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Abstract

Differential Privacy (DP) is a widely adopted technique, valued for its effectiveness
in protecting the privacy of task-specific datasets, making it a critical tool for large
language models. However, its effectiveness in Multimodal Large Language Mod-
els (MLLMs) remains uncertain. Applying Differential Privacy (DP) inherently
introduces substantial computation overhead, a concern particularly relevant for
MLLMs which process extensive textual and visual data. Furthermore, a critical
challenge of DP is that the injected noise, necessary for privacy, scales with pa-
rameter dimensionality, leading to pronounced model degradation; This trade-off
between privacy and utility complicates the application of Differential Privacy (DP)
to complex architectures like MLLMs. To address these, we propose Dual-Priv
Pruning, a framework that employs two complementary pruning mechanisms for
DP fine-tuning in MLLMs: (i) visual token pruning to reduce input dimensionality
by removing redundant visual information, and (ii) gradient-update pruning during
the DP optimization process. This second mechanism selectively prunes parameter
updates based on the magnitude of noisy gradients, aiming to mitigate noise impact
and improve utility. Experiments demonstrate that our approach achieves compet-
itive results with minimal performance degradation. In terms of computational
efficiency, our approach consistently utilizes less memory than standard DP-SGD.
While requiring only 1.74% more memory than zeroth-order methods which suffer
from severe performance issues on A100 GPUs, our method demonstrates leading
memory efficiency on H20 GPUs. To the best of our knowledge, we are the first to
explore DP fine-tuning in MLLMs. Our code is coming soon.

1 Introduction
Large Language Models (LLMs) [35, 43, 52] have showcased remarkable proficiency in natural
language processing, driving their widespread adoption in downstream tasks [54], and Multimodal
Large Language Models (MLLMs) [2, 27, 45]extend the power of LLMs by integrating text and
visual data, opening up possibilities for applications that require understanding across different
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modalities. However, both models are easy to risk leaking sensitive information during training [8, 32].
Differential Privacy [9] (DP) , the technology for providing privacy guarantees that limit the ability
to infer whether a data point was used in the training process of a model by observing its output.
This technology is typically achieved by injecting noise during training processes, limiting the
discernible impact of single data point. The degree of privacy guarantee is tuned using a privacy
budget (ϵ), where stronger privacy guarantee (lower ϵ) generally comes at the cost of adding more
noise and degrading model performance. The inherent trade-off between privacy and utility presents
a significant challenge, particularly when applying DP to large and complex models like LLMs,
since the necessary noise often scales with parameter dimensionality. Prior works [11, 25, 28, 50]
have shown that LLMs with hundreds of millions of parameters can be effectively and efficiently
fine-tuned to yield models with high performance under modest privacy leakage.

However, it remains unclear whether such conclusions of LLMs are transferable to MLLMs. Similar
to unimodal models, DP also face challenges under MLLMs. The first is computation consumption.
This challenge is exacerbated in MLLMs, which rely on a large number of visual tokens ( e.g.,
197 tokens per image in CLIP-ViT [36] or hundreds in LLaVA [27] ) to represent detailed visual
information, significantly increasing computation demands. Recent work [25]introduced “ghost
clipping” to address the computation overhead of DP-SGD in LLMs. While ghost clipping reduces
computation overhead by leveraging the sequential structure of text, its reliance on this sequentiality
renders it unsuitable for image features, as MLLMs process these features as non-sequential data
within their multimodal components. Zeroth-order methods (e.g., DP-ZO [42]) also aim to reduce
computation overhead by avoiding explicit gradient calculations. However, these methods introduce
severe convergence issues. For instance, DP-ZO required more training steps (75k vs 200) than
standard DP-SGD to achieve comparable performance on SQuAD [42], making this gradient-free
approach prohibitively slow for practical MLLM training. Another challenge is model degradation.
Differential privacy introduces noise to safeguard data privacy, but this noise perturbs the gradient
signals during training, leading to performance degradation. In MLLMs, DP noise scales with
parameter dimensionality, overwhelming gradient signals in high-dimensional layers and necessitating
more iterations to stabilize optimization, as noted in foundational work on DP-SGD [1].

To tackle these challenges, we introduce Dual-Priv Pruning, a novel DP finetuning approach tailored
for MLLMs. Our approach integrates two complementary pruning mechanisms designed to work in
concert, addressing these issues from both the input representation and the optimization process. The
first key pruning mechanism focuses on optimizing the visual input stream prior to training: it employs
an attention-based mechanism to identify and prune redundant visual tokens, thereby substantially
reducing the input dimensionality and subsequent computational demands. The less critical visual
information pruned in this manner is then fused into some compact contextual representations, to
which a calibrated heuristic noise is added. This step aims to preserve essential global context while
further alleviating the processing load for the differential privacy mechanism. The second core
pruning mechanism refines the differential private fine-tuning process itself. While adhering to the
standard DP-SGD framework for rigorous noise addition to guarantee privacy, Dual-Priv Pruning
introduces a gradient-update pruning technique. This technique analyzes the noisy gradients resulting
from DP noise injection. It then selectively applies these gradients for parameter updates only to
those blocks where the underlying signal is deemed sufficiently strong and reliable to overcome the
obfuscating effect of the DP noise, thereby preserving model utility and stabilizing training. Dual-Priv
Pruning offers a robust solution. As the first work to explore DP finetuning specifically tailored
for MLLMs, our method achieves a superior privacy-utility trade-off and enhanced computational
efficiency, delivering competitive performance even under stringent privacy budgets.

We summarize our main contributions as follows: (1) We pioneer the integration of DP into the domain
of MLLMs, addressing a critical research gap in privacy-preserving multimodal learning. (2) We
introduce a novel privacy-aware visual pruning mechanism that significantly reduces computational
overhead by optimizing visual inputs, thereby creating more favorable conditions for subsequent DP
fine-tuning. (3) We propose an DP-compatible gradient-update pruning strategy that intelligently
applies noisy gradients to mitigate the adverse effects of DP noise on model performance, thereby
enhancing utility while maintaining strong privacy guarantees. (4) Extensive experiments demonstrate
that our Dual-Priv Pruning achieves robust privacy protection, substantial memory reduction, and
competitive performance on diverse vision-language tasks, even under stringent privacy budgets.
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2 Related Work
Differential Privacy (DP) [9] ensures privacy guarantees by limiting the ability to infer whether a
data point was used in the training process of a model, making it a cornerstone for privacy-preserving
learning. In the area of computer vision, [41] developed DP methods for image classification
by adding noisy priors, achieving strong privacy-utility trade-offs, and [30] applied DP to video
recognition, enforcing video-level differential privacy through clip-based classification models. In
natural language processing, [31] trained recurrent language models with DP, reducing risks of
data memorization. For LLMs, [24] demonstrated DP fine-tuning but noted challenges with utility
degradation due to noise, while [18] showed that public pre-training followed by private fine-tuning
can alleviate some performance losses. Memory-efficient techniques, such as “ghost-clipping” [25],
optimize DP-SGD for LLMs but rely on text-specific assumptions, limiting their applicability to
multimodal settings. Zeroth-order optimization [42] offers an alternative for LLMs by avoiding
gradient instantiation, but it suffers from too long training times. Other efforts to improve DP include
manipulating gradients, such as GIP [48] that perturbed individual gradient indices, though its privacy
analysis clarity was questioned; In contrast, our gradient-update pruning operates as a post-processing
step on entire noised logical parameter blocks, simplifying privacy analysis and aligning with PEFT.
In multimodal learning, [15] introduced DP to CLIP training, protecting vision-language data, and
[51] proposed low-rank reparametrization for scalable private learning, applicable to multimodal
tasks. Additionally, [17] applied DP to medical image, emphasizing privacy in sensitive domains.
Despite these advances, no prior work has explored DP fine-tuning for MLLMs, which face unique
challenges due to cross-modal interactions and massive length visual tokens. Existing methods, do not
address the memory demands and model degradation of MLLMs, a gap that our work to addresses.

