetch redirection even
before branch decode completion. The Pattern History Ta-
ble (PHT) [27,68,69] aids in predicting conditional branches
by tracking their past outcomes using saturation counters.

History-Based Branch Prediction. While early branch pre-
dictors relied on simple Program Counter-based indexing to
correlate branch addresses with their targets, research has
shown this approach to be insufficient since branch outcomes
often depend on the control flow context established by pre-
ceding branches. Contemporary BPUs leverage this insight by
implementing history-based prediction policies that capture
correlations among branches.

The majority of modern BPUs introduce Branch History
Buffer (BHB) [68, 69] to maintain a record of recent branch
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Figure 1: TAGE branch predictor.

outcomes on the execution path, typically as a shift register
of taken/not-taken bits, which length is pre-defined. Some im-
plementations employ an enhanced variant of BHB known as
the Path History Register (PHR) [36, 47]. Unlike the canon-
ical BHB, which only records taken/not-taken outcomes, the
PHR maintains a complete jumping path by storing multi-bit
footprints that encode both the source and target addresses
of each taken branch, thus providing more distinctive signa-
tures for different control flow paths. In PHR, the historical
information is combined with the branch address to create
sophisticated indexing functions for the BTB and PHT [10].
This approach maintains separate prediction entries for each
unique control flow context, significantly improving predic-
tion accuracy by capturing path-specific branch behaviors.
Recent studies [6,8,31,66,67] have provided detailed insights
into the BHB updating mechanisms in modern processors.

Tags in BPU implementations. Tags are unique identi-
fiers in cache memory that verify the presence of requested
information. Differently from index functions, which in set-
associative caches may map multiple aliasing addresses to the
same cache set, tags enable unique identification of cached
elements within each set. Upon a cache query, tags help filter
out aliased entries that share the same index and allows the
cache to signal a query miss when no matching tag is found.

Since branch prediction only guides speculative execution
without affecting the architectural state, tag fields in BTB and
PHT can be optional. While many early works [10, 13, 27, 30,
68, 69] omitted tags from their designs based on this ratio-
nale, some researchers [24, 54] introduced tags in their full-
associative BTB/PHT implementations to prevent aliasing-
induced mispredictions.

Tags play a central role in TAgged GEometric history length
(TAGE), the state-of-the-art branch predictor design [48–50].
As illustrated in Fig. 1, TAGE consists of multiple prediction
tables: several tagged tables that use different combinations
of the Program Counter (PC) and branch histories with ge-
ometrically increasing length (BH[L1:0], BH[L2:0],...) for
indexing, and an untagged base predictor (T0) that relies
solely on PC-based indexing. During prediction, all tables are
queried in parallel for candidate results. The selection process
prioritizes predictions from tables with longer history lengths,
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as these capture more detailed branch correlation patterns.
TAGE leverages tags not just for entry identification but as

a fundamental mechanism for prediction selection. When a
tag mismatch occurs in a table, TAGE falls back to checking
results from tables with shorter history lengths, ultimately
defaulting to T0 if no matches are found in other tables.

2.2 Spectre Attacks
By exploiting speculative execution driven by the BPU, re-
searchers have discovered multiple variants of Spectre at-
tacks [8,9,19,28,29,32,57,62,72] that can transform harmless
memory load operations into data disclosure gadgets. When
a branch’s resolution is delayed due to unresolved data de-
pendencies, the BPU makes predictions based on patterns
stored in its prediction caches. Although mispredictions are
eventually reversed through pipeline flushes, the speculative
execution may perform architecturally unauthorized opera-
tions before the flush occurs. This constitutes the basis for
Spectre attacks.

Beyond Spectre-v1/v2 attacks, researchers have discovered
additional vulnerabilities [57, 64]. Straight-Line Speculation
(SLS) [5, 61] concerns the speculative execution of instruc-
tions immediately following another instruction that should
change the control flow (e.g., a branch, a return, etc.). Branch
History Injection [8] further exploited the interaction between
PC values and BHB content in BTB indexing. By manipulat-
ing these components to generate colliding indices, attackers
can force speculative execution of specific gadgets.

Canella et al. [9] systematically categorized attack vectors
based on privilege levels and execution contexts. Their exper-
iments revealed multiple mistraining vectors: the branch can
be mistrained either in-place (using the vulnerable branch
itself) or out-of-place (using a branch at a conflicting virtual
address), and the mistraining can occur from either the same
address space (victim process) or across different address
spaces (attacker-controlled process).

Their work revealed that the effectiveness of these attacks
varies significantly across platforms due to microarchitec-
tural differences. For instance, while out-of-place Spectre-v2
attacks were demonstrated on Intel processors, experiments
on ARM’s Cortex-A57 core (tested on Nvidia Jetson TX1)
showed resistance to this attack vector.

3 Microarchitectural Details of the BPU

In this paper, we evaluate multiple processors summarized in
Table 1.

3.1 Reference Snippet
To present our following experiments, it is convenient to intro-
duce a reference vulnerable code snippet in Listing 1, which
utilizes and manipulates history-based prediction.

SoC µarch Linux
NXP i.MX8QM Cortex-A72 5.15.71
BCM2712 (RaspberryPi 5) Cortex-A76 6.6.63
Nvidia Jetson AGX Orin Cortex-A78AE 5.10.104
AMD Ryzen 7 7840U Zen4 6.12.20
Intel N100 Gracemont 6.1.0

Intel Core Ultra 7 155H
Redwood Cove
Crestmont 6.8.0

Table 1: SoCs and Linux kernel versions tested in our paper.

1 BH_n: // BH[n], populate branch history
2 Bcond/BLR/BR
3 // ......
4 Bcond/BLR/BR
5 Bx_prime: // optional
6 Bcond/BLR/BR // replace with padding NOPs
7 B Bi_pred

1 Bi_pred:
2 LDR X1, target // target=[t_safe or t_leak]
3 BR X1
4

5 t_leak: // alias t_primary:
6 LDR X2, [X3]
7 LDR X5, [X4, X2] // refill gadget
8 RET
9

10 t_safe: // alias t_alt:
11 ADD X2, X3, X4 // example benign addition
12 RET

Listing 1: Pseudocode of the reference vulnerable snippet.

BH[n] is a series of branches (of any type) that al-
ways completely populate the BHB with a specific value
BHB(BH[n]) 1. Bx_prime is an optional indirect or con-
ditional branch that, when executed after BH[n], populates
the BHB with an additional footprint.
Bi_pred is an indirect branch with two possible tar-

gets, designated as t_safe and t_leak. Both BH[n] and
Bx_prime contribute to its speculation through the com-
bined BHB value BHB(BH[n]Bx_prime). Upon executing
Bi_pred, speculative selection between these targets can be
monitored through micro-architectural probes (e.g., cache hit),
enabling inspection of prediction results.

The snippet reports a leakage gadget for target t_leak and
a benign operation for target t_safe. Sometimes, in the fol-
lowing, we just need to distinguish between these two targets,
independently of the corresponding code: in these cases, the
reader can ignore the leakage and benign instructions and the
two targets are referred to as t_primary and t_alt, respec-
tively.

Note that this is just an example of vulnerable code: in
practice, many other snippet structures can be vulnerable to
our attacks.

1This notation may also be replaced with the actual BHB values, which
are denoted with the notation [<footprint 1>, <footprint 2>, ...],
e.g., [A, B, C, D].
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3.2 Branch History or Path History

We follow the method proposed by Yavarzadeh et al. [67],
which focused on Intel processors, to investigate BHB imple-
mentations in tested ARM and AMD processors. Our experi-
ments reveal that the BHBs in A76 and A78AE do not record
not-taken conditional branches but can distinguish between
footprints of taken branches at different addresses. Moreover,
all branch types—direct, indirect, and conditional—update a
unified BHB. These observations suggest that both models
implement a PHR, rather than a canonical BHB. ARM’s offi-
cial documentation [6] recommends BHB population loops
of 24 and 32 iterations for A76 and A78AE respectively, with
each iteration executing 2 branches, our experiments confirm
that their PHRs can store footprints of twice these values: 48
and 64 branches, respectively.