Multimodal Large Language Models (MLLMs) integrate visual and textual modalities to solve a
wide range of tasks. Flamingo [3] introduced a query-based cross-attention mechanism to enable
multimodal interactions, while BLIP-2 [23] proposed the lightweight Q-Former to enhance efficiency.
InstructBLIP [7] further aligned models with user intent via instruction tuning across diverse datasets.
LLaVA [27] improved visual understanding using curated training data, while subsequent efforts such
as Qwen-VL [4] and CogVLM [46] introduced advanced training strategies and modular visual expert
systems to boost performance. A major challenge in MLLMs is the redundancy of visual tokens, which
significantly increases memory and computational costs [6]. Recent work addresses this inefficiency:
FastVLM [44] prunes tokens based on attention scores, and VisionZip [49] identifies contextual
tokens that retain global semantics (e.g., background information). Visual token redundancy offers a
promising avenue for DP in MLLMs. Pruning low-importance tokens reduces sensitive data exposure.
We leverage this property to enable even source-level privacy protection and efficient DP fine-tuning.

3 Preliminaries
3.1 Differential Privacy
Differential privacy (DP) [9] provides a rigorous framework to safeguard sensitive data by ensuring
that model outputs remain statistically indistinguishable for datasets differing by a single record. This
guarantee inherently limits the ability of inferring individual record participation, mitigating risks
such as membership inference attacks [39]. A hallmark of DP is its robustness to post-processing: if
an algorithm A satisfies (ϵ, δ)-DP, any function f ◦ A preserves the same (ϵ, δ)-DP guarantee.

Definition 3.1 ((ϵ, δ)-Differential Privacy). A randomized algorithm A is (ϵ, δ)-differentially private
if, for any two neighboring datasets D and D′, differing by one record, and any set of outputs
S ⊆ Range(A), the following holds:

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ, (1)

where ϵ ≥ 0 is the privacy budget, controlling the strength of the privacy guarantee, and δ ∈ [0, 1) is
a small failure probability.

In the context of fine-tuning MLLMs, two datasets D and D′ are defined as neighboring if one can be
obtained from the other by adding or removing a single image-text pair. The application of DP in
iterative training (introduced in Section 3.1.1), relies on fundamental mechanisms and accounting
principles. The Gaussian Mechanism (detailed in Fact A.1) is employed to add noise. To manage the
overall privacy loss across multiple iterations, privacy accounting techniques like Rényi Differential
Privacy (RDP) (detailed in Fact A.2) are utilized. These principles are central to the DP application.
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3.1.1 Differentially Private SGD
Differentially Private Stochastic Gradient Descent (DP-SGD) [1] adapts SGD to ensure the trained
model parameters θ ∈ Rd satisfy an overall (ϵ, δ)-DP guarantee with respect to Dtrain. In each
iteration k, for a minibatch ξk of size m sampled with probability q = m/N : First, per-sample
gradients gi = ∇θL(θk−1, (Ii, Ti)) are computed for each i ∈ ξk. Second, to bound sensitivity, the
L2 norm of each gradient gi is clipped using a threshold C: ĝi = gi/max(1, ∥gi∥2/C). This ensures
∥ĝi∥2 ≤ C, thereby limiting the influence of any single sample and resulting in an L2 sensitivity
of ∆f = C/m for the subsequent average gradient (details in Appendix B). Third, these clipped
gradients are aggregated by averaging: ḡ = 1

m

∑
i∈ξk

ĝi. Finally, calibrated Gaussian noise is added
to this average gradient before updating:

θk = θk−1 − η ·
(
ḡ +N (0, σ2C2Id/m

2)
)
. (2)

The hyperparameters C (clipping norm) and σ (noise multiplier) control the trade-off between privacy
and utility. The appropriate value for σ is determined based on the overall privacy budget (ϵ, δ), total
training steps, and sampling rate, typically using privacy accounting methods like RDP (Fact A.2).

3.2 Problem Definition: Differentially Private Fine-Tuning of MLLMs
Our work focuses on fine-tuning a pre-trained MLLMMθ with parameters θ ∈ Rd. The fine-tuning
is performed on a private dataset Dfine = {(Ii, Ti)}Ni=1, where each pair consists of an image Ii
and a text sequence Ti = {w1, . . . , wi}. The primary objective is to adapt Mθ to downstream
vision-language tasks by learning parameters θfine that exhibit high utility. This utility is typically
achieved by minimizing an empirical risk, often the negative log-likelihood loss, over the Dfine.

A crucial and defining requirement for this process is that it must adhere to a strict (ϵ, δ)-Differential
Privacy (DP) guarantee (Definition 3.1) with respect toDfine. This requires the learning algorithmA
to generate θfine from Dfine and θ under (ϵ, δ)-DP guarantees. The core problem can be summarized
as finding parameters θfine that balance utility and privacy, as formally stated below:

Problem Formulation
Objective: Minimize the empirical risk on the private dataset Dfine:

L(θ,Dfine) :=
1

N

N∑
i=1

(
−

Ti∑
t=1

logPMθ
(wi,t |Ii, wi,1, . . . , wi,t−1)

)
(3)

The learning algorithm A producing θfine from Dfine must be (ϵ, δ)-Differentially Private:

Find θfine ≈ argmin
θ∈Rd

L(θ,Dfine) s.t. A(Dfine) is (ϵ, δ)-DP. (4)

4 Method
We introduce Dual-Priv Pruning, the first framework for differential private (DP) fine-tuning of
MLLMs, designed to optimize the privacy-utility trade-off. Mechanism 1 performs attention-based
token pruning and fusion to transform the visual input into a compact representation V ′. Mechanism
2 applies (ϵ, δ)-DP to the trainable parameters θtrain using DP-SGD (Section 3.1.1), enhanced with a
gradient-update pruning strategy to improve utility. This provides formal (ϵ, δ)-DP guarantees for
the entire pipeline. Further details and motivations are in Appendix E and Appendix F.

4.1 Mechanism 1: Visual Token Pruning and Fusion
This initial stage reduces the computation cost associated with long visual token sequences before
the differential private fine-tuning process begins. It consists of identifying and retaining the most
important visual tokens based on attention, followed by merging the remaining tokens and applying
noise prior. This stage is not designed to provide the formal DP guarantee.

Dominant Token Selection via CLS Attention. For an input image Ii, the vision encoder extracts
an initial set of n visual tokens V = {vcls, v1, . . . , vn−1}, including a class token vcls and n − 1
patch tokens, where vj ∈ Rd. We hypothesize that tokens receiving significant attention from the
class token ([CLS]) include the most critical global information.

4
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Figure 1: Overview of our Dual-Priv Pruning. (Left): Visual Token Pruning and Fusion. Using [CLS]
attention, dominant tokens are selected; less important ones are averaged with heuristic noise. (Right):
DP Fine-tuning with gradient pruning. Noise is added to gradients in LLM blocks, and updates are
selectively applied based on noisy gradient magnitude. Frozen parameters remain unchanged.