Conversely, our experiments on A72 and Zen4 revealed
a completely different implementation. Based on our obser-
vations, we conjecture that A72 is designed with 2 separate
BHBs, one canonical BHB and one PHR. Both buffers are 8
bits in size. The BHB holds eight 1-bit outcomes for condi-
tional branches, while the PHR holds four 2-bit footprints ob-
tained from the [5:4] bits of the indirect branch target. These
two buffers are updated and stored separately, then XOR’d
together when read by the BPU. AMD Zen4 also follows this
design, but direct and conditional branches also update the
PHR. In the following, whenever we do not need to distin-
guish between these detailed implementations, we will simply
use the term BHB.

3.3 BTB/PHT Mistraining & Eviction

While untagged BTB/PHT implementations allow one branch
to directly pollute (or mistrain) the prediction of another
branch due to set-index conflict, however, when a mismatch-
ing tag is detected for a committed branch, the tagging mech-
anism will consider it as an unrecorded one, thus will replace
an existing record and resulting in eviction of the existing
record.

The effects of tagging are also evidenced in recent research.
Canella et al.’s evaluation of Spectre-v2 [9] found that only
Intel processors are vulnerable to the out-of-place variants,
while AMD processors remain unaffected. This observation
suggests that AMD CPUs employ more comprehensive tag-
ging strategies compared to Intel’s implementations. This is
further supported by Wieczorkiewicz’s work on SLS [61].
ARM processors were found to be immune to out-of-place
Spectre-v2 but vulnerable to SLS for indirect branches [5],
suggesting that BTB eviction should also appear on these
processors. According to some papers [10, 13, 27], since
predictions for conditional branches may also involve BTB
records, i.e., depending on branch targets, we further suspect
that BTB eviction may also influence the prediction of condi-
tional branches.

1 void test_eviction(bool *flag, char *dc_signal) {
2 populate_bh(); // or replace with padding NOPs
3 if ( *flag == 0 )
4 char junk = *dc_signal;
5 }

Listing 2: Snippet to test BTB/PHT mistraining.
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Figure 2: Cache access latency (ns) as a function of the num-
ber of mistrain snippets (x-axis) after out-of-place training of
victim if-load snippet. Lower latency indicates not-taken spec-
ulative execution of the victim branch. Victim branch initially
trained to not-taken (NT) or taken (TT), with out-of-place
training using matching (BH) or different branch histories
(PC). Results averaged over 12,800 tests per configuration.

Mistraining. To verify this conjecture, we design an ex-
periment using a Spectre-v1 snippet shown in Listing 2. We
maintain one copy of the snippet as the victim while creating
multiple congruent copies at 20-bit-aligned addresses (i.e.,
keeping lower 20 bits identical to ones in the address of the
victim) to serve as mistrain snippets.

The experiment begins with establishing a branch highly
biased to not-taken by repeatedly executing (e.g., 32 times)
the victim snippet with flag=0 (NT-* in Fig. 2). Following
this initialization, out-of-place training attempts to mistrain
the branch to taken by executing multiple mistrain snippets
with flag=1. To observe the prediction outcome through data
cache signals, the victim snippet runs again with flag=1 set.
We also further evaluate the opposite case in which the victim
branch is initially trained as taken (flag=1) (TT-* in Fig. 2).

Varying the number of mistrain snippets. We first con-
ducted the test on A76 and A78AE. Results are reported in
Fig. 2. Our tests start with no mistrain snippets as a baseline,
then increase the number from one to eight. The baseline
test without mistrain snippets successfully establishes the bi-
ased prediction. When initially training the victim branch as
not-taken, if using 1 to 3 mistrain snippets, the cache signal
disappears, indicating the branch is successfully mistrained
to taken through out-of-place Spectre-v1 attack (NT-BH in
Fig. 2). Interestingly, starting from 4 branches, the cache
signal reappears, suggesting an unexpected change in BTB
and PHT behavior.Even when initially training the victim
branch as taken (flag=1), exceeding this threshold of congru-
ent branches causes the prediction to revert to not-taken (TT-
BH in the figure). Similar patterns emerge on A78AE, where
out-of-place Spectre-v1 attacks only succeed with one to four
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mistrain snippets. Furthermore, on A72, just two mistraining
snippets were sufficient to trigger this inversion phenomenon.

We also performed the same experiment on x86 processors.
While we were able to perform regular out-of-place mistrain-
ing for conditional branches on all tested processors, similar
reverting behavior appeared on AMD Zen4 when executing
16 mistrain snippets containing conditional branches jump-
ing across a 4K-aligned boundary. However, this reverting
behavior was not observed on Intel processors, suggesting a
different implementation of tagging mechanisms.

This experiment demonstrates that, in tested ARM and
AMD processors, while saturation counters can be shared
among multiple branches and lead to out-of-place mistraining,
exceeding a threshold number of congruent branches access-
ing the same branch prediction entry triggers an eviction-like
behavior for conditional branches. This may not match the
statement of ARM claiming only unconditional branches vul-
nerable to SLS [5]. We tentatively attribute this phenomenon
to BTB/PHR eviction mechanisms.

Mistraining and eviction with different branch histories
were also tested: details are available in Appendix B.

4 Threat Model

We consider a data disclosure threat model where the attacker
possesses knowledge of targeted hardware and can identify
or inject vulnerable execution patterns in the victim system.
The unprivileged or privileged attacker can execute the cor-
responding vulnerable code snippets. The target system has
no software vulnerabilities. All recommended Spectre miti-
gations are enabled with recommended configurations unless
explicitly noted as being disabled for specific experiments.

5 Exploitation 1: Bias-Free Branch Prediction

During our tests on the BHB of A72, we observe that an
indirect branch consistently jumping to the same target from
program initialization (e.g., a fixed function call in C code
compiled as an indirect branch) never updates the path history.
This unusual behavior of A72 suggests an undocumented
BHB and PHR update mechanism that selectively records
branch footprints based on certain conditions. We attribute
this behavior to Bias-Free Branch Prediction [2, 17], and
present primitives exploiting this undocumented behavior.

5.1 Filtering Biased Branches from BHB
In history-based branch prediction, the fixed size of the BHB
imposes a limitation on its capacity to store control flow
information. To maximize prediction accuracy, the BPU must
effectively eliminate irrelevant data from the control flow,
ensuring the BHB retains older yet meaningful footprints
within the limited storage budget.

BHB
10 10 10 10 Fupdate

Biased?

BST Branch result
address

outcome

BST Query

Returned record

Y/N Update?

Figure 3: BHB update process in bias-free branch prediction.
When a branch resolves, the BPU determines the branch’s bias
status using the process described in Algorithm 2, excluding
biased branches from the updating process.

One significant source of irrelevant information is biased
branches. These are branches that consistently produce the
same outcome throughout a program’s execution. A biased
conditional branch always maintains the same taken or not-
taken status, while a biased indirect branch consistently jumps
to the same target address. Since biased branches neither
affect future control flow nor depend on earlier branches, their
footprints do not contribute to meaningful history for branch
prediction. Instead, they would occupy space in the buffer,
reducing its capacity to capture correlations from earlier, more
informative branches, thereby degrading prediction accuracy.

The Bias-Free Branch Predictor [2, 17] was introduced
building on this intuition. Although the proposed implementa-
tions differ in their details, their key innovation lies in optimiz-
ing the BHB update mechanism by assessing the bias status of
a branch before adding its footprint to the BHB. This ensures
that only footprints from non-biased branches are recorded,
effectively preserving space for older branch histories.

This method incorporates a logical Branch Status Table
(BST) alongside the conventional buffers and registers used
in history-based branch predictors. As shown in Figure 3, the
BST plays a critical role in the branch history update process
by tracking the bias status of executed branches. Each BST
entry contains two fields: last branch outcome and bias status,
which together represent the status of branches.

The interested reader can refer to Appendix A for the up-
date algorithm of BST entries. Most importantly, note that a
branch that has never been seen before is always considered
biased, as there is no evidence to suggest otherwise. This
status only changes when the branch produces a secondary
outcome that differs from the previously recorded one, at
which point the relevant BST record is updated.