To identify these dominant tokens, we first compute the multi-head self-attention maps within a
selected layer of the vision encoder. The attention map for a single head h is given by:

Sh = Softmax
(
QhK

⊤
h√

Dh

)
∈ Rn×n, (5)

where Qh,Kh are the query and key matrices, and Dh is the head dimension. We average these maps
across all H heads to get an aggregated attention map Savg ∈ Rn×n:

Savg =
1

H

H∑
h=1

Sh. (6)

The importance score sj for each patch token vj (j ∈ {1, . . . , n − 1}) is then determined by the
attention receives from the [CLS] token in the aggregated map. We select the K patch tokens with the
highest importance scores sj as the dominant patch tokens Vd = {vj | sj is among the top K scores}.
The class token vcls is always retained. The remaining patch tokens form the non-dominant set Vnd.

Contextual Token Fusion and Heuristic Noise. To preserve the visual context features from Vnd
while reducing sequence length, we uniformly randomly select tokens vcenter,i from Vnd as cluster
centers and enhance their representation based on cosine similarity with the remaining non-dominant
tokens. Subsequently, Gaussian noise scaled by σ2

fuse is heuristically applied to the enhanced vcenter,
producing the fused contextual tokens c, as defined in the following formula:

c =


vcenter,1 +

1
|C1|

∑
vj∈C1

vj
vcenter,2 +

1
|C2|

∑
vj∈C2

vj
...

vcenter,k + 1
|Ck|

∑
vj∈Ck

vj

+N
(
0, σ2

fuseIkd
)
, (7)

where Ci is the set of non-dominant tokens assigned to the i-th cluster based on similarity:

Ci =
{
vj ∈ Vnd | i = argmax

l
sim(vj , vcenter,l)

}
, i = 1, 2, . . . , k. (8)

The noise adding process serves as a form of regularization or stochasticity injection; A key aspect
of our design is to maintain consistency with the noise introduced by the DP mechanism in the
subsequent stage. Therefore, the variance of this heuristic noise, σ2

fuse, is set to be equivalent to
the variance of the Gaussian noise added per step in the DP optimization process (Mechanism 2,
Section 4.2). It does not contribute to the formal (ϵ, δ)-DP guarantee derived in Mechanism 2. The
final set of visual tokens passed to the MLLM for the DP fine-tuning stage is V ′ = {vcls}∪Vd∪{C},
which has a significantly reduced size of K + |C|+ 1 tokens.

4.2 Mechanism 2: DP Fine-tuning with gradient-update pruning
This core mechanism performs the (ϵ, δ)-differential private fine-tuning of the trainable parameters
θtrain (e.g., LoRA matrices [14]), leveraging the pruned visual inputs (V ′, T ) from Mechanism 2.
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Our approach builds upon DP-SGD (Section 3.1.1) but introduces a post-noise adaptive update
mechanism designed to enhance utility without compromising the privacy guarantee.

The process within each training iteration t begins with standard DP-SGD procedures. For a
minibatch ξt of size m, we first compute per-sample gradients gi = ∇θtrainL(θt−1; (V ′

i, Ti)). To
bound the influence of individual samples, we clip the L2 norm of each gradient using a threshold
C: ĝi = gi/max(1, ∥gi∥2/C). These clipped gradients are then averaged across the minibatch to
produce ¯̂g = 1

m

∑
i∈ξt

ĝi. The crucial step for ensuring differential privacy follows. Gaussian noise
is added unconditionally to the entire aggregated gradient vector:

g̃ = ¯̂g +N
(
0,

σ2C2

m2
Idtrain

)
. (9)

Here, dtrain is the dimensionality of θtrain, and the noise multiplier σ is determined by the overall
privacy budget (ϵ, δ), number of steps T , and sampling rate q via privacy accounting (Fact A.2). At
this point, the noisy gradient g̃ is an (ϵt, δt)-differentially private quantity for the current step. Our
mechanism diverges from standard DP-SGD hereafter. Instead of directly using g̃ for the update, we
first analyze its structure and magnitude. We partition g̃ into components g̃j corresponding to logical
parameter blocks within θtrain and compute the L2 norm Nj = ∥g̃j∥2 for each block.

Based on these norms, we generate a binary mask M , structured identically to θtrain, to selectively
prune the parameter update. A block j is chosen for update (Mj remains 1): only if its noisy gradient
norm Nj is among the top K% of norms across all blocks, otherwise Mj remains 0.

Mj = I(Nj ∈ Top-K%({N1, N2, . . . , NJ})), (10)

where I(·) is the indicator function, J is the total number of parameter blocks, and Top-K%(·) denotes
the set of the K% largest norm values. The percentage for K% is a hyperparameter.

Finally, the model parameters are updated using the noisy gradient g̃, but applied selectively through
the generated mask M via element-wise multiplication (Hadamard product ⊙):

θt = θt−1 − ηt · (M ⊙ g̃). (11)

This ensures that parameter updates are only applied to blocks where the noisy gradient signal
was deemed sufficiently strong or reliable according to the gating criterion. The full step-by-step
procedure is formally detailed in Appendix L.

4.3 Overall Privacy Guarantee
The (ϵ, δ)-DP guarantee of the Dual-Priv Pruning method is entirely derived from Mechanism 2
(Section 4.2). Mechanism 1 (Section 4.1) involves data preprocessing before the DP mechanism is
applied and does not consume privacy budget. The adaptive update mechanism within Mechanism 2,
constitutes post-processing on the private intermediate result g̃ and thus does not affect the formal
(ϵ, δ)-DP guarantee (Appendix D).

5 Experiments
We conduct a comprehensive experimental evaluation of our proposed Dual-Priv Pruning method.
Our experiments are designed to validate four core advantages of Dual-Priv Pruning: (1) Preserve
utility, especially under strict privacy budgets (ϵ ≤ 3), compared to baseline methods; (2) Significant
improvements in computation cost, highlighted by an approximate 14.34% reduction in peak GPU
memory usage; and (3) Validated effectiveness on challenging, visual tasks, encompassing high-
resolution real-world scenes and medical images, demonstrating the method’s practical applicability
in complex, privacy-sensitive domains. (4) Empirically shown to be effective against privacy attacks
like Membership Inference Attacks (MIA).

5.1 Experimental Setup
Datasets. We evaluate performance by fine-tuning on the training sets and evaluating on the test sets
of several vision-language benchmarks. These include standard datasets such as ScienceQA [29]
(Scientific VQA), TextVQA [40] (VQA over text in images), and GQA [16] (Compositional VQA).
To specifically assess scalability and robustness on complex inputs, we utilize MME-RealWorld [53],
an MLLM benchmark designed for high-difficulty tasks involving high-resolution real-world images.
Additionally, we incorporate two medical visual question answering dataset, PathVQA [13]and
VQA-RAD [21], to further test generalization on specialized, challenging domains.
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Table 1: Comparison of different methods on standard benchmarks (BS = 12). For reference, non-
private performance (ϵ =∞) are included. Metrics reported are Accuracy (Acc) and Image-based
Accuracy (IMG). The best results for each ϵ setting are shown in bold.

ϵ

DZPO DP-SGD Dual-Priv(ours)

ScienceQA TextVQA GQA ScienceQA TextVQA GQA ScienceQA TextVQA GQA

Acc(%) IMG Acc(%) Acc(%) Acc(%) IMG Acc(%) Acc(%) Acc(%) IMG Acc(%) Acc(%)

1 23.30 21.50 1.13 0.00 81.54 72.51 34.52 38.61 84.20 78.43 34.74 39.06
3 21.50 19.90 2.82 0.00 78.80 70.59 35.64 39.11 82.80 75.98 35.17 39.65
8 21.50 19.90 1.31 0.00 82.52 74.00 35.60 39.16 85.10 76.47 35.71 39.78
∞ 22.16 0.98 0.95 0.00 81.10 73.53 34.89 38.92 84.60 79.41 35.53 39.06

Model & Training Strategy. We utilize LLAVA-7B [27] as our base MLLM. Specifically, for tasks
in the medical domain (PathVQA, VQA-RAD, and MIA on ROCOV2), we employ Med-LLaVA[22],
a LLaVA variant adapted for medical vision-language understanding. To isolate the impact of DP fine-
tuning methods, we do not perform additional instruction tuning stages beyond the initial pre-training
of LLAVA. Parameter-efficient fine-tuning is achieved using LoRA [14] (rank r = 128, scaling
α = 256) with batch size 12. All models are trained on the train set using the Adam optimizer [19]
with a learning rate of 2e-4 for 1 epoch. We use 4 A100 40G GPUs for training.

DP Implementation. We guarantee (ϵ, δ)-DP via the Gaussian Mechanism Privacy loss is tracked
using Rényi Differential Privacy(RDP) [33]. We set δ close to the inverse dataset size (1/N ) and
evaluate across strict to mild privacy budgets: ϵ ∈ {1, 3, 8}. Per-sample gradients are clipped at a
maximum L2 norm of C = 1.0.

Baselines. Our Dual-Priv Pruning method is compared against: DP-SGD [1]: The standard baseline
for DP fine-tuning, applying Gaussian noise to the averaged clipped gradients of all trainable
parameters. DPZO [42]: A representative zeroth-order DP optimization method, included to assess
alternatives that avoid direct gradient computation. Detailed for baselines are in Appendix G.

Dual-Priv Pruning Configuration. Mechanism 1 (Section 4.1) retains K = 191 attention-selected
visual tokens plus [CLS] and 30 fused token (40% of total). Mechanism 2 (Section 4.2) employs
gradient-update pruning by selecting parameter blocks for update if their noisy gradient norms are
among the top 80% of all block norms (Eq. (10)).

5.2 Performance on Standard Benchmarks
The results presented in Table 1 demonstrate the efficacy of Dual-Priv Pruning. Our method con-
sistently achieves performance that is often superior to DP-SGD, especially under stricter privacy
constraints (ϵ∈{1, 3}). DPZO consistently underperforms across all settings, yielding significantly
lower accuracy (e.g., only 23.30 on ScienceQA at ϵ=1, and 0.00 on GQA). This poor performance is
largely attributed to the significant convergence difficulties encountered when applying zeroth-order
optimization directly to complex MLLM training under DP constraints. On ScienceQA, our approach
excels. At the budget of ϵ=3, Dual-Priv Pruning achieves 82.80 and a notable 75.98 IMG, much
outperforming DP-SGD (78.80/70.59 respectively). This significant gain, particularly in the visual-
dependent IMG metric, underscores our method’s strength in preserving vital visual information
despite DP noise. This performance likely benefits from the synergistic effect of visual token pruning
and fusion and selective gradient-update. Even at the strictest budget of ϵ=1, our method maintains
a clear advantage on ScienceQA (84.20 vs 81.54; 78.43 vs 72.51). And our method achieves the best
non-private performance (ϵ =∞).On TextVQA and GQA, our method generally performs slightly
better than DP-SGD across various privacy levels, confirming its broad applicability. For instance, on
GQA, we achieve the best DP performance across all tested ϵ values. On TextVQA, performance is
highly competitive. While DP-SGD leads slightly at ϵ=3 (35.64 vs 35.17), our method achieves the
highest accuracy at ϵ=1 and ϵ=8 and also obtains the best non-private result. These results suggest
that Dual-Priv Pruning offers a more robust privacy-utility trade-off than standard DP techniques for
MLLMs. Its strengths are particularly notable under tight privacy budgets.

5.3 Performance on Medical Visual Tasks
To further assess applicability in privacy-sensitive domains, we evaluated performance on
PathVQA [13] (pathology) and VQA-RAD [21] (radiology). Table 2 presents a detailed com-
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Table 2: Comparison on PathVQA and VQA-RAD under different DP budgets (ours on the right).

ϵ

DPZO DP-SGD Ours (Dual-Priv)

PathVQA VQA-RAD PathVQA VQA-RAD PathVQA VQA-RAD

BLUE EXT F1 Acc(%) BLUE EXT F1 Acc(%) BLUE EXT F1 Acc(%)

1 0.6534 0.0301 0.0592 0.0 0.7222 0.3732 0.3675 47.3 0.7385 0.3840 0.3792 48.6

3 0.6534 0.0301 0.0592 0.0 0.7257 0.3712 0.3653 48.1 0.7263 0.3738 0.3701 48.8

8 0.6534 0.0301 0.0592 0.0 0.7140 0.3683 0.3635 46.8 0.7195 0.3763 0.3713 49.0

parison of performance under different privacy budget. Our method, consistently outperformed
DP-SGD across all the metrics, particularly under stricter privacy budgets. For ϵ = 1: on PathVQA,
our approach achieved scores of 0.74(BLUE), 0.38 (EXT), and 0.38 (F1), compared to DP-SGD’s
0.72, 0.37, and 0.37, respectively. On VQA-RAD, our method achieved an accuracy of 48.60%,
surpassing DP-SGD (47.30%). The DPZO baseline performed poorly on both medical datasets.
These consistent gains underscore the potential of Dual-Priv Pruning for tuning MLLMs on sensitive
medical data while effectively balancing privacy and utility.

5.4 Performance on High Resolution Visual Tasks

Table 3: Accuracy (%) on the MME-RealWorld
Benchmark (Lite version evaluation, BS=12).

Method ϵ = 1 ϵ = 3 ϵ = 8 ϵ =∞
DPZO 0.89 19.80 6.33 22.67
DP-SGD 35.44 44.03 42.17 44.50
Ours (Dual-Priv) 43.98 45.34 44.40 42.16

To evaluate performance on tasks demanding
fine-grained perception and complex reasoning
crucial for real-world applicability, we utilize
the MME-RealWorld benchmark [53]. Apply-
ing differential privacy in such scenarios is par-
ticularly challenging, as the noise required for
privacy can significantly impair the model’s abil-
ity to discern visual details and perform nuanced
reasoning. Models are DP-finetuned on the main MME-RealWorld training dataset and subsequently
evaluated on the held-out MME-RealWorld lite version. The results, presented in Table 3, demon-
strate a substantial advantage for Dual-Priv Pruning over both DP-SGD and DPZO across all tested
privacy budgets (ϵ ∈ {1, 3, 8}). Notably, under the strict ϵ = 1 setting, our method achieves 43.98
accuracy, significantly surpassing DP-SGD (35.44). The significant performance gain on this chal-
lenging benchmark underscores the effectiveness of Dual-Priv Pruning. Our method, appears better
equipped to preserve the crucial reasoning capabilities, even under stringent privacy constraints. This
suggests Dual-Priv Pruning is a promising approach for deploying privacy-preserving MLLMs in
real-world applications demanding high visual fidelity and complex reasoning.

5.5 Computational Efficiency Analysis
Figure 2 illustrates the average GPU memory usage during fine-tuning for our method compared to
the baselines. Across the evaluated datasets, scienceqa on 4 A100s, Dual-Priv Pruning achieves an
average reduction in average GPU memory usage of approximately 14.34%. Although DPZO
slightly reduces 1.74% GPU memory compared with our approach. ( It costs 16.7% more time per
training step and causes a 56.3% performance loss ). But during tested in H20, our method achieve
the lowest consumption of GPU memory. This highlights Dual-Priv Pruning’s strength in achieving a
favorable balance between model performance and robust computational efficiency, thereby making
DP fine-tuning for MLLMs more practical. Dual-Priv enables the DP fine-tuning of MLLMs with
more constrained resources.