Experimental validation. To investigate this feature’s be-
havior, we employed the reference snippet in Listing 1. In
our experimental setup, BH[n] functions as a chain of indirect
branches and conditional branches designed to fully populate
the BHB and flush information from the previous context.
The jump targets of indirect branches are carefully selected to
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chain them together while ensuring each branch consistently
jumps to the same target address.

Based on this controlled BHB value, the prediction of
Bi_pred should theoretically be manipulable through the
outcome of Bx_prime. On most processors we evaluated, we
consistently observed that the prediction of Bi_pred is in-
deed influenced by the outcome of Bx_prime, confirming the
expected behavior of standard history-based prediction.

However, during our tests on the A72’s BHB, we observed
that the processor consistently yielding predictions matching
the architectural target. This observation suggests that such a
chain of branches fails to fully update the path history, leaving
residual hints from earlier contexts within the BHB. By me-
thodically chaining the indirect branches and directing them
to different targets prior to initiating our tests, we were able
to achieve the aforementioned control until process termina-
tion using the same branch chain. Interestingly, interference
from other processes sharing the same processor core could
subsequently disrupt this control mechanism.

These distinctive behaviors strongly indicate that the A72
may have implemented a bias-free branch predictor that uti-
lizes a globally shared Branch Status Table.

5.2 BST Eviction

As Gope and Lipasti [17] suggested, the BST should be im-
plemented as a fully-associative table indexed by the lower
bits of branch addresses. To enhance isolation among differ-
ent contexts, the BST may include an additional tag field for
each entry, which is generated using a different hash function
from the one used for indices. By verifying the tag value
upon a query, it prevents the retrieval of records assigned to a
different branch, thus mitigating potential value injection.

However, similar to other caches that use tags for isolation,
in the context of the BST, eviction occurs when a branch
attempts to acquire the slot that is already occupied by a
victim. While the new branch will replace the existing entry
with its own data, the record associated with the victim branch
is removed from the BST. When the victim branch is executed
again after eviction, the victim branch will be classified as
biased, regardless of its previous behavior before eviction.

Observing BST eviction. Based on the interaction between
the BHB and BST discussed above, we note that BST eviction
can be monitored by observing its side effects on history-
based branch prediction. Building on this premise, we demon-
strate how BST eviction can be observed by monitoring mis-
speculations triggered by inaccurate branch histories.

Consider the code snippet of Sec. 3.1. We train the BPU to
predict Bi_pred under two distinct execution flows:

• FA: it invokes BH[n], skips the optional Bx_prime, and
then causes Bi_pred to jump to t_primary; and

• FB: it invokes BH[n] and Bx_prime in sequence, then
causes Bi_pred to jump to t_alt.

Due to the presence of Bx_prime, FB generates a BHB
value for Bi_pred that differs from the one generated by
FA. When alternatively executing FA and FB under normal
conditions, the BPU should be able to differentiate these two
flows and make accurate predictions based on the following
BTB entries2:

FA : (Bi_pred, BHB(BH[n]))→ t_primary,

FB : (Bi_pred, BHB(BH[n]+Bi_probe))→ t_alt.
(1)

We now introduce Bx_evict, a branch that contends for
the same BST entry as Bx_prime (see Listing 1) through in-
dex aliasing, though it exists outside our reference snippet.
Bx_evict causes the eviction of the BST entry upon its ex-
ecution, altering the branch prediction status of Bx_prime.
To demonstrate the effects of BST eviction, we can hence
invoke Bx_evict in the middle of the two flows FA and FB.
On the execution of FB, this eviction will force Bx_prime to
be classified as biased. The footprint of Bx_prime will hence
be omitted, and the BHB will be populated solely based on
the footprints of BH[n] as for FA.

Consequently, despite executing FB, the BTB entry for FA
will be used for predicting Bi_pred, leading to t_primary
being mis-speculated in the mismatching context of FB.

BST on Cortex-A72. We implemented the reference snip-
pet from Listing 1 as a userspace program to test this behavior
on A72 using the NXP i.MX8QM chip. In this program, we
define Bx_evict as an always-taken conditional branch and
copy it to an address that shares at least 16 lower bits with
with Bx_prime at program initialization. t_primary triggers
a cache fetch to a designated probe address, while t_alt
performs no observable operations.

The mis-speculation was observed with 100% success rate,
demonstrating the presence of a Bias-Free Branch Predictor
in the ARM A72 CPU. We also found that the logical BST is
implemented as a 4096-entry table indexed by a 12-bit value
derived from bits [15:4] of an instruction’s virtual address.
The successful eviction with a single branch indicates that the
table is full-associative and tagged. Since BH[n] is not called
before Bx_evict, the high success rate of mis-speculation
indicates that branch history is not involved in the index-
ing process. Our experiments further revealed other possible
sources of BST eviction, as detailed in Table 2, which we
confirmed by testing different branch types for Bx_evict.

Additionally, we find that this behavior differs for condi-
tional branches: details are available in Appendix C.

2Notation (x, BHB(y)) → z represents a BTB entry, indicating that
branch x is predicted to target z when the branch history is BHB(y).
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Type Mnemonics Evict?
Indirect BR, BLR Yes
Conditional B.cond, TB(N)Z, CB(N)Z When taken
Unconditional B, BL No
Return (indirect) RET No
Other SVC No

Table 2: Operations triggering BST evictions on Cortex-A72.

Cross-context eviction. We further test if this primitive can
bypass process isolation, privilege levels, and Spectre mit-
igations. We implement the reference snippet in a custom
system call handler in Linux to check whether a userspace
Bx_evict can affect branch prediction in kernel space. While
we can train the BPU to distinguish FA and FB through
the syscall() interface, Bx_evict can still induce mis-
speculation in FB and leave an observable data cache signal.

This result reveals gaps in the isolation and sanitization
of BST by current Spectre software-based mitigations. The
ARM-proposed Spectre-BHB mitigation [6] can effectively
prevent explicit BHB value manipulation through population,
but our kernel-mode proof of concept demonstrates a lack
of sanitization of update policy after this barrier, creating a
residual attack surface for crafting BHB values.

In the second experiment, we implement the reference snip-
pet and Bx_evict as separate userspace programs. The vic-
tim program contains the reference snippet, while Bx_evict
is placed at the BST-aliasing address and runs in an infi-
nite loop. Both programs run concurrently on the same core,
with the victim program actively yielding CPU time to allow
Bx_evict execution. However, when the victim program re-
gains the processor, we can neither observe the data cache
signal nor detect the previously established entries for FA and
FB.

The Spectre-v2 mitigation on A72 employs a BPU flush
implemented in the ARM Trusted Firmware to invalidate all
BPU information [4]. While this reset can effectively sani-
tize all prediction state, we find that Linux applies it only to
userspace context switches, similar to the restricted scope of
IBPB on x86 processors. [1,21] With this mitigation disabled,
we successfully observed mis-speculation caused by eviction
from another userspace process.

Recent ARM processors implement a hardware-based iso-
lation feature FEAT_CSV2 [7] that adds context-dependent
values to BTB tags. However, although our tested processor
revision (r0p2) does not support this feature, ARM’s feed-
back confirms that such eviction remains unrestricted by this
feature.

5.3 Attack Flow #1: BiasScope

Building on BST eviction, this section presents BiasScope,
a side-channel attack that leverages BST features to leak the
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Figure 4: Monitoring a victim branch using BiasScope.

outcome of branches, even in other exception levels.
In spirit, BiasScope offers capabilities similar to those of

BranchScope [14], but leveraging a different attack vector.
BranchScope is a side-channel attack that extracts coarse-
grained control-flow information by analyzing saturation
counter values in the Pattern History Table (PHT) of modern
branch predictors. Conversely, our BiasScope exploits BST
eviction to monitor the execution flow of a victim program,
resulting from a taken branch that evicts an existing BST
entry with a shared aliasing index.