5.6 Ablation Study
Table 4: Ablation on ScienceQA.

Configuration ACC IMG

Full Method 84.20 78.43
w/o Fusion Noise 83.50 76.47
Mechanism 2 Only 83.00 76.96
Mechanism 1 + Uniform DP 82.80 74.51

Ablation results on ScienceQA (ϵ = 1) are presented in
Table 4. The "w/o Fusion Noise" setting, which omits the
input-level noise, shows performance decrease (83.50/76.47
ACC/IMG) compared to the Full Method (84.20/78.43 AC-
C/IMG). This suggests that our strategy of preconditioning
the input with noise consistent with the DP optimization of-
fers a beneficial, albeit auxiliary, contribution to performance,
without adding a tunable hyperparameter for this noise. Omitting Mechanism 1’s token pruning
entirely (Mechanism 2 Only) lowers accuracy to 83.00/76.96 and eliminates the computational
efficiency benefits. Furthermore, replacing Mechanism 2’s selective update with uniform DP-SGD
noise significantly degrades performance to 82.80/74.51, confirming the effectiveness of our adaptive
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Figure 2: Average GPU memory consumption (in GB) during fine-tuning for DPZO, DP-SGD, and
our Dual-Priv Pruning across four datasets: ScienceQA, MME-RealWorld (evaluated on 4xA100 40G
GPUs), and TextVQA, GQA (evaluated on a single H20 96GB GPU). Experiments were conducted
with varying privacy budgets (ϵ ∈ {1, 3, 8}). Lower bars indicate greater memory efficiency.

update strategy. These findings demonstrate that both Mechanism 1 and Mechanism 2 are crucial
components to the overall performance of dual-private pruning.

5.7 Impacts of Pruning Ratios
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Figure 3: Pruning ratios impacts on ScienceQA
(ϵ = 1). (a) percentage of top K% gradient blocks
updated (Mechanism 2). (b) percentage of visual
tokens retained (Mechanism 1).

We examine the impact of different pruning ra-
tios within the Dual-Priv Pruning framework on
the ScienceQA dataset (ϵ = 1). Figure 3 (a)
displays the relationship between the gradient-
update pruning ratio and overall accuracy
(ACC). The ACC peaks at 84.20 when the top
80% of blocks are updated. Updating all blocks
yields a lower ACC of 82.80. Reducing the
update ratio further (60%, 50%, 10%) leads to
ACC values of 81.60, 82.00, and 81.10.Figure 3
(b) illustrates how the visual token retention
ratio affects image-based accuracy (IMG). The IMG shows a peak of 78.43% when retaining 40% of
the visual tokens. Retaining more tokens (e.g., 70%) results in a lower IMG of 75.49, while retaining
fewer tokens progressively reduces performance (76.47 at 30%, 74.51 at 20%), with a sharp drop to
62.75 when only 10% of tokens are kept. These experiments highlight that both pruning mechanisms
involve a delicate trade-off. Optimal performance requires retaining sufficient signal (visual features
or gradient updates) while pruning elements that might be redundant or overly affected by DP noise.

5.8 Performance Under Membership Inference Attacks
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Figure 4: Radar chart of AUC under
varying Rényi entropy orders and top en-
tropy percentages. Metrics use strict pri-
vacy budget (ϵ=1). Distribution places
smaller values near edges.

To further test the privacy protection capability of our ap-
proach, we validate the performance through membership
inference attack[39]. The latest MIA design for MLLM
[26] was adopted as the evaluation pipeline. Models were
DP-finetuned on privacy sensitive medical image caption
dataset ROCOV2[38] with the batchsize of 12 following
the standard setup (Section 5.1). Extensive experiments
demonstrate that our work outperform both DPZO and
DPSGD across metrics include AUC and ACC, especially
in protecting visual information as it benefit from adding
heuristic fusion noise in Mechanism 1. As it is shown
in Figure 4, the AUC obtained by attacking our model is
the lowest under almost every order of Rényi entropy and
percentage of top entropies selected, which means that the
possibility of distinguishing the member from database is
the lowest for Dual-Priv Pruning under the same attack
pipeline compared with other methods. Further data suggests that our method has a strong ability
to protect MLLM from assigning a higher "membership score" to a randomly chosen member than
to a randomly chosen non-member, which makes Membership inference attack nearly approaches
random guessing. Additional details are in Appendix I.
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6 Conclusion

In this work, we introduced Dual-Priv Pruning, the first framework for efficient differential private
fine-tuning of Multimodal Large Language Models. Our approach combines visual token pruning with
an input noise strategy aligned with DP noise intensity, and a gradient-update pruning mechanism.
Extensive experiments demonstrate that Dual-Priv Pruning achieves a compelling privacy-utility
trade-off, significantly reducing computational overhead while maintaining competitive performance,
especially under stringent privacy budgets. This work represents a crucial first step towards practical
privacy-preserving MLLM deployment.
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A Key Differential Privacy Facts

The following facts elucidate key DP properties essential for MLLM fine-tuning:

Fact A.1 (Sensitivity and the Gaussian Mechanism [10]). To protect the output of a function f using
noise, we first need to leverage its L2 sensitivity ∆f . This measures the maximum possible change
∥f(D)− f(D′)∥2 when the input dataset changes by one record. If ∆f is known (or bounded), the
Gaussian Mechanism adds noise N (0, σ2

GMI) where the standard deviation σGM is related to ∆f
and depends on the desired single-step privacy (ϵ, δ), calculated as:

σGM ≥
∆f
√

2 ln(1.25/δ)

ϵ
. (12)

Fact A.2 (Privacy Accounting via RDP [33]). Privacy accounting methods are essential for tracking
this privacy loss. Rényi Differential Privacy (RDP) [33] is widely used for such accounting [1]. The
RDP accountant’s practical role is to, given a target overall privacy budget (ϵ, δ), total training
steps T , and sampling rate q, compute the required per-step noise multiplier σ ( 3.1.1) and suggest a
clipping norm C to meet the (ϵ, δ)-DP guarantee. Mathematical details are in Appendix C.

B Sensitivity Analysis for DP-SGD under Add-or-Remove Adjacency

In DP-SGD (Definition 3.1.1), we apply the Gaussian Mechanism to the average of per-sample
clipped gradients. The choice of adjacency definition for datasets D and D′ (i.e., how they differ
by "one record") impacts the sensitivity calculation. As stated in Definition 3.1, our work considers
add-or-remove adjacency, where neighboring datasets differ by the addition or removal of a single
image-text pair.

Consider the function f(D, θ) =
∑

xi∈D ĝi(θ), which is the sum of clipped gradients ĝi for all
samples xi in a dataset D. Each per-sample clipped gradient satisfies ∥ĝi∥2 ≤ C. If we consider two
neighboring datasets D and D′ where D′ = D ∪ {x∗} (i.e., x∗ is added), then:

∥f(D, θ)−f(D′, θ)∥2 = ∥
∑
xi∈D

ĝi(θ)−(
∑
xi∈D

ĝi(θ)+ ĝx∗(θ))∥2 = ∥− ĝx∗(θ)∥2 = ∥ĝx∗(θ)∥2 ≤ C.

Similarly, if D′ = D \ {x∗} (i.e., x∗ is removed), the difference is also bounded by C. Thus, the L2

sensitivity of the sum of clipped gradients is ∆2f = C.

In DP-SGD, we typically compute gradients over a minibatch ξt of size m sampled from the full
dataset Dtrain (of size N ) with sampling probability q = m/N . The noisy update is applied to the
average of these clipped gradients: ḡ = 1

m

∑
i∈ξt

ĝi. For the per-iteration application of DP-SGD
with minibatch sampling, the effective L2 sensitivity of the quantity to which noise is added (the
average gradient) is commonly taken as C

m under the add-or-remove model when considering the
privacy implications for each individual sample’s contribution to this average [1, 10]. More precisely,
the clipping ensures that the maximum influence of any single user’s data on the sum of gradients
in a batch is C. When this sum is averaged over m samples, the change due to one user’s data (if
that user were removed from the entire dataset) can be bounded appropriately, leading to the noise
calibration based on C.

The noise added in DP-SGD (Eq. (2)) is N (0, σ2C2Id/m
2). This formulation inherently uses C as

the sensitivity for the sum of gradients in the batch if we consider each sample’s gradient to be a
distinct quantity to be protected, and then this noise is scaled by 1/m due to averaging (equivalently,
the sensitivity of the average is C/m). The critical point is that clipping each per-sample gradient to
C bounds its maximum possible contribution. The privacy analysis with subsampling (accounted for
by the RDP accountant) then correctly tracks the privacy loss given this per-sample bound C.

Therefore, the clipping norm C directly bounds the L2 norm of each individual’s contribution before
aggregation and noise addition. The Gaussian Mechanism (Fact A.1) is then applied using this
understanding, where the effective sensitivity for the noisy average gradient computation in DP-SGD
is appropriately scaled by C.
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C Rényi Differential Privacy (RDP) Accounting

RDP [33] provides a way to track privacy loss using Rényi divergence of order α, denoted Dα(P ||Q).
An algorithm A is (α, ρ)-RDP if for all neighboring datasets D,D′, Dα(A(D)||A(D′)) ≤ ρ. Key
properties include:

• Composition: If A1 is (α, ρ1)-RDP and A2 is (α, ρ2)-RDP, their composition A2 ◦ A1 is
(α, ρ1 + ρ2)-RDP. This simplifies tracking loss over multiple steps.

• Gaussian Mechanism RDP: Adding N (0, σ2
GMI) noise to a function with L2 sensitivity

∆f satisfies (α, α(∆f)2

2σ2
GM

)-RDP for any α > 1.

• Subsampling Amplification: Sampling a minibatch with rate q before applying a DP
mechanism amplifies privacy. RDP provides tight bounds for this, especially for Poisson
sampling [1] and uniform sampling without replacement.

• Conversion to (ϵ, δ)-DP: If an algorithm is (α, ρ)-RDP for all α in some range, it satisfies
(ϵ, δ)-DP where ϵ = ρ+ log(1/δ)

α−1 . We typically optimize over α to find the tightest ϵ for a
given δ.

The privacy accountant takes T, q, the per-step RDP parameters (derived from the Gaussian mecha-
nism using C and σ), applies composition and subsampling rules to get the total RDP parameters
(α, ρtotal), and converts this to the final (ϵ, δ). It can also work backwards: given target (ϵ, δ), T, q,
find the required σ.

D Post-Processing Property of Differential Privacy

The post-processing property is a fundamental and powerful feature of differential privacy [10].
It states that applying any arbitrary data-independent computation to the output of a differentially
private algorithm does not compromise its privacy guarantee.

Formal Statement: Let A : Dn → R be an (ϵ, δ)-differentially private algorithm, where Dn is the
space of possible datasets andR is the output range. Let f : R → R′ be any arbitrary randomized or
deterministic function whose computation does not depend on the original private dataset D (it only
takes the output of A as input). Then the composite algorithm f ◦ A (which first runs A on the input
dataset and then applies f to the result) is also (ϵ, δ)-differentially private.

Intuition: The privacy guarantee provided by A ensures that its output Y = A(D) is already
"privacy-safe" – observing Y reveals limited information about any individual in D. The function f
only gets access to this already protected output Y . Since f has no additional access to the original
sensitive data D, it cannot "undo" the privacy protection or learn anything more about individuals in
D than what was already bounded by the (ϵ, δ)-DP guarantee of A.

Proof Sketch: We want to show that for any neighboring datasets D,D′ and any set of outcomes
S′ ⊆ R′:

Pr[(f ◦ A)(D) ∈ S′] ≤ eϵ · Pr[(f ◦ A)(D′) ∈ S′] + δ

Let Y = A(D) and Y ′ = A(D′). The event (f ◦ A)(D) ∈ S′ means f(Y ) ∈ S′. Let Sf = {y ∈
R | f(y) ∈ S′} be the set of outputs from A that f maps into S′. Then, Pr[(f ◦ A)(D) ∈ S′] =
Pr[Y ∈ Sf ] = Pr[A(D) ∈ Sf ]. Similarly, Pr[(f ◦ A)(D′) ∈ S′] = Pr[A(D′) ∈ Sf ]. Since A is
(ϵ, δ)-DP and Sf is a valid subset of its output rangeR, we know from Definition 1:

Pr[A(D) ∈ Sf ] ≤ eϵ · Pr[A(D′) ∈ Sf ] + δ

Substituting back, we get:

Pr[(f ◦ A)(D) ∈ S′] ≤ eϵ · Pr[(f ◦ A)(D′) ∈ S′] + δ

This holds for any S′, proving that f ◦ A is (ϵ, δ)-DP.

Relevance to MLLM Fine-tuning: In our context, the DP-SGD algorithmA takes the private dataset
Dfine and produces the model parameters θfine. The act of generating a prediction for a new input x,
i.e., computing Mθfine(x), can be viewed as a post-processing function f applied to θfine. Therefore,
the generated predictions inherit the same (ϵ, δ)-DP guarantee with respect to the fine-tuning dataset
Dfine.
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E Motivation for Mechanism 1: Visual Token Pruning and Fusion

This appendix details the motivation behind the visual input preprocessing performed in Mechanism
1 of our Dual-Priv Pruning method (Section 4). This stage operates before the formal Differentially
Private (DP) fine-tuning in Mechanism 2 (§4.2) and is designed to address key challenges in applying
DP to Multimodal Large Language Models (MLLMs). Specifically, it aims to reduce computation
cost and potentially improve the utility outcome under DP constraints by modifying the visual token
sequence.

E.1 Addressing Computation Cost and Visual Redundancy

Fine-tuning MLLMs using DP-SGD can be computationally demanding, due to the high number of
visual tokens (n) generated by the vision encoder. It has been observed that considerable redundancy
exists within the visual tokens generated by Vision Transformers (ViTs), and not all tokens are equally
important for downstream task performance [12, 20]. Building on the insight that attention scores
often correlate with token importance [12], Mechanism 1 identifies and retains only the top-K tokens
receiving the highest aggregated attention from the [CLS] token. This selective pruning significantly
shortens the sequence length processed in Mechanism 2, thereby directly reducing computation
overhead. This strategy aligns with research exploring attention-based token pruning in ViTs [20, 37].

E.2 Preserving Context via Token Fusion

While pruning reduces costs, simply discarding less attended tokens might remove valuable contextual
information. To mitigate this, Mechanism 1 adopts a fusion strategy inspired by techniques that
aim to compress information from pruned parts of a network or input [47]. We merge the non-
dominant tokens (Vnd) into selected context tokens (c). This allows us to maintain a drastically
reduced sequence length for efficiency while still incorporating a summarized representation of
the less critical visual information, aiming for a better balance between computational savings and
information preservation.