The core concept of BiasScope builds upon the primitive
described in Section 5.2. BiasScope does not perform the evic-
tion between FA and FB. Instead, it initializes and maintains
the non-biased record for Bx_prime, and yields the proces-
sor to the victim process. By alternating the execution of FA,
FB, and the victim process, the attacker can detect whether
a secret-dependent branch in the victim context triggered a
BST eviction, effectively repurposing the BST itself as a side
channel to extract information from other processes.

The attack flow is depicted in Figure 4. This BST side-
channel involves a secret-dependent sender branch in the vic-
tim context and a receiver snippet controlled by the attacker.
The sender branch corresponds to Bx_evict and Bx_prime
must be selected by the attacker so that the two branches share
the same BST entry (e.g., same address bits [15:4] on Cortex-
A72). According to the BST eviction behavior we found, it can
be a bare conditional branch that can be monitored directly, or
an indirect branch nested within a conditional block, thereby
exposing the execution status of the preceding conditional
branch. The receiver leverages flows FA and FB introduced
in the previous section, utilizing the history-related compo-
nents BH[n], Bi_pred, and Bx_prime to determine whether
the sender branch was taken.

The BiasScope attack proceeds as follows:

1. Preparation: The attacker first forces Bx_prime to alter-
nate between two legit targets to establish its non-biased
record in the BST. Additionally, the attacker ensures that
the branches in BH[n] are recorded as non-biased to
fully populate the BHB.
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Figure 5: Error rate of BST side channels under intra-process
BiasScope with branch addresses with different [15:4] bits.

2. Victim Execution: The attacker yields control of the
CPU, allowing the secret-dependent sender branch to
execute in the victim context.

3. Observation: After regaining CPU control, the attacker
alternates between executing FA and FB to verify the
presence of the BST entry of Bx_prime.

If the sender branch was taken during this period, the non-
biased status of Bx_prime will be lost. Consequently, the
BPU will classify Bx_prime as a biased branch, omitting its
footprint in FB and causing the BHB value to match that of FA.
In this scenario, t_primary is mis-speculated in FB, which
can be detected using a micro-architectural probe (e.g., cache
hit). This allows the attacker to leak the state of the victim
branch, possibly revealing secrets in the victim context.

Evaluation. We first evaluated whether we could leak the
taken status of an injected kernel branch with all default miti-
gations enabled. While controlling its conditional direction
from userspace, our results demonstrate that this vector can
accurately detect taken events of conditional branches execut-
ing in kernel space. We further evaluated the performance of
this BST side-channel using both sender and receiver running
in userspace, disabling the Spectre-v2 mitigation (discussed
in Section 5.1) for the sole purpose of this experiment. The
sender encodes an 8-bit secret using eight independent condi-
tional branches, with each branch controlled by one bit of the
secret byte. In each iteration, the receiver yields the core to
the sender by sleeping briefly, allowing the sender to encode
a secret byte into the BST side channel. When the receiver re-
sumes execution, it attempts to decode all eight bits. The error
rates in decoding each bit are illustrated in Fig. 5. Our experi-
ments demonstrate a high signal-to-noise ratio side channel.
However, we also observe that some branch addresses (e.g.,
with bits [15:4] = 0x2080) become completely jammed for
certain periods, suggesting interference from other code snip-
pets sharing the same processor core.

BiasScope converts the presence of a BST entry into ob-
servable branch latency. To effectively perform the attack,
the attacker must have a detailed understanding of the target
CPU’s branch latency characteristics to decode the measured
branch latency. Furthermore, since the BST can track multi-
ple branches simultaneously, BiasScope can monitor several

non-aliasing branches concurrently, improving the granularity
of observations on the victim’s execution flow.

5.4 Attack Flow #2: Spectre-BSE
While BiasScope demonstrated how data leakage can be fa-
cilitated by observing BST eviction caused by the victim, we
now exploit this behavior in the opposite direction, triggering
malicious mis-speculations in the victim context. We intro-
duce Spectre-BSE (Branch Status Eviction), a novel target
reuse attack primitive that exploits BST evictions to facilitate
BHB aliasing and trigger malformed speculative executions.

As we demonstrated before, since the bias-free mechanism
has an obvious influence on the BHB updating policy, an
attacker may manipulate the generation of BHB value by
controlling the presence of relevant BST records. This may
cause unexpected BHB values, which can be further exploited
to induce BTB index aliasing, reaching a similar result to
Branch History Injection (Spectre-BHB) [8]. In this section,
we demonstrate how BST eviction can manipulate branch
prediction and trigger secret data disclosure.

Spectre-BHB alters the BTB query and selection behavior
by manipulating the BHB values with footprints from attacker-
controlled branches, unlike Spectre-v2, which directly injects
a BTB entry into the target entry. In history-based BPUs, the
BTB index function typically incorporates both the branch
address and the BHB value. This dependency can be exploited
by crafting malicious BHB values, leading to confusion be-
tween two different branches. This behavior enables a “Target
Reuse Attack”, facilitating implicit out-of-place branch target
injection and bypassing existing Spectre-v2 mitigations.

However, Barberis et al. [8] stated that they were unable to
reproduce out-of-place Spectre-BHB attacks on ARM devices.
Considering that our attack Spectre-BSE ultimately relies
on the same BTB indexing mechanism as Spectre-BHB, we
currently limit our demonstration to in-place branch target
training, while demonstrating an inherent out-of-place vector
for manipulating BHB updates on the Cortex-A72 processor.
It is important to note that since neither Barberis et al. [8] nor
ARM [6] has completely ruled out the possibility of out-of-
place BHI attacks on ARM processors, we conjecture that it
remains feasible to conduct a fully out-of-place target reuse
attack using our Spectre-BSE.

Consider the reference snippet of Sec. 3.1 without
Bx_prime and the following execution flows:

• FA: it invokes BH[n] then Bi_pred jumps to a disclosure
gadget t_leak; and

• FB: it invokes BH[n], sets a secret-related context (e.g.,
in registers), and eventually jumps to t_safe, a benign
target that poses no security risks.

While branches in BH[n] may, e.g., validate the passed pa-
rameters to prevent micro-architectural illegal memory loads,
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they should also create distinct BHB values, resulting in two
BTB entries corresponding to FA and FB, respectively. Simi-
lar to typical Spectre attacks, triggering the mis-speculation of
t_leak in a mismatching context, i.e., FB, allows the attacker
to induce data disclosure from a secret context.

BST eviction plays a critical role in this attack by forc-
ing a typically non-biased branch to be classified as biased,
thereby generating an unexpected BHB value in the BTB
query or update process. When a branch is executed after
the corresponding BST entry is evicted, the BHB is not up-
dated, causing one oldest footprint to remain inside the BHB,
leading to an unexpected BHB value in subsequent control
flows. In some occasions, this may make the BHB value used
to predict Bi_pred alias with a mismatching execution flow,
causing the wrong record to be used in the prediction.

The Spectre-BSE attack hence proceeds as follows:

1. Preparation: Exploitability hinges on the BHB footprint
of BH[n] in both flows FA and FB. The attacker identi-
fies flows FA and FB such that BH[n] generates two foot-
print sequences: BHB(BH[n]|FA) and BHB(BH[n]|FB).
Exploitation is possible if, by excluding a subset Bev ⊆
BH[n] from FB, BHB aliasing occurs, i.e.,

BHB(BH[n]|FA)= BHB(BH[n]-Bev|FB). (2)

The attacker then invokes FA to initialize a BTB entry.

2. Eviction: The attacker performs a targeted BST eviction
on Bev using another branch that contend for the same
BST entry due to aliasing.

3. Leakage: The attacker invokes FB, inducing mispecu-
lation towards t_leak while retaining a secret-related
context.

Compared to Spectre-BHB [8], Spectre-BSE manipulates
BHB values through BST eviction rather than directly inject-
ing attacker-controlled branches. Furthermore, it does not re-
quire a short execution path between the snippet entry and the
victim branch, allowing for more flexibility in attack scenarios
and significantly broadening the potential attack surfaces.