E.3 Heuristic Noise Injection: Motivations and Potential Benefits

The final step of Mechanism 1 introduces heuristic Gaussian noise to the fused context tokens (c)
(Eq. (7)). This deliberate noise injection is multifaceted, aiming to potentially enhance the subsequent
DP fine-tuning process:

• Regularization against DP Noise: Adding noise is a known regularization technique [5, 34].
Injecting noise specifically into the summarized, less critical token representation might act
as targeted input regularization. This could potentially improve the model’s robustness
against the gradient perturbations inherent in the DP mechanism.

• Encouraging Focus on Critical Tokens: By introducing stochasticity primarily to the
fused context token, the model might be implicitly encouraged during fine-tuning to rely
more heavily on the stable, un-noised dominant tokens (Vd, vcls). This could help preserve
utility related to salient image features.

• Connection to Learning with Noise Priors: Although mechanically different, this strategy
shares a conceptual link with methods improving DP training by incorporating knowledge
from noisy processes [41].Our direct noise injection might serve a similar purpose by
preconditioning the model with input stochasticity, potentially enhancing its resilience to
the noise required for the DP guarantee in Mechanism 2.

• Conceptual Input-Level Obfuscation: While not contributing to the formal DP guarantee,
manipulating the representation of less critical tokens with heuristic noise offers a degree of
data obfuscation at the input level. This might provide some practical hardening against
certain inference attacks targeting those specific, less informative image regions.

It is crucial to emphasize that the noise added in Mechanism 24.1 (σ2
fuse) is heuristic. It is not

calibrated according to DP principles and serves as a hyperparameter tuned for its potential benefits
to utility and robustness.
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F Motivation for Mechanism 2 Gradient-Update Pruning

The post-noise adaptive update mechanism described in Section 4.2 is motivated by the goal of
enhancing model utility under the constraints imposed by DP-SGD noise. Standard DP-SGD applies
the noisy gradient g̃ (Eq. (9)) uniformly to all trainable parameters θtrain. However, the added noise can
significantly perturb or even dominate the true gradient signal, especially for parameter blocks where
the original gradient magnitude was small or when operating under strict privacy budgets (requiring
large σ). Applying updates based on such noise-dominated gradients might hinder convergence or
lead to suboptimal performance.

Our strategy addresses this by analyzing the noisy gradient g̃ after the privacy-preserving noise has
been added. By partitioning g̃ into logical blocks g̃j and examining their L2 norms Nj = ∥g̃j∥2,
we attempt to identify blocks where the signal likely outweighs the noise. The assumption is
that a relatively large norm Nj suggests that the original aggregated gradient component ¯̂gj was
sufficiently strong to persist despite the noise addition, thus indicating a more reliable update direction.
Conversely, a small norm Nj might indicate that the true signal was weak or was largely cancelled by
the random noise vector.

The gating mechanism (Eq. (10)) leverages this analysis. By generating a mask M that selectively
allows updates only for blocks with high noisy-gradient norms (i.e., where Mj = 1), we filter out
potentially detrimental updates arising from low-signal or noise-dominated gradient components.
The final masked update (Eq. (11)) focuses the optimization process on parameter blocks associated
with stronger, potentially more informative, noisy gradient signals. This aims to improve the effective
signal-to-noise ratio of the updates applied to the model, potentially leading to better convergence,
improved utility, and a more favorable privacy-utility trade-off for the given privacy budget (ϵ, δ).

G Baseline Details

This section provides detailed descriptions, algorithms, and hyperparameter configurations for the
baseline methods used in our comparative experiments.

G.1 DP-SGD Baseline

We implement the standard Differentially Private Stochastic Gradient Descent (DP-SGD) algo-
rithm [1], formally defined in 3.1.1. This method involves computing per-sample gradients, clipping
their L2 norms, averaging the clipped gradients, and adding calibrated Gaussian noise before updating
the model parameters. It serves as the primary benchmark for differentially private optimization in
deep learning. The hyperparameter configuration used for DP-SGD is detailed in Table 5.

Table 5: Hyperparameter Configuration for DP-SGD Baseline.
Parameter Value

Base Model LLAVA-7B [27]
Fine-tuning Method LoRA [14]
LoRA Rank (r) 128
LoRA Alpha (α) 256
Optimizer Adam [19]
Learning Rate 2e-4
Batch Size 12
Epochs 1

DP Parameters
Clipping Norm (C) 1.0
Target δ ≈ 1/N (Inverse dataset size)
Target ϵ Values {1, 3, 8,∞}
Noise Multiplier (σ) Calculated via RDP [33]

based on target (ϵ, δ), C, q, and total steps.
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G.2 DPZO Baseline

DPZO (Differentially Private Zeroth-Order Optimization) [42] is a gradient-free DP optimization
method. It approximates the gradient direction using finite differences based on random perturbations
and privatizes only a scalar value representing the estimated directional derivative (loss difference).
This avoids the memory overhead associated with storing per-sample gradients, but often requires
significantly more iterations for convergence compared to DP-SGD. Algorithm 3 outlines the core
mechanism adapted from [42]. The specific configuration used in our experiments is presented in
Table 6.

Table 6: Hyperparameter Configuration for DPZO Baseline.
Parameter Value

Base Model LLAVA-7B [27]
Fine-tuning Method LoRA [14]
LoRA Rank (r) 128
LoRA Alpha (α) 256
Learning Rate (η) 2e-4
Perturbation Scale (ϕ) 0.15
Batch Size 12
Epochs 1

DP Parameters
Clipping Norm (CZO) 1.0
Target δ ≈ 1/N
Target ϵ Values {1, 3, 8,∞}
Noise Multiplier (σZO) Calculated via RDP accountant based on target (ϵ, δ), CZO, q = m/N , T .

H Detailed Results on Medical Datasets

This section provides the detailed performance results for the experiments on the PathVQA and
VQA-RAD datasets, as referenced in Section 5.1. All experiments used a batch size (BS) of 12.

Table 7: Detailed performance on PathVQA (BS=12). Higher is better for BLUE, EXT, F1. Best DP
results in bold.

ϵ
Ours (Dual-Priv) DPZO DP-SGD

BLUE EXT F1 BLUE EXT F1 BLUE EXT F1

1 0.7385 0.3840 0.3792 0.6534 0.0301 0.0592 0.7222 0.3732 0.3675
3 0.7263 0.3738 0.3701 0.6534 0.0301 0.0592 0.7257 0.3712 0.3653
8 0.7195 0.3763 0.3713 0.6534 0.0301 0.0592 0.7140 0.3683 0.3635
∞ 0.7430 0.3880 0.3841 0.6534 0.0301 0.0592 0.7182 0.3927 0.3879

Table 8: Detailed accuracy (%) on VQA-RAD (BS=12). Higher is better. Best DP result in bold.
ϵ Ours (Dual-Priv) DPZO DP-SGD

1 48.6 0.0 47.3
3 48.8 0.0 48.1
8 49.0 0.0 46.8
∞ 47.9 0.0 48.3

I Additional Details on Membership Inference Attack

This section provides the additional details for the experiments with membership inference attack, as
referenced in Section 5.8. All experiments used a batch size(BS) of 12. We randomly sample 6,000
image-text pairs from the ROCOV2 dataset for evaluation and randomly sampled 3000 image-text
pairs as the member dataset for training. To fit the LLaVA-VQA formulation, we randomly use these
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prompts:"Please describe the image in detail.", "What is shown in this medical image?", "Describe
the contents of this image.", "What does this image depict?", "Provide a detailed description of this
image.", "Please analyze this medical image.", "Describe the medical image in detail.", "Describe the
condition depicted in the image.", "Please provide a caption for this image."