Suppose BH[n] comprises five indirect branches, la-
beled as BH[0] through BH[4]. All these branches are
initially non-biased, and their bias statuses are trained
and stored in the BST before the attack. Under un-
constrained BHB budget capacity, the execution of this
branch sequence would yield the following BHB values
for the two flows: (i) BHB(BH[n]|FA)=[A,B,C,D,E]; (ii)
BHB(BH[n]|FB)=[B,C,D,E,F], where capital letters denote
some example BHB values. As the budget capacity of BHB
is limited in practice, let us assume the BHB retains only
the four most recent footprints (as, for instance, we found
happening in Cortex-A72).

To setup the attack, we first invoke FA to initialize a BTB
entry. This results in the following BTB entry:

FA : (Bi_pred, [B,C,D,E])→ t_leak. (3)
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Figure 6: BHB aliasing in Spectre-BSE.

At this stage, the environment is almost prepared, and the
attacker is ready to proceed with the malicious actions. The
attacker performs a targeted BST eviction on Bev = BH[4],
then invokes the vulnerable code snippet with FB.

As depicted in Fig. 6, due to eviction, the BST query
for BH[4] results in a miss, causing its footprint to be
omitted during BHB updates. Hence, differently from the
the nominal case in which BHB(BH[n]|FB) = [C,D,E,F],
upon FB’s execution the BHB value will be updated to
BHB(BH[n]-Bev|FB) = [B,C,D,E] instead, with the foot-
prints of BH[0:3] remaining inside the buffer and alias-
ing with the value associated with FA (see Eq. (3)). This
maliciously-constructed BHB value forces the BPU to spec-
ulate t_leak instead of t_safe for Bi_pred, potentially ex-
posing sensitive data during transient execution.

Evaluation. We evaluate our exploit using a userspace
branch to evict victim branches in both the same process and
a syscall() handler with all default mitigations enabled.
When the eviction branch is placed at a 32-byte aligned ad-
dress sharing bits [15:4] with the victim, we observe cache
hits from the victim flow with 99.9% success rate in both
intra-process and cross-privilege attacks, consistently with
our previous findings.

6 Exploitation 2: Branch History Speculation

This section presents Spectre-BHS. Before proceeding, it is
necessary to introduce Branch History Speculation.

6.1 Early BHB Updates
Due to the significant speed disparity between memory ac-
cess and pipeline execution in modern processors, branch
resolution can be delayed by up to hundreds of cycles. Specu-
lative execution enables the CPU frontend continue filling the
pipeline by speculatively executing instructions during this
period, potentially issuing hundreds of uncommitted instruc-
tions within the speculation window. While this technique is
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essential for pipeline efficiency, it introduces new challenges
when branches appear within the speculation window.

To maintain backend utilization and avoid pipeline stalls,
the frontend must predict and execute additional branches
encountered in the speculative execution path until backend
resources are exhausted, rather than halting speculation upon
encountering new branches.

Although history-based branch prediction is widely
adopted for this purpose, predicting a branch within the spec-
ulation window poses a unique challenge: since preceding
branches may remain uncommitted and the execution path is
still speculative, constructing an accurate branch history for
the current prediction becomes difficult. However, if the BHB
updates only upon branch resolution, these predictions, made
inside speculation windows, will rely on an outdated branch
history, if any exists.

To address this limitation, it becomes essential to update the
BHB speculatively based on predictions, even before branch
outcomes are confirmed, rather than waiting for the commit
stage which would significantly delay predictions. Modern
BPUs introduce Branch History Speculation (BHS) [18]
through various rollback mechanisms [16, 47, 53]. This ap-
proach allows speculatively-predicted branch outcomes to
immediately update the global branch history, either in the
main BHB or a dedicated speculative history buffer.

Since speculative predictions become immediately visi-
ble to subsequent branches in the speculation window, the
BHB remains up-to-date for further predictions. This allows
the pipeline to follow previously-learned execution paths,
improving efficiency even when data dependencies remain
unresolved.

6.2 Attack Flow #3a: Spectre-BHS

This mechanism further implies that a branch predicted in the
speculation window may be influenced by the outcomes of ear-
lier branches that are also speculated but not yet resolved. To
systematically investigate how unretired instructions impact
early BHB/PHR updates, we further extend the experiment
in Section 3.3 in combine with the reference snippet in Sec-
tion 3.1. Through this analysis, we introduce Spectre-BHS,
a novel variant of Spectre attack that manipulating the BHB
updating mechanism through BTB/PHT mistraining.

Cascaded mis-speculation. In our experimental setup, we
configure Bx_prime as a conditional branch dependent on
a variable flag. While BH[n] populates the BHB with a
predetermined path, the prediction of Bi_pred is principally
determined by the outcome of Bx_prime.

We define two flows, FA and FB, similar to those in Sec-
tion 5.2, which create distinguishable BTB/PHT entries for
Bi_pred based on Bx_prime’s footprint:

• FA: Bx_prime is not taken then Bi_pred jumps to
t_leak; and

• FB: Bx_prime is taken then Bi_pred jumps to t_safe.

Following the methodology detailed in Section 3.3, we fur-
ther evaluated whether we could manipulate the prediction
of Bi_pred by controlling the outcome of Bx_prime. We
started from single mistraining branch The results demon-
strate that all processor cores we tested consistently yielded
the expected prediction of Bi_pred based on the outcome of
Bx_prime, providing strong evidence that the BHB is indeed
updated speculatively across all evaluated microarchitectures.
This confirms that history-based branch predictions are con-
sistently made using the most recent branch histories, even
when those histories include speculative branches.

To validate this hypothesis, we constructed multiple
address-congruent mistraining snippets, each containing the
identical BH[n] sequence and a mistraining conditional
branch Bc_mt strategically placed at addresses that conflict
with Bx_prime (i.e., sharing the same lower address bits).
This experimental configuration enables us to systematically
mistrain Bx_prime’s prediction by executing these conflict-
ing branches while simultaneously establishing a conflicting
history pattern in the PHR.

Out test works as follows:

1. Preparation: We repeatedly invoke FA and FB to train
the BPU to recognize both flows, letting Bc_fp to be
recorded as taken in FB.

2. Mistraining: Then, we invoke all mistraining snippets,
with the mistraining branch to influence Bx_prime’s pre-
diction record.

3. Mis-speculation: To ensure a large speculation win-
dow that involves both Bx_prime and Bi_pred, we evict
from cache variable flag and the pointer variable used
by indirect branch Bi_pred. Finally, we execute FB and
monitor for the presence of the data cache signal left by
t_leak.

Similar to the experiment in Section 3.3, we initiated our
testing with a single mistraining snippet. Through manipula-
tion of the direction of Bc_mt with just one mistraining snip-
pet, we could control the speculated target of Bi_pred with
approximately 100% success rate on all evaluated platforms.
This result demonstrates that speculated branch outcomes
can indeed update branch history and influence subsequent
speculations within the same speculation window.

BTB/PHT eviction in PHR. Our observations in Sec. 3.2
show that Cortex-A76 and A78AE employ path history (see
also Sec. 2.1), where Bx_prime updates the history in PHR
only when taken. Based on this architectural insight, we hy-
pothesize that when BTB/PHT eviction forces the BPU to
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Figure 7: Access latency of data cache probe with varying
numbers of prefix NOP instructions in t_leak. Lower latency
indicates successful speculative execution of data load. Re-
sults averaged over 1,280 tests per configuration, shown with
and without BTB evictions.

“forget” a branch, such a not-yet-recorded branch will not
update the BHB before it is detected, causing it to be implic-
itly misinterpreted as not-taken in the path history. This cre-
ates confusion between FA and FB during speculation so that
PHR(BH[n]|FA) = PHR(BH[n]-Bev|FB). This could induce
mis-speculation to t_leak in the context of FB, which can
be exploited to achieve data disclosure like existing Spectre
attack vectors.

On A76 and A78AE, as the number of taken mistraining
branches increased. we observed the processor began select-
ing the path with Bx_prime as not taken, leading to speculat-
ing t_leak. This behavior closely parallels the phenomenon
documented in Section 3.3. In our userspace testing of 12,800
trials, we successfully achieved mis-speculation through BTB
eviction with success rates of 99.84% and 99.29% on A76
and A78AE respectively. We extended this experiment with
kernel-space victims on A76, achieving a comparable suc-
cess rate of 99.33%. This result confirms that PHR is prone
to transient confusion about the branch outcomes based on
incomplete and unconfirmed branch history. Additionally, as
we previously excluded the possibility of inducing BTB/PHT
eviction in Intel processors, we were consequently unable to
replicate this specific eviction-based mis-speculation vector
across the Intel architecture family.

BTB/PHT eviction in BHB+PHR. Having established dif-
ferent BHB implementations in Cortex-A72 and AMD Zen4,
we could not reproduce the eviction-induced behavior on these
processors as we discussed above. This indicates fundamen-
tal architectural differences in branch history management,
which we attribute to their hybrid BHB+PHR implementa-
tions. For a comprehensive analysis of these architectural
differences and potential attack surface, see Appendix C.

Speculation window. While the BPU transiently overlooks
the presence of Bev branches, once these evicted branches re-
tire, the BPU corrects the BHB value and flushes the pipeline
to recover the correct state. Therefore, unlike Spectre-BSE

which has a persistent effect on branch history, the specula-
tive execution of Bi_pred and any leakage operations must
occur before all data and control dependencies of Bev are
satisfied and before the branches are resolved. We observe
that barrier instructions (dsb isb or mfence) placed before
Bi_pred effectively prevent speculating t_leak under vul-
nerable configurations, further confirming the speculation
window requirements.

This timing constraint is crucial to exploit the specula-
tive path effectively. As illustrated in Fig. 7, our experiments
demonstrate that when induce the mis-speculation through BT-
B/PHT eviction, Coretx-A76 and A78AE can execute more
than 100 instructions within the speculative window, suc-
cessfully performing the data leakage operation at its end.
Furthermore, if the BPU can detect a branch before its resolu-
tion (e.g., during the decoding stage), the speculation window
may terminate prematurely. Notably, we also observed that
mistraining techniques yield speculation windows of compa-
rable size, suggesting that the evaluated BPU implementations
only detect the presence of a branch upon its architectural
resolution rather than during earlier pipeline stages.

7 Exploitation 3: BHS & Fallback Predictions

While the BPU updates the BHB with speculated outcomes,
other architecturally resolving branches within the speculation
window also influence predictions, potentially deviating from
learned execution paths. This section explores how this effect
in BHS schemes can be exploited to truncate history-based
predictions, demonstrated using extended Berkeley Packet
Filter (eBPF) [46].

7.1 A Special Case of Legit eBPF Programs
Let us examine another code snippet consisting of two main
blocks: the latter performs a data-dependent load, while the
former initializes the register context that can repurpose the
latter block as a Spectre gadget. To prevent data disclosure
through architectural execution, the snippet employs two
if statements (conditional branches), denoted as Bc_init
and Bc_load, that are mutually exclusive through com-
plementary conditions (i.e., Bc_init="if(flag)" and
Bc_load="if(!flag)"). This complementary structure en-
sures these blocks never execute together architecturally in
the same instance. Additional branches may exist in imple-
mentations of such snippets to handle supplementary logic.

In eBPF, the verifier statically examines each potential exe-
cution path in submitted programs to identify any violations
of safety constraints. Among its various strict safety checks,
the verifier enforces memory safety through two key require-
ments: first, all memory accesses must refer to a base pointer
of a pre-allocated buffer, with the actual pointer value fixed
at JIT compilation time; second, any added offset must be
a scalar value within the buffer’s size limits in any branch
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path. Since the verifier evaluates these mutually exclusive
blocks as separate execution paths and confirms their individ-
ual safety properties, such programs are deemed memory-safe
and approved for loading.

For programs with the structure introduced in Sec. 7.1,
exploitation would be straightforward in an environment vul-
nerable to out-of-place Spectre-v1. Since the attacker has full
control over the execution contexts of mistraining branches,
they can separately mistrain multiple branches while prepar-
ing appropriate BHB values, even when BTB/PHT is indexed
using both Program Counter and branch history.

However, our experiments on ARM processors in Sec-
tion 3.3 demonstrate that both out-of-place Spectre-v1 train-
ing and BHB eviction require a congruent BHB value to
succeed. This requirement poses significant challenges for
setting up the attack, as determining the necessary BHB value
through static analysis can be difficult in real world. More-
over, as shown in Section 6.2, Straight-Line Speculation (SLS)
can interfere with branch history generation. Specific attack
configurations—such as triggering SLS on Bc_init—may
prevent the processor from speculatively executing Bc_load
to reach the data disclosure gadget due to altered branch his-
tory. Given these complexities, we limited our analysis to the
general case without considering out-of-place Spectre-v1 and
SLS effects.

7.2 Breaking The Speculative Path

The mechanism of BHS suggests that a typical Spectre-v1
attack can affect the speculation of all subsequent branches
under the BHS scheme. However, while this behavior creates
a limited attack surface for controlling subsequent speculation,
it also impedes the creation of speculative flows that combine
code blocks from different execution contexts. Hence, a criti-
cal question emerges: is it possible to construct a code snippet
that induces branch misprediction by exploiting history-based
path speculation itself?

Let us re-examine the behavior of branch history updating.
When both branches introduced in Sec. 7.1 appear within the
speculation window, the speculated outcome of Bc_init im-
mediately updates the BHB, thus influencing the prediction of
Bc_load. However, if an attacker can force Bc_load to be pre-
dicted without using global branch history, then Bc_load’s
prediction may become independent of Bc_init’s outcome.
This could enable combining elements from different legiti-
mate flows into a single, BHS-induced speculative execution.
While history-based prediction can improve accuracy in most
situations, BPUs must maintain the ability to predict based
solely on Program Counter value to achieve better coverage
in complex environments, particularly for branches that corre-
late poorly with history. Many state-of-the-art BPU designs,
such as TAGE [48–51, 67], have implemented both PC-based
and history-based sub-predictors (see Sec. 2.1).

Updating TAGE upon mis-prediction. TAGE predictors
always update based on the encountered outcome of branches.
First, they update the provider component, which is the table
that supplied the final prediction. Then, upon a misprediction,
if the provider component is not the table with the longest
branch history, the BPU may allocate new entries in tables
with longer histories, recognizing that the branch might corre-
late better with a longer history pattern.

For previously non-executed branches, we thus hypothe-
size that the fallback mechanism selects the base predictor
T0 as the provider component, since all other tables report
query misses. The branch’s outcome is then recorded in T0,
establishing a new prediction entry with zero-length history.

7.3 Attack Flow #3b: Summon the Chimera
from Fallback Predictions

While BHS limits the construction of in-place Spectre attacks
on the programs of Sec. 7.1, fallback behaviors in BPUs create
an opportunity: branch predictions may not always depend
on the speculated path, enabling BHS for execution paths
that never existed architecturally from fragments of legitimate
ones. We demonstrate this variant of Spectre-BHS attack with
an eBPF program that complies with the layout of Sec. 7.1.

Branch history shuffling. Similarly to the observations
made by Wikner and Razavi in [63] for x86_64 architectures,
while creating a nested speculative execution environment, we
note that it is possible to “shuffle” the branch history related to
Bc_load, forcing the BPU to make predictions independent
of branch history. A simple way to do so is to provide a
dedicated conditional branch, say BHB-shuffle, that is never
architecturally taken before the attack so that it never updated
branch history. Conversely, BHB-shuffle is intentionally taken
at the stage of attack, hence injecting a history that was never
encountered before. This causes prediction to fall back to the
T0 predictor, which is also required to be trained.

Algorithm 1: A vulnerable program passing the eBPF
verifier.