J Limitations

Our study demonstrates the effectiveness of Dual-Priv Pruning for DP fine-tuning MLLMs. While
our evaluations on a 7B MLLM are thorough, extending the assessment to MLLMs of substantially
different scales would provide a broader understanding of the approach’s scalability.

K Broader Impacts

The development of Dual-Priv Pruning contributes to the critical area of privacy-preserving machine
learning, particularly for Multimodal Large Language Models (MLLMs). The primary societal
benefit lies in its potential to significantly enhance data privacy when fine-tuning MLLMs on sensitive
datasets. By integrating Differential Privacy (DP) with improved efficiency and utility, our work
can empower the responsible use of MLLMs in domains handling personal information, such as
healthcare or finance, thereby protecting individuals from data leakage. This advancement may
also lower barriers to adopting privacy-enhancing technologies, encouraging a broader shift towards
responsible AI practices and facilitating research on valuable sensitive datasets that might otherwise
remain underutilized due to privacy risks. Ultimately, robust privacy measures like those explored
can foster greater public trust in AI systems, which is vital for their ethical and successful integration
into society.

However, it is important to consider the broader context. While DP offers strong mathematical privacy
guarantees, these are contingent upon correct implementation and careful parameter selection, and
they address specific threats related to individual data contributions rather than all conceivable privacy
concerns. A nuanced understanding is crucial to avoid a false sense of absolute security. The inherent
trade-off between privacy protection and model utility, though mitigated by our approach, persists; in
certain high-stakes applications, even minor performance degradation due to DP noise could have
notable implications if not carefully weighed. Furthermore, the expertise required to effectively
implement and tune DP mechanisms remains a consideration for broader accessibility. While our
method focuses on the privacy of training data, the underlying MLLM technology itself, regardless
of how it’s fine-tuned, could still be subject to misuse if its outputs are leveraged for unintended or
harmful purposes.

Our research is a step towards more responsible AI development. We believe continued efforts in
the community are essential to further refine the balance between privacy and utility, enhance the
usability of DP tools, and promote comprehensive education on both the capabilities and limitations
of such privacy-enhancing technologies. Addressing fairness and bias within DP-trained models also
remains an important ongoing pursuit. This work is presented as foundational research to advance
privacy in MLLM fine-tuning, with the anticipation that its net impact will be positive by enabling
more secure and trustworthy AI applications.

L Algorithm for Baselines and Dual-priv Pruning

Algorithm 1 provides the detailed step-by-step procedure for the Stage 2 DP fine-tuning process
described in Section 4.2 of the main paper. While Algorithm 2 outlines the standard DP-SGD baseline,
and Algorithm 3 details the DPZO baseline.
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Algorithm 1 Dual-Priv Pruning: Mechanism 2 (DP Fine-tuning with Gradient-Update Pruning)

Require: Initial trainable parameters θtrain0 , dataset D = {(V ′
i, Ti)}Ni=1 (with pre-processed visual

inputs V ′
i), learning rate schedule ηt, gradient clipping norm C, noise multiplier σ (derived from

target ϵ, δ), batch size m, total training steps T , number of logical parameter blocks J in θtrain,
top-K percentage PK .

1: for t = 1, . . . , T do
2: Sample minibatch ξt = {(V ′

k, Tk)}mk=1 ⊂ D of size m.
3: Initialize list of per-sample gradients Glist = [].
4: for each sample (V ′

k, Tk) ∈ ξt do
5: Compute gradient gk ← ∇θtraint−1

L(θtraint−1
; (V ′

k, Tk)).
6: Clip gradient: ĝk ← gk/max(1, ∥gk∥2/C).
7: Append ĝk to Glist.
8: end for
9: Aggregate clipped gradients: ¯̂g ← 1

m

∑
ĝk∈Glist

ĝk.

10: Add Gaussian noise: g̃ ← ¯̂g +N
(
0, σ2C2

m2 Idtrain

)
.

11: Partition g̃ into J components {g̃1, . . . , g̃J} corresponding to logical parameter blocks.
12: Compute L2 norms for each block: Nj ← ∥g̃j∥2 for j = 1, . . . , J .
13: Initialize mask M as a zero tensor with the same block structure as θtrain.
14: Let Kcount ← ⌈(PK/100) · J⌉.
15: Let Stop_indices be the set of indices of the Kcount blocks with the largest norms Nj .
16: for each block index j ∈ Stop_indices do
17: Set corresponding part of mask Mj ← 1 (vector/matrix of ones for block j).
18: end for
19: Update parameters: θtraint ← θtraint−1 − ηt · (M ⊙ g̃).
20: end for
21: return θtrainT .

Algorithm 2 Differentially Private Stochastic Gradient Descent (DP-SGD, adapted from [1])

Require: Initial model parameters θ0, dataset D = {(Ii, Ti)}Ni=1 (or generic xi), learning rate ηt,
clipping norm C, noise multiplier σ, batch size m, total steps T .

1: for t = 1, . . . , T do
2: Sample minibatch ξt = {xk}mk=1 ⊂ D of size m.
3: Initialize list of per-sample gradients Glist = [].
4: for each sample xk ∈ ξt do
5: Compute gradient gk ← ∇θt−1L(θt−1;xk).
6: Clip gradient: ĝk ← gk/max(1, ∥gk∥2/C).
7: Append ĝk to Glist.
8: end for
9: Aggregate clipped gradients: ¯̂g ← 1

m

∑
ĝk∈Glist

ĝk.

10: Add Gaussian noise: g̃ ← ¯̂g +N
(
0, σ2C2

m2 Id

)
.

11: Update parameters: θt ← θt−1 − ηt · g̃.
12: end for
13: return θT .
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Algorithm 3 DPZO Core Mechanism (Simplified, adapted from [42])

Require: Model parameters θ, dataset D, learning rate η, perturbation scale ϕ, clipping threshold
CZO, noise scale σZO, batch size m, total steps T .

1: for t = 1, . . . , T do
2: Sample batch B ⊂ D.
3: Sample random direction zt ∼ N (0, Id).
4: Set θ+ ← θt−1 + ϕzt, θ− ← θt−1 − ϕzt.
5: Initialize loss differences list Ldiff = [].
6: for each sample (Ii, Ti) ∈ B do
7: Compute li = L(θ+; (Ii, Ti))− L(θ−; (Ii, Ti)).
8: Clip difference: l̂i ← max(−CZO,min(li, CZO)).
9: Append l̂i to Ldiff.

10: end for
11: Aggregate clipped differences: l̄← 1

|B|
∑

l̂i∈Ldiff
l̂i.

12: Add noise to privatize the average difference: s← l̄ +N (0, σ2
ZOC

2
ZO/|B|2).

13: Update parameters: θt ← θt−1 − η · s · zt/(2ϕ).
14: end for
15: return θT .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix J

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 3, Appendix A, Appendix D and Appendix C
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We claim the details of methods and the experiments settings in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We include the code in our supplemental material.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:: The experimental settings are detailed in Section 5.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We believe the pattern is clear.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:See Section 5
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It does.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix K
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

26

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all works properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We offer documentation alongside our code. The anonymized repository in-
cluding code and documentation can be found at: https://anonymous.4open.science/
r/Dual-priv-pruning-AE7E
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: The core methodology of this research is centered on the differential private
fine-tuning of Multimodal Large Language Models (MLLMs).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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