1 params← LEGIT_PARAMS;
2 if take_sc is FALSE then
3 if set_ptr is TRUE then // Bc_init
4 params← &SECRET;

5 if set_ptr is TRUE & esc is TRUE then
6 exit;

7 if shuffle_BH is FALSE then NOP;

8 if esc is FALSE then
9 exit;

10 if set_ptr is FALSE then // Bc_load
11 memload (params);
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Exploitable snippet. We demonstrate a vulnerable snip-
pet in Alg. 1 that satisfies the conditions for a successful
attack. Besides Bc_init and Bc_load, given that the dis-
cussed layout and eBPF verifier allow additional branches
while preserving our requirements, we introduce some addi-
tional components to make the snippet practically exploitable.

1. A conditional BHB-shuffle branch (line 7) between
Bc_init and Bc_load meant to force fall-back predic-
tions with T0 when taken. This splits speculative exe-
cution into two parts: (i) the history-based part, where
branches are predicted using BHB, and (ii) the PC-based
part, where we will induce the BPU to predict using T0
only (i.e., using PC values).

2. Conditional escape blocks redirecting control flow out-
side the snippet both before and after the BHB-shuffle
branch. The first escape (line 5) provides an execution
path where the BHB-shuffle branch never executes archi-
tecturally, while the second one (line 8) allows branches
in the PC-based part to avoid training the BPU.

3. A shortcut path to the PC-based part. This branch (line 2)
bypasses the history-based part, enabling isolated train-
ing of T0 for branches in the PC-based part.

Note that due to diverse microarchitectural implementatons
and behaviors in real-world processors, other snippet struc-
tures may also be vulnerable to similar in-place mistraining.

Preparation. We initialize exploited BTB/PHT records us-
ing the following two flows. During these training flows, we
ensure the BHB-shuffling branch remains not-taken by setting
shuffle_BH=FALSE:

(A) take_sc=FALSE, esc=FALSE, set_ptr=TRUE.

(B) take_sc=TRUE, esc=TRUE, set_ptr=FALSE.

Their branch traces are available in Appendix D. Our attack
aims to mis-speculate a crafted execution flow combining the
history-based part of Flow (A) with the PC-based part of
Flow (B). The PC-based part of Flow (B) skips the escape
command (esc=TRUE) and transmits data using a side chan-
nel (line 10). Since this part is never architecturally observed
in the same execution flow together with taken branches from
the preceding lines, it will leverage the base predictor T0
for branch speculation. To prevent TAGE from escalating to
longer history-based predictions, we invoke this flow before
any other training and avoid executing these branches in dif-
ferent contexts, ensuring these prediction records are created
and remains in T0.

The history-based part of Flow (A) initializes registers to
make pointers dereference a secret address. Since the snippet
always executes through a common entry point (where we
assume consistent branch history), we must train the BPU to
speculate Flow (A) under the default history-based prediction
scheme, ensuring execution of register initializations (line 4).

Triggering data disclosure. We construct a vulnerable con-
text by setting shuffle_BH=TRUE to start the attack. The
attacker flushes set_ptr from cache, then invokes the snip-
pet with a dedicated attack flow, with take_sc=FALSE,
set_ptr=TRUE, and esc=TRUE to trigger the data leakage.

Due to the cache miss on line 3, the processor opens a
speculation window and executes subsequent branches based
on learned predictions. Since the BPU is trained to speculate
Flow (A) at the common entry, line 3 will be predicted as not
taken and line 5 as taken. When the execution flow reaches
line 7, since shuffle_BH remains in the cache and the branch
resolves as taken, it leaves a footprint in the BHB. From this
point, subsequent branches encounter a previously unseen
“shuffled” history. Based on the fallback prediction mecha-
nism discussed earlier, all subsequent branches on lines 8 and
10 will be predicted using the PC-based T0 base predictor.

Line 8 resolves quickly as taken since esc remains in the
cache, thus skipping the escape opcode. Finally, line 10 will
use the PC-based prediction left by Flow (B), which is not
taken. This triggers a memory load with the illegal, secret-
dependent params set in line 4.

In the end, the processor discovers its mis-speculation and
reverts all speculative changes. All speculative results, in-
cluding the BHB-shuffling branch on line 7 and correlations
among speculated branches, are not recorded by the BPU.
The branch on line 7 remains never-taken architecturally, and
predictions for lines 8 and 10 stay unchanged. To maintain
an exploitable environment, the attacker must preserve and
refresh the BTB/PHT entries for Flow (A) and (B) in their
respective sub-predictors.

We first implement Algorithm 1 as a C program. This pro-
gram demonstrate successful speculation of both pointer set-
ting and load gadget operations, achieving 100% and 99.85%
success rates on Cortex-A76 and A78AE, respectively.

Evaluation in eBPF. Kirzner and Morrison [26] demon-
strated that although eBPF verification ensures memory safety
in architectural execution paths, it cannot protect eBPF against
speculative execution. Their work showed how cross-address-
space, out-of-place Spectre-v1 can compromise this safety
assumption. Their work proposed enhanced verification for
unprivileged user programs that rigorously examines mem-
ory access constraints across all potential speculative execu-
tion paths, even those that are unreachable. We believe this
patch, implemented in v5.13rc7 and subsequently backported
by various distributions, prevented the execution of Chimera
from unprivileged contexts. Consequently, our testing was
conducted in privileged mode to bypass these restrictions.

In the eBPF implementation, LEGIT_PARAMS satisfies the
verifier by initializing two registers with a legitimate buffer
pointer and offset for the data load block, while Bc_init sets
these registers to zero and &SECRET, respectively.

We tested this program in privileged mode. To confirm
whether the BHS is enabled in kernel space, we intention-
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µArch Mitigation Primitive
BHB Clear CSV2 BPU Flush BHB BSE/BiasScp. BHS Chimera

Cortex-A72 � ○ � p ✓ ✓ −

Cortex-A76/A78AE � ○ � p − ✓ ✓

BHI_DIS_S e/aIBRS IBPB BHB BSE/BiasScp. BHS Chimera
Zen4 − � � p − M+C & E+C ✓

Gracemont � � � p − M+C ✓

Redwood Cove / Crestmont � � � p − M+C ✓

Table 3: Spectre mitigation techniques and exploitability of proposed attack vectors. For mitigations, � =Enabled for cross-
privilege, � =Enabled for cross-context, ○ =Enabled by default, and “−” Not applicable. For primitives, ✓ =exploitable with
recommended mitigations, p =fully mitigated, and − =Not applicable or not exploitable on this architecture. For Spectre-BHS on
x86 processors, “M+C” and “E+C” indicate using Mistraining or Eviction to hijack kernel Conditional branches, respectively.

ally mistrained the bias of Bc_init and flushed all four flag
variables. We observed that LEGIT_PARAMS is successfully
encoded in the data cache when Bc_init is biased toward
taken, confirming the presence of the BHS scheme for privi-
leged conditional branches. Given that Spectre-v1 attacks are
widely recognized as not fully mitigated and rely on ad-hoc
software mitigations, we conjecture that conditional branches,
including privileged ones, can be exploited in Spectre-BHS
attacks as victims through the manipulation of other branches
within their speculative execution paths.

Through the malicious configuration discussed above, it
successfully leaks arbitrary kernel memory contents. While
mis-speculations occasionally fail, we find that restarting it
causes the kernel to assign a new address to the JITed snippet,
avoiding interference and stabilizing the attack. Under opti-
mal conditions, we achieve a leakage rate of 24,628 Bit/s on
A76 using single-pass bit extraction with 100% accuracy.

Moreover, we successfully replicated these results across
evaluated AMD and Intel processors, though failed to repro-
duce this attack vector on A72, suggesting the absence of the
fallback mechanism on this microarchitecture.

However, it is important to note that, while this experiment
was conducted with some mitigations disabled, similar ex-
ploitable patterns likely persist in production environments
lacking comprehensive ad-hoc protections.

8 Mitigations

In Table 3, we provide a comprehensive overview of exist-
ing hardware and software mitigations against our branch
prediction attacks on the tested processors.

ARM has introduced a software-based BHB populating se-
quence [6] to clear branch footprints generated in user mode.
However, our experiments have demonstrated that this ap-
proach fails to isolate the BHB updating policy between user
mode and privileged mode, allowing our attack primitives to
bypass this countermeasure in all tested ARM processors.

AMD’s AutoIBRS on Zen4 disables execution of predicted
targets for kernel indirect branches, while Intel’s BHI_DIS_S
disables history-based prediction in kernel space entirely [60].

These mechanisms significantly constrain the exploitability of
kernel-space indirect branch targets on x86 processors; how-
ever, our testing reveals that prediction of conditional branches
remains unrestricted despite these mitigations, leaving poten-
tial conditional branch-based attack vectors exploitable. Thus
far, our efforts have not yielded positive results in this area.

Recent microarchitectures implement implicit predictor
mode separation by incorporating additional context informa-
tion into branch prediction records. Notable implementations
include ARM’s CSV2 and Intel’s eIBRS [20]. Our evaluation
demonstrates that these features remain insufficient to prevent
BTB and PHR manipulation through mistraining and eviction,
which subsequently influence the BHB updating process.

Some processors adopt aggressive Spectre-v2 mitigations
like IBPB (x86) [1, 21] and BPU flush (ARM) [4] that clear
prediction records. ARM applies them to pre-CSV2 proces-
sors (e.g. A72), while they are widely deployed across x86.
Although these mitigations could effectively neutralize our
attacks by invalidating malicious BPU configurations, a full
deployment may degrade system performance by more than
50% [12]. Hence, the deployment is typically restricted to
user space context switches, leaving syscalls unprotected.

9 Conclusion

This paper investigated how resource sharing and contention
in modern BPUs can originate security vulnerabilities in spec-
ulative execution when injecting inaccurate branch history.
Our findings allowed to propose three novel attacks, Spectre-
BSE, Spectre-BHS, and BiasScope, which were successfully
tested on multiple processors, exhibiting a very high signal-
to-noise ratio. A variant of Spectre-BHS was implemented
by means of eBPF, demonstrating its capability of leaking
kernel memory contents at 24,628 bit/s. In the light of re-
cent work [23, 37, 39, 59] that revealed a wide availability of
Spectre gadgets in the Linux kernel and the threats posed by
speculative trojans [72], this research should set the stage for
future investigations to prevent these new attacks in uncon-
trolled environments.
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A Cortex-A72: Determining Bias Status and
Updating BST Records

Using the recorded data and the committed branch result, the
BPU in Cortex-A72 determines the bias status of a branch via
Alg. 2 and excludes footprints from biased indirect branches
during PHR updates.

Algorithm 2: Determining the bias status of a branch.
Data: outcome and addr of the comitted branch
Result: biased status of the commited branch

1 rec← queryBST(addr);
2 if rec is NOT_FOUND then
3 biased ← TRUE;
4 else
5 if rec.biased is TRUE then
6 biased ← (rec.outcome = outcome);
7 else
8 biased ← FALSE;

9 updateBST(addr, biased, outcome);

B Cortex-A76/A78AE: BTB/PHT Eviction
and PC-Based Indexing

Since BTB and PHT may employ multiple indexing mech-
anisms, we investigate the extent of branch history’s contri-
bution to index generation on Cortex-A76 and A78AE. By
modifying the branch history population parameters in mis-
train snippets, we create scenarios where the BPU updates
occur under branch history contexts that are different from the
victim snippet. Interestingly, while these modified mistrain
snippets no longer achieve out-of-place mistraining, they still
trigger BTB eviction when reaching the previously identified
threshold on Cortex-A78AE. This observation suggests that
the BPUs in tested processors may employ both PC-based
and history-based indexing schemes in different tables simul-
taneously.

C BTB/PHT eviction in canonical BHB

Never-taken branches in BHB. PHR implementations
overlook undetected branches, effectively conflating “not
recorded” and “not taken” states during speculative execution,
while canonical BHB maintains a distinct “Not Recorded” de-
fault status for all branches and clearly differentiates between
these states. Our analysis on A72 reveals that conditional
branches in the canonical BHB remain unrecorded until their
first taken execution. This observation aligns with AMD’s
explicit documentation that “global history is not updated for
not-recorded branches” [3].
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Figure 8: Transitions in BPU record status for a branch, in-
duced by relevant branch instances. From the BPU’s perspec-
tive, the status of a branch can be classified into three types:
(i) “T” for taken, (ii) “NT” for not taken, and (iii) “NR” for
not recorded. Transitions occur based on the recorded out-
come (NT or T) or due to eviction (E).

Based on these mechanisms, we can clearly identify three
distinct states for conditional branches in the BHB updating
process, as illustrated in Fig. 8b. In such a canonical BHB im-
plementation, evicting a previously-taken branch’s entry does
not cause it to appear not-taken in subsequent speculations;
rather, it resets the branch to its initial unrecorded state.

In the attack vectors previously discussed, when attempting
to evict the record of the conditional branch Bx_prime after
eviction, the BPU may base its prediction of Bi_pred on an
entry associated with a third control flow path, distinctly dif-
ferent from both FA and FB. This third path requires specific
preparation strategies for successful exploitation. Moreover,
this “not-recorded” state may persist until the branch is taken
for the first time, creating a long-lasting effect on BHB up-
dating mechanism that extends beyond a single speculation
window.

Revealing not-recorded state. To demonstrate the impact
of this explicit “not-recorded” state in BHB, we constructed
an experiment that preserves the core setup from Section 6.2.
In this experimental setup, we insert a speculation barrier
between Bx_prime and Bi_pred to ensure all preceding
branches are resolved and properly update the BHB before
Bi_pred is speculated. t_safe is modified to emit a distinc-
tive side-channel signalenabling clear differentiation from
mis-speculation to t_leak. Bx_prime is executed as taken at
least once prior to any training or testing sequences, ensur-
ing its proper registration by the BPU. Following all training
and eviction operations, we invoke a dedicated test flow in
which Bx_prime is not taken and Bi_pred jumps to a third
architectural target t_arch.

To assess potential mis-speculation of Bi_pred, we employ
high-precision CPU timers (e.g., rdtsc on x86 processors and
mrs reg, pmccntr_el0 on ARM processors) to measure
the branch latency of Bi_pred. When Bi_pred is correctly
predicted to t_arch, we observe relatively low branch latency

since no speculation rollback is required.

Evaluation. We evaluated this setup on Zen4. When evic-
tion succeeded, Bi_pred consistently demonstrated correct
prediction with minimal latency, with no detectable side-
channel signals from either t_leak or t_safe. This indicates
that following Bx_prime eviction from BTB/PHR, the test
flow generates a unique BHB value and associates it with
t_arch. Even when Bx_prime architecturally resolves as not
taken and all preceding branch outcomes match FA, the BPU
predicts Bi_pred using a third distinct state where Bx_prime
is omitted due to its not-recorded classification. However,
this implicit “bias” status handling for conditional branches
differs significantly from the bias-free scheme observed for
indirect branches on A72. Our analysis reveals that the canon-
ical BHB implementation on A72 does not apply the bias-free
scheme to conditional branches, which are always recorded
in the 8-slot BHB even when consistently taken, following a
distinctly different mechanism than that applied to indirect
branches.

For conditional branch prediction, since only two possi-
ble predictions exist (taken or not taken), our experiments
could not systematically demonstrate its perturbation effect.
However, inducing an unexpected BHB value may force the
BPU to make PC-based predictions using fallback prediction,
resembling the phenomenon discussed in Section 7.

D Execution Traces of Chimera

The execution traces of training and attacks flows of the eBPF
program used in Chimera (Section 7.3) are reported in Table 4.

Flow A B Attack
Inputs F F T T T F F T T
Line 2 NT TT NT
Line 3 TT – NT
Line 5 TT – NT

Split by BHB-shuffle branch on Line 7
Line 8 NT TT –
Line 10 – NT –

Table 4: Architectural execution traces of training and attack
flows. Three traces shown: Flow (A), Flow (B), and the attack
flow. Input variables (take_sc, esc, set_ptr) are shown in the
header, with “T” indicating TRUE and “F” indicating FALSE.
For each branch, identified by line number, “TT” denotes
taken, “NT” denotes not-taken, and “–” denotes not executed.
Branch outcomes used to craft the malicious speculative exe-
cution path are highlighted in yellow.
